1 /* $NetBSD: kern_lwp.c,v 1.111 2008/05/19 17:06:02 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. If the LWP is not swapped in (LW_INMEM == 0) 64 * then the LWP is not on a run queue, but may be soon. 65 * 66 * LSIDL 67 * 68 * Idle: the LWP has been created but has not yet executed, 69 * or it has ceased executing a unit of work and is waiting 70 * to be started again. 71 * 72 * LSSUSPENDED: 73 * 74 * Suspended: the LWP has had its execution suspended by 75 * another LWP in the same process using the _lwp_suspend() 76 * system call. User-level LWPs also enter the suspended 77 * state when the system is shutting down. 78 * 79 * The second set represent a "statement of intent" on behalf of the 80 * LWP. The LWP may in fact be executing on a processor, may be 81 * sleeping or idle. It is expected to take the necessary action to 82 * stop executing or become "running" again within a short timeframe. 83 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running. 84 * Importantly, it indicates that its state is tied to a CPU. 85 * 86 * LSZOMB: 87 * 88 * Dead or dying: the LWP has released most of its resources 89 * and is: a) about to switch away into oblivion b) has already 90 * switched away. When it switches away, its few remaining 91 * resources can be collected. 92 * 93 * LSSLEEP: 94 * 95 * Sleeping: the LWP has entered itself onto a sleep queue, and 96 * has switched away or will switch away shortly to allow other 97 * LWPs to run on the CPU. 98 * 99 * LSSTOP: 100 * 101 * Stopped: the LWP has been stopped as a result of a job 102 * control signal, or as a result of the ptrace() interface. 103 * 104 * Stopped LWPs may run briefly within the kernel to handle 105 * signals that they receive, but will not return to user space 106 * until their process' state is changed away from stopped. 107 * 108 * Single LWPs within a process can not be set stopped 109 * selectively: all actions that can stop or continue LWPs 110 * occur at the process level. 111 * 112 * State transitions 113 * 114 * Note that the LSSTOP state may only be set when returning to 115 * user space in userret(), or when sleeping interruptably. The 116 * LSSUSPENDED state may only be set in userret(). Before setting 117 * those states, we try to ensure that the LWPs will release all 118 * locks that they hold, and at a minimum try to ensure that the 119 * LWP can be set runnable again by a signal. 120 * 121 * LWPs may transition states in the following ways: 122 * 123 * RUN -------> ONPROC ONPROC -----> RUN 124 * > STOPPED > SLEEP 125 * > SUSPENDED > STOPPED 126 * > SUSPENDED 127 * > ZOMB 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > SUSPENDED 136 * 137 * Other state transitions are possible with kernel threads (eg 138 * ONPROC -> IDL), but only happen under tightly controlled 139 * circumstances the side effects are understood. 140 * 141 * Locking 142 * 143 * The majority of fields in 'struct lwp' are covered by a single, 144 * general spin lock pointed to by lwp::l_mutex. The locks covering 145 * each field are documented in sys/lwp.h. 146 * 147 * State transitions must be made with the LWP's general lock held, 148 * and may cause the LWP's lock pointer to change. Manipulation of 149 * the general lock is not performed directly, but through calls to 150 * lwp_lock(), lwp_relock() and similar. 151 * 152 * States and their associated locks: 153 * 154 * LSONPROC, LSZOMB: 155 * 156 * Always covered by spc_lwplock, which protects running LWPs. 157 * This is a per-CPU lock. 158 * 159 * LSIDL, LSRUN: 160 * 161 * Always covered by spc_mutex, which protects the run queues. 162 * This is a per-CPU lock. 163 * 164 * LSSLEEP: 165 * 166 * Covered by a lock associated with the sleep queue that the 167 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex. 168 * 169 * LSSTOP, LSSUSPENDED: 170 * 171 * If the LWP was previously sleeping (l_wchan != NULL), then 172 * l_mutex references the sleep queue lock. If the LWP was 173 * runnable or on the CPU when halted, or has been removed from 174 * the sleep queue since halted, then the lock is spc_lwplock. 175 * 176 * The lock order is as follows: 177 * 178 * spc::spc_lwplock -> 179 * sleepq_t::sq_mutex -> 180 * tschain_t::tc_mutex -> 181 * spc::spc_mutex 182 * 183 * Each process has an scheduler state lock (proc::p_lock), and a 184 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 185 * so on. When an LWP is to be entered into or removed from one of the 186 * following states, p_lock must be held and the process wide counters 187 * adjusted: 188 * 189 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 190 * 191 * Note that an LWP is considered running or likely to run soon if in 192 * one of the following states. This affects the value of p_nrlwps: 193 * 194 * LSRUN, LSONPROC, LSSLEEP 195 * 196 * p_lock does not need to be held when transitioning among these 197 * three states. 198 */ 199 200 #include <sys/cdefs.h> 201 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.111 2008/05/19 17:06:02 ad Exp $"); 202 203 #include "opt_ddb.h" 204 #include "opt_lockdebug.h" 205 206 #define _LWP_API_PRIVATE 207 208 #include <sys/param.h> 209 #include <sys/systm.h> 210 #include <sys/cpu.h> 211 #include <sys/pool.h> 212 #include <sys/proc.h> 213 #include <sys/syscallargs.h> 214 #include <sys/syscall_stats.h> 215 #include <sys/kauth.h> 216 #include <sys/sleepq.h> 217 #include <sys/user.h> 218 #include <sys/lockdebug.h> 219 #include <sys/kmem.h> 220 #include <sys/pset.h> 221 #include <sys/intr.h> 222 #include <sys/lwpctl.h> 223 #include <sys/atomic.h> 224 225 #include <uvm/uvm_extern.h> 226 #include <uvm/uvm_object.h> 227 228 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 229 230 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 231 &pool_allocator_nointr, IPL_NONE); 232 233 static pool_cache_t lwp_cache; 234 static specificdata_domain_t lwp_specificdata_domain; 235 236 void 237 lwpinit(void) 238 { 239 240 lwp_specificdata_domain = specificdata_domain_create(); 241 KASSERT(lwp_specificdata_domain != NULL); 242 lwp_sys_init(); 243 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 244 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 245 } 246 247 /* 248 * Set an suspended. 249 * 250 * Must be called with p_lock held, and the LWP locked. Will unlock the 251 * LWP before return. 252 */ 253 int 254 lwp_suspend(struct lwp *curl, struct lwp *t) 255 { 256 int error; 257 258 KASSERT(mutex_owned(t->l_proc->p_lock)); 259 KASSERT(lwp_locked(t, NULL)); 260 261 KASSERT(curl != t || curl->l_stat == LSONPROC); 262 263 /* 264 * If the current LWP has been told to exit, we must not suspend anyone 265 * else or deadlock could occur. We won't return to userspace. 266 */ 267 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 268 lwp_unlock(t); 269 return (EDEADLK); 270 } 271 272 error = 0; 273 274 switch (t->l_stat) { 275 case LSRUN: 276 case LSONPROC: 277 t->l_flag |= LW_WSUSPEND; 278 lwp_need_userret(t); 279 lwp_unlock(t); 280 break; 281 282 case LSSLEEP: 283 t->l_flag |= LW_WSUSPEND; 284 285 /* 286 * Kick the LWP and try to get it to the kernel boundary 287 * so that it will release any locks that it holds. 288 * setrunnable() will release the lock. 289 */ 290 if ((t->l_flag & LW_SINTR) != 0) 291 setrunnable(t); 292 else 293 lwp_unlock(t); 294 break; 295 296 case LSSUSPENDED: 297 lwp_unlock(t); 298 break; 299 300 case LSSTOP: 301 t->l_flag |= LW_WSUSPEND; 302 setrunnable(t); 303 break; 304 305 case LSIDL: 306 case LSZOMB: 307 error = EINTR; /* It's what Solaris does..... */ 308 lwp_unlock(t); 309 break; 310 } 311 312 return (error); 313 } 314 315 /* 316 * Restart a suspended LWP. 317 * 318 * Must be called with p_lock held, and the LWP locked. Will unlock the 319 * LWP before return. 320 */ 321 void 322 lwp_continue(struct lwp *l) 323 { 324 325 KASSERT(mutex_owned(l->l_proc->p_lock)); 326 KASSERT(lwp_locked(l, NULL)); 327 328 /* If rebooting or not suspended, then just bail out. */ 329 if ((l->l_flag & LW_WREBOOT) != 0) { 330 lwp_unlock(l); 331 return; 332 } 333 334 l->l_flag &= ~LW_WSUSPEND; 335 336 if (l->l_stat != LSSUSPENDED) { 337 lwp_unlock(l); 338 return; 339 } 340 341 /* setrunnable() will release the lock. */ 342 setrunnable(l); 343 } 344 345 /* 346 * Wait for an LWP within the current process to exit. If 'lid' is 347 * non-zero, we are waiting for a specific LWP. 348 * 349 * Must be called with p->p_lock held. 350 */ 351 int 352 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 353 { 354 struct proc *p = l->l_proc; 355 struct lwp *l2; 356 int nfound, error; 357 lwpid_t curlid; 358 bool exiting; 359 360 KASSERT(mutex_owned(p->p_lock)); 361 362 p->p_nlwpwait++; 363 l->l_waitingfor = lid; 364 curlid = l->l_lid; 365 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 366 367 for (;;) { 368 /* 369 * Avoid a race between exit1() and sigexit(): if the 370 * process is dumping core, then we need to bail out: call 371 * into lwp_userret() where we will be suspended until the 372 * deed is done. 373 */ 374 if ((p->p_sflag & PS_WCORE) != 0) { 375 mutex_exit(p->p_lock); 376 lwp_userret(l); 377 #ifdef DIAGNOSTIC 378 panic("lwp_wait1"); 379 #endif 380 /* NOTREACHED */ 381 } 382 383 /* 384 * First off, drain any detached LWP that is waiting to be 385 * reaped. 386 */ 387 while ((l2 = p->p_zomblwp) != NULL) { 388 p->p_zomblwp = NULL; 389 lwp_free(l2, false, false);/* releases proc mutex */ 390 mutex_enter(p->p_lock); 391 } 392 393 /* 394 * Now look for an LWP to collect. If the whole process is 395 * exiting, count detached LWPs as eligible to be collected, 396 * but don't drain them here. 397 */ 398 nfound = 0; 399 error = 0; 400 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 401 /* 402 * If a specific wait and the target is waiting on 403 * us, then avoid deadlock. This also traps LWPs 404 * that try to wait on themselves. 405 * 406 * Note that this does not handle more complicated 407 * cycles, like: t1 -> t2 -> t3 -> t1. The process 408 * can still be killed so it is not a major problem. 409 */ 410 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 411 error = EDEADLK; 412 break; 413 } 414 if (l2 == l) 415 continue; 416 if ((l2->l_prflag & LPR_DETACHED) != 0) { 417 nfound += exiting; 418 continue; 419 } 420 if (lid != 0) { 421 if (l2->l_lid != lid) 422 continue; 423 /* 424 * Mark this LWP as the first waiter, if there 425 * is no other. 426 */ 427 if (l2->l_waiter == 0) 428 l2->l_waiter = curlid; 429 } else if (l2->l_waiter != 0) { 430 /* 431 * It already has a waiter - so don't 432 * collect it. If the waiter doesn't 433 * grab it we'll get another chance 434 * later. 435 */ 436 nfound++; 437 continue; 438 } 439 nfound++; 440 441 /* No need to lock the LWP in order to see LSZOMB. */ 442 if (l2->l_stat != LSZOMB) 443 continue; 444 445 /* 446 * We're no longer waiting. Reset the "first waiter" 447 * pointer on the target, in case it was us. 448 */ 449 l->l_waitingfor = 0; 450 l2->l_waiter = 0; 451 p->p_nlwpwait--; 452 if (departed) 453 *departed = l2->l_lid; 454 sched_lwp_collect(l2); 455 456 /* lwp_free() releases the proc lock. */ 457 lwp_free(l2, false, false); 458 mutex_enter(p->p_lock); 459 return 0; 460 } 461 462 if (error != 0) 463 break; 464 if (nfound == 0) { 465 error = ESRCH; 466 break; 467 } 468 469 /* 470 * The kernel is careful to ensure that it can not deadlock 471 * when exiting - just keep waiting. 472 */ 473 if (exiting) { 474 KASSERT(p->p_nlwps > 1); 475 cv_wait(&p->p_lwpcv, p->p_lock); 476 continue; 477 } 478 479 /* 480 * If all other LWPs are waiting for exits or suspends 481 * and the supply of zombies and potential zombies is 482 * exhausted, then we are about to deadlock. 483 * 484 * If the process is exiting (and this LWP is not the one 485 * that is coordinating the exit) then bail out now. 486 */ 487 if ((p->p_sflag & PS_WEXIT) != 0 || 488 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 489 error = EDEADLK; 490 break; 491 } 492 493 /* 494 * Sit around and wait for something to happen. We'll be 495 * awoken if any of the conditions examined change: if an 496 * LWP exits, is collected, or is detached. 497 */ 498 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 499 break; 500 } 501 502 /* 503 * We didn't find any LWPs to collect, we may have received a 504 * signal, or some other condition has caused us to bail out. 505 * 506 * If waiting on a specific LWP, clear the waiters marker: some 507 * other LWP may want it. Then, kick all the remaining waiters 508 * so that they can re-check for zombies and for deadlock. 509 */ 510 if (lid != 0) { 511 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 512 if (l2->l_lid == lid) { 513 if (l2->l_waiter == curlid) 514 l2->l_waiter = 0; 515 break; 516 } 517 } 518 } 519 p->p_nlwpwait--; 520 l->l_waitingfor = 0; 521 cv_broadcast(&p->p_lwpcv); 522 523 return error; 524 } 525 526 /* 527 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 528 * The new LWP is created in state LSIDL and must be set running, 529 * suspended, or stopped by the caller. 530 */ 531 int 532 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags, 533 void *stack, size_t stacksize, void (*func)(void *), void *arg, 534 lwp_t **rnewlwpp, int sclass) 535 { 536 struct lwp *l2, *isfree; 537 turnstile_t *ts; 538 539 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 540 541 /* 542 * First off, reap any detached LWP waiting to be collected. 543 * We can re-use its LWP structure and turnstile. 544 */ 545 isfree = NULL; 546 if (p2->p_zomblwp != NULL) { 547 mutex_enter(p2->p_lock); 548 if ((isfree = p2->p_zomblwp) != NULL) { 549 p2->p_zomblwp = NULL; 550 lwp_free(isfree, true, false);/* releases proc mutex */ 551 } else 552 mutex_exit(p2->p_lock); 553 } 554 if (isfree == NULL) { 555 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 556 memset(l2, 0, sizeof(*l2)); 557 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 558 SLIST_INIT(&l2->l_pi_lenders); 559 } else { 560 l2 = isfree; 561 ts = l2->l_ts; 562 KASSERT(l2->l_inheritedprio == -1); 563 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 564 memset(l2, 0, sizeof(*l2)); 565 l2->l_ts = ts; 566 } 567 568 l2->l_stat = LSIDL; 569 l2->l_proc = p2; 570 l2->l_refcnt = 1; 571 l2->l_class = sclass; 572 l2->l_kpriority = l1->l_kpriority; 573 l2->l_kpribase = PRI_KERNEL; 574 l2->l_priority = l1->l_priority; 575 l2->l_inheritedprio = -1; 576 l2->l_flag = inmem ? LW_INMEM : 0; 577 l2->l_pflag = LP_MPSAFE; 578 l2->l_fd = p2->p_fd; 579 TAILQ_INIT(&l2->l_ld_locks); 580 581 if (p2->p_flag & PK_SYSTEM) { 582 /* Mark it as a system LWP and not a candidate for swapping */ 583 l2->l_flag |= LW_SYSTEM; 584 } 585 586 kpreempt_disable(); 587 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 588 l2->l_cpu = l1->l_cpu; 589 kpreempt_enable(); 590 591 lwp_initspecific(l2); 592 sched_lwp_fork(l1, l2); 593 lwp_update_creds(l2); 594 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 595 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 596 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 597 cv_init(&l2->l_sigcv, "sigwait"); 598 l2->l_syncobj = &sched_syncobj; 599 600 if (rnewlwpp != NULL) 601 *rnewlwpp = l2; 602 603 l2->l_addr = UAREA_TO_USER(uaddr); 604 uvm_lwp_fork(l1, l2, stack, stacksize, func, 605 (arg != NULL) ? arg : l2); 606 607 mutex_enter(p2->p_lock); 608 609 if ((flags & LWP_DETACHED) != 0) { 610 l2->l_prflag = LPR_DETACHED; 611 p2->p_ndlwps++; 612 } else 613 l2->l_prflag = 0; 614 615 l2->l_sigmask = l1->l_sigmask; 616 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 617 sigemptyset(&l2->l_sigpend.sp_set); 618 619 p2->p_nlwpid++; 620 if (p2->p_nlwpid == 0) 621 p2->p_nlwpid++; 622 l2->l_lid = p2->p_nlwpid; 623 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 624 p2->p_nlwps++; 625 626 mutex_exit(p2->p_lock); 627 628 mutex_enter(proc_lock); 629 LIST_INSERT_HEAD(&alllwp, l2, l_list); 630 mutex_exit(proc_lock); 631 632 if ((p2->p_flag & PK_SYSTEM) == 0) { 633 /* Locking is needed, since LWP is in the list of all LWPs */ 634 lwp_lock(l2); 635 /* Inherit a processor-set */ 636 l2->l_psid = l1->l_psid; 637 /* Inherit an affinity */ 638 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t)); 639 /* Look for a CPU to start */ 640 l2->l_cpu = sched_takecpu(l2); 641 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 642 } 643 644 SYSCALL_TIME_LWP_INIT(l2); 645 646 if (p2->p_emul->e_lwp_fork) 647 (*p2->p_emul->e_lwp_fork)(l1, l2); 648 649 return (0); 650 } 651 652 /* 653 * Called by MD code when a new LWP begins execution. Must be called 654 * with the previous LWP locked (so at splsched), or if there is no 655 * previous LWP, at splsched. 656 */ 657 void 658 lwp_startup(struct lwp *prev, struct lwp *new) 659 { 660 661 KASSERT(kpreempt_disabled()); 662 if (prev != NULL) { 663 /* 664 * Normalize the count of the spin-mutexes, it was 665 * increased in mi_switch(). Unmark the state of 666 * context switch - it is finished for previous LWP. 667 */ 668 curcpu()->ci_mtx_count++; 669 membar_exit(); 670 prev->l_ctxswtch = 0; 671 } 672 KPREEMPT_DISABLE(new); 673 spl0(); 674 pmap_activate(new); 675 LOCKDEBUG_BARRIER(NULL, 0); 676 KPREEMPT_ENABLE(new); 677 if ((new->l_pflag & LP_MPSAFE) == 0) { 678 KERNEL_LOCK(1, new); 679 } 680 } 681 682 /* 683 * Exit an LWP. 684 */ 685 void 686 lwp_exit(struct lwp *l) 687 { 688 struct proc *p = l->l_proc; 689 struct lwp *l2; 690 bool current; 691 692 current = (l == curlwp); 693 694 KASSERT(current || l->l_stat == LSIDL); 695 696 /* 697 * Verify that we hold no locks other than the kernel lock. 698 */ 699 LOCKDEBUG_BARRIER(&kernel_lock, 0); 700 701 /* 702 * If we are the last live LWP in a process, we need to exit the 703 * entire process. We do so with an exit status of zero, because 704 * it's a "controlled" exit, and because that's what Solaris does. 705 * 706 * We are not quite a zombie yet, but for accounting purposes we 707 * must increment the count of zombies here. 708 * 709 * Note: the last LWP's specificdata will be deleted here. 710 */ 711 mutex_enter(p->p_lock); 712 if (p->p_nlwps - p->p_nzlwps == 1) { 713 KASSERT(current == true); 714 /* XXXSMP kernel_lock not held */ 715 exit1(l, 0); 716 /* NOTREACHED */ 717 } 718 p->p_nzlwps++; 719 mutex_exit(p->p_lock); 720 721 if (p->p_emul->e_lwp_exit) 722 (*p->p_emul->e_lwp_exit)(l); 723 724 /* Delete the specificdata while it's still safe to sleep. */ 725 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 726 727 /* 728 * Release our cached credentials. 729 */ 730 kauth_cred_free(l->l_cred); 731 callout_destroy(&l->l_timeout_ch); 732 733 /* 734 * While we can still block, mark the LWP as unswappable to 735 * prevent conflicts with the with the swapper. 736 */ 737 if (current) 738 uvm_lwp_hold(l); 739 740 /* 741 * Remove the LWP from the global list. 742 */ 743 mutex_enter(proc_lock); 744 LIST_REMOVE(l, l_list); 745 mutex_exit(proc_lock); 746 747 /* 748 * Get rid of all references to the LWP that others (e.g. procfs) 749 * may have, and mark the LWP as a zombie. If the LWP is detached, 750 * mark it waiting for collection in the proc structure. Note that 751 * before we can do that, we need to free any other dead, deatched 752 * LWP waiting to meet its maker. 753 */ 754 mutex_enter(p->p_lock); 755 lwp_drainrefs(l); 756 757 if ((l->l_prflag & LPR_DETACHED) != 0) { 758 while ((l2 = p->p_zomblwp) != NULL) { 759 p->p_zomblwp = NULL; 760 lwp_free(l2, false, false);/* releases proc mutex */ 761 mutex_enter(p->p_lock); 762 l->l_refcnt++; 763 lwp_drainrefs(l); 764 } 765 p->p_zomblwp = l; 766 } 767 768 /* 769 * If we find a pending signal for the process and we have been 770 * asked to check for signals, then we loose: arrange to have 771 * all other LWPs in the process check for signals. 772 */ 773 if ((l->l_flag & LW_PENDSIG) != 0 && 774 firstsig(&p->p_sigpend.sp_set) != 0) { 775 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 776 lwp_lock(l2); 777 l2->l_flag |= LW_PENDSIG; 778 lwp_unlock(l2); 779 } 780 } 781 782 lwp_lock(l); 783 l->l_stat = LSZOMB; 784 if (l->l_name != NULL) 785 strcpy(l->l_name, "(zombie)"); 786 lwp_unlock(l); 787 p->p_nrlwps--; 788 cv_broadcast(&p->p_lwpcv); 789 if (l->l_lwpctl != NULL) 790 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 791 mutex_exit(p->p_lock); 792 793 /* 794 * We can no longer block. At this point, lwp_free() may already 795 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 796 * 797 * Free MD LWP resources. 798 */ 799 #ifndef __NO_CPU_LWP_FREE 800 cpu_lwp_free(l, 0); 801 #endif 802 803 if (current) { 804 pmap_deactivate(l); 805 806 /* 807 * Release the kernel lock, and switch away into 808 * oblivion. 809 */ 810 #ifdef notyet 811 /* XXXSMP hold in lwp_userret() */ 812 KERNEL_UNLOCK_LAST(l); 813 #else 814 KERNEL_UNLOCK_ALL(l, NULL); 815 #endif 816 lwp_exit_switchaway(l); 817 } 818 } 819 820 void 821 lwp_exit_switchaway(struct lwp *l) 822 { 823 struct cpu_info *ci; 824 struct lwp *idlelwp; 825 826 (void)splsched(); 827 l->l_flag &= ~LW_RUNNING; 828 ci = curcpu(); 829 ci->ci_data.cpu_nswtch++; 830 idlelwp = ci->ci_data.cpu_idlelwp; 831 idlelwp->l_stat = LSONPROC; 832 833 /* 834 * cpu_onproc must be updated with the CPU locked, as 835 * aston() may try to set a AST pending on the LWP (and 836 * it does so with the CPU locked). Otherwise, the LWP 837 * may be destroyed before the AST can be set, leading 838 * to a user-after-free. 839 */ 840 spc_lock(ci); 841 ci->ci_data.cpu_onproc = idlelwp; 842 spc_unlock(ci); 843 cpu_switchto(NULL, idlelwp, false); 844 } 845 846 /* 847 * Free a dead LWP's remaining resources. 848 * 849 * XXXLWP limits. 850 */ 851 void 852 lwp_free(struct lwp *l, bool recycle, bool last) 853 { 854 struct proc *p = l->l_proc; 855 struct rusage *ru; 856 ksiginfoq_t kq; 857 858 KASSERT(l != curlwp); 859 860 /* 861 * If this was not the last LWP in the process, then adjust 862 * counters and unlock. 863 */ 864 if (!last) { 865 /* 866 * Add the LWP's run time to the process' base value. 867 * This needs to co-incide with coming off p_lwps. 868 */ 869 bintime_add(&p->p_rtime, &l->l_rtime); 870 p->p_pctcpu += l->l_pctcpu; 871 ru = &p->p_stats->p_ru; 872 ruadd(ru, &l->l_ru); 873 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 874 ru->ru_nivcsw += l->l_nivcsw; 875 LIST_REMOVE(l, l_sibling); 876 p->p_nlwps--; 877 p->p_nzlwps--; 878 if ((l->l_prflag & LPR_DETACHED) != 0) 879 p->p_ndlwps--; 880 881 /* 882 * Have any LWPs sleeping in lwp_wait() recheck for 883 * deadlock. 884 */ 885 cv_broadcast(&p->p_lwpcv); 886 mutex_exit(p->p_lock); 887 } 888 889 #ifdef MULTIPROCESSOR 890 /* 891 * In the unlikely event that the LWP is still on the CPU, 892 * then spin until it has switched away. We need to release 893 * all locks to avoid deadlock against interrupt handlers on 894 * the target CPU. 895 */ 896 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 897 int count; 898 (void)count; /* XXXgcc */ 899 KERNEL_UNLOCK_ALL(curlwp, &count); 900 while ((l->l_flag & LW_RUNNING) != 0 || 901 l->l_cpu->ci_curlwp == l) 902 SPINLOCK_BACKOFF_HOOK; 903 KERNEL_LOCK(count, curlwp); 904 } 905 #endif 906 907 /* 908 * Destroy the LWP's remaining signal information. 909 */ 910 ksiginfo_queue_init(&kq); 911 sigclear(&l->l_sigpend, NULL, &kq); 912 ksiginfo_queue_drain(&kq); 913 cv_destroy(&l->l_sigcv); 914 mutex_destroy(&l->l_swaplock); 915 916 /* 917 * Free the LWP's turnstile and the LWP structure itself unless the 918 * caller wants to recycle them. Also, free the scheduler specific 919 * data. 920 * 921 * We can't return turnstile0 to the pool (it didn't come from it), 922 * so if it comes up just drop it quietly and move on. 923 * 924 * We don't recycle the VM resources at this time. 925 */ 926 if (l->l_lwpctl != NULL) 927 lwp_ctl_free(l); 928 sched_lwp_exit(l); 929 930 if (!recycle && l->l_ts != &turnstile0) 931 pool_cache_put(turnstile_cache, l->l_ts); 932 if (l->l_name != NULL) 933 kmem_free(l->l_name, MAXCOMLEN); 934 #ifndef __NO_CPU_LWP_FREE 935 cpu_lwp_free2(l); 936 #endif 937 KASSERT((l->l_flag & LW_INMEM) != 0); 938 uvm_lwp_exit(l); 939 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 940 KASSERT(l->l_inheritedprio == -1); 941 if (!recycle) 942 pool_cache_put(lwp_cache, l); 943 } 944 945 /* 946 * Pick a LWP to represent the process for those operations which 947 * want information about a "process" that is actually associated 948 * with a LWP. 949 * 950 * If 'locking' is false, no locking or lock checks are performed. 951 * This is intended for use by DDB. 952 * 953 * We don't bother locking the LWP here, since code that uses this 954 * interface is broken by design and an exact match is not required. 955 */ 956 struct lwp * 957 proc_representative_lwp(struct proc *p, int *nrlwps, int locking) 958 { 959 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended; 960 struct lwp *signalled; 961 int cnt; 962 963 if (locking) { 964 KASSERT(mutex_owned(p->p_lock)); 965 } 966 967 /* Trivial case: only one LWP */ 968 if (p->p_nlwps == 1) { 969 l = LIST_FIRST(&p->p_lwps); 970 if (nrlwps) 971 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN); 972 return l; 973 } 974 975 cnt = 0; 976 switch (p->p_stat) { 977 case SSTOP: 978 case SACTIVE: 979 /* Pick the most live LWP */ 980 onproc = running = sleeping = stopped = suspended = NULL; 981 signalled = NULL; 982 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 983 if ((l->l_flag & LW_IDLE) != 0) { 984 continue; 985 } 986 if (l->l_lid == p->p_sigctx.ps_lwp) 987 signalled = l; 988 switch (l->l_stat) { 989 case LSONPROC: 990 onproc = l; 991 cnt++; 992 break; 993 case LSRUN: 994 running = l; 995 cnt++; 996 break; 997 case LSSLEEP: 998 sleeping = l; 999 break; 1000 case LSSTOP: 1001 stopped = l; 1002 break; 1003 case LSSUSPENDED: 1004 suspended = l; 1005 break; 1006 } 1007 } 1008 if (nrlwps) 1009 *nrlwps = cnt; 1010 if (signalled) 1011 l = signalled; 1012 else if (onproc) 1013 l = onproc; 1014 else if (running) 1015 l = running; 1016 else if (sleeping) 1017 l = sleeping; 1018 else if (stopped) 1019 l = stopped; 1020 else if (suspended) 1021 l = suspended; 1022 else 1023 break; 1024 return l; 1025 #ifdef DIAGNOSTIC 1026 case SIDL: 1027 case SZOMB: 1028 case SDYING: 1029 case SDEAD: 1030 if (locking) 1031 mutex_exit(p->p_lock); 1032 /* We have more than one LWP and we're in SIDL? 1033 * How'd that happen? 1034 */ 1035 panic("Too many LWPs in idle/dying process %d (%s) stat = %d", 1036 p->p_pid, p->p_comm, p->p_stat); 1037 break; 1038 default: 1039 if (locking) 1040 mutex_exit(p->p_lock); 1041 panic("Process %d (%s) in unknown state %d", 1042 p->p_pid, p->p_comm, p->p_stat); 1043 #endif 1044 } 1045 1046 if (locking) 1047 mutex_exit(p->p_lock); 1048 panic("proc_representative_lwp: couldn't find a lwp for process" 1049 " %d (%s)", p->p_pid, p->p_comm); 1050 /* NOTREACHED */ 1051 return NULL; 1052 } 1053 1054 /* 1055 * Migrate the LWP to the another CPU. Unlocks the LWP. 1056 */ 1057 void 1058 lwp_migrate(lwp_t *l, struct cpu_info *ci) 1059 { 1060 struct schedstate_percpu *spc; 1061 KASSERT(lwp_locked(l, NULL)); 1062 1063 if (l->l_cpu == ci) { 1064 lwp_unlock(l); 1065 return; 1066 } 1067 1068 spc = &ci->ci_schedstate; 1069 switch (l->l_stat) { 1070 case LSRUN: 1071 if (l->l_flag & LW_INMEM) { 1072 l->l_target_cpu = ci; 1073 break; 1074 } 1075 case LSIDL: 1076 l->l_cpu = ci; 1077 lwp_unlock_to(l, spc->spc_mutex); 1078 KASSERT(!mutex_owned(spc->spc_mutex)); 1079 return; 1080 case LSSLEEP: 1081 l->l_cpu = ci; 1082 break; 1083 case LSSTOP: 1084 case LSSUSPENDED: 1085 if (l->l_wchan != NULL) { 1086 l->l_cpu = ci; 1087 break; 1088 } 1089 case LSONPROC: 1090 l->l_target_cpu = ci; 1091 break; 1092 } 1093 lwp_unlock(l); 1094 } 1095 1096 /* 1097 * Find the LWP in the process. Arguments may be zero, in such case, 1098 * the calling process and first LWP in the list will be used. 1099 * On success - returns proc locked. 1100 */ 1101 struct lwp * 1102 lwp_find2(pid_t pid, lwpid_t lid) 1103 { 1104 proc_t *p; 1105 lwp_t *l; 1106 1107 /* Find the process */ 1108 p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL); 1109 if (p == NULL) 1110 return NULL; 1111 mutex_enter(p->p_lock); 1112 if (pid != 0) { 1113 /* Case of p_find */ 1114 mutex_exit(proc_lock); 1115 } 1116 1117 /* Find the thread */ 1118 l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid); 1119 if (l == NULL) { 1120 mutex_exit(p->p_lock); 1121 } 1122 1123 return l; 1124 } 1125 1126 /* 1127 * Look up a live LWP within the speicifed process, and return it locked. 1128 * 1129 * Must be called with p->p_lock held. 1130 */ 1131 struct lwp * 1132 lwp_find(struct proc *p, int id) 1133 { 1134 struct lwp *l; 1135 1136 KASSERT(mutex_owned(p->p_lock)); 1137 1138 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1139 if (l->l_lid == id) 1140 break; 1141 } 1142 1143 /* 1144 * No need to lock - all of these conditions will 1145 * be visible with the process level mutex held. 1146 */ 1147 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1148 l = NULL; 1149 1150 return l; 1151 } 1152 1153 /* 1154 * Update an LWP's cached credentials to mirror the process' master copy. 1155 * 1156 * This happens early in the syscall path, on user trap, and on LWP 1157 * creation. A long-running LWP can also voluntarily choose to update 1158 * it's credentials by calling this routine. This may be called from 1159 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1160 */ 1161 void 1162 lwp_update_creds(struct lwp *l) 1163 { 1164 kauth_cred_t oc; 1165 struct proc *p; 1166 1167 p = l->l_proc; 1168 oc = l->l_cred; 1169 1170 mutex_enter(p->p_lock); 1171 kauth_cred_hold(p->p_cred); 1172 l->l_cred = p->p_cred; 1173 l->l_prflag &= ~LPR_CRMOD; 1174 mutex_exit(p->p_lock); 1175 if (oc != NULL) 1176 kauth_cred_free(oc); 1177 } 1178 1179 /* 1180 * Verify that an LWP is locked, and optionally verify that the lock matches 1181 * one we specify. 1182 */ 1183 int 1184 lwp_locked(struct lwp *l, kmutex_t *mtx) 1185 { 1186 kmutex_t *cur = l->l_mutex; 1187 1188 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1189 } 1190 1191 /* 1192 * Lock an LWP. 1193 */ 1194 void 1195 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1196 { 1197 1198 /* 1199 * XXXgcc ignoring kmutex_t * volatile on i386 1200 * 1201 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1202 */ 1203 #if 1 1204 while (l->l_mutex != old) { 1205 #else 1206 for (;;) { 1207 #endif 1208 mutex_spin_exit(old); 1209 old = l->l_mutex; 1210 mutex_spin_enter(old); 1211 1212 /* 1213 * mutex_enter() will have posted a read barrier. Re-test 1214 * l->l_mutex. If it has changed, we need to try again. 1215 */ 1216 #if 1 1217 } 1218 #else 1219 } while (__predict_false(l->l_mutex != old)); 1220 #endif 1221 } 1222 1223 /* 1224 * Lend a new mutex to an LWP. The old mutex must be held. 1225 */ 1226 void 1227 lwp_setlock(struct lwp *l, kmutex_t *new) 1228 { 1229 1230 KASSERT(mutex_owned(l->l_mutex)); 1231 1232 membar_exit(); 1233 l->l_mutex = new; 1234 } 1235 1236 /* 1237 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1238 * must be held. 1239 */ 1240 void 1241 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1242 { 1243 kmutex_t *old; 1244 1245 KASSERT(mutex_owned(l->l_mutex)); 1246 1247 old = l->l_mutex; 1248 membar_exit(); 1249 l->l_mutex = new; 1250 mutex_spin_exit(old); 1251 } 1252 1253 /* 1254 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1255 * locked. 1256 */ 1257 void 1258 lwp_relock(struct lwp *l, kmutex_t *new) 1259 { 1260 kmutex_t *old; 1261 1262 KASSERT(mutex_owned(l->l_mutex)); 1263 1264 old = l->l_mutex; 1265 if (old != new) { 1266 mutex_spin_enter(new); 1267 l->l_mutex = new; 1268 mutex_spin_exit(old); 1269 } 1270 } 1271 1272 int 1273 lwp_trylock(struct lwp *l) 1274 { 1275 kmutex_t *old; 1276 1277 for (;;) { 1278 if (!mutex_tryenter(old = l->l_mutex)) 1279 return 0; 1280 if (__predict_true(l->l_mutex == old)) 1281 return 1; 1282 mutex_spin_exit(old); 1283 } 1284 } 1285 1286 u_int 1287 lwp_unsleep(lwp_t *l, bool cleanup) 1288 { 1289 1290 KASSERT(mutex_owned(l->l_mutex)); 1291 1292 return (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1293 } 1294 1295 1296 /* 1297 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1298 * set. 1299 */ 1300 void 1301 lwp_userret(struct lwp *l) 1302 { 1303 struct proc *p; 1304 void (*hook)(void); 1305 int sig; 1306 1307 p = l->l_proc; 1308 1309 #ifndef __HAVE_FAST_SOFTINTS 1310 /* Run pending soft interrupts. */ 1311 if (l->l_cpu->ci_data.cpu_softints != 0) 1312 softint_overlay(); 1313 #endif 1314 1315 /* 1316 * It should be safe to do this read unlocked on a multiprocessor 1317 * system.. 1318 */ 1319 while ((l->l_flag & LW_USERRET) != 0) { 1320 /* 1321 * Process pending signals first, unless the process 1322 * is dumping core or exiting, where we will instead 1323 * enter the LW_WSUSPEND case below. 1324 */ 1325 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1326 LW_PENDSIG) { 1327 mutex_enter(p->p_lock); 1328 while ((sig = issignal(l)) != 0) 1329 postsig(sig); 1330 mutex_exit(p->p_lock); 1331 } 1332 1333 /* 1334 * Core-dump or suspend pending. 1335 * 1336 * In case of core dump, suspend ourselves, so that the 1337 * kernel stack and therefore the userland registers saved 1338 * in the trapframe are around for coredump() to write them 1339 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1340 * will write the core file out once all other LWPs are 1341 * suspended. 1342 */ 1343 if ((l->l_flag & LW_WSUSPEND) != 0) { 1344 mutex_enter(p->p_lock); 1345 p->p_nrlwps--; 1346 cv_broadcast(&p->p_lwpcv); 1347 lwp_lock(l); 1348 l->l_stat = LSSUSPENDED; 1349 lwp_unlock(l); 1350 mutex_exit(p->p_lock); 1351 lwp_lock(l); 1352 mi_switch(l); 1353 } 1354 1355 /* Process is exiting. */ 1356 if ((l->l_flag & LW_WEXIT) != 0) { 1357 lwp_exit(l); 1358 KASSERT(0); 1359 /* NOTREACHED */ 1360 } 1361 1362 /* Call userret hook; used by Linux emulation. */ 1363 if ((l->l_flag & LW_WUSERRET) != 0) { 1364 lwp_lock(l); 1365 l->l_flag &= ~LW_WUSERRET; 1366 lwp_unlock(l); 1367 hook = p->p_userret; 1368 p->p_userret = NULL; 1369 (*hook)(); 1370 } 1371 } 1372 } 1373 1374 /* 1375 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1376 */ 1377 void 1378 lwp_need_userret(struct lwp *l) 1379 { 1380 KASSERT(lwp_locked(l, NULL)); 1381 1382 /* 1383 * Since the tests in lwp_userret() are done unlocked, make sure 1384 * that the condition will be seen before forcing the LWP to enter 1385 * kernel mode. 1386 */ 1387 membar_producer(); 1388 cpu_signotify(l); 1389 } 1390 1391 /* 1392 * Add one reference to an LWP. This will prevent the LWP from 1393 * exiting, thus keep the lwp structure and PCB around to inspect. 1394 */ 1395 void 1396 lwp_addref(struct lwp *l) 1397 { 1398 1399 KASSERT(mutex_owned(l->l_proc->p_lock)); 1400 KASSERT(l->l_stat != LSZOMB); 1401 KASSERT(l->l_refcnt != 0); 1402 1403 l->l_refcnt++; 1404 } 1405 1406 /* 1407 * Remove one reference to an LWP. If this is the last reference, 1408 * then we must finalize the LWP's death. 1409 */ 1410 void 1411 lwp_delref(struct lwp *l) 1412 { 1413 struct proc *p = l->l_proc; 1414 1415 mutex_enter(p->p_lock); 1416 KASSERT(l->l_stat != LSZOMB); 1417 KASSERT(l->l_refcnt > 0); 1418 if (--l->l_refcnt == 0) 1419 cv_broadcast(&p->p_lwpcv); 1420 mutex_exit(p->p_lock); 1421 } 1422 1423 /* 1424 * Drain all references to the current LWP. 1425 */ 1426 void 1427 lwp_drainrefs(struct lwp *l) 1428 { 1429 struct proc *p = l->l_proc; 1430 1431 KASSERT(mutex_owned(p->p_lock)); 1432 KASSERT(l->l_refcnt != 0); 1433 1434 l->l_refcnt--; 1435 while (l->l_refcnt != 0) 1436 cv_wait(&p->p_lwpcv, p->p_lock); 1437 } 1438 1439 /* 1440 * lwp_specific_key_create -- 1441 * Create a key for subsystem lwp-specific data. 1442 */ 1443 int 1444 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1445 { 1446 1447 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1448 } 1449 1450 /* 1451 * lwp_specific_key_delete -- 1452 * Delete a key for subsystem lwp-specific data. 1453 */ 1454 void 1455 lwp_specific_key_delete(specificdata_key_t key) 1456 { 1457 1458 specificdata_key_delete(lwp_specificdata_domain, key); 1459 } 1460 1461 /* 1462 * lwp_initspecific -- 1463 * Initialize an LWP's specificdata container. 1464 */ 1465 void 1466 lwp_initspecific(struct lwp *l) 1467 { 1468 int error; 1469 1470 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1471 KASSERT(error == 0); 1472 } 1473 1474 /* 1475 * lwp_finispecific -- 1476 * Finalize an LWP's specificdata container. 1477 */ 1478 void 1479 lwp_finispecific(struct lwp *l) 1480 { 1481 1482 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1483 } 1484 1485 /* 1486 * lwp_getspecific -- 1487 * Return lwp-specific data corresponding to the specified key. 1488 * 1489 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1490 * only its OWN SPECIFIC DATA. If it is necessary to access another 1491 * LWP's specifc data, care must be taken to ensure that doing so 1492 * would not cause internal data structure inconsistency (i.e. caller 1493 * can guarantee that the target LWP is not inside an lwp_getspecific() 1494 * or lwp_setspecific() call). 1495 */ 1496 void * 1497 lwp_getspecific(specificdata_key_t key) 1498 { 1499 1500 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1501 &curlwp->l_specdataref, key)); 1502 } 1503 1504 void * 1505 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1506 { 1507 1508 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1509 &l->l_specdataref, key)); 1510 } 1511 1512 /* 1513 * lwp_setspecific -- 1514 * Set lwp-specific data corresponding to the specified key. 1515 */ 1516 void 1517 lwp_setspecific(specificdata_key_t key, void *data) 1518 { 1519 1520 specificdata_setspecific(lwp_specificdata_domain, 1521 &curlwp->l_specdataref, key, data); 1522 } 1523 1524 /* 1525 * Allocate a new lwpctl structure for a user LWP. 1526 */ 1527 int 1528 lwp_ctl_alloc(vaddr_t *uaddr) 1529 { 1530 lcproc_t *lp; 1531 u_int bit, i, offset; 1532 struct uvm_object *uao; 1533 int error; 1534 lcpage_t *lcp; 1535 proc_t *p; 1536 lwp_t *l; 1537 1538 l = curlwp; 1539 p = l->l_proc; 1540 1541 if (l->l_lcpage != NULL) { 1542 lcp = l->l_lcpage; 1543 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1544 return (EINVAL); 1545 } 1546 1547 /* First time around, allocate header structure for the process. */ 1548 if ((lp = p->p_lwpctl) == NULL) { 1549 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1550 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1551 lp->lp_uao = NULL; 1552 TAILQ_INIT(&lp->lp_pages); 1553 mutex_enter(p->p_lock); 1554 if (p->p_lwpctl == NULL) { 1555 p->p_lwpctl = lp; 1556 mutex_exit(p->p_lock); 1557 } else { 1558 mutex_exit(p->p_lock); 1559 mutex_destroy(&lp->lp_lock); 1560 kmem_free(lp, sizeof(*lp)); 1561 lp = p->p_lwpctl; 1562 } 1563 } 1564 1565 /* 1566 * Set up an anonymous memory region to hold the shared pages. 1567 * Map them into the process' address space. The user vmspace 1568 * gets the first reference on the UAO. 1569 */ 1570 mutex_enter(&lp->lp_lock); 1571 if (lp->lp_uao == NULL) { 1572 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1573 lp->lp_cur = 0; 1574 lp->lp_max = LWPCTL_UAREA_SZ; 1575 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1576 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1577 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1578 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1579 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1580 if (error != 0) { 1581 uao_detach(lp->lp_uao); 1582 lp->lp_uao = NULL; 1583 mutex_exit(&lp->lp_lock); 1584 return error; 1585 } 1586 } 1587 1588 /* Get a free block and allocate for this LWP. */ 1589 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1590 if (lcp->lcp_nfree != 0) 1591 break; 1592 } 1593 if (lcp == NULL) { 1594 /* Nothing available - try to set up a free page. */ 1595 if (lp->lp_cur == lp->lp_max) { 1596 mutex_exit(&lp->lp_lock); 1597 return ENOMEM; 1598 } 1599 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1600 if (lcp == NULL) { 1601 mutex_exit(&lp->lp_lock); 1602 return ENOMEM; 1603 } 1604 /* 1605 * Wire the next page down in kernel space. Since this 1606 * is a new mapping, we must add a reference. 1607 */ 1608 uao = lp->lp_uao; 1609 (*uao->pgops->pgo_reference)(uao); 1610 lcp->lcp_kaddr = vm_map_min(kernel_map); 1611 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1612 uao, lp->lp_cur, PAGE_SIZE, 1613 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1614 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1615 if (error != 0) { 1616 mutex_exit(&lp->lp_lock); 1617 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1618 (*uao->pgops->pgo_detach)(uao); 1619 return error; 1620 } 1621 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1622 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1623 if (error != 0) { 1624 mutex_exit(&lp->lp_lock); 1625 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1626 lcp->lcp_kaddr + PAGE_SIZE); 1627 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1628 return error; 1629 } 1630 /* Prepare the page descriptor and link into the list. */ 1631 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1632 lp->lp_cur += PAGE_SIZE; 1633 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1634 lcp->lcp_rotor = 0; 1635 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1636 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1637 } 1638 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1639 if (++i >= LWPCTL_BITMAP_ENTRIES) 1640 i = 0; 1641 } 1642 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1643 lcp->lcp_bitmap[i] ^= (1 << bit); 1644 lcp->lcp_rotor = i; 1645 lcp->lcp_nfree--; 1646 l->l_lcpage = lcp; 1647 offset = (i << 5) + bit; 1648 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1649 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1650 mutex_exit(&lp->lp_lock); 1651 1652 KPREEMPT_DISABLE(l); 1653 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1654 KPREEMPT_ENABLE(l); 1655 1656 return 0; 1657 } 1658 1659 /* 1660 * Free an lwpctl structure back to the per-process list. 1661 */ 1662 void 1663 lwp_ctl_free(lwp_t *l) 1664 { 1665 lcproc_t *lp; 1666 lcpage_t *lcp; 1667 u_int map, offset; 1668 1669 lp = l->l_proc->p_lwpctl; 1670 KASSERT(lp != NULL); 1671 1672 lcp = l->l_lcpage; 1673 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1674 KASSERT(offset < LWPCTL_PER_PAGE); 1675 1676 mutex_enter(&lp->lp_lock); 1677 lcp->lcp_nfree++; 1678 map = offset >> 5; 1679 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1680 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1681 lcp->lcp_rotor = map; 1682 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1683 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1684 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1685 } 1686 mutex_exit(&lp->lp_lock); 1687 } 1688 1689 /* 1690 * Process is exiting; tear down lwpctl state. This can only be safely 1691 * called by the last LWP in the process. 1692 */ 1693 void 1694 lwp_ctl_exit(void) 1695 { 1696 lcpage_t *lcp, *next; 1697 lcproc_t *lp; 1698 proc_t *p; 1699 lwp_t *l; 1700 1701 l = curlwp; 1702 l->l_lwpctl = NULL; 1703 l->l_lcpage = NULL; 1704 p = l->l_proc; 1705 lp = p->p_lwpctl; 1706 1707 KASSERT(lp != NULL); 1708 KASSERT(p->p_nlwps == 1); 1709 1710 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1711 next = TAILQ_NEXT(lcp, lcp_chain); 1712 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1713 lcp->lcp_kaddr + PAGE_SIZE); 1714 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1715 } 1716 1717 if (lp->lp_uao != NULL) { 1718 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1719 lp->lp_uva + LWPCTL_UAREA_SZ); 1720 } 1721 1722 mutex_destroy(&lp->lp_lock); 1723 kmem_free(lp, sizeof(*lp)); 1724 p->p_lwpctl = NULL; 1725 } 1726 1727 #if defined(DDB) 1728 void 1729 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1730 { 1731 lwp_t *l; 1732 1733 LIST_FOREACH(l, &alllwp, l_list) { 1734 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1735 1736 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1737 continue; 1738 } 1739 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1740 (void *)addr, (void *)stack, 1741 (size_t)(addr - stack), l); 1742 } 1743 } 1744 #endif /* defined(DDB) */ 1745