xref: /netbsd-src/sys/kern/kern_lwp.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: kern_lwp.c,v 1.93 2008/01/28 12:23:42 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Overview
41  *
42  *	Lightweight processes (LWPs) are the basic unit or thread of
43  *	execution within the kernel.  The core state of an LWP is described
44  *	by "struct lwp", also known as lwp_t.
45  *
46  *	Each LWP is contained within a process (described by "struct proc"),
47  *	Every process contains at least one LWP, but may contain more.  The
48  *	process describes attributes shared among all of its LWPs such as a
49  *	private address space, global execution state (stopped, active,
50  *	zombie, ...), signal disposition and so on.  On a multiprocessor
51  *	machine, multiple LWPs be executing concurrently in the kernel.
52  *
53  * Execution states
54  *
55  *	At any given time, an LWP has overall state that is described by
56  *	lwp::l_stat.  The states are broken into two sets below.  The first
57  *	set is guaranteed to represent the absolute, current state of the
58  *	LWP:
59  *
60  * 	LSONPROC
61  *
62  * 		On processor: the LWP is executing on a CPU, either in the
63  * 		kernel or in user space.
64  *
65  * 	LSRUN
66  *
67  * 		Runnable: the LWP is parked on a run queue, and may soon be
68  * 		chosen to run by a idle processor, or by a processor that
69  * 		has been asked to preempt a currently runnning but lower
70  * 		priority LWP.  If the LWP is not swapped in (L_INMEM == 0)
71  *		then the LWP is not on a run queue, but may be soon.
72  *
73  * 	LSIDL
74  *
75  * 		Idle: the LWP has been created but has not yet executed,
76  *		or it has ceased executing a unit of work and is waiting
77  *		to be started again.
78  *
79  * 	LSSUSPENDED:
80  *
81  * 		Suspended: the LWP has had its execution suspended by
82  *		another LWP in the same process using the _lwp_suspend()
83  *		system call.  User-level LWPs also enter the suspended
84  *		state when the system is shutting down.
85  *
86  *	The second set represent a "statement of intent" on behalf of the
87  *	LWP.  The LWP may in fact be executing on a processor, may be
88  *	sleeping or idle. It is expected to take the necessary action to
89  *	stop executing or become "running" again within	a short timeframe.
90  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
91  *	Importantly, in indicates that its state is tied to a CPU.
92  *
93  * 	LSZOMB:
94  *
95  * 		Dead or dying: the LWP has released most of its resources
96  *		and is a) about to switch away into oblivion b) has already
97  *		switched away.  When it switches away, its few remaining
98  *		resources can be collected.
99  *
100  * 	LSSLEEP:
101  *
102  * 		Sleeping: the LWP has entered itself onto a sleep queue, and
103  * 		has switched away or will switch away shortly to allow other
104  *		LWPs to run on the CPU.
105  *
106  * 	LSSTOP:
107  *
108  * 		Stopped: the LWP has been stopped as a result of a job
109  * 		control signal, or as a result of the ptrace() interface.
110  *
111  * 		Stopped LWPs may run briefly within the kernel to handle
112  * 		signals that they receive, but will not return to user space
113  * 		until their process' state is changed away from stopped.
114  *
115  * 		Single LWPs within a process can not be set stopped
116  * 		selectively: all actions that can stop or continue LWPs
117  * 		occur at the process level.
118  *
119  * State transitions
120  *
121  *	Note that the LSSTOP state may only be set when returning to
122  *	user space in userret(), or when sleeping interruptably.  The
123  *	LSSUSPENDED state may only be set in userret().  Before setting
124  *	those states, we try to ensure that the LWPs will release all
125  *	locks that they hold, and at a minimum try to ensure that the
126  *	LWP can be set runnable again by a signal.
127  *
128  *	LWPs may transition states in the following ways:
129  *
130  *	 RUN -------> ONPROC		ONPROC -----> RUN
131  *	            > STOPPED			    > SLEEP
132  *	            > SUSPENDED			    > STOPPED
133  *						    > SUSPENDED
134  *						    > ZOMB
135  *
136  *	 STOPPED ---> RUN		SUSPENDED --> RUN
137  *	            > SLEEP			    > SLEEP
138  *
139  *	 SLEEP -----> ONPROC		IDL --------> RUN
140  *		    > RUN		            > SUSPENDED
141  *		    > STOPPED                       > STOPPED
142  *		    > SUSPENDED
143  *
144  *	Other state transitions are possible with kernel threads (eg
145  *	ONPROC -> IDL), but only happen under tightly controlled
146  *	circumstances the side effects are understood.
147  *
148  * Locking
149  *
150  *	The majority of fields in 'struct lwp' are covered by a single,
151  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
152  *	each field are documented in sys/lwp.h.
153  *
154  *	State transitions must be made with the LWP's general lock held,
155  * 	and may cause the LWP's lock pointer to change. Manipulation of
156  *	the general lock is not performed directly, but through calls to
157  *	lwp_lock(), lwp_relock() and similar.
158  *
159  *	States and their associated locks:
160  *
161  *	LSONPROC, LSZOMB:
162  *
163  *		Always covered by spc_lwplock, which protects running LWPs.
164  *		This is a per-CPU lock.
165  *
166  *	LSIDL, LSRUN:
167  *
168  *		Always covered by spc_mutex, which protects the run queues.
169  *		This may be a per-CPU lock, depending on the scheduler.
170  *
171  *	LSSLEEP:
172  *
173  *		Covered by a lock associated with the sleep queue that the
174  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
175  *
176  *	LSSTOP, LSSUSPENDED:
177  *
178  *		If the LWP was previously sleeping (l_wchan != NULL), then
179  *		l_mutex references the sleep queue lock.  If the LWP was
180  *		runnable or on the CPU when halted, or has been removed from
181  *		the sleep queue since halted, then the lock is spc_lwplock.
182  *
183  *	The lock order is as follows:
184  *
185  *		spc::spc_lwplock ->
186  *		    sleepq_t::sq_mutex ->
187  *			tschain_t::tc_mutex ->
188  *			    spc::spc_mutex
189  *
190  *	Each process has an scheduler state lock (proc::p_smutex), and a
191  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
192  *	so on.  When an LWP is to be entered into or removed from one of the
193  *	following states, p_mutex must be held and the process wide counters
194  *	adjusted:
195  *
196  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
197  *
198  *	Note that an LWP is considered running or likely to run soon if in
199  *	one of the following states.  This affects the value of p_nrlwps:
200  *
201  *		LSRUN, LSONPROC, LSSLEEP
202  *
203  *	p_smutex does not need to be held when transitioning among these
204  *	three states.
205  */
206 
207 #include <sys/cdefs.h>
208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.93 2008/01/28 12:23:42 yamt Exp $");
209 
210 #include "opt_ddb.h"
211 #include "opt_multiprocessor.h"
212 #include "opt_lockdebug.h"
213 
214 #define _LWP_API_PRIVATE
215 
216 #include <sys/param.h>
217 #include <sys/systm.h>
218 #include <sys/cpu.h>
219 #include <sys/pool.h>
220 #include <sys/proc.h>
221 #include <sys/syscallargs.h>
222 #include <sys/syscall_stats.h>
223 #include <sys/kauth.h>
224 #include <sys/sleepq.h>
225 #include <sys/user.h>
226 #include <sys/lockdebug.h>
227 #include <sys/kmem.h>
228 #include <sys/pset.h>
229 #include <sys/intr.h>
230 #include <sys/lwpctl.h>
231 #include <sys/atomic.h>
232 
233 #include <uvm/uvm_extern.h>
234 #include <uvm/uvm_object.h>
235 
236 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
237 
238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
239     &pool_allocator_nointr, IPL_NONE);
240 
241 static pool_cache_t lwp_cache;
242 static specificdata_domain_t lwp_specificdata_domain;
243 
244 void
245 lwpinit(void)
246 {
247 
248 	lwp_specificdata_domain = specificdata_domain_create();
249 	KASSERT(lwp_specificdata_domain != NULL);
250 	lwp_sys_init();
251 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
252 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
253 }
254 
255 /*
256  * Set an suspended.
257  *
258  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
259  * LWP before return.
260  */
261 int
262 lwp_suspend(struct lwp *curl, struct lwp *t)
263 {
264 	int error;
265 
266 	KASSERT(mutex_owned(&t->l_proc->p_smutex));
267 	KASSERT(lwp_locked(t, NULL));
268 
269 	KASSERT(curl != t || curl->l_stat == LSONPROC);
270 
271 	/*
272 	 * If the current LWP has been told to exit, we must not suspend anyone
273 	 * else or deadlock could occur.  We won't return to userspace.
274 	 */
275 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
276 		lwp_unlock(t);
277 		return (EDEADLK);
278 	}
279 
280 	error = 0;
281 
282 	switch (t->l_stat) {
283 	case LSRUN:
284 	case LSONPROC:
285 		t->l_flag |= LW_WSUSPEND;
286 		lwp_need_userret(t);
287 		lwp_unlock(t);
288 		break;
289 
290 	case LSSLEEP:
291 		t->l_flag |= LW_WSUSPEND;
292 
293 		/*
294 		 * Kick the LWP and try to get it to the kernel boundary
295 		 * so that it will release any locks that it holds.
296 		 * setrunnable() will release the lock.
297 		 */
298 		if ((t->l_flag & LW_SINTR) != 0)
299 			setrunnable(t);
300 		else
301 			lwp_unlock(t);
302 		break;
303 
304 	case LSSUSPENDED:
305 		lwp_unlock(t);
306 		break;
307 
308 	case LSSTOP:
309 		t->l_flag |= LW_WSUSPEND;
310 		setrunnable(t);
311 		break;
312 
313 	case LSIDL:
314 	case LSZOMB:
315 		error = EINTR; /* It's what Solaris does..... */
316 		lwp_unlock(t);
317 		break;
318 	}
319 
320 	return (error);
321 }
322 
323 /*
324  * Restart a suspended LWP.
325  *
326  * Must be called with p_smutex held, and the LWP locked.  Will unlock the
327  * LWP before return.
328  */
329 void
330 lwp_continue(struct lwp *l)
331 {
332 
333 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
334 	KASSERT(lwp_locked(l, NULL));
335 
336 	/* If rebooting or not suspended, then just bail out. */
337 	if ((l->l_flag & LW_WREBOOT) != 0) {
338 		lwp_unlock(l);
339 		return;
340 	}
341 
342 	l->l_flag &= ~LW_WSUSPEND;
343 
344 	if (l->l_stat != LSSUSPENDED) {
345 		lwp_unlock(l);
346 		return;
347 	}
348 
349 	/* setrunnable() will release the lock. */
350 	setrunnable(l);
351 }
352 
353 /*
354  * Wait for an LWP within the current process to exit.  If 'lid' is
355  * non-zero, we are waiting for a specific LWP.
356  *
357  * Must be called with p->p_smutex held.
358  */
359 int
360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
361 {
362 	struct proc *p = l->l_proc;
363 	struct lwp *l2;
364 	int nfound, error;
365 	lwpid_t curlid;
366 	bool exiting;
367 
368 	KASSERT(mutex_owned(&p->p_smutex));
369 
370 	p->p_nlwpwait++;
371 	l->l_waitingfor = lid;
372 	curlid = l->l_lid;
373 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
374 
375 	for (;;) {
376 		/*
377 		 * Avoid a race between exit1() and sigexit(): if the
378 		 * process is dumping core, then we need to bail out: call
379 		 * into lwp_userret() where we will be suspended until the
380 		 * deed is done.
381 		 */
382 		if ((p->p_sflag & PS_WCORE) != 0) {
383 			mutex_exit(&p->p_smutex);
384 			lwp_userret(l);
385 #ifdef DIAGNOSTIC
386 			panic("lwp_wait1");
387 #endif
388 			/* NOTREACHED */
389 		}
390 
391 		/*
392 		 * First off, drain any detached LWP that is waiting to be
393 		 * reaped.
394 		 */
395 		while ((l2 = p->p_zomblwp) != NULL) {
396 			p->p_zomblwp = NULL;
397 			lwp_free(l2, false, false);/* releases proc mutex */
398 			mutex_enter(&p->p_smutex);
399 		}
400 
401 		/*
402 		 * Now look for an LWP to collect.  If the whole process is
403 		 * exiting, count detached LWPs as eligible to be collected,
404 		 * but don't drain them here.
405 		 */
406 		nfound = 0;
407 		error = 0;
408 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
409 			/*
410 			 * If a specific wait and the target is waiting on
411 			 * us, then avoid deadlock.  This also traps LWPs
412 			 * that try to wait on themselves.
413 			 *
414 			 * Note that this does not handle more complicated
415 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
416 			 * can still be killed so it is not a major problem.
417 			 */
418 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
419 				error = EDEADLK;
420 				break;
421 			}
422 			if (l2 == l)
423 				continue;
424 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
425 				nfound += exiting;
426 				continue;
427 			}
428 			if (lid != 0) {
429 				if (l2->l_lid != lid)
430 					continue;
431 				/*
432 				 * Mark this LWP as the first waiter, if there
433 				 * is no other.
434 				 */
435 				if (l2->l_waiter == 0)
436 					l2->l_waiter = curlid;
437 			} else if (l2->l_waiter != 0) {
438 				/*
439 				 * It already has a waiter - so don't
440 				 * collect it.  If the waiter doesn't
441 				 * grab it we'll get another chance
442 				 * later.
443 				 */
444 				nfound++;
445 				continue;
446 			}
447 			nfound++;
448 
449 			/* No need to lock the LWP in order to see LSZOMB. */
450 			if (l2->l_stat != LSZOMB)
451 				continue;
452 
453 			/*
454 			 * We're no longer waiting.  Reset the "first waiter"
455 			 * pointer on the target, in case it was us.
456 			 */
457 			l->l_waitingfor = 0;
458 			l2->l_waiter = 0;
459 			p->p_nlwpwait--;
460 			if (departed)
461 				*departed = l2->l_lid;
462 			sched_lwp_collect(l2);
463 
464 			/* lwp_free() releases the proc lock. */
465 			lwp_free(l2, false, false);
466 			mutex_enter(&p->p_smutex);
467 			return 0;
468 		}
469 
470 		if (error != 0)
471 			break;
472 		if (nfound == 0) {
473 			error = ESRCH;
474 			break;
475 		}
476 
477 		/*
478 		 * The kernel is careful to ensure that it can not deadlock
479 		 * when exiting - just keep waiting.
480 		 */
481 		if (exiting) {
482 			KASSERT(p->p_nlwps > 1);
483 			cv_wait(&p->p_lwpcv, &p->p_smutex);
484 			continue;
485 		}
486 
487 		/*
488 		 * If all other LWPs are waiting for exits or suspends
489 		 * and the supply of zombies and potential zombies is
490 		 * exhausted, then we are about to deadlock.
491 		 *
492 		 * If the process is exiting (and this LWP is not the one
493 		 * that is coordinating the exit) then bail out now.
494 		 */
495 		if ((p->p_sflag & PS_WEXIT) != 0 ||
496 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
497 			error = EDEADLK;
498 			break;
499 		}
500 
501 		/*
502 		 * Sit around and wait for something to happen.  We'll be
503 		 * awoken if any of the conditions examined change: if an
504 		 * LWP exits, is collected, or is detached.
505 		 */
506 		if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0)
507 			break;
508 	}
509 
510 	/*
511 	 * We didn't find any LWPs to collect, we may have received a
512 	 * signal, or some other condition has caused us to bail out.
513 	 *
514 	 * If waiting on a specific LWP, clear the waiters marker: some
515 	 * other LWP may want it.  Then, kick all the remaining waiters
516 	 * so that they can re-check for zombies and for deadlock.
517 	 */
518 	if (lid != 0) {
519 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
520 			if (l2->l_lid == lid) {
521 				if (l2->l_waiter == curlid)
522 					l2->l_waiter = 0;
523 				break;
524 			}
525 		}
526 	}
527 	p->p_nlwpwait--;
528 	l->l_waitingfor = 0;
529 	cv_broadcast(&p->p_lwpcv);
530 
531 	return error;
532 }
533 
534 /*
535  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
536  * The new LWP is created in state LSIDL and must be set running,
537  * suspended, or stopped by the caller.
538  */
539 int
540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
541 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
542 	   lwp_t **rnewlwpp, int sclass)
543 {
544 	struct lwp *l2, *isfree;
545 	turnstile_t *ts;
546 
547 	/*
548 	 * First off, reap any detached LWP waiting to be collected.
549 	 * We can re-use its LWP structure and turnstile.
550 	 */
551 	isfree = NULL;
552 	if (p2->p_zomblwp != NULL) {
553 		mutex_enter(&p2->p_smutex);
554 		if ((isfree = p2->p_zomblwp) != NULL) {
555 			p2->p_zomblwp = NULL;
556 			lwp_free(isfree, true, false);/* releases proc mutex */
557 		} else
558 			mutex_exit(&p2->p_smutex);
559 	}
560 	if (isfree == NULL) {
561 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
562 		memset(l2, 0, sizeof(*l2));
563 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
564 		SLIST_INIT(&l2->l_pi_lenders);
565 	} else {
566 		l2 = isfree;
567 		ts = l2->l_ts;
568 		KASSERT(l2->l_inheritedprio == -1);
569 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
570 		memset(l2, 0, sizeof(*l2));
571 		l2->l_ts = ts;
572 	}
573 
574 	l2->l_stat = LSIDL;
575 	l2->l_proc = p2;
576 	l2->l_refcnt = 1;
577 	l2->l_class = sclass;
578 	l2->l_kpriority = l1->l_kpriority;
579 	l2->l_kpribase = PRI_KERNEL;
580 	l2->l_priority = l1->l_priority;
581 	l2->l_inheritedprio = -1;
582 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
583 	l2->l_cpu = l1->l_cpu;
584 	l2->l_flag = inmem ? LW_INMEM : 0;
585 	l2->l_pflag = LP_MPSAFE;
586 
587 	if (p2->p_flag & PK_SYSTEM) {
588 		/* Mark it as a system LWP and not a candidate for swapping */
589 		l2->l_flag |= LW_SYSTEM;
590 	}
591 
592 	lwp_initspecific(l2);
593 	sched_lwp_fork(l1, l2);
594 	lwp_update_creds(l2);
595 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
596 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
597 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
598 	cv_init(&l2->l_sigcv, "sigwait");
599 	l2->l_syncobj = &sched_syncobj;
600 
601 	if (rnewlwpp != NULL)
602 		*rnewlwpp = l2;
603 
604 	l2->l_addr = UAREA_TO_USER(uaddr);
605 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
606 	    (arg != NULL) ? arg : l2);
607 
608 	mutex_enter(&p2->p_smutex);
609 
610 	if ((flags & LWP_DETACHED) != 0) {
611 		l2->l_prflag = LPR_DETACHED;
612 		p2->p_ndlwps++;
613 	} else
614 		l2->l_prflag = 0;
615 
616 	l2->l_sigmask = l1->l_sigmask;
617 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
618 	sigemptyset(&l2->l_sigpend.sp_set);
619 
620 	p2->p_nlwpid++;
621 	if (p2->p_nlwpid == 0)
622 		p2->p_nlwpid++;
623 	l2->l_lid = p2->p_nlwpid;
624 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
625 	p2->p_nlwps++;
626 
627 	mutex_exit(&p2->p_smutex);
628 
629 	mutex_enter(&proclist_lock);
630 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
631 	mutex_exit(&proclist_lock);
632 
633 	if ((p2->p_flag & PK_SYSTEM) == 0) {
634 		/* Locking is needed, since LWP is in the list of all LWPs */
635 		lwp_lock(l2);
636 		/* Inherit a processor-set */
637 		l2->l_psid = l1->l_psid;
638 		/* Inherit an affinity */
639 		memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
640 		/* Look for a CPU to start */
641 		l2->l_cpu = sched_takecpu(l2);
642 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
643 	}
644 
645 	SYSCALL_TIME_LWP_INIT(l2);
646 
647 	if (p2->p_emul->e_lwp_fork)
648 		(*p2->p_emul->e_lwp_fork)(l1, l2);
649 
650 	return (0);
651 }
652 
653 /*
654  * Called by MD code when a new LWP begins execution.  Must be called
655  * with the previous LWP locked (so at splsched), or if there is no
656  * previous LWP, at splsched.
657  */
658 void
659 lwp_startup(struct lwp *prev, struct lwp *new)
660 {
661 
662 	if (prev != NULL) {
663 		/*
664 		 * Normalize the count of the spin-mutexes, it was
665 		 * increased in mi_switch().  Unmark the state of
666 		 * context switch - it is finished for previous LWP.
667 		 */
668 		curcpu()->ci_mtx_count++;
669 		membar_exit();
670 		prev->l_ctxswtch = 0;
671 	}
672 	spl0();
673 	pmap_activate(new);
674 	LOCKDEBUG_BARRIER(NULL, 0);
675 	if ((new->l_pflag & LP_MPSAFE) == 0) {
676 		KERNEL_LOCK(1, new);
677 	}
678 }
679 
680 /*
681  * Exit an LWP.
682  */
683 void
684 lwp_exit(struct lwp *l)
685 {
686 	struct proc *p = l->l_proc;
687 	struct lwp *l2;
688 	bool current;
689 
690 	current = (l == curlwp);
691 
692 	KASSERT(current || l->l_stat == LSIDL);
693 
694 	/*
695 	 * Verify that we hold no locks other than the kernel lock.
696 	 */
697 #ifdef MULTIPROCESSOR
698 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
699 #else
700 	LOCKDEBUG_BARRIER(NULL, 0);
701 #endif
702 
703 	/*
704 	 * If we are the last live LWP in a process, we need to exit the
705 	 * entire process.  We do so with an exit status of zero, because
706 	 * it's a "controlled" exit, and because that's what Solaris does.
707 	 *
708 	 * We are not quite a zombie yet, but for accounting purposes we
709 	 * must increment the count of zombies here.
710 	 *
711 	 * Note: the last LWP's specificdata will be deleted here.
712 	 */
713 	mutex_enter(&p->p_smutex);
714 	if (p->p_nlwps - p->p_nzlwps == 1) {
715 		KASSERT(current == true);
716 		/* XXXSMP kernel_lock not held */
717 		exit1(l, 0);
718 		/* NOTREACHED */
719 	}
720 	p->p_nzlwps++;
721 	mutex_exit(&p->p_smutex);
722 
723 	if (p->p_emul->e_lwp_exit)
724 		(*p->p_emul->e_lwp_exit)(l);
725 
726 	/* Delete the specificdata while it's still safe to sleep. */
727 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
728 
729 	/*
730 	 * Release our cached credentials.
731 	 */
732 	kauth_cred_free(l->l_cred);
733 	callout_destroy(&l->l_timeout_ch);
734 
735 	/*
736 	 * While we can still block, mark the LWP as unswappable to
737 	 * prevent conflicts with the with the swapper.
738 	 */
739 	if (current)
740 		uvm_lwp_hold(l);
741 
742 	/*
743 	 * Remove the LWP from the global list.
744 	 */
745 	mutex_enter(&proclist_lock);
746 	mutex_enter(&proclist_mutex);
747 	LIST_REMOVE(l, l_list);
748 	mutex_exit(&proclist_mutex);
749 	mutex_exit(&proclist_lock);
750 
751 	/*
752 	 * Get rid of all references to the LWP that others (e.g. procfs)
753 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
754 	 * mark it waiting for collection in the proc structure.  Note that
755 	 * before we can do that, we need to free any other dead, deatched
756 	 * LWP waiting to meet its maker.
757 	 *
758 	 * XXXSMP disable preemption.
759 	 */
760 	mutex_enter(&p->p_smutex);
761 	lwp_drainrefs(l);
762 
763 	if ((l->l_prflag & LPR_DETACHED) != 0) {
764 		while ((l2 = p->p_zomblwp) != NULL) {
765 			p->p_zomblwp = NULL;
766 			lwp_free(l2, false, false);/* releases proc mutex */
767 			mutex_enter(&p->p_smutex);
768 			l->l_refcnt++;
769 			lwp_drainrefs(l);
770 		}
771 		p->p_zomblwp = l;
772 	}
773 
774 	/*
775 	 * If we find a pending signal for the process and we have been
776 	 * asked to check for signals, then we loose: arrange to have
777 	 * all other LWPs in the process check for signals.
778 	 */
779 	if ((l->l_flag & LW_PENDSIG) != 0 &&
780 	    firstsig(&p->p_sigpend.sp_set) != 0) {
781 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
782 			lwp_lock(l2);
783 			l2->l_flag |= LW_PENDSIG;
784 			lwp_unlock(l2);
785 		}
786 	}
787 
788 	lwp_lock(l);
789 	l->l_stat = LSZOMB;
790 	if (l->l_name != NULL)
791 		strcpy(l->l_name, "(zombie)");
792 	lwp_unlock(l);
793 	p->p_nrlwps--;
794 	cv_broadcast(&p->p_lwpcv);
795 	if (l->l_lwpctl != NULL)
796 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
797 	mutex_exit(&p->p_smutex);
798 
799 	/*
800 	 * We can no longer block.  At this point, lwp_free() may already
801 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
802 	 *
803 	 * Free MD LWP resources.
804 	 */
805 #ifndef __NO_CPU_LWP_FREE
806 	cpu_lwp_free(l, 0);
807 #endif
808 
809 	if (current) {
810 		pmap_deactivate(l);
811 
812 		/*
813 		 * Release the kernel lock, and switch away into
814 		 * oblivion.
815 		 */
816 #ifdef notyet
817 		/* XXXSMP hold in lwp_userret() */
818 		KERNEL_UNLOCK_LAST(l);
819 #else
820 		KERNEL_UNLOCK_ALL(l, NULL);
821 #endif
822 		lwp_exit_switchaway(l);
823 	}
824 }
825 
826 void
827 lwp_exit_switchaway(struct lwp *l)
828 {
829 	struct cpu_info *ci;
830 	struct lwp *idlelwp;
831 
832 	/* Unlocked, but is for statistics only. */
833 	uvmexp.swtch++;
834 
835 	(void)splsched();
836 	l->l_flag &= ~LW_RUNNING;
837 	ci = curcpu();
838 	idlelwp = ci->ci_data.cpu_idlelwp;
839 	idlelwp->l_stat = LSONPROC;
840 
841 	/*
842 	 * cpu_onproc must be updated with the CPU locked, as
843 	 * aston() may try to set a AST pending on the LWP (and
844 	 * it does so with the CPU locked).  Otherwise, the LWP
845 	 * may be destroyed before the AST can be set, leading
846 	 * to a user-after-free.
847 	 */
848 	spc_lock(ci);
849 	ci->ci_data.cpu_onproc = idlelwp;
850 	spc_unlock(ci);
851 	cpu_switchto(NULL, idlelwp, false);
852 }
853 
854 /*
855  * Free a dead LWP's remaining resources.
856  *
857  * XXXLWP limits.
858  */
859 void
860 lwp_free(struct lwp *l, bool recycle, bool last)
861 {
862 	struct proc *p = l->l_proc;
863 	ksiginfoq_t kq;
864 
865 	KASSERT(l != curlwp);
866 
867 	/*
868 	 * If this was not the last LWP in the process, then adjust
869 	 * counters and unlock.
870 	 */
871 	if (!last) {
872 		/*
873 		 * Add the LWP's run time to the process' base value.
874 		 * This needs to co-incide with coming off p_lwps.
875 		 */
876 		bintime_add(&p->p_rtime, &l->l_rtime);
877 		p->p_pctcpu += l->l_pctcpu;
878 		LIST_REMOVE(l, l_sibling);
879 		p->p_nlwps--;
880 		p->p_nzlwps--;
881 		if ((l->l_prflag & LPR_DETACHED) != 0)
882 			p->p_ndlwps--;
883 
884 		/*
885 		 * Have any LWPs sleeping in lwp_wait() recheck for
886 		 * deadlock.
887 		 */
888 		cv_broadcast(&p->p_lwpcv);
889 		mutex_exit(&p->p_smutex);
890 	}
891 
892 #ifdef MULTIPROCESSOR
893 	/*
894 	 * In the unlikely event that the LWP is still on the CPU,
895 	 * then spin until it has switched away.  We need to release
896 	 * all locks to avoid deadlock against interrupt handlers on
897 	 * the target CPU.
898 	 */
899 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
900 		int count;
901 		(void)count; /* XXXgcc */
902 		KERNEL_UNLOCK_ALL(curlwp, &count);
903 		while ((l->l_flag & LW_RUNNING) != 0 ||
904 		    l->l_cpu->ci_curlwp == l)
905 			SPINLOCK_BACKOFF_HOOK;
906 		KERNEL_LOCK(count, curlwp);
907 	}
908 #endif
909 
910 	/*
911 	 * Destroy the LWP's remaining signal information.
912 	 */
913 	ksiginfo_queue_init(&kq);
914 	sigclear(&l->l_sigpend, NULL, &kq);
915 	ksiginfo_queue_drain(&kq);
916 	cv_destroy(&l->l_sigcv);
917 	mutex_destroy(&l->l_swaplock);
918 
919 	/*
920 	 * Free the LWP's turnstile and the LWP structure itself unless the
921 	 * caller wants to recycle them.  Also, free the scheduler specific
922 	 * data.
923 	 *
924 	 * We can't return turnstile0 to the pool (it didn't come from it),
925 	 * so if it comes up just drop it quietly and move on.
926 	 *
927 	 * We don't recycle the VM resources at this time.
928 	 */
929 	if (l->l_lwpctl != NULL)
930 		lwp_ctl_free(l);
931 	sched_lwp_exit(l);
932 
933 	if (!recycle && l->l_ts != &turnstile0)
934 		pool_cache_put(turnstile_cache, l->l_ts);
935 	if (l->l_name != NULL)
936 		kmem_free(l->l_name, MAXCOMLEN);
937 #ifndef __NO_CPU_LWP_FREE
938 	cpu_lwp_free2(l);
939 #endif
940 	KASSERT((l->l_flag & LW_INMEM) != 0);
941 	uvm_lwp_exit(l);
942 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
943 	KASSERT(l->l_inheritedprio == -1);
944 	if (!recycle)
945 		pool_cache_put(lwp_cache, l);
946 }
947 
948 /*
949  * Pick a LWP to represent the process for those operations which
950  * want information about a "process" that is actually associated
951  * with a LWP.
952  *
953  * If 'locking' is false, no locking or lock checks are performed.
954  * This is intended for use by DDB.
955  *
956  * We don't bother locking the LWP here, since code that uses this
957  * interface is broken by design and an exact match is not required.
958  */
959 struct lwp *
960 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
961 {
962 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
963 	struct lwp *signalled;
964 	int cnt;
965 
966 	if (locking) {
967 		KASSERT(mutex_owned(&p->p_smutex));
968 	}
969 
970 	/* Trivial case: only one LWP */
971 	if (p->p_nlwps == 1) {
972 		l = LIST_FIRST(&p->p_lwps);
973 		if (nrlwps)
974 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
975 		return l;
976 	}
977 
978 	cnt = 0;
979 	switch (p->p_stat) {
980 	case SSTOP:
981 	case SACTIVE:
982 		/* Pick the most live LWP */
983 		onproc = running = sleeping = stopped = suspended = NULL;
984 		signalled = NULL;
985 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
986 			if ((l->l_flag & LW_IDLE) != 0) {
987 				continue;
988 			}
989 			if (l->l_lid == p->p_sigctx.ps_lwp)
990 				signalled = l;
991 			switch (l->l_stat) {
992 			case LSONPROC:
993 				onproc = l;
994 				cnt++;
995 				break;
996 			case LSRUN:
997 				running = l;
998 				cnt++;
999 				break;
1000 			case LSSLEEP:
1001 				sleeping = l;
1002 				break;
1003 			case LSSTOP:
1004 				stopped = l;
1005 				break;
1006 			case LSSUSPENDED:
1007 				suspended = l;
1008 				break;
1009 			}
1010 		}
1011 		if (nrlwps)
1012 			*nrlwps = cnt;
1013 		if (signalled)
1014 			l = signalled;
1015 		else if (onproc)
1016 			l = onproc;
1017 		else if (running)
1018 			l = running;
1019 		else if (sleeping)
1020 			l = sleeping;
1021 		else if (stopped)
1022 			l = stopped;
1023 		else if (suspended)
1024 			l = suspended;
1025 		else
1026 			break;
1027 		return l;
1028 #ifdef DIAGNOSTIC
1029 	case SIDL:
1030 	case SZOMB:
1031 	case SDYING:
1032 	case SDEAD:
1033 		if (locking)
1034 			mutex_exit(&p->p_smutex);
1035 		/* We have more than one LWP and we're in SIDL?
1036 		 * How'd that happen?
1037 		 */
1038 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1039 		    p->p_pid, p->p_comm, p->p_stat);
1040 		break;
1041 	default:
1042 		if (locking)
1043 			mutex_exit(&p->p_smutex);
1044 		panic("Process %d (%s) in unknown state %d",
1045 		    p->p_pid, p->p_comm, p->p_stat);
1046 #endif
1047 	}
1048 
1049 	if (locking)
1050 		mutex_exit(&p->p_smutex);
1051 	panic("proc_representative_lwp: couldn't find a lwp for process"
1052 		" %d (%s)", p->p_pid, p->p_comm);
1053 	/* NOTREACHED */
1054 	return NULL;
1055 }
1056 
1057 /*
1058  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1059  */
1060 void
1061 lwp_migrate(lwp_t *l, struct cpu_info *ci)
1062 {
1063 	struct schedstate_percpu *spc;
1064 	KASSERT(lwp_locked(l, NULL));
1065 
1066 	if (l->l_cpu == ci) {
1067 		lwp_unlock(l);
1068 		return;
1069 	}
1070 
1071 	spc = &ci->ci_schedstate;
1072 	switch (l->l_stat) {
1073 	case LSRUN:
1074 		if (l->l_flag & LW_INMEM) {
1075 			l->l_target_cpu = ci;
1076 			break;
1077 		}
1078 	case LSIDL:
1079 		l->l_cpu = ci;
1080 		lwp_unlock_to(l, spc->spc_mutex);
1081 		KASSERT(!mutex_owned(spc->spc_mutex));
1082 		return;
1083 	case LSSLEEP:
1084 		l->l_cpu = ci;
1085 		break;
1086 	case LSSTOP:
1087 	case LSSUSPENDED:
1088 		if (l->l_wchan != NULL) {
1089 			l->l_cpu = ci;
1090 			break;
1091 		}
1092 	case LSONPROC:
1093 		l->l_target_cpu = ci;
1094 		break;
1095 	}
1096 	lwp_unlock(l);
1097 }
1098 
1099 /*
1100  * Find the LWP in the process.
1101  * On success - returns LWP locked.
1102  */
1103 struct lwp *
1104 lwp_find2(pid_t pid, lwpid_t lid)
1105 {
1106 	proc_t *p;
1107 	lwp_t *l;
1108 
1109 	/* Find the process */
1110 	p = p_find(pid, PFIND_UNLOCK_FAIL);
1111 	if (p == NULL)
1112 		return NULL;
1113 	mutex_enter(&p->p_smutex);
1114 	mutex_exit(&proclist_lock);
1115 
1116 	/* Find the thread */
1117 	l = lwp_find(p, lid);
1118 	if (l != NULL)
1119 		lwp_lock(l);
1120 	mutex_exit(&p->p_smutex);
1121 
1122 	return l;
1123 }
1124 
1125 /*
1126  * Look up a live LWP within the speicifed process, and return it locked.
1127  *
1128  * Must be called with p->p_smutex held.
1129  */
1130 struct lwp *
1131 lwp_find(struct proc *p, int id)
1132 {
1133 	struct lwp *l;
1134 
1135 	KASSERT(mutex_owned(&p->p_smutex));
1136 
1137 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1138 		if (l->l_lid == id)
1139 			break;
1140 	}
1141 
1142 	/*
1143 	 * No need to lock - all of these conditions will
1144 	 * be visible with the process level mutex held.
1145 	 */
1146 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1147 		l = NULL;
1148 
1149 	return l;
1150 }
1151 
1152 /*
1153  * Update an LWP's cached credentials to mirror the process' master copy.
1154  *
1155  * This happens early in the syscall path, on user trap, and on LWP
1156  * creation.  A long-running LWP can also voluntarily choose to update
1157  * it's credentials by calling this routine.  This may be called from
1158  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1159  */
1160 void
1161 lwp_update_creds(struct lwp *l)
1162 {
1163 	kauth_cred_t oc;
1164 	struct proc *p;
1165 
1166 	p = l->l_proc;
1167 	oc = l->l_cred;
1168 
1169 	mutex_enter(&p->p_mutex);
1170 	kauth_cred_hold(p->p_cred);
1171 	l->l_cred = p->p_cred;
1172 	mutex_exit(&p->p_mutex);
1173 	if (oc != NULL)
1174 		kauth_cred_free(oc);
1175 }
1176 
1177 /*
1178  * Verify that an LWP is locked, and optionally verify that the lock matches
1179  * one we specify.
1180  */
1181 int
1182 lwp_locked(struct lwp *l, kmutex_t *mtx)
1183 {
1184 	kmutex_t *cur = l->l_mutex;
1185 
1186 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1187 }
1188 
1189 /*
1190  * Lock an LWP.
1191  */
1192 void
1193 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1194 {
1195 
1196 	/*
1197 	 * XXXgcc ignoring kmutex_t * volatile on i386
1198 	 *
1199 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1200 	 */
1201 #if 1
1202 	while (l->l_mutex != old) {
1203 #else
1204 	for (;;) {
1205 #endif
1206 		mutex_spin_exit(old);
1207 		old = l->l_mutex;
1208 		mutex_spin_enter(old);
1209 
1210 		/*
1211 		 * mutex_enter() will have posted a read barrier.  Re-test
1212 		 * l->l_mutex.  If it has changed, we need to try again.
1213 		 */
1214 #if 1
1215 	}
1216 #else
1217 	} while (__predict_false(l->l_mutex != old));
1218 #endif
1219 }
1220 
1221 /*
1222  * Lend a new mutex to an LWP.  The old mutex must be held.
1223  */
1224 void
1225 lwp_setlock(struct lwp *l, kmutex_t *new)
1226 {
1227 
1228 	KASSERT(mutex_owned(l->l_mutex));
1229 
1230 	membar_producer();
1231 	l->l_mutex = new;
1232 }
1233 
1234 /*
1235  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1236  * must be held.
1237  */
1238 void
1239 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1240 {
1241 	kmutex_t *old;
1242 
1243 	KASSERT(mutex_owned(l->l_mutex));
1244 
1245 	old = l->l_mutex;
1246 	membar_producer();
1247 	l->l_mutex = new;
1248 	mutex_spin_exit(old);
1249 }
1250 
1251 /*
1252  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
1253  * locked.
1254  */
1255 void
1256 lwp_relock(struct lwp *l, kmutex_t *new)
1257 {
1258 	kmutex_t *old;
1259 
1260 	KASSERT(mutex_owned(l->l_mutex));
1261 
1262 	old = l->l_mutex;
1263 	if (old != new) {
1264 		mutex_spin_enter(new);
1265 		l->l_mutex = new;
1266 		mutex_spin_exit(old);
1267 	}
1268 }
1269 
1270 int
1271 lwp_trylock(struct lwp *l)
1272 {
1273 	kmutex_t *old;
1274 
1275 	for (;;) {
1276 		if (!mutex_tryenter(old = l->l_mutex))
1277 			return 0;
1278 		if (__predict_true(l->l_mutex == old))
1279 			return 1;
1280 		mutex_spin_exit(old);
1281 	}
1282 }
1283 
1284 /*
1285  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1286  * set.
1287  */
1288 void
1289 lwp_userret(struct lwp *l)
1290 {
1291 	struct proc *p;
1292 	void (*hook)(void);
1293 	int sig;
1294 
1295 	p = l->l_proc;
1296 
1297 #ifndef __HAVE_FAST_SOFTINTS
1298 	/* Run pending soft interrupts. */
1299 	if (l->l_cpu->ci_data.cpu_softints != 0)
1300 		softint_overlay();
1301 #endif
1302 
1303 	/*
1304 	 * It should be safe to do this read unlocked on a multiprocessor
1305 	 * system..
1306 	 */
1307 	while ((l->l_flag & LW_USERRET) != 0) {
1308 		/*
1309 		 * Process pending signals first, unless the process
1310 		 * is dumping core or exiting, where we will instead
1311 		 * enter the L_WSUSPEND case below.
1312 		 */
1313 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1314 		    LW_PENDSIG) {
1315 			mutex_enter(&p->p_smutex);
1316 			while ((sig = issignal(l)) != 0)
1317 				postsig(sig);
1318 			mutex_exit(&p->p_smutex);
1319 		}
1320 
1321 		/*
1322 		 * Core-dump or suspend pending.
1323 		 *
1324 		 * In case of core dump, suspend ourselves, so that the
1325 		 * kernel stack and therefore the userland registers saved
1326 		 * in the trapframe are around for coredump() to write them
1327 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
1328 		 * will write the core file out once all other LWPs are
1329 		 * suspended.
1330 		 */
1331 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1332 			mutex_enter(&p->p_smutex);
1333 			p->p_nrlwps--;
1334 			cv_broadcast(&p->p_lwpcv);
1335 			lwp_lock(l);
1336 			l->l_stat = LSSUSPENDED;
1337 			mutex_exit(&p->p_smutex);
1338 			mi_switch(l);
1339 		}
1340 
1341 		/* Process is exiting. */
1342 		if ((l->l_flag & LW_WEXIT) != 0) {
1343 			lwp_exit(l);
1344 			KASSERT(0);
1345 			/* NOTREACHED */
1346 		}
1347 
1348 		/* Call userret hook; used by Linux emulation. */
1349 		if ((l->l_flag & LW_WUSERRET) != 0) {
1350 			lwp_lock(l);
1351 			l->l_flag &= ~LW_WUSERRET;
1352 			lwp_unlock(l);
1353 			hook = p->p_userret;
1354 			p->p_userret = NULL;
1355 			(*hook)();
1356 		}
1357 	}
1358 }
1359 
1360 /*
1361  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1362  */
1363 void
1364 lwp_need_userret(struct lwp *l)
1365 {
1366 	KASSERT(lwp_locked(l, NULL));
1367 
1368 	/*
1369 	 * Since the tests in lwp_userret() are done unlocked, make sure
1370 	 * that the condition will be seen before forcing the LWP to enter
1371 	 * kernel mode.
1372 	 */
1373 	membar_producer();
1374 	cpu_signotify(l);
1375 }
1376 
1377 /*
1378  * Add one reference to an LWP.  This will prevent the LWP from
1379  * exiting, thus keep the lwp structure and PCB around to inspect.
1380  */
1381 void
1382 lwp_addref(struct lwp *l)
1383 {
1384 
1385 	KASSERT(mutex_owned(&l->l_proc->p_smutex));
1386 	KASSERT(l->l_stat != LSZOMB);
1387 	KASSERT(l->l_refcnt != 0);
1388 
1389 	l->l_refcnt++;
1390 }
1391 
1392 /*
1393  * Remove one reference to an LWP.  If this is the last reference,
1394  * then we must finalize the LWP's death.
1395  */
1396 void
1397 lwp_delref(struct lwp *l)
1398 {
1399 	struct proc *p = l->l_proc;
1400 
1401 	mutex_enter(&p->p_smutex);
1402 	KASSERT(l->l_stat != LSZOMB);
1403 	KASSERT(l->l_refcnt > 0);
1404 	if (--l->l_refcnt == 0)
1405 		cv_broadcast(&p->p_lwpcv);
1406 	mutex_exit(&p->p_smutex);
1407 }
1408 
1409 /*
1410  * Drain all references to the current LWP.
1411  */
1412 void
1413 lwp_drainrefs(struct lwp *l)
1414 {
1415 	struct proc *p = l->l_proc;
1416 
1417 	KASSERT(mutex_owned(&p->p_smutex));
1418 	KASSERT(l->l_refcnt != 0);
1419 
1420 	l->l_refcnt--;
1421 	while (l->l_refcnt != 0)
1422 		cv_wait(&p->p_lwpcv, &p->p_smutex);
1423 }
1424 
1425 /*
1426  * lwp_specific_key_create --
1427  *	Create a key for subsystem lwp-specific data.
1428  */
1429 int
1430 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1431 {
1432 
1433 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1434 }
1435 
1436 /*
1437  * lwp_specific_key_delete --
1438  *	Delete a key for subsystem lwp-specific data.
1439  */
1440 void
1441 lwp_specific_key_delete(specificdata_key_t key)
1442 {
1443 
1444 	specificdata_key_delete(lwp_specificdata_domain, key);
1445 }
1446 
1447 /*
1448  * lwp_initspecific --
1449  *	Initialize an LWP's specificdata container.
1450  */
1451 void
1452 lwp_initspecific(struct lwp *l)
1453 {
1454 	int error;
1455 
1456 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1457 	KASSERT(error == 0);
1458 }
1459 
1460 /*
1461  * lwp_finispecific --
1462  *	Finalize an LWP's specificdata container.
1463  */
1464 void
1465 lwp_finispecific(struct lwp *l)
1466 {
1467 
1468 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1469 }
1470 
1471 /*
1472  * lwp_getspecific --
1473  *	Return lwp-specific data corresponding to the specified key.
1474  *
1475  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
1476  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
1477  *	LWP's specifc data, care must be taken to ensure that doing so
1478  *	would not cause internal data structure inconsistency (i.e. caller
1479  *	can guarantee that the target LWP is not inside an lwp_getspecific()
1480  *	or lwp_setspecific() call).
1481  */
1482 void *
1483 lwp_getspecific(specificdata_key_t key)
1484 {
1485 
1486 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1487 						  &curlwp->l_specdataref, key));
1488 }
1489 
1490 void *
1491 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1492 {
1493 
1494 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1495 						  &l->l_specdataref, key));
1496 }
1497 
1498 /*
1499  * lwp_setspecific --
1500  *	Set lwp-specific data corresponding to the specified key.
1501  */
1502 void
1503 lwp_setspecific(specificdata_key_t key, void *data)
1504 {
1505 
1506 	specificdata_setspecific(lwp_specificdata_domain,
1507 				 &curlwp->l_specdataref, key, data);
1508 }
1509 
1510 /*
1511  * Allocate a new lwpctl structure for a user LWP.
1512  */
1513 int
1514 lwp_ctl_alloc(vaddr_t *uaddr)
1515 {
1516 	lcproc_t *lp;
1517 	u_int bit, i, offset;
1518 	struct uvm_object *uao;
1519 	int error;
1520 	lcpage_t *lcp;
1521 	proc_t *p;
1522 	lwp_t *l;
1523 
1524 	l = curlwp;
1525 	p = l->l_proc;
1526 
1527 	if (l->l_lcpage != NULL) {
1528 		lcp = l->l_lcpage;
1529 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1530 		return (EINVAL);
1531 	}
1532 
1533 	/* First time around, allocate header structure for the process. */
1534 	if ((lp = p->p_lwpctl) == NULL) {
1535 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1536 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1537 		lp->lp_uao = NULL;
1538 		TAILQ_INIT(&lp->lp_pages);
1539 		mutex_enter(&p->p_mutex);
1540 		if (p->p_lwpctl == NULL) {
1541 			p->p_lwpctl = lp;
1542 			mutex_exit(&p->p_mutex);
1543 		} else {
1544 			mutex_exit(&p->p_mutex);
1545 			mutex_destroy(&lp->lp_lock);
1546 			kmem_free(lp, sizeof(*lp));
1547 			lp = p->p_lwpctl;
1548 		}
1549 	}
1550 
1551  	/*
1552  	 * Set up an anonymous memory region to hold the shared pages.
1553  	 * Map them into the process' address space.  The user vmspace
1554  	 * gets the first reference on the UAO.
1555  	 */
1556 	mutex_enter(&lp->lp_lock);
1557 	if (lp->lp_uao == NULL) {
1558 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1559 		lp->lp_cur = 0;
1560 		lp->lp_max = LWPCTL_UAREA_SZ;
1561 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1562 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1563 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1564 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1565 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1566 		if (error != 0) {
1567 			uao_detach(lp->lp_uao);
1568 			lp->lp_uao = NULL;
1569 			mutex_exit(&lp->lp_lock);
1570 			return error;
1571 		}
1572 	}
1573 
1574 	/* Get a free block and allocate for this LWP. */
1575 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1576 		if (lcp->lcp_nfree != 0)
1577 			break;
1578 	}
1579 	if (lcp == NULL) {
1580 		/* Nothing available - try to set up a free page. */
1581 		if (lp->lp_cur == lp->lp_max) {
1582 			mutex_exit(&lp->lp_lock);
1583 			return ENOMEM;
1584 		}
1585 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1586 		if (lcp == NULL) {
1587 			mutex_exit(&lp->lp_lock);
1588 			return ENOMEM;
1589 		}
1590 		/*
1591 		 * Wire the next page down in kernel space.  Since this
1592 		 * is a new mapping, we must add a reference.
1593 		 */
1594 		uao = lp->lp_uao;
1595 		(*uao->pgops->pgo_reference)(uao);
1596 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1597 		    uao, lp->lp_cur, PAGE_SIZE,
1598 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1599 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1600 		if (error != 0) {
1601 			mutex_exit(&lp->lp_lock);
1602 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1603 			(*uao->pgops->pgo_detach)(uao);
1604 			return error;
1605 		}
1606 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1607 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1608 		if (error != 0) {
1609 			mutex_exit(&lp->lp_lock);
1610 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1611 			    lcp->lcp_kaddr + PAGE_SIZE);
1612 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1613 			return error;
1614 		}
1615 		/* Prepare the page descriptor and link into the list. */
1616 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1617 		lp->lp_cur += PAGE_SIZE;
1618 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1619 		lcp->lcp_rotor = 0;
1620 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1621 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1622 	}
1623 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1624 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1625 			i = 0;
1626 	}
1627 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1628 	lcp->lcp_bitmap[i] ^= (1 << bit);
1629 	lcp->lcp_rotor = i;
1630 	lcp->lcp_nfree--;
1631 	l->l_lcpage = lcp;
1632 	offset = (i << 5) + bit;
1633 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1634 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1635 	mutex_exit(&lp->lp_lock);
1636 
1637 	l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1638 
1639 	return 0;
1640 }
1641 
1642 /*
1643  * Free an lwpctl structure back to the per-process list.
1644  */
1645 void
1646 lwp_ctl_free(lwp_t *l)
1647 {
1648 	lcproc_t *lp;
1649 	lcpage_t *lcp;
1650 	u_int map, offset;
1651 
1652 	lp = l->l_proc->p_lwpctl;
1653 	KASSERT(lp != NULL);
1654 
1655 	lcp = l->l_lcpage;
1656 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1657 	KASSERT(offset < LWPCTL_PER_PAGE);
1658 
1659 	mutex_enter(&lp->lp_lock);
1660 	lcp->lcp_nfree++;
1661 	map = offset >> 5;
1662 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1663 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1664 		lcp->lcp_rotor = map;
1665 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1666 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1667 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1668 	}
1669 	mutex_exit(&lp->lp_lock);
1670 }
1671 
1672 /*
1673  * Process is exiting; tear down lwpctl state.  This can only be safely
1674  * called by the last LWP in the process.
1675  */
1676 void
1677 lwp_ctl_exit(void)
1678 {
1679 	lcpage_t *lcp, *next;
1680 	lcproc_t *lp;
1681 	proc_t *p;
1682 	lwp_t *l;
1683 
1684 	l = curlwp;
1685 	l->l_lwpctl = NULL;
1686 	p = l->l_proc;
1687 	lp = p->p_lwpctl;
1688 
1689 	KASSERT(lp != NULL);
1690 	KASSERT(p->p_nlwps == 1);
1691 
1692 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1693 		next = TAILQ_NEXT(lcp, lcp_chain);
1694 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1695 		    lcp->lcp_kaddr + PAGE_SIZE);
1696 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1697 	}
1698 
1699 	if (lp->lp_uao != NULL) {
1700 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1701 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1702 	}
1703 
1704 	mutex_destroy(&lp->lp_lock);
1705 	kmem_free(lp, sizeof(*lp));
1706 	p->p_lwpctl = NULL;
1707 }
1708 
1709 #if defined(DDB)
1710 void
1711 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1712 {
1713 	lwp_t *l;
1714 
1715 	LIST_FOREACH(l, &alllwp, l_list) {
1716 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1717 
1718 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1719 			continue;
1720 		}
1721 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1722 		    (void *)addr, (void *)stack,
1723 		    (size_t)(addr - stack), l);
1724 	}
1725 }
1726 #endif /* defined(DDB) */
1727