1 /* $NetBSD: kern_lwp.c,v 1.93 2008/01/28 12:23:42 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Overview 41 * 42 * Lightweight processes (LWPs) are the basic unit or thread of 43 * execution within the kernel. The core state of an LWP is described 44 * by "struct lwp", also known as lwp_t. 45 * 46 * Each LWP is contained within a process (described by "struct proc"), 47 * Every process contains at least one LWP, but may contain more. The 48 * process describes attributes shared among all of its LWPs such as a 49 * private address space, global execution state (stopped, active, 50 * zombie, ...), signal disposition and so on. On a multiprocessor 51 * machine, multiple LWPs be executing concurrently in the kernel. 52 * 53 * Execution states 54 * 55 * At any given time, an LWP has overall state that is described by 56 * lwp::l_stat. The states are broken into two sets below. The first 57 * set is guaranteed to represent the absolute, current state of the 58 * LWP: 59 * 60 * LSONPROC 61 * 62 * On processor: the LWP is executing on a CPU, either in the 63 * kernel or in user space. 64 * 65 * LSRUN 66 * 67 * Runnable: the LWP is parked on a run queue, and may soon be 68 * chosen to run by a idle processor, or by a processor that 69 * has been asked to preempt a currently runnning but lower 70 * priority LWP. If the LWP is not swapped in (L_INMEM == 0) 71 * then the LWP is not on a run queue, but may be soon. 72 * 73 * LSIDL 74 * 75 * Idle: the LWP has been created but has not yet executed, 76 * or it has ceased executing a unit of work and is waiting 77 * to be started again. 78 * 79 * LSSUSPENDED: 80 * 81 * Suspended: the LWP has had its execution suspended by 82 * another LWP in the same process using the _lwp_suspend() 83 * system call. User-level LWPs also enter the suspended 84 * state when the system is shutting down. 85 * 86 * The second set represent a "statement of intent" on behalf of the 87 * LWP. The LWP may in fact be executing on a processor, may be 88 * sleeping or idle. It is expected to take the necessary action to 89 * stop executing or become "running" again within a short timeframe. 90 * The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running. 91 * Importantly, in indicates that its state is tied to a CPU. 92 * 93 * LSZOMB: 94 * 95 * Dead or dying: the LWP has released most of its resources 96 * and is a) about to switch away into oblivion b) has already 97 * switched away. When it switches away, its few remaining 98 * resources can be collected. 99 * 100 * LSSLEEP: 101 * 102 * Sleeping: the LWP has entered itself onto a sleep queue, and 103 * has switched away or will switch away shortly to allow other 104 * LWPs to run on the CPU. 105 * 106 * LSSTOP: 107 * 108 * Stopped: the LWP has been stopped as a result of a job 109 * control signal, or as a result of the ptrace() interface. 110 * 111 * Stopped LWPs may run briefly within the kernel to handle 112 * signals that they receive, but will not return to user space 113 * until their process' state is changed away from stopped. 114 * 115 * Single LWPs within a process can not be set stopped 116 * selectively: all actions that can stop or continue LWPs 117 * occur at the process level. 118 * 119 * State transitions 120 * 121 * Note that the LSSTOP state may only be set when returning to 122 * user space in userret(), or when sleeping interruptably. The 123 * LSSUSPENDED state may only be set in userret(). Before setting 124 * those states, we try to ensure that the LWPs will release all 125 * locks that they hold, and at a minimum try to ensure that the 126 * LWP can be set runnable again by a signal. 127 * 128 * LWPs may transition states in the following ways: 129 * 130 * RUN -------> ONPROC ONPROC -----> RUN 131 * > STOPPED > SLEEP 132 * > SUSPENDED > STOPPED 133 * > SUSPENDED 134 * > ZOMB 135 * 136 * STOPPED ---> RUN SUSPENDED --> RUN 137 * > SLEEP > SLEEP 138 * 139 * SLEEP -----> ONPROC IDL --------> RUN 140 * > RUN > SUSPENDED 141 * > STOPPED > STOPPED 142 * > SUSPENDED 143 * 144 * Other state transitions are possible with kernel threads (eg 145 * ONPROC -> IDL), but only happen under tightly controlled 146 * circumstances the side effects are understood. 147 * 148 * Locking 149 * 150 * The majority of fields in 'struct lwp' are covered by a single, 151 * general spin lock pointed to by lwp::l_mutex. The locks covering 152 * each field are documented in sys/lwp.h. 153 * 154 * State transitions must be made with the LWP's general lock held, 155 * and may cause the LWP's lock pointer to change. Manipulation of 156 * the general lock is not performed directly, but through calls to 157 * lwp_lock(), lwp_relock() and similar. 158 * 159 * States and their associated locks: 160 * 161 * LSONPROC, LSZOMB: 162 * 163 * Always covered by spc_lwplock, which protects running LWPs. 164 * This is a per-CPU lock. 165 * 166 * LSIDL, LSRUN: 167 * 168 * Always covered by spc_mutex, which protects the run queues. 169 * This may be a per-CPU lock, depending on the scheduler. 170 * 171 * LSSLEEP: 172 * 173 * Covered by a lock associated with the sleep queue that the 174 * LWP resides on, indirectly referenced by l_sleepq->sq_mutex. 175 * 176 * LSSTOP, LSSUSPENDED: 177 * 178 * If the LWP was previously sleeping (l_wchan != NULL), then 179 * l_mutex references the sleep queue lock. If the LWP was 180 * runnable or on the CPU when halted, or has been removed from 181 * the sleep queue since halted, then the lock is spc_lwplock. 182 * 183 * The lock order is as follows: 184 * 185 * spc::spc_lwplock -> 186 * sleepq_t::sq_mutex -> 187 * tschain_t::tc_mutex -> 188 * spc::spc_mutex 189 * 190 * Each process has an scheduler state lock (proc::p_smutex), and a 191 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 192 * so on. When an LWP is to be entered into or removed from one of the 193 * following states, p_mutex must be held and the process wide counters 194 * adjusted: 195 * 196 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 197 * 198 * Note that an LWP is considered running or likely to run soon if in 199 * one of the following states. This affects the value of p_nrlwps: 200 * 201 * LSRUN, LSONPROC, LSSLEEP 202 * 203 * p_smutex does not need to be held when transitioning among these 204 * three states. 205 */ 206 207 #include <sys/cdefs.h> 208 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.93 2008/01/28 12:23:42 yamt Exp $"); 209 210 #include "opt_ddb.h" 211 #include "opt_multiprocessor.h" 212 #include "opt_lockdebug.h" 213 214 #define _LWP_API_PRIVATE 215 216 #include <sys/param.h> 217 #include <sys/systm.h> 218 #include <sys/cpu.h> 219 #include <sys/pool.h> 220 #include <sys/proc.h> 221 #include <sys/syscallargs.h> 222 #include <sys/syscall_stats.h> 223 #include <sys/kauth.h> 224 #include <sys/sleepq.h> 225 #include <sys/user.h> 226 #include <sys/lockdebug.h> 227 #include <sys/kmem.h> 228 #include <sys/pset.h> 229 #include <sys/intr.h> 230 #include <sys/lwpctl.h> 231 #include <sys/atomic.h> 232 233 #include <uvm/uvm_extern.h> 234 #include <uvm/uvm_object.h> 235 236 struct lwplist alllwp = LIST_HEAD_INITIALIZER(alllwp); 237 238 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl", 239 &pool_allocator_nointr, IPL_NONE); 240 241 static pool_cache_t lwp_cache; 242 static specificdata_domain_t lwp_specificdata_domain; 243 244 void 245 lwpinit(void) 246 { 247 248 lwp_specificdata_domain = specificdata_domain_create(); 249 KASSERT(lwp_specificdata_domain != NULL); 250 lwp_sys_init(); 251 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 252 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 253 } 254 255 /* 256 * Set an suspended. 257 * 258 * Must be called with p_smutex held, and the LWP locked. Will unlock the 259 * LWP before return. 260 */ 261 int 262 lwp_suspend(struct lwp *curl, struct lwp *t) 263 { 264 int error; 265 266 KASSERT(mutex_owned(&t->l_proc->p_smutex)); 267 KASSERT(lwp_locked(t, NULL)); 268 269 KASSERT(curl != t || curl->l_stat == LSONPROC); 270 271 /* 272 * If the current LWP has been told to exit, we must not suspend anyone 273 * else or deadlock could occur. We won't return to userspace. 274 */ 275 if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) { 276 lwp_unlock(t); 277 return (EDEADLK); 278 } 279 280 error = 0; 281 282 switch (t->l_stat) { 283 case LSRUN: 284 case LSONPROC: 285 t->l_flag |= LW_WSUSPEND; 286 lwp_need_userret(t); 287 lwp_unlock(t); 288 break; 289 290 case LSSLEEP: 291 t->l_flag |= LW_WSUSPEND; 292 293 /* 294 * Kick the LWP and try to get it to the kernel boundary 295 * so that it will release any locks that it holds. 296 * setrunnable() will release the lock. 297 */ 298 if ((t->l_flag & LW_SINTR) != 0) 299 setrunnable(t); 300 else 301 lwp_unlock(t); 302 break; 303 304 case LSSUSPENDED: 305 lwp_unlock(t); 306 break; 307 308 case LSSTOP: 309 t->l_flag |= LW_WSUSPEND; 310 setrunnable(t); 311 break; 312 313 case LSIDL: 314 case LSZOMB: 315 error = EINTR; /* It's what Solaris does..... */ 316 lwp_unlock(t); 317 break; 318 } 319 320 return (error); 321 } 322 323 /* 324 * Restart a suspended LWP. 325 * 326 * Must be called with p_smutex held, and the LWP locked. Will unlock the 327 * LWP before return. 328 */ 329 void 330 lwp_continue(struct lwp *l) 331 { 332 333 KASSERT(mutex_owned(&l->l_proc->p_smutex)); 334 KASSERT(lwp_locked(l, NULL)); 335 336 /* If rebooting or not suspended, then just bail out. */ 337 if ((l->l_flag & LW_WREBOOT) != 0) { 338 lwp_unlock(l); 339 return; 340 } 341 342 l->l_flag &= ~LW_WSUSPEND; 343 344 if (l->l_stat != LSSUSPENDED) { 345 lwp_unlock(l); 346 return; 347 } 348 349 /* setrunnable() will release the lock. */ 350 setrunnable(l); 351 } 352 353 /* 354 * Wait for an LWP within the current process to exit. If 'lid' is 355 * non-zero, we are waiting for a specific LWP. 356 * 357 * Must be called with p->p_smutex held. 358 */ 359 int 360 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 361 { 362 struct proc *p = l->l_proc; 363 struct lwp *l2; 364 int nfound, error; 365 lwpid_t curlid; 366 bool exiting; 367 368 KASSERT(mutex_owned(&p->p_smutex)); 369 370 p->p_nlwpwait++; 371 l->l_waitingfor = lid; 372 curlid = l->l_lid; 373 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 374 375 for (;;) { 376 /* 377 * Avoid a race between exit1() and sigexit(): if the 378 * process is dumping core, then we need to bail out: call 379 * into lwp_userret() where we will be suspended until the 380 * deed is done. 381 */ 382 if ((p->p_sflag & PS_WCORE) != 0) { 383 mutex_exit(&p->p_smutex); 384 lwp_userret(l); 385 #ifdef DIAGNOSTIC 386 panic("lwp_wait1"); 387 #endif 388 /* NOTREACHED */ 389 } 390 391 /* 392 * First off, drain any detached LWP that is waiting to be 393 * reaped. 394 */ 395 while ((l2 = p->p_zomblwp) != NULL) { 396 p->p_zomblwp = NULL; 397 lwp_free(l2, false, false);/* releases proc mutex */ 398 mutex_enter(&p->p_smutex); 399 } 400 401 /* 402 * Now look for an LWP to collect. If the whole process is 403 * exiting, count detached LWPs as eligible to be collected, 404 * but don't drain them here. 405 */ 406 nfound = 0; 407 error = 0; 408 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 409 /* 410 * If a specific wait and the target is waiting on 411 * us, then avoid deadlock. This also traps LWPs 412 * that try to wait on themselves. 413 * 414 * Note that this does not handle more complicated 415 * cycles, like: t1 -> t2 -> t3 -> t1. The process 416 * can still be killed so it is not a major problem. 417 */ 418 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 419 error = EDEADLK; 420 break; 421 } 422 if (l2 == l) 423 continue; 424 if ((l2->l_prflag & LPR_DETACHED) != 0) { 425 nfound += exiting; 426 continue; 427 } 428 if (lid != 0) { 429 if (l2->l_lid != lid) 430 continue; 431 /* 432 * Mark this LWP as the first waiter, if there 433 * is no other. 434 */ 435 if (l2->l_waiter == 0) 436 l2->l_waiter = curlid; 437 } else if (l2->l_waiter != 0) { 438 /* 439 * It already has a waiter - so don't 440 * collect it. If the waiter doesn't 441 * grab it we'll get another chance 442 * later. 443 */ 444 nfound++; 445 continue; 446 } 447 nfound++; 448 449 /* No need to lock the LWP in order to see LSZOMB. */ 450 if (l2->l_stat != LSZOMB) 451 continue; 452 453 /* 454 * We're no longer waiting. Reset the "first waiter" 455 * pointer on the target, in case it was us. 456 */ 457 l->l_waitingfor = 0; 458 l2->l_waiter = 0; 459 p->p_nlwpwait--; 460 if (departed) 461 *departed = l2->l_lid; 462 sched_lwp_collect(l2); 463 464 /* lwp_free() releases the proc lock. */ 465 lwp_free(l2, false, false); 466 mutex_enter(&p->p_smutex); 467 return 0; 468 } 469 470 if (error != 0) 471 break; 472 if (nfound == 0) { 473 error = ESRCH; 474 break; 475 } 476 477 /* 478 * The kernel is careful to ensure that it can not deadlock 479 * when exiting - just keep waiting. 480 */ 481 if (exiting) { 482 KASSERT(p->p_nlwps > 1); 483 cv_wait(&p->p_lwpcv, &p->p_smutex); 484 continue; 485 } 486 487 /* 488 * If all other LWPs are waiting for exits or suspends 489 * and the supply of zombies and potential zombies is 490 * exhausted, then we are about to deadlock. 491 * 492 * If the process is exiting (and this LWP is not the one 493 * that is coordinating the exit) then bail out now. 494 */ 495 if ((p->p_sflag & PS_WEXIT) != 0 || 496 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 497 error = EDEADLK; 498 break; 499 } 500 501 /* 502 * Sit around and wait for something to happen. We'll be 503 * awoken if any of the conditions examined change: if an 504 * LWP exits, is collected, or is detached. 505 */ 506 if ((error = cv_wait_sig(&p->p_lwpcv, &p->p_smutex)) != 0) 507 break; 508 } 509 510 /* 511 * We didn't find any LWPs to collect, we may have received a 512 * signal, or some other condition has caused us to bail out. 513 * 514 * If waiting on a specific LWP, clear the waiters marker: some 515 * other LWP may want it. Then, kick all the remaining waiters 516 * so that they can re-check for zombies and for deadlock. 517 */ 518 if (lid != 0) { 519 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 520 if (l2->l_lid == lid) { 521 if (l2->l_waiter == curlid) 522 l2->l_waiter = 0; 523 break; 524 } 525 } 526 } 527 p->p_nlwpwait--; 528 l->l_waitingfor = 0; 529 cv_broadcast(&p->p_lwpcv); 530 531 return error; 532 } 533 534 /* 535 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 536 * The new LWP is created in state LSIDL and must be set running, 537 * suspended, or stopped by the caller. 538 */ 539 int 540 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags, 541 void *stack, size_t stacksize, void (*func)(void *), void *arg, 542 lwp_t **rnewlwpp, int sclass) 543 { 544 struct lwp *l2, *isfree; 545 turnstile_t *ts; 546 547 /* 548 * First off, reap any detached LWP waiting to be collected. 549 * We can re-use its LWP structure and turnstile. 550 */ 551 isfree = NULL; 552 if (p2->p_zomblwp != NULL) { 553 mutex_enter(&p2->p_smutex); 554 if ((isfree = p2->p_zomblwp) != NULL) { 555 p2->p_zomblwp = NULL; 556 lwp_free(isfree, true, false);/* releases proc mutex */ 557 } else 558 mutex_exit(&p2->p_smutex); 559 } 560 if (isfree == NULL) { 561 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 562 memset(l2, 0, sizeof(*l2)); 563 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 564 SLIST_INIT(&l2->l_pi_lenders); 565 } else { 566 l2 = isfree; 567 ts = l2->l_ts; 568 KASSERT(l2->l_inheritedprio == -1); 569 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 570 memset(l2, 0, sizeof(*l2)); 571 l2->l_ts = ts; 572 } 573 574 l2->l_stat = LSIDL; 575 l2->l_proc = p2; 576 l2->l_refcnt = 1; 577 l2->l_class = sclass; 578 l2->l_kpriority = l1->l_kpriority; 579 l2->l_kpribase = PRI_KERNEL; 580 l2->l_priority = l1->l_priority; 581 l2->l_inheritedprio = -1; 582 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 583 l2->l_cpu = l1->l_cpu; 584 l2->l_flag = inmem ? LW_INMEM : 0; 585 l2->l_pflag = LP_MPSAFE; 586 587 if (p2->p_flag & PK_SYSTEM) { 588 /* Mark it as a system LWP and not a candidate for swapping */ 589 l2->l_flag |= LW_SYSTEM; 590 } 591 592 lwp_initspecific(l2); 593 sched_lwp_fork(l1, l2); 594 lwp_update_creds(l2); 595 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 596 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 597 mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE); 598 cv_init(&l2->l_sigcv, "sigwait"); 599 l2->l_syncobj = &sched_syncobj; 600 601 if (rnewlwpp != NULL) 602 *rnewlwpp = l2; 603 604 l2->l_addr = UAREA_TO_USER(uaddr); 605 uvm_lwp_fork(l1, l2, stack, stacksize, func, 606 (arg != NULL) ? arg : l2); 607 608 mutex_enter(&p2->p_smutex); 609 610 if ((flags & LWP_DETACHED) != 0) { 611 l2->l_prflag = LPR_DETACHED; 612 p2->p_ndlwps++; 613 } else 614 l2->l_prflag = 0; 615 616 l2->l_sigmask = l1->l_sigmask; 617 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 618 sigemptyset(&l2->l_sigpend.sp_set); 619 620 p2->p_nlwpid++; 621 if (p2->p_nlwpid == 0) 622 p2->p_nlwpid++; 623 l2->l_lid = p2->p_nlwpid; 624 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 625 p2->p_nlwps++; 626 627 mutex_exit(&p2->p_smutex); 628 629 mutex_enter(&proclist_lock); 630 LIST_INSERT_HEAD(&alllwp, l2, l_list); 631 mutex_exit(&proclist_lock); 632 633 if ((p2->p_flag & PK_SYSTEM) == 0) { 634 /* Locking is needed, since LWP is in the list of all LWPs */ 635 lwp_lock(l2); 636 /* Inherit a processor-set */ 637 l2->l_psid = l1->l_psid; 638 /* Inherit an affinity */ 639 memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t)); 640 /* Look for a CPU to start */ 641 l2->l_cpu = sched_takecpu(l2); 642 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 643 } 644 645 SYSCALL_TIME_LWP_INIT(l2); 646 647 if (p2->p_emul->e_lwp_fork) 648 (*p2->p_emul->e_lwp_fork)(l1, l2); 649 650 return (0); 651 } 652 653 /* 654 * Called by MD code when a new LWP begins execution. Must be called 655 * with the previous LWP locked (so at splsched), or if there is no 656 * previous LWP, at splsched. 657 */ 658 void 659 lwp_startup(struct lwp *prev, struct lwp *new) 660 { 661 662 if (prev != NULL) { 663 /* 664 * Normalize the count of the spin-mutexes, it was 665 * increased in mi_switch(). Unmark the state of 666 * context switch - it is finished for previous LWP. 667 */ 668 curcpu()->ci_mtx_count++; 669 membar_exit(); 670 prev->l_ctxswtch = 0; 671 } 672 spl0(); 673 pmap_activate(new); 674 LOCKDEBUG_BARRIER(NULL, 0); 675 if ((new->l_pflag & LP_MPSAFE) == 0) { 676 KERNEL_LOCK(1, new); 677 } 678 } 679 680 /* 681 * Exit an LWP. 682 */ 683 void 684 lwp_exit(struct lwp *l) 685 { 686 struct proc *p = l->l_proc; 687 struct lwp *l2; 688 bool current; 689 690 current = (l == curlwp); 691 692 KASSERT(current || l->l_stat == LSIDL); 693 694 /* 695 * Verify that we hold no locks other than the kernel lock. 696 */ 697 #ifdef MULTIPROCESSOR 698 LOCKDEBUG_BARRIER(&kernel_lock, 0); 699 #else 700 LOCKDEBUG_BARRIER(NULL, 0); 701 #endif 702 703 /* 704 * If we are the last live LWP in a process, we need to exit the 705 * entire process. We do so with an exit status of zero, because 706 * it's a "controlled" exit, and because that's what Solaris does. 707 * 708 * We are not quite a zombie yet, but for accounting purposes we 709 * must increment the count of zombies here. 710 * 711 * Note: the last LWP's specificdata will be deleted here. 712 */ 713 mutex_enter(&p->p_smutex); 714 if (p->p_nlwps - p->p_nzlwps == 1) { 715 KASSERT(current == true); 716 /* XXXSMP kernel_lock not held */ 717 exit1(l, 0); 718 /* NOTREACHED */ 719 } 720 p->p_nzlwps++; 721 mutex_exit(&p->p_smutex); 722 723 if (p->p_emul->e_lwp_exit) 724 (*p->p_emul->e_lwp_exit)(l); 725 726 /* Delete the specificdata while it's still safe to sleep. */ 727 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 728 729 /* 730 * Release our cached credentials. 731 */ 732 kauth_cred_free(l->l_cred); 733 callout_destroy(&l->l_timeout_ch); 734 735 /* 736 * While we can still block, mark the LWP as unswappable to 737 * prevent conflicts with the with the swapper. 738 */ 739 if (current) 740 uvm_lwp_hold(l); 741 742 /* 743 * Remove the LWP from the global list. 744 */ 745 mutex_enter(&proclist_lock); 746 mutex_enter(&proclist_mutex); 747 LIST_REMOVE(l, l_list); 748 mutex_exit(&proclist_mutex); 749 mutex_exit(&proclist_lock); 750 751 /* 752 * Get rid of all references to the LWP that others (e.g. procfs) 753 * may have, and mark the LWP as a zombie. If the LWP is detached, 754 * mark it waiting for collection in the proc structure. Note that 755 * before we can do that, we need to free any other dead, deatched 756 * LWP waiting to meet its maker. 757 * 758 * XXXSMP disable preemption. 759 */ 760 mutex_enter(&p->p_smutex); 761 lwp_drainrefs(l); 762 763 if ((l->l_prflag & LPR_DETACHED) != 0) { 764 while ((l2 = p->p_zomblwp) != NULL) { 765 p->p_zomblwp = NULL; 766 lwp_free(l2, false, false);/* releases proc mutex */ 767 mutex_enter(&p->p_smutex); 768 l->l_refcnt++; 769 lwp_drainrefs(l); 770 } 771 p->p_zomblwp = l; 772 } 773 774 /* 775 * If we find a pending signal for the process and we have been 776 * asked to check for signals, then we loose: arrange to have 777 * all other LWPs in the process check for signals. 778 */ 779 if ((l->l_flag & LW_PENDSIG) != 0 && 780 firstsig(&p->p_sigpend.sp_set) != 0) { 781 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 782 lwp_lock(l2); 783 l2->l_flag |= LW_PENDSIG; 784 lwp_unlock(l2); 785 } 786 } 787 788 lwp_lock(l); 789 l->l_stat = LSZOMB; 790 if (l->l_name != NULL) 791 strcpy(l->l_name, "(zombie)"); 792 lwp_unlock(l); 793 p->p_nrlwps--; 794 cv_broadcast(&p->p_lwpcv); 795 if (l->l_lwpctl != NULL) 796 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 797 mutex_exit(&p->p_smutex); 798 799 /* 800 * We can no longer block. At this point, lwp_free() may already 801 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 802 * 803 * Free MD LWP resources. 804 */ 805 #ifndef __NO_CPU_LWP_FREE 806 cpu_lwp_free(l, 0); 807 #endif 808 809 if (current) { 810 pmap_deactivate(l); 811 812 /* 813 * Release the kernel lock, and switch away into 814 * oblivion. 815 */ 816 #ifdef notyet 817 /* XXXSMP hold in lwp_userret() */ 818 KERNEL_UNLOCK_LAST(l); 819 #else 820 KERNEL_UNLOCK_ALL(l, NULL); 821 #endif 822 lwp_exit_switchaway(l); 823 } 824 } 825 826 void 827 lwp_exit_switchaway(struct lwp *l) 828 { 829 struct cpu_info *ci; 830 struct lwp *idlelwp; 831 832 /* Unlocked, but is for statistics only. */ 833 uvmexp.swtch++; 834 835 (void)splsched(); 836 l->l_flag &= ~LW_RUNNING; 837 ci = curcpu(); 838 idlelwp = ci->ci_data.cpu_idlelwp; 839 idlelwp->l_stat = LSONPROC; 840 841 /* 842 * cpu_onproc must be updated with the CPU locked, as 843 * aston() may try to set a AST pending on the LWP (and 844 * it does so with the CPU locked). Otherwise, the LWP 845 * may be destroyed before the AST can be set, leading 846 * to a user-after-free. 847 */ 848 spc_lock(ci); 849 ci->ci_data.cpu_onproc = idlelwp; 850 spc_unlock(ci); 851 cpu_switchto(NULL, idlelwp, false); 852 } 853 854 /* 855 * Free a dead LWP's remaining resources. 856 * 857 * XXXLWP limits. 858 */ 859 void 860 lwp_free(struct lwp *l, bool recycle, bool last) 861 { 862 struct proc *p = l->l_proc; 863 ksiginfoq_t kq; 864 865 KASSERT(l != curlwp); 866 867 /* 868 * If this was not the last LWP in the process, then adjust 869 * counters and unlock. 870 */ 871 if (!last) { 872 /* 873 * Add the LWP's run time to the process' base value. 874 * This needs to co-incide with coming off p_lwps. 875 */ 876 bintime_add(&p->p_rtime, &l->l_rtime); 877 p->p_pctcpu += l->l_pctcpu; 878 LIST_REMOVE(l, l_sibling); 879 p->p_nlwps--; 880 p->p_nzlwps--; 881 if ((l->l_prflag & LPR_DETACHED) != 0) 882 p->p_ndlwps--; 883 884 /* 885 * Have any LWPs sleeping in lwp_wait() recheck for 886 * deadlock. 887 */ 888 cv_broadcast(&p->p_lwpcv); 889 mutex_exit(&p->p_smutex); 890 } 891 892 #ifdef MULTIPROCESSOR 893 /* 894 * In the unlikely event that the LWP is still on the CPU, 895 * then spin until it has switched away. We need to release 896 * all locks to avoid deadlock against interrupt handlers on 897 * the target CPU. 898 */ 899 if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 900 int count; 901 (void)count; /* XXXgcc */ 902 KERNEL_UNLOCK_ALL(curlwp, &count); 903 while ((l->l_flag & LW_RUNNING) != 0 || 904 l->l_cpu->ci_curlwp == l) 905 SPINLOCK_BACKOFF_HOOK; 906 KERNEL_LOCK(count, curlwp); 907 } 908 #endif 909 910 /* 911 * Destroy the LWP's remaining signal information. 912 */ 913 ksiginfo_queue_init(&kq); 914 sigclear(&l->l_sigpend, NULL, &kq); 915 ksiginfo_queue_drain(&kq); 916 cv_destroy(&l->l_sigcv); 917 mutex_destroy(&l->l_swaplock); 918 919 /* 920 * Free the LWP's turnstile and the LWP structure itself unless the 921 * caller wants to recycle them. Also, free the scheduler specific 922 * data. 923 * 924 * We can't return turnstile0 to the pool (it didn't come from it), 925 * so if it comes up just drop it quietly and move on. 926 * 927 * We don't recycle the VM resources at this time. 928 */ 929 if (l->l_lwpctl != NULL) 930 lwp_ctl_free(l); 931 sched_lwp_exit(l); 932 933 if (!recycle && l->l_ts != &turnstile0) 934 pool_cache_put(turnstile_cache, l->l_ts); 935 if (l->l_name != NULL) 936 kmem_free(l->l_name, MAXCOMLEN); 937 #ifndef __NO_CPU_LWP_FREE 938 cpu_lwp_free2(l); 939 #endif 940 KASSERT((l->l_flag & LW_INMEM) != 0); 941 uvm_lwp_exit(l); 942 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 943 KASSERT(l->l_inheritedprio == -1); 944 if (!recycle) 945 pool_cache_put(lwp_cache, l); 946 } 947 948 /* 949 * Pick a LWP to represent the process for those operations which 950 * want information about a "process" that is actually associated 951 * with a LWP. 952 * 953 * If 'locking' is false, no locking or lock checks are performed. 954 * This is intended for use by DDB. 955 * 956 * We don't bother locking the LWP here, since code that uses this 957 * interface is broken by design and an exact match is not required. 958 */ 959 struct lwp * 960 proc_representative_lwp(struct proc *p, int *nrlwps, int locking) 961 { 962 struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended; 963 struct lwp *signalled; 964 int cnt; 965 966 if (locking) { 967 KASSERT(mutex_owned(&p->p_smutex)); 968 } 969 970 /* Trivial case: only one LWP */ 971 if (p->p_nlwps == 1) { 972 l = LIST_FIRST(&p->p_lwps); 973 if (nrlwps) 974 *nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN); 975 return l; 976 } 977 978 cnt = 0; 979 switch (p->p_stat) { 980 case SSTOP: 981 case SACTIVE: 982 /* Pick the most live LWP */ 983 onproc = running = sleeping = stopped = suspended = NULL; 984 signalled = NULL; 985 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 986 if ((l->l_flag & LW_IDLE) != 0) { 987 continue; 988 } 989 if (l->l_lid == p->p_sigctx.ps_lwp) 990 signalled = l; 991 switch (l->l_stat) { 992 case LSONPROC: 993 onproc = l; 994 cnt++; 995 break; 996 case LSRUN: 997 running = l; 998 cnt++; 999 break; 1000 case LSSLEEP: 1001 sleeping = l; 1002 break; 1003 case LSSTOP: 1004 stopped = l; 1005 break; 1006 case LSSUSPENDED: 1007 suspended = l; 1008 break; 1009 } 1010 } 1011 if (nrlwps) 1012 *nrlwps = cnt; 1013 if (signalled) 1014 l = signalled; 1015 else if (onproc) 1016 l = onproc; 1017 else if (running) 1018 l = running; 1019 else if (sleeping) 1020 l = sleeping; 1021 else if (stopped) 1022 l = stopped; 1023 else if (suspended) 1024 l = suspended; 1025 else 1026 break; 1027 return l; 1028 #ifdef DIAGNOSTIC 1029 case SIDL: 1030 case SZOMB: 1031 case SDYING: 1032 case SDEAD: 1033 if (locking) 1034 mutex_exit(&p->p_smutex); 1035 /* We have more than one LWP and we're in SIDL? 1036 * How'd that happen? 1037 */ 1038 panic("Too many LWPs in idle/dying process %d (%s) stat = %d", 1039 p->p_pid, p->p_comm, p->p_stat); 1040 break; 1041 default: 1042 if (locking) 1043 mutex_exit(&p->p_smutex); 1044 panic("Process %d (%s) in unknown state %d", 1045 p->p_pid, p->p_comm, p->p_stat); 1046 #endif 1047 } 1048 1049 if (locking) 1050 mutex_exit(&p->p_smutex); 1051 panic("proc_representative_lwp: couldn't find a lwp for process" 1052 " %d (%s)", p->p_pid, p->p_comm); 1053 /* NOTREACHED */ 1054 return NULL; 1055 } 1056 1057 /* 1058 * Migrate the LWP to the another CPU. Unlocks the LWP. 1059 */ 1060 void 1061 lwp_migrate(lwp_t *l, struct cpu_info *ci) 1062 { 1063 struct schedstate_percpu *spc; 1064 KASSERT(lwp_locked(l, NULL)); 1065 1066 if (l->l_cpu == ci) { 1067 lwp_unlock(l); 1068 return; 1069 } 1070 1071 spc = &ci->ci_schedstate; 1072 switch (l->l_stat) { 1073 case LSRUN: 1074 if (l->l_flag & LW_INMEM) { 1075 l->l_target_cpu = ci; 1076 break; 1077 } 1078 case LSIDL: 1079 l->l_cpu = ci; 1080 lwp_unlock_to(l, spc->spc_mutex); 1081 KASSERT(!mutex_owned(spc->spc_mutex)); 1082 return; 1083 case LSSLEEP: 1084 l->l_cpu = ci; 1085 break; 1086 case LSSTOP: 1087 case LSSUSPENDED: 1088 if (l->l_wchan != NULL) { 1089 l->l_cpu = ci; 1090 break; 1091 } 1092 case LSONPROC: 1093 l->l_target_cpu = ci; 1094 break; 1095 } 1096 lwp_unlock(l); 1097 } 1098 1099 /* 1100 * Find the LWP in the process. 1101 * On success - returns LWP locked. 1102 */ 1103 struct lwp * 1104 lwp_find2(pid_t pid, lwpid_t lid) 1105 { 1106 proc_t *p; 1107 lwp_t *l; 1108 1109 /* Find the process */ 1110 p = p_find(pid, PFIND_UNLOCK_FAIL); 1111 if (p == NULL) 1112 return NULL; 1113 mutex_enter(&p->p_smutex); 1114 mutex_exit(&proclist_lock); 1115 1116 /* Find the thread */ 1117 l = lwp_find(p, lid); 1118 if (l != NULL) 1119 lwp_lock(l); 1120 mutex_exit(&p->p_smutex); 1121 1122 return l; 1123 } 1124 1125 /* 1126 * Look up a live LWP within the speicifed process, and return it locked. 1127 * 1128 * Must be called with p->p_smutex held. 1129 */ 1130 struct lwp * 1131 lwp_find(struct proc *p, int id) 1132 { 1133 struct lwp *l; 1134 1135 KASSERT(mutex_owned(&p->p_smutex)); 1136 1137 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1138 if (l->l_lid == id) 1139 break; 1140 } 1141 1142 /* 1143 * No need to lock - all of these conditions will 1144 * be visible with the process level mutex held. 1145 */ 1146 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1147 l = NULL; 1148 1149 return l; 1150 } 1151 1152 /* 1153 * Update an LWP's cached credentials to mirror the process' master copy. 1154 * 1155 * This happens early in the syscall path, on user trap, and on LWP 1156 * creation. A long-running LWP can also voluntarily choose to update 1157 * it's credentials by calling this routine. This may be called from 1158 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1159 */ 1160 void 1161 lwp_update_creds(struct lwp *l) 1162 { 1163 kauth_cred_t oc; 1164 struct proc *p; 1165 1166 p = l->l_proc; 1167 oc = l->l_cred; 1168 1169 mutex_enter(&p->p_mutex); 1170 kauth_cred_hold(p->p_cred); 1171 l->l_cred = p->p_cred; 1172 mutex_exit(&p->p_mutex); 1173 if (oc != NULL) 1174 kauth_cred_free(oc); 1175 } 1176 1177 /* 1178 * Verify that an LWP is locked, and optionally verify that the lock matches 1179 * one we specify. 1180 */ 1181 int 1182 lwp_locked(struct lwp *l, kmutex_t *mtx) 1183 { 1184 kmutex_t *cur = l->l_mutex; 1185 1186 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1187 } 1188 1189 /* 1190 * Lock an LWP. 1191 */ 1192 void 1193 lwp_lock_retry(struct lwp *l, kmutex_t *old) 1194 { 1195 1196 /* 1197 * XXXgcc ignoring kmutex_t * volatile on i386 1198 * 1199 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021) 1200 */ 1201 #if 1 1202 while (l->l_mutex != old) { 1203 #else 1204 for (;;) { 1205 #endif 1206 mutex_spin_exit(old); 1207 old = l->l_mutex; 1208 mutex_spin_enter(old); 1209 1210 /* 1211 * mutex_enter() will have posted a read barrier. Re-test 1212 * l->l_mutex. If it has changed, we need to try again. 1213 */ 1214 #if 1 1215 } 1216 #else 1217 } while (__predict_false(l->l_mutex != old)); 1218 #endif 1219 } 1220 1221 /* 1222 * Lend a new mutex to an LWP. The old mutex must be held. 1223 */ 1224 void 1225 lwp_setlock(struct lwp *l, kmutex_t *new) 1226 { 1227 1228 KASSERT(mutex_owned(l->l_mutex)); 1229 1230 membar_producer(); 1231 l->l_mutex = new; 1232 } 1233 1234 /* 1235 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1236 * must be held. 1237 */ 1238 void 1239 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1240 { 1241 kmutex_t *old; 1242 1243 KASSERT(mutex_owned(l->l_mutex)); 1244 1245 old = l->l_mutex; 1246 membar_producer(); 1247 l->l_mutex = new; 1248 mutex_spin_exit(old); 1249 } 1250 1251 /* 1252 * Acquire a new mutex, and donate it to an LWP. The LWP must already be 1253 * locked. 1254 */ 1255 void 1256 lwp_relock(struct lwp *l, kmutex_t *new) 1257 { 1258 kmutex_t *old; 1259 1260 KASSERT(mutex_owned(l->l_mutex)); 1261 1262 old = l->l_mutex; 1263 if (old != new) { 1264 mutex_spin_enter(new); 1265 l->l_mutex = new; 1266 mutex_spin_exit(old); 1267 } 1268 } 1269 1270 int 1271 lwp_trylock(struct lwp *l) 1272 { 1273 kmutex_t *old; 1274 1275 for (;;) { 1276 if (!mutex_tryenter(old = l->l_mutex)) 1277 return 0; 1278 if (__predict_true(l->l_mutex == old)) 1279 return 1; 1280 mutex_spin_exit(old); 1281 } 1282 } 1283 1284 /* 1285 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1286 * set. 1287 */ 1288 void 1289 lwp_userret(struct lwp *l) 1290 { 1291 struct proc *p; 1292 void (*hook)(void); 1293 int sig; 1294 1295 p = l->l_proc; 1296 1297 #ifndef __HAVE_FAST_SOFTINTS 1298 /* Run pending soft interrupts. */ 1299 if (l->l_cpu->ci_data.cpu_softints != 0) 1300 softint_overlay(); 1301 #endif 1302 1303 /* 1304 * It should be safe to do this read unlocked on a multiprocessor 1305 * system.. 1306 */ 1307 while ((l->l_flag & LW_USERRET) != 0) { 1308 /* 1309 * Process pending signals first, unless the process 1310 * is dumping core or exiting, where we will instead 1311 * enter the L_WSUSPEND case below. 1312 */ 1313 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1314 LW_PENDSIG) { 1315 mutex_enter(&p->p_smutex); 1316 while ((sig = issignal(l)) != 0) 1317 postsig(sig); 1318 mutex_exit(&p->p_smutex); 1319 } 1320 1321 /* 1322 * Core-dump or suspend pending. 1323 * 1324 * In case of core dump, suspend ourselves, so that the 1325 * kernel stack and therefore the userland registers saved 1326 * in the trapframe are around for coredump() to write them 1327 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1328 * will write the core file out once all other LWPs are 1329 * suspended. 1330 */ 1331 if ((l->l_flag & LW_WSUSPEND) != 0) { 1332 mutex_enter(&p->p_smutex); 1333 p->p_nrlwps--; 1334 cv_broadcast(&p->p_lwpcv); 1335 lwp_lock(l); 1336 l->l_stat = LSSUSPENDED; 1337 mutex_exit(&p->p_smutex); 1338 mi_switch(l); 1339 } 1340 1341 /* Process is exiting. */ 1342 if ((l->l_flag & LW_WEXIT) != 0) { 1343 lwp_exit(l); 1344 KASSERT(0); 1345 /* NOTREACHED */ 1346 } 1347 1348 /* Call userret hook; used by Linux emulation. */ 1349 if ((l->l_flag & LW_WUSERRET) != 0) { 1350 lwp_lock(l); 1351 l->l_flag &= ~LW_WUSERRET; 1352 lwp_unlock(l); 1353 hook = p->p_userret; 1354 p->p_userret = NULL; 1355 (*hook)(); 1356 } 1357 } 1358 } 1359 1360 /* 1361 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1362 */ 1363 void 1364 lwp_need_userret(struct lwp *l) 1365 { 1366 KASSERT(lwp_locked(l, NULL)); 1367 1368 /* 1369 * Since the tests in lwp_userret() are done unlocked, make sure 1370 * that the condition will be seen before forcing the LWP to enter 1371 * kernel mode. 1372 */ 1373 membar_producer(); 1374 cpu_signotify(l); 1375 } 1376 1377 /* 1378 * Add one reference to an LWP. This will prevent the LWP from 1379 * exiting, thus keep the lwp structure and PCB around to inspect. 1380 */ 1381 void 1382 lwp_addref(struct lwp *l) 1383 { 1384 1385 KASSERT(mutex_owned(&l->l_proc->p_smutex)); 1386 KASSERT(l->l_stat != LSZOMB); 1387 KASSERT(l->l_refcnt != 0); 1388 1389 l->l_refcnt++; 1390 } 1391 1392 /* 1393 * Remove one reference to an LWP. If this is the last reference, 1394 * then we must finalize the LWP's death. 1395 */ 1396 void 1397 lwp_delref(struct lwp *l) 1398 { 1399 struct proc *p = l->l_proc; 1400 1401 mutex_enter(&p->p_smutex); 1402 KASSERT(l->l_stat != LSZOMB); 1403 KASSERT(l->l_refcnt > 0); 1404 if (--l->l_refcnt == 0) 1405 cv_broadcast(&p->p_lwpcv); 1406 mutex_exit(&p->p_smutex); 1407 } 1408 1409 /* 1410 * Drain all references to the current LWP. 1411 */ 1412 void 1413 lwp_drainrefs(struct lwp *l) 1414 { 1415 struct proc *p = l->l_proc; 1416 1417 KASSERT(mutex_owned(&p->p_smutex)); 1418 KASSERT(l->l_refcnt != 0); 1419 1420 l->l_refcnt--; 1421 while (l->l_refcnt != 0) 1422 cv_wait(&p->p_lwpcv, &p->p_smutex); 1423 } 1424 1425 /* 1426 * lwp_specific_key_create -- 1427 * Create a key for subsystem lwp-specific data. 1428 */ 1429 int 1430 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor) 1431 { 1432 1433 return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor)); 1434 } 1435 1436 /* 1437 * lwp_specific_key_delete -- 1438 * Delete a key for subsystem lwp-specific data. 1439 */ 1440 void 1441 lwp_specific_key_delete(specificdata_key_t key) 1442 { 1443 1444 specificdata_key_delete(lwp_specificdata_domain, key); 1445 } 1446 1447 /* 1448 * lwp_initspecific -- 1449 * Initialize an LWP's specificdata container. 1450 */ 1451 void 1452 lwp_initspecific(struct lwp *l) 1453 { 1454 int error; 1455 1456 error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref); 1457 KASSERT(error == 0); 1458 } 1459 1460 /* 1461 * lwp_finispecific -- 1462 * Finalize an LWP's specificdata container. 1463 */ 1464 void 1465 lwp_finispecific(struct lwp *l) 1466 { 1467 1468 specificdata_fini(lwp_specificdata_domain, &l->l_specdataref); 1469 } 1470 1471 /* 1472 * lwp_getspecific -- 1473 * Return lwp-specific data corresponding to the specified key. 1474 * 1475 * Note: LWP specific data is NOT INTERLOCKED. An LWP should access 1476 * only its OWN SPECIFIC DATA. If it is necessary to access another 1477 * LWP's specifc data, care must be taken to ensure that doing so 1478 * would not cause internal data structure inconsistency (i.e. caller 1479 * can guarantee that the target LWP is not inside an lwp_getspecific() 1480 * or lwp_setspecific() call). 1481 */ 1482 void * 1483 lwp_getspecific(specificdata_key_t key) 1484 { 1485 1486 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1487 &curlwp->l_specdataref, key)); 1488 } 1489 1490 void * 1491 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key) 1492 { 1493 1494 return (specificdata_getspecific_unlocked(lwp_specificdata_domain, 1495 &l->l_specdataref, key)); 1496 } 1497 1498 /* 1499 * lwp_setspecific -- 1500 * Set lwp-specific data corresponding to the specified key. 1501 */ 1502 void 1503 lwp_setspecific(specificdata_key_t key, void *data) 1504 { 1505 1506 specificdata_setspecific(lwp_specificdata_domain, 1507 &curlwp->l_specdataref, key, data); 1508 } 1509 1510 /* 1511 * Allocate a new lwpctl structure for a user LWP. 1512 */ 1513 int 1514 lwp_ctl_alloc(vaddr_t *uaddr) 1515 { 1516 lcproc_t *lp; 1517 u_int bit, i, offset; 1518 struct uvm_object *uao; 1519 int error; 1520 lcpage_t *lcp; 1521 proc_t *p; 1522 lwp_t *l; 1523 1524 l = curlwp; 1525 p = l->l_proc; 1526 1527 if (l->l_lcpage != NULL) { 1528 lcp = l->l_lcpage; 1529 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1530 return (EINVAL); 1531 } 1532 1533 /* First time around, allocate header structure for the process. */ 1534 if ((lp = p->p_lwpctl) == NULL) { 1535 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1536 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1537 lp->lp_uao = NULL; 1538 TAILQ_INIT(&lp->lp_pages); 1539 mutex_enter(&p->p_mutex); 1540 if (p->p_lwpctl == NULL) { 1541 p->p_lwpctl = lp; 1542 mutex_exit(&p->p_mutex); 1543 } else { 1544 mutex_exit(&p->p_mutex); 1545 mutex_destroy(&lp->lp_lock); 1546 kmem_free(lp, sizeof(*lp)); 1547 lp = p->p_lwpctl; 1548 } 1549 } 1550 1551 /* 1552 * Set up an anonymous memory region to hold the shared pages. 1553 * Map them into the process' address space. The user vmspace 1554 * gets the first reference on the UAO. 1555 */ 1556 mutex_enter(&lp->lp_lock); 1557 if (lp->lp_uao == NULL) { 1558 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1559 lp->lp_cur = 0; 1560 lp->lp_max = LWPCTL_UAREA_SZ; 1561 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1562 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1563 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1564 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1565 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1566 if (error != 0) { 1567 uao_detach(lp->lp_uao); 1568 lp->lp_uao = NULL; 1569 mutex_exit(&lp->lp_lock); 1570 return error; 1571 } 1572 } 1573 1574 /* Get a free block and allocate for this LWP. */ 1575 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1576 if (lcp->lcp_nfree != 0) 1577 break; 1578 } 1579 if (lcp == NULL) { 1580 /* Nothing available - try to set up a free page. */ 1581 if (lp->lp_cur == lp->lp_max) { 1582 mutex_exit(&lp->lp_lock); 1583 return ENOMEM; 1584 } 1585 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1586 if (lcp == NULL) { 1587 mutex_exit(&lp->lp_lock); 1588 return ENOMEM; 1589 } 1590 /* 1591 * Wire the next page down in kernel space. Since this 1592 * is a new mapping, we must add a reference. 1593 */ 1594 uao = lp->lp_uao; 1595 (*uao->pgops->pgo_reference)(uao); 1596 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1597 uao, lp->lp_cur, PAGE_SIZE, 1598 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1599 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1600 if (error != 0) { 1601 mutex_exit(&lp->lp_lock); 1602 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1603 (*uao->pgops->pgo_detach)(uao); 1604 return error; 1605 } 1606 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1607 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1608 if (error != 0) { 1609 mutex_exit(&lp->lp_lock); 1610 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1611 lcp->lcp_kaddr + PAGE_SIZE); 1612 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1613 return error; 1614 } 1615 /* Prepare the page descriptor and link into the list. */ 1616 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1617 lp->lp_cur += PAGE_SIZE; 1618 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1619 lcp->lcp_rotor = 0; 1620 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1621 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1622 } 1623 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1624 if (++i >= LWPCTL_BITMAP_ENTRIES) 1625 i = 0; 1626 } 1627 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1628 lcp->lcp_bitmap[i] ^= (1 << bit); 1629 lcp->lcp_rotor = i; 1630 lcp->lcp_nfree--; 1631 l->l_lcpage = lcp; 1632 offset = (i << 5) + bit; 1633 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1634 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1635 mutex_exit(&lp->lp_lock); 1636 1637 l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index; 1638 1639 return 0; 1640 } 1641 1642 /* 1643 * Free an lwpctl structure back to the per-process list. 1644 */ 1645 void 1646 lwp_ctl_free(lwp_t *l) 1647 { 1648 lcproc_t *lp; 1649 lcpage_t *lcp; 1650 u_int map, offset; 1651 1652 lp = l->l_proc->p_lwpctl; 1653 KASSERT(lp != NULL); 1654 1655 lcp = l->l_lcpage; 1656 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1657 KASSERT(offset < LWPCTL_PER_PAGE); 1658 1659 mutex_enter(&lp->lp_lock); 1660 lcp->lcp_nfree++; 1661 map = offset >> 5; 1662 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1663 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1664 lcp->lcp_rotor = map; 1665 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1666 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1667 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1668 } 1669 mutex_exit(&lp->lp_lock); 1670 } 1671 1672 /* 1673 * Process is exiting; tear down lwpctl state. This can only be safely 1674 * called by the last LWP in the process. 1675 */ 1676 void 1677 lwp_ctl_exit(void) 1678 { 1679 lcpage_t *lcp, *next; 1680 lcproc_t *lp; 1681 proc_t *p; 1682 lwp_t *l; 1683 1684 l = curlwp; 1685 l->l_lwpctl = NULL; 1686 p = l->l_proc; 1687 lp = p->p_lwpctl; 1688 1689 KASSERT(lp != NULL); 1690 KASSERT(p->p_nlwps == 1); 1691 1692 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1693 next = TAILQ_NEXT(lcp, lcp_chain); 1694 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1695 lcp->lcp_kaddr + PAGE_SIZE); 1696 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1697 } 1698 1699 if (lp->lp_uao != NULL) { 1700 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1701 lp->lp_uva + LWPCTL_UAREA_SZ); 1702 } 1703 1704 mutex_destroy(&lp->lp_lock); 1705 kmem_free(lp, sizeof(*lp)); 1706 p->p_lwpctl = NULL; 1707 } 1708 1709 #if defined(DDB) 1710 void 1711 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1712 { 1713 lwp_t *l; 1714 1715 LIST_FOREACH(l, &alllwp, l_list) { 1716 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1717 1718 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1719 continue; 1720 } 1721 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1722 (void *)addr, (void *)stack, 1723 (size_t)(addr - stack), l); 1724 } 1725 } 1726 #endif /* defined(DDB) */ 1727