1 /* $NetBSD: kern_lwp.c,v 1.156 2011/02/21 20:23:28 pooka Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.156 2011/02/21 20:23:28 pooka Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_sa.h" 219 #include "opt_dtrace.h" 220 221 #define _LWP_API_PRIVATE 222 223 #include <sys/param.h> 224 #include <sys/systm.h> 225 #include <sys/cpu.h> 226 #include <sys/pool.h> 227 #include <sys/proc.h> 228 #include <sys/sa.h> 229 #include <sys/savar.h> 230 #include <sys/syscallargs.h> 231 #include <sys/syscall_stats.h> 232 #include <sys/kauth.h> 233 #include <sys/sleepq.h> 234 #include <sys/lockdebug.h> 235 #include <sys/kmem.h> 236 #include <sys/pset.h> 237 #include <sys/intr.h> 238 #include <sys/lwpctl.h> 239 #include <sys/atomic.h> 240 #include <sys/filedesc.h> 241 #include <sys/dtrace_bsd.h> 242 #include <sys/sdt.h> 243 244 #include <uvm/uvm_extern.h> 245 #include <uvm/uvm_object.h> 246 247 static pool_cache_t lwp_cache __read_mostly; 248 struct lwplist alllwp __cacheline_aligned; 249 250 /* DTrace proc provider probes */ 251 SDT_PROBE_DEFINE(proc,,,lwp_create, 252 "struct lwp *", NULL, 253 NULL, NULL, NULL, NULL, 254 NULL, NULL, NULL, NULL); 255 SDT_PROBE_DEFINE(proc,,,lwp_start, 256 "struct lwp *", NULL, 257 NULL, NULL, NULL, NULL, 258 NULL, NULL, NULL, NULL); 259 SDT_PROBE_DEFINE(proc,,,lwp_exit, 260 "struct lwp *", NULL, 261 NULL, NULL, NULL, NULL, 262 NULL, NULL, NULL, NULL); 263 264 struct turnstile turnstile0; 265 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 266 #ifdef LWP0_CPU_INFO 267 .l_cpu = LWP0_CPU_INFO, 268 #endif 269 #ifdef LWP0_MD_INITIALIZER 270 .l_md = LWP0_MD_INITIALIZER, 271 #endif 272 .l_proc = &proc0, 273 .l_lid = 1, 274 .l_flag = LW_SYSTEM, 275 .l_stat = LSONPROC, 276 .l_ts = &turnstile0, 277 .l_syncobj = &sched_syncobj, 278 .l_refcnt = 1, 279 .l_priority = PRI_USER + NPRI_USER - 1, 280 .l_inheritedprio = -1, 281 .l_class = SCHED_OTHER, 282 .l_psid = PS_NONE, 283 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 284 .l_name = __UNCONST("swapper"), 285 .l_fd = &filedesc0, 286 }; 287 288 void 289 lwpinit(void) 290 { 291 292 LIST_INIT(&alllwp); 293 lwpinit_specificdata(); 294 lwp_sys_init(); 295 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 296 "lwppl", NULL, IPL_NONE, NULL, NULL, NULL); 297 } 298 299 void 300 lwp0_init(void) 301 { 302 struct lwp *l = &lwp0; 303 304 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 305 KASSERT(l->l_lid == proc0.p_nlwpid); 306 307 LIST_INSERT_HEAD(&alllwp, l, l_list); 308 309 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 310 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 311 cv_init(&l->l_sigcv, "sigwait"); 312 313 kauth_cred_hold(proc0.p_cred); 314 l->l_cred = proc0.p_cred; 315 316 lwp_initspecific(l); 317 318 SYSCALL_TIME_LWP_INIT(l); 319 } 320 321 /* 322 * Set an suspended. 323 * 324 * Must be called with p_lock held, and the LWP locked. Will unlock the 325 * LWP before return. 326 */ 327 int 328 lwp_suspend(struct lwp *curl, struct lwp *t) 329 { 330 int error; 331 332 KASSERT(mutex_owned(t->l_proc->p_lock)); 333 KASSERT(lwp_locked(t, NULL)); 334 335 KASSERT(curl != t || curl->l_stat == LSONPROC); 336 337 /* 338 * If the current LWP has been told to exit, we must not suspend anyone 339 * else or deadlock could occur. We won't return to userspace. 340 */ 341 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 342 lwp_unlock(t); 343 return (EDEADLK); 344 } 345 346 error = 0; 347 348 switch (t->l_stat) { 349 case LSRUN: 350 case LSONPROC: 351 t->l_flag |= LW_WSUSPEND; 352 lwp_need_userret(t); 353 lwp_unlock(t); 354 break; 355 356 case LSSLEEP: 357 t->l_flag |= LW_WSUSPEND; 358 359 /* 360 * Kick the LWP and try to get it to the kernel boundary 361 * so that it will release any locks that it holds. 362 * setrunnable() will release the lock. 363 */ 364 if ((t->l_flag & LW_SINTR) != 0) 365 setrunnable(t); 366 else 367 lwp_unlock(t); 368 break; 369 370 case LSSUSPENDED: 371 lwp_unlock(t); 372 break; 373 374 case LSSTOP: 375 t->l_flag |= LW_WSUSPEND; 376 setrunnable(t); 377 break; 378 379 case LSIDL: 380 case LSZOMB: 381 error = EINTR; /* It's what Solaris does..... */ 382 lwp_unlock(t); 383 break; 384 } 385 386 return (error); 387 } 388 389 /* 390 * Restart a suspended LWP. 391 * 392 * Must be called with p_lock held, and the LWP locked. Will unlock the 393 * LWP before return. 394 */ 395 void 396 lwp_continue(struct lwp *l) 397 { 398 399 KASSERT(mutex_owned(l->l_proc->p_lock)); 400 KASSERT(lwp_locked(l, NULL)); 401 402 /* If rebooting or not suspended, then just bail out. */ 403 if ((l->l_flag & LW_WREBOOT) != 0) { 404 lwp_unlock(l); 405 return; 406 } 407 408 l->l_flag &= ~LW_WSUSPEND; 409 410 if (l->l_stat != LSSUSPENDED) { 411 lwp_unlock(l); 412 return; 413 } 414 415 /* setrunnable() will release the lock. */ 416 setrunnable(l); 417 } 418 419 /* 420 * Restart a stopped LWP. 421 * 422 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 423 * LWP before return. 424 */ 425 void 426 lwp_unstop(struct lwp *l) 427 { 428 struct proc *p = l->l_proc; 429 430 KASSERT(mutex_owned(proc_lock)); 431 KASSERT(mutex_owned(p->p_lock)); 432 433 lwp_lock(l); 434 435 /* If not stopped, then just bail out. */ 436 if (l->l_stat != LSSTOP) { 437 lwp_unlock(l); 438 return; 439 } 440 441 p->p_stat = SACTIVE; 442 p->p_sflag &= ~PS_STOPPING; 443 444 if (!p->p_waited) 445 p->p_pptr->p_nstopchild--; 446 447 if (l->l_wchan == NULL) { 448 /* setrunnable() will release the lock. */ 449 setrunnable(l); 450 } else { 451 l->l_stat = LSSLEEP; 452 p->p_nrlwps++; 453 lwp_unlock(l); 454 } 455 } 456 457 /* 458 * Wait for an LWP within the current process to exit. If 'lid' is 459 * non-zero, we are waiting for a specific LWP. 460 * 461 * Must be called with p->p_lock held. 462 */ 463 int 464 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 465 { 466 struct proc *p = l->l_proc; 467 struct lwp *l2; 468 int nfound, error; 469 lwpid_t curlid; 470 bool exiting; 471 472 KASSERT(mutex_owned(p->p_lock)); 473 474 p->p_nlwpwait++; 475 l->l_waitingfor = lid; 476 curlid = l->l_lid; 477 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 478 479 for (;;) { 480 /* 481 * Avoid a race between exit1() and sigexit(): if the 482 * process is dumping core, then we need to bail out: call 483 * into lwp_userret() where we will be suspended until the 484 * deed is done. 485 */ 486 if ((p->p_sflag & PS_WCORE) != 0) { 487 mutex_exit(p->p_lock); 488 lwp_userret(l); 489 #ifdef DIAGNOSTIC 490 panic("lwp_wait1"); 491 #endif 492 /* NOTREACHED */ 493 } 494 495 /* 496 * First off, drain any detached LWP that is waiting to be 497 * reaped. 498 */ 499 while ((l2 = p->p_zomblwp) != NULL) { 500 p->p_zomblwp = NULL; 501 lwp_free(l2, false, false);/* releases proc mutex */ 502 mutex_enter(p->p_lock); 503 } 504 505 /* 506 * Now look for an LWP to collect. If the whole process is 507 * exiting, count detached LWPs as eligible to be collected, 508 * but don't drain them here. 509 */ 510 nfound = 0; 511 error = 0; 512 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 513 /* 514 * If a specific wait and the target is waiting on 515 * us, then avoid deadlock. This also traps LWPs 516 * that try to wait on themselves. 517 * 518 * Note that this does not handle more complicated 519 * cycles, like: t1 -> t2 -> t3 -> t1. The process 520 * can still be killed so it is not a major problem. 521 */ 522 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 523 error = EDEADLK; 524 break; 525 } 526 if (l2 == l) 527 continue; 528 if ((l2->l_prflag & LPR_DETACHED) != 0) { 529 nfound += exiting; 530 continue; 531 } 532 if (lid != 0) { 533 if (l2->l_lid != lid) 534 continue; 535 /* 536 * Mark this LWP as the first waiter, if there 537 * is no other. 538 */ 539 if (l2->l_waiter == 0) 540 l2->l_waiter = curlid; 541 } else if (l2->l_waiter != 0) { 542 /* 543 * It already has a waiter - so don't 544 * collect it. If the waiter doesn't 545 * grab it we'll get another chance 546 * later. 547 */ 548 nfound++; 549 continue; 550 } 551 nfound++; 552 553 /* No need to lock the LWP in order to see LSZOMB. */ 554 if (l2->l_stat != LSZOMB) 555 continue; 556 557 /* 558 * We're no longer waiting. Reset the "first waiter" 559 * pointer on the target, in case it was us. 560 */ 561 l->l_waitingfor = 0; 562 l2->l_waiter = 0; 563 p->p_nlwpwait--; 564 if (departed) 565 *departed = l2->l_lid; 566 sched_lwp_collect(l2); 567 568 /* lwp_free() releases the proc lock. */ 569 lwp_free(l2, false, false); 570 mutex_enter(p->p_lock); 571 return 0; 572 } 573 574 if (error != 0) 575 break; 576 if (nfound == 0) { 577 error = ESRCH; 578 break; 579 } 580 581 /* 582 * The kernel is careful to ensure that it can not deadlock 583 * when exiting - just keep waiting. 584 */ 585 if (exiting) { 586 KASSERT(p->p_nlwps > 1); 587 cv_wait(&p->p_lwpcv, p->p_lock); 588 continue; 589 } 590 591 /* 592 * If all other LWPs are waiting for exits or suspends 593 * and the supply of zombies and potential zombies is 594 * exhausted, then we are about to deadlock. 595 * 596 * If the process is exiting (and this LWP is not the one 597 * that is coordinating the exit) then bail out now. 598 */ 599 if ((p->p_sflag & PS_WEXIT) != 0 || 600 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 601 error = EDEADLK; 602 break; 603 } 604 605 /* 606 * Sit around and wait for something to happen. We'll be 607 * awoken if any of the conditions examined change: if an 608 * LWP exits, is collected, or is detached. 609 */ 610 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 611 break; 612 } 613 614 /* 615 * We didn't find any LWPs to collect, we may have received a 616 * signal, or some other condition has caused us to bail out. 617 * 618 * If waiting on a specific LWP, clear the waiters marker: some 619 * other LWP may want it. Then, kick all the remaining waiters 620 * so that they can re-check for zombies and for deadlock. 621 */ 622 if (lid != 0) { 623 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 624 if (l2->l_lid == lid) { 625 if (l2->l_waiter == curlid) 626 l2->l_waiter = 0; 627 break; 628 } 629 } 630 } 631 p->p_nlwpwait--; 632 l->l_waitingfor = 0; 633 cv_broadcast(&p->p_lwpcv); 634 635 return error; 636 } 637 638 /* 639 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 640 * The new LWP is created in state LSIDL and must be set running, 641 * suspended, or stopped by the caller. 642 */ 643 int 644 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 645 void *stack, size_t stacksize, void (*func)(void *), void *arg, 646 lwp_t **rnewlwpp, int sclass) 647 { 648 struct lwp *l2, *isfree; 649 turnstile_t *ts; 650 lwpid_t lid; 651 652 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 653 654 /* 655 * First off, reap any detached LWP waiting to be collected. 656 * We can re-use its LWP structure and turnstile. 657 */ 658 isfree = NULL; 659 if (p2->p_zomblwp != NULL) { 660 mutex_enter(p2->p_lock); 661 if ((isfree = p2->p_zomblwp) != NULL) { 662 p2->p_zomblwp = NULL; 663 lwp_free(isfree, true, false);/* releases proc mutex */ 664 } else 665 mutex_exit(p2->p_lock); 666 } 667 if (isfree == NULL) { 668 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 669 memset(l2, 0, sizeof(*l2)); 670 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 671 SLIST_INIT(&l2->l_pi_lenders); 672 } else { 673 l2 = isfree; 674 ts = l2->l_ts; 675 KASSERT(l2->l_inheritedprio == -1); 676 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 677 memset(l2, 0, sizeof(*l2)); 678 l2->l_ts = ts; 679 } 680 681 l2->l_stat = LSIDL; 682 l2->l_proc = p2; 683 l2->l_refcnt = 1; 684 l2->l_class = sclass; 685 686 /* 687 * If vfork(), we want the LWP to run fast and on the same CPU 688 * as its parent, so that it can reuse the VM context and cache 689 * footprint on the local CPU. 690 */ 691 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 692 l2->l_kpribase = PRI_KERNEL; 693 l2->l_priority = l1->l_priority; 694 l2->l_inheritedprio = -1; 695 l2->l_flag = 0; 696 l2->l_pflag = LP_MPSAFE; 697 TAILQ_INIT(&l2->l_ld_locks); 698 699 /* 700 * For vfork, borrow parent's lwpctl context if it exists. 701 * This also causes us to return via lwp_userret. 702 */ 703 if (flags & LWP_VFORK && l1->l_lwpctl) { 704 l2->l_lwpctl = l1->l_lwpctl; 705 l2->l_flag |= LW_LWPCTL; 706 } 707 708 /* 709 * If not the first LWP in the process, grab a reference to the 710 * descriptor table. 711 */ 712 l2->l_fd = p2->p_fd; 713 if (p2->p_nlwps != 0) { 714 KASSERT(l1->l_proc == p2); 715 fd_hold(l2); 716 } else { 717 KASSERT(l1->l_proc != p2); 718 } 719 720 if (p2->p_flag & PK_SYSTEM) { 721 /* Mark it as a system LWP. */ 722 l2->l_flag |= LW_SYSTEM; 723 } 724 725 kpreempt_disable(); 726 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 727 l2->l_cpu = l1->l_cpu; 728 kpreempt_enable(); 729 730 kdtrace_thread_ctor(NULL, l2); 731 lwp_initspecific(l2); 732 sched_lwp_fork(l1, l2); 733 lwp_update_creds(l2); 734 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 735 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 736 cv_init(&l2->l_sigcv, "sigwait"); 737 l2->l_syncobj = &sched_syncobj; 738 739 if (rnewlwpp != NULL) 740 *rnewlwpp = l2; 741 742 uvm_lwp_setuarea(l2, uaddr); 743 uvm_lwp_fork(l1, l2, stack, stacksize, func, 744 (arg != NULL) ? arg : l2); 745 746 if ((flags & LWP_PIDLID) != 0) { 747 lid = proc_alloc_pid(p2); 748 l2->l_pflag |= LP_PIDLID; 749 } else { 750 lid = 0; 751 } 752 753 mutex_enter(p2->p_lock); 754 755 if ((flags & LWP_DETACHED) != 0) { 756 l2->l_prflag = LPR_DETACHED; 757 p2->p_ndlwps++; 758 } else 759 l2->l_prflag = 0; 760 761 l2->l_sigmask = l1->l_sigmask; 762 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 763 sigemptyset(&l2->l_sigpend.sp_set); 764 765 if (lid == 0) { 766 p2->p_nlwpid++; 767 if (p2->p_nlwpid == 0) 768 p2->p_nlwpid++; 769 lid = p2->p_nlwpid; 770 } 771 l2->l_lid = lid; 772 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 773 p2->p_nlwps++; 774 p2->p_nrlwps++; 775 776 if ((p2->p_flag & PK_SYSTEM) == 0) { 777 /* Inherit an affinity */ 778 if (l1->l_flag & LW_AFFINITY) { 779 /* 780 * Note that we hold the state lock while inheriting 781 * the affinity to avoid race with sched_setaffinity(). 782 */ 783 lwp_lock(l1); 784 if (l1->l_flag & LW_AFFINITY) { 785 kcpuset_use(l1->l_affinity); 786 l2->l_affinity = l1->l_affinity; 787 l2->l_flag |= LW_AFFINITY; 788 } 789 lwp_unlock(l1); 790 } 791 lwp_lock(l2); 792 /* Inherit a processor-set */ 793 l2->l_psid = l1->l_psid; 794 /* Look for a CPU to start */ 795 l2->l_cpu = sched_takecpu(l2); 796 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 797 } 798 mutex_exit(p2->p_lock); 799 800 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 801 802 mutex_enter(proc_lock); 803 LIST_INSERT_HEAD(&alllwp, l2, l_list); 804 mutex_exit(proc_lock); 805 806 SYSCALL_TIME_LWP_INIT(l2); 807 808 if (p2->p_emul->e_lwp_fork) 809 (*p2->p_emul->e_lwp_fork)(l1, l2); 810 811 return (0); 812 } 813 814 /* 815 * Called by MD code when a new LWP begins execution. Must be called 816 * with the previous LWP locked (so at splsched), or if there is no 817 * previous LWP, at splsched. 818 */ 819 void 820 lwp_startup(struct lwp *prev, struct lwp *new) 821 { 822 823 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 824 825 KASSERT(kpreempt_disabled()); 826 if (prev != NULL) { 827 /* 828 * Normalize the count of the spin-mutexes, it was 829 * increased in mi_switch(). Unmark the state of 830 * context switch - it is finished for previous LWP. 831 */ 832 curcpu()->ci_mtx_count++; 833 membar_exit(); 834 prev->l_ctxswtch = 0; 835 } 836 KPREEMPT_DISABLE(new); 837 spl0(); 838 pmap_activate(new); 839 LOCKDEBUG_BARRIER(NULL, 0); 840 KPREEMPT_ENABLE(new); 841 if ((new->l_pflag & LP_MPSAFE) == 0) { 842 KERNEL_LOCK(1, new); 843 } 844 } 845 846 /* 847 * Exit an LWP. 848 */ 849 void 850 lwp_exit(struct lwp *l) 851 { 852 struct proc *p = l->l_proc; 853 struct lwp *l2; 854 bool current; 855 856 current = (l == curlwp); 857 858 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 859 KASSERT(p == curproc); 860 861 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 862 863 /* 864 * Verify that we hold no locks other than the kernel lock. 865 */ 866 LOCKDEBUG_BARRIER(&kernel_lock, 0); 867 868 /* 869 * If we are the last live LWP in a process, we need to exit the 870 * entire process. We do so with an exit status of zero, because 871 * it's a "controlled" exit, and because that's what Solaris does. 872 * 873 * We are not quite a zombie yet, but for accounting purposes we 874 * must increment the count of zombies here. 875 * 876 * Note: the last LWP's specificdata will be deleted here. 877 */ 878 mutex_enter(p->p_lock); 879 if (p->p_nlwps - p->p_nzlwps == 1) { 880 KASSERT(current == true); 881 /* XXXSMP kernel_lock not held */ 882 exit1(l, 0); 883 /* NOTREACHED */ 884 } 885 p->p_nzlwps++; 886 mutex_exit(p->p_lock); 887 888 if (p->p_emul->e_lwp_exit) 889 (*p->p_emul->e_lwp_exit)(l); 890 891 /* Drop filedesc reference. */ 892 fd_free(); 893 894 /* Delete the specificdata while it's still safe to sleep. */ 895 lwp_finispecific(l); 896 897 /* 898 * Release our cached credentials. 899 */ 900 kauth_cred_free(l->l_cred); 901 callout_destroy(&l->l_timeout_ch); 902 903 /* 904 * Remove the LWP from the global list. 905 * Free its LID from the PID namespace if needed. 906 */ 907 mutex_enter(proc_lock); 908 LIST_REMOVE(l, l_list); 909 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 910 proc_free_pid(l->l_lid); 911 } 912 mutex_exit(proc_lock); 913 914 /* 915 * Get rid of all references to the LWP that others (e.g. procfs) 916 * may have, and mark the LWP as a zombie. If the LWP is detached, 917 * mark it waiting for collection in the proc structure. Note that 918 * before we can do that, we need to free any other dead, deatched 919 * LWP waiting to meet its maker. 920 */ 921 mutex_enter(p->p_lock); 922 lwp_drainrefs(l); 923 924 if ((l->l_prflag & LPR_DETACHED) != 0) { 925 while ((l2 = p->p_zomblwp) != NULL) { 926 p->p_zomblwp = NULL; 927 lwp_free(l2, false, false);/* releases proc mutex */ 928 mutex_enter(p->p_lock); 929 l->l_refcnt++; 930 lwp_drainrefs(l); 931 } 932 p->p_zomblwp = l; 933 } 934 935 /* 936 * If we find a pending signal for the process and we have been 937 * asked to check for signals, then we lose: arrange to have 938 * all other LWPs in the process check for signals. 939 */ 940 if ((l->l_flag & LW_PENDSIG) != 0 && 941 firstsig(&p->p_sigpend.sp_set) != 0) { 942 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 943 lwp_lock(l2); 944 l2->l_flag |= LW_PENDSIG; 945 lwp_unlock(l2); 946 } 947 } 948 949 lwp_lock(l); 950 l->l_stat = LSZOMB; 951 if (l->l_name != NULL) 952 strcpy(l->l_name, "(zombie)"); 953 if (l->l_flag & LW_AFFINITY) { 954 l->l_flag &= ~LW_AFFINITY; 955 } else { 956 KASSERT(l->l_affinity == NULL); 957 } 958 lwp_unlock(l); 959 p->p_nrlwps--; 960 cv_broadcast(&p->p_lwpcv); 961 if (l->l_lwpctl != NULL) 962 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 963 mutex_exit(p->p_lock); 964 965 /* Safe without lock since LWP is in zombie state */ 966 if (l->l_affinity) { 967 kcpuset_unuse(l->l_affinity, NULL); 968 l->l_affinity = NULL; 969 } 970 971 /* 972 * We can no longer block. At this point, lwp_free() may already 973 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 974 * 975 * Free MD LWP resources. 976 */ 977 cpu_lwp_free(l, 0); 978 979 if (current) { 980 pmap_deactivate(l); 981 982 /* 983 * Release the kernel lock, and switch away into 984 * oblivion. 985 */ 986 #ifdef notyet 987 /* XXXSMP hold in lwp_userret() */ 988 KERNEL_UNLOCK_LAST(l); 989 #else 990 KERNEL_UNLOCK_ALL(l, NULL); 991 #endif 992 lwp_exit_switchaway(l); 993 } 994 } 995 996 /* 997 * Free a dead LWP's remaining resources. 998 * 999 * XXXLWP limits. 1000 */ 1001 void 1002 lwp_free(struct lwp *l, bool recycle, bool last) 1003 { 1004 struct proc *p = l->l_proc; 1005 struct rusage *ru; 1006 ksiginfoq_t kq; 1007 1008 KASSERT(l != curlwp); 1009 1010 /* 1011 * If this was not the last LWP in the process, then adjust 1012 * counters and unlock. 1013 */ 1014 if (!last) { 1015 /* 1016 * Add the LWP's run time to the process' base value. 1017 * This needs to co-incide with coming off p_lwps. 1018 */ 1019 bintime_add(&p->p_rtime, &l->l_rtime); 1020 p->p_pctcpu += l->l_pctcpu; 1021 ru = &p->p_stats->p_ru; 1022 ruadd(ru, &l->l_ru); 1023 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1024 ru->ru_nivcsw += l->l_nivcsw; 1025 LIST_REMOVE(l, l_sibling); 1026 p->p_nlwps--; 1027 p->p_nzlwps--; 1028 if ((l->l_prflag & LPR_DETACHED) != 0) 1029 p->p_ndlwps--; 1030 1031 /* 1032 * Have any LWPs sleeping in lwp_wait() recheck for 1033 * deadlock. 1034 */ 1035 cv_broadcast(&p->p_lwpcv); 1036 mutex_exit(p->p_lock); 1037 } 1038 1039 #ifdef MULTIPROCESSOR 1040 /* 1041 * In the unlikely event that the LWP is still on the CPU, 1042 * then spin until it has switched away. We need to release 1043 * all locks to avoid deadlock against interrupt handlers on 1044 * the target CPU. 1045 */ 1046 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1047 int count; 1048 (void)count; /* XXXgcc */ 1049 KERNEL_UNLOCK_ALL(curlwp, &count); 1050 while ((l->l_pflag & LP_RUNNING) != 0 || 1051 l->l_cpu->ci_curlwp == l) 1052 SPINLOCK_BACKOFF_HOOK; 1053 KERNEL_LOCK(count, curlwp); 1054 } 1055 #endif 1056 1057 /* 1058 * Destroy the LWP's remaining signal information. 1059 */ 1060 ksiginfo_queue_init(&kq); 1061 sigclear(&l->l_sigpend, NULL, &kq); 1062 ksiginfo_queue_drain(&kq); 1063 cv_destroy(&l->l_sigcv); 1064 1065 /* 1066 * Free the LWP's turnstile and the LWP structure itself unless the 1067 * caller wants to recycle them. Also, free the scheduler specific 1068 * data. 1069 * 1070 * We can't return turnstile0 to the pool (it didn't come from it), 1071 * so if it comes up just drop it quietly and move on. 1072 * 1073 * We don't recycle the VM resources at this time. 1074 */ 1075 if (l->l_lwpctl != NULL) 1076 lwp_ctl_free(l); 1077 1078 if (!recycle && l->l_ts != &turnstile0) 1079 pool_cache_put(turnstile_cache, l->l_ts); 1080 if (l->l_name != NULL) 1081 kmem_free(l->l_name, MAXCOMLEN); 1082 1083 cpu_lwp_free2(l); 1084 uvm_lwp_exit(l); 1085 1086 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1087 KASSERT(l->l_inheritedprio == -1); 1088 KASSERT(l->l_blcnt == 0); 1089 kdtrace_thread_dtor(NULL, l); 1090 if (!recycle) 1091 pool_cache_put(lwp_cache, l); 1092 } 1093 1094 /* 1095 * Migrate the LWP to the another CPU. Unlocks the LWP. 1096 */ 1097 void 1098 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1099 { 1100 struct schedstate_percpu *tspc; 1101 int lstat = l->l_stat; 1102 1103 KASSERT(lwp_locked(l, NULL)); 1104 KASSERT(tci != NULL); 1105 1106 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1107 if ((l->l_pflag & LP_RUNNING) != 0) { 1108 lstat = LSONPROC; 1109 } 1110 1111 /* 1112 * The destination CPU could be changed while previous migration 1113 * was not finished. 1114 */ 1115 if (l->l_target_cpu != NULL) { 1116 l->l_target_cpu = tci; 1117 lwp_unlock(l); 1118 return; 1119 } 1120 1121 /* Nothing to do if trying to migrate to the same CPU */ 1122 if (l->l_cpu == tci) { 1123 lwp_unlock(l); 1124 return; 1125 } 1126 1127 KASSERT(l->l_target_cpu == NULL); 1128 tspc = &tci->ci_schedstate; 1129 switch (lstat) { 1130 case LSRUN: 1131 l->l_target_cpu = tci; 1132 break; 1133 case LSIDL: 1134 l->l_cpu = tci; 1135 lwp_unlock_to(l, tspc->spc_mutex); 1136 return; 1137 case LSSLEEP: 1138 l->l_cpu = tci; 1139 break; 1140 case LSSTOP: 1141 case LSSUSPENDED: 1142 l->l_cpu = tci; 1143 if (l->l_wchan == NULL) { 1144 lwp_unlock_to(l, tspc->spc_lwplock); 1145 return; 1146 } 1147 break; 1148 case LSONPROC: 1149 l->l_target_cpu = tci; 1150 spc_lock(l->l_cpu); 1151 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1152 spc_unlock(l->l_cpu); 1153 break; 1154 } 1155 lwp_unlock(l); 1156 } 1157 1158 /* 1159 * Find the LWP in the process. Arguments may be zero, in such case, 1160 * the calling process and first LWP in the list will be used. 1161 * On success - returns proc locked. 1162 */ 1163 struct lwp * 1164 lwp_find2(pid_t pid, lwpid_t lid) 1165 { 1166 proc_t *p; 1167 lwp_t *l; 1168 1169 /* Find the process. */ 1170 if (pid != 0) { 1171 mutex_enter(proc_lock); 1172 p = proc_find(pid); 1173 if (p == NULL) { 1174 mutex_exit(proc_lock); 1175 return NULL; 1176 } 1177 mutex_enter(p->p_lock); 1178 mutex_exit(proc_lock); 1179 } else { 1180 p = curlwp->l_proc; 1181 mutex_enter(p->p_lock); 1182 } 1183 /* Find the thread. */ 1184 if (lid != 0) { 1185 l = lwp_find(p, lid); 1186 } else { 1187 l = LIST_FIRST(&p->p_lwps); 1188 } 1189 if (l == NULL) { 1190 mutex_exit(p->p_lock); 1191 } 1192 return l; 1193 } 1194 1195 /* 1196 * Look up a live LWP within the specified process, and return it locked. 1197 * 1198 * Must be called with p->p_lock held. 1199 */ 1200 struct lwp * 1201 lwp_find(struct proc *p, lwpid_t id) 1202 { 1203 struct lwp *l; 1204 1205 KASSERT(mutex_owned(p->p_lock)); 1206 1207 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1208 if (l->l_lid == id) 1209 break; 1210 } 1211 1212 /* 1213 * No need to lock - all of these conditions will 1214 * be visible with the process level mutex held. 1215 */ 1216 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1217 l = NULL; 1218 1219 return l; 1220 } 1221 1222 /* 1223 * Update an LWP's cached credentials to mirror the process' master copy. 1224 * 1225 * This happens early in the syscall path, on user trap, and on LWP 1226 * creation. A long-running LWP can also voluntarily choose to update 1227 * it's credentials by calling this routine. This may be called from 1228 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1229 */ 1230 void 1231 lwp_update_creds(struct lwp *l) 1232 { 1233 kauth_cred_t oc; 1234 struct proc *p; 1235 1236 p = l->l_proc; 1237 oc = l->l_cred; 1238 1239 mutex_enter(p->p_lock); 1240 kauth_cred_hold(p->p_cred); 1241 l->l_cred = p->p_cred; 1242 l->l_prflag &= ~LPR_CRMOD; 1243 mutex_exit(p->p_lock); 1244 if (oc != NULL) 1245 kauth_cred_free(oc); 1246 } 1247 1248 /* 1249 * Verify that an LWP is locked, and optionally verify that the lock matches 1250 * one we specify. 1251 */ 1252 int 1253 lwp_locked(struct lwp *l, kmutex_t *mtx) 1254 { 1255 kmutex_t *cur = l->l_mutex; 1256 1257 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1258 } 1259 1260 /* 1261 * Lend a new mutex to an LWP. The old mutex must be held. 1262 */ 1263 void 1264 lwp_setlock(struct lwp *l, kmutex_t *new) 1265 { 1266 1267 KASSERT(mutex_owned(l->l_mutex)); 1268 1269 membar_exit(); 1270 l->l_mutex = new; 1271 } 1272 1273 /* 1274 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1275 * must be held. 1276 */ 1277 void 1278 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1279 { 1280 kmutex_t *old; 1281 1282 KASSERT(lwp_locked(l, NULL)); 1283 1284 old = l->l_mutex; 1285 membar_exit(); 1286 l->l_mutex = new; 1287 mutex_spin_exit(old); 1288 } 1289 1290 int 1291 lwp_trylock(struct lwp *l) 1292 { 1293 kmutex_t *old; 1294 1295 for (;;) { 1296 if (!mutex_tryenter(old = l->l_mutex)) 1297 return 0; 1298 if (__predict_true(l->l_mutex == old)) 1299 return 1; 1300 mutex_spin_exit(old); 1301 } 1302 } 1303 1304 void 1305 lwp_unsleep(lwp_t *l, bool cleanup) 1306 { 1307 1308 KASSERT(mutex_owned(l->l_mutex)); 1309 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1310 } 1311 1312 /* 1313 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1314 * set. 1315 */ 1316 void 1317 lwp_userret(struct lwp *l) 1318 { 1319 struct proc *p; 1320 int sig; 1321 1322 KASSERT(l == curlwp); 1323 KASSERT(l->l_stat == LSONPROC); 1324 p = l->l_proc; 1325 1326 #ifndef __HAVE_FAST_SOFTINTS 1327 /* Run pending soft interrupts. */ 1328 if (l->l_cpu->ci_data.cpu_softints != 0) 1329 softint_overlay(); 1330 #endif 1331 1332 #ifdef KERN_SA 1333 /* Generate UNBLOCKED upcall if needed */ 1334 if (l->l_flag & LW_SA_BLOCKING) { 1335 sa_unblock_userret(l); 1336 /* NOTREACHED */ 1337 } 1338 #endif 1339 1340 /* 1341 * It should be safe to do this read unlocked on a multiprocessor 1342 * system.. 1343 * 1344 * LW_SA_UPCALL will be handled after the while() loop, so don't 1345 * consider it now. 1346 */ 1347 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1348 /* 1349 * Process pending signals first, unless the process 1350 * is dumping core or exiting, where we will instead 1351 * enter the LW_WSUSPEND case below. 1352 */ 1353 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1354 LW_PENDSIG) { 1355 mutex_enter(p->p_lock); 1356 while ((sig = issignal(l)) != 0) 1357 postsig(sig); 1358 mutex_exit(p->p_lock); 1359 } 1360 1361 /* 1362 * Core-dump or suspend pending. 1363 * 1364 * In case of core dump, suspend ourselves, so that the 1365 * kernel stack and therefore the userland registers saved 1366 * in the trapframe are around for coredump() to write them 1367 * out. We issue a wakeup on p->p_lwpcv so that sigexit() 1368 * will write the core file out once all other LWPs are 1369 * suspended. 1370 */ 1371 if ((l->l_flag & LW_WSUSPEND) != 0) { 1372 mutex_enter(p->p_lock); 1373 p->p_nrlwps--; 1374 cv_broadcast(&p->p_lwpcv); 1375 lwp_lock(l); 1376 l->l_stat = LSSUSPENDED; 1377 lwp_unlock(l); 1378 mutex_exit(p->p_lock); 1379 lwp_lock(l); 1380 mi_switch(l); 1381 } 1382 1383 /* Process is exiting. */ 1384 if ((l->l_flag & LW_WEXIT) != 0) { 1385 lwp_exit(l); 1386 KASSERT(0); 1387 /* NOTREACHED */ 1388 } 1389 1390 /* update lwpctl processor (for vfork child_return) */ 1391 if (l->l_flag & LW_LWPCTL) { 1392 lwp_lock(l); 1393 KASSERT(kpreempt_disabled()); 1394 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1395 l->l_lwpctl->lc_pctr++; 1396 l->l_flag &= ~LW_LWPCTL; 1397 lwp_unlock(l); 1398 } 1399 } 1400 1401 #ifdef KERN_SA 1402 /* 1403 * Timer events are handled specially. We only try once to deliver 1404 * pending timer upcalls; if if fails, we can try again on the next 1405 * loop around. If we need to re-enter lwp_userret(), MD code will 1406 * bounce us back here through the trap path after we return. 1407 */ 1408 if (p->p_timerpend) 1409 timerupcall(l); 1410 if (l->l_flag & LW_SA_UPCALL) 1411 sa_upcall_userret(l); 1412 #endif /* KERN_SA */ 1413 } 1414 1415 /* 1416 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1417 */ 1418 void 1419 lwp_need_userret(struct lwp *l) 1420 { 1421 KASSERT(lwp_locked(l, NULL)); 1422 1423 /* 1424 * Since the tests in lwp_userret() are done unlocked, make sure 1425 * that the condition will be seen before forcing the LWP to enter 1426 * kernel mode. 1427 */ 1428 membar_producer(); 1429 cpu_signotify(l); 1430 } 1431 1432 /* 1433 * Add one reference to an LWP. This will prevent the LWP from 1434 * exiting, thus keep the lwp structure and PCB around to inspect. 1435 */ 1436 void 1437 lwp_addref(struct lwp *l) 1438 { 1439 1440 KASSERT(mutex_owned(l->l_proc->p_lock)); 1441 KASSERT(l->l_stat != LSZOMB); 1442 KASSERT(l->l_refcnt != 0); 1443 1444 l->l_refcnt++; 1445 } 1446 1447 /* 1448 * Remove one reference to an LWP. If this is the last reference, 1449 * then we must finalize the LWP's death. 1450 */ 1451 void 1452 lwp_delref(struct lwp *l) 1453 { 1454 struct proc *p = l->l_proc; 1455 1456 mutex_enter(p->p_lock); 1457 lwp_delref2(l); 1458 mutex_exit(p->p_lock); 1459 } 1460 1461 /* 1462 * Remove one reference to an LWP. If this is the last reference, 1463 * then we must finalize the LWP's death. The proc mutex is held 1464 * on entry. 1465 */ 1466 void 1467 lwp_delref2(struct lwp *l) 1468 { 1469 struct proc *p = l->l_proc; 1470 1471 KASSERT(mutex_owned(p->p_lock)); 1472 KASSERT(l->l_stat != LSZOMB); 1473 KASSERT(l->l_refcnt > 0); 1474 if (--l->l_refcnt == 0) 1475 cv_broadcast(&p->p_lwpcv); 1476 } 1477 1478 /* 1479 * Drain all references to the current LWP. 1480 */ 1481 void 1482 lwp_drainrefs(struct lwp *l) 1483 { 1484 struct proc *p = l->l_proc; 1485 1486 KASSERT(mutex_owned(p->p_lock)); 1487 KASSERT(l->l_refcnt != 0); 1488 1489 l->l_refcnt--; 1490 while (l->l_refcnt != 0) 1491 cv_wait(&p->p_lwpcv, p->p_lock); 1492 } 1493 1494 /* 1495 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1496 * be held. 1497 */ 1498 bool 1499 lwp_alive(lwp_t *l) 1500 { 1501 1502 KASSERT(mutex_owned(l->l_proc->p_lock)); 1503 1504 switch (l->l_stat) { 1505 case LSSLEEP: 1506 case LSRUN: 1507 case LSONPROC: 1508 case LSSTOP: 1509 case LSSUSPENDED: 1510 return true; 1511 default: 1512 return false; 1513 } 1514 } 1515 1516 /* 1517 * Return first live LWP in the process. 1518 */ 1519 lwp_t * 1520 lwp_find_first(proc_t *p) 1521 { 1522 lwp_t *l; 1523 1524 KASSERT(mutex_owned(p->p_lock)); 1525 1526 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1527 if (lwp_alive(l)) { 1528 return l; 1529 } 1530 } 1531 1532 return NULL; 1533 } 1534 1535 /* 1536 * Allocate a new lwpctl structure for a user LWP. 1537 */ 1538 int 1539 lwp_ctl_alloc(vaddr_t *uaddr) 1540 { 1541 lcproc_t *lp; 1542 u_int bit, i, offset; 1543 struct uvm_object *uao; 1544 int error; 1545 lcpage_t *lcp; 1546 proc_t *p; 1547 lwp_t *l; 1548 1549 l = curlwp; 1550 p = l->l_proc; 1551 1552 /* don't allow a vforked process to create lwp ctls */ 1553 if (p->p_lflag & PL_PPWAIT) 1554 return EBUSY; 1555 1556 if (l->l_lcpage != NULL) { 1557 lcp = l->l_lcpage; 1558 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1559 return 0; 1560 } 1561 1562 /* First time around, allocate header structure for the process. */ 1563 if ((lp = p->p_lwpctl) == NULL) { 1564 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1565 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1566 lp->lp_uao = NULL; 1567 TAILQ_INIT(&lp->lp_pages); 1568 mutex_enter(p->p_lock); 1569 if (p->p_lwpctl == NULL) { 1570 p->p_lwpctl = lp; 1571 mutex_exit(p->p_lock); 1572 } else { 1573 mutex_exit(p->p_lock); 1574 mutex_destroy(&lp->lp_lock); 1575 kmem_free(lp, sizeof(*lp)); 1576 lp = p->p_lwpctl; 1577 } 1578 } 1579 1580 /* 1581 * Set up an anonymous memory region to hold the shared pages. 1582 * Map them into the process' address space. The user vmspace 1583 * gets the first reference on the UAO. 1584 */ 1585 mutex_enter(&lp->lp_lock); 1586 if (lp->lp_uao == NULL) { 1587 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1588 lp->lp_cur = 0; 1589 lp->lp_max = LWPCTL_UAREA_SZ; 1590 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1591 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1592 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1593 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1594 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1595 if (error != 0) { 1596 uao_detach(lp->lp_uao); 1597 lp->lp_uao = NULL; 1598 mutex_exit(&lp->lp_lock); 1599 return error; 1600 } 1601 } 1602 1603 /* Get a free block and allocate for this LWP. */ 1604 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1605 if (lcp->lcp_nfree != 0) 1606 break; 1607 } 1608 if (lcp == NULL) { 1609 /* Nothing available - try to set up a free page. */ 1610 if (lp->lp_cur == lp->lp_max) { 1611 mutex_exit(&lp->lp_lock); 1612 return ENOMEM; 1613 } 1614 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1615 if (lcp == NULL) { 1616 mutex_exit(&lp->lp_lock); 1617 return ENOMEM; 1618 } 1619 /* 1620 * Wire the next page down in kernel space. Since this 1621 * is a new mapping, we must add a reference. 1622 */ 1623 uao = lp->lp_uao; 1624 (*uao->pgops->pgo_reference)(uao); 1625 lcp->lcp_kaddr = vm_map_min(kernel_map); 1626 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1627 uao, lp->lp_cur, PAGE_SIZE, 1628 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1629 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1630 if (error != 0) { 1631 mutex_exit(&lp->lp_lock); 1632 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1633 (*uao->pgops->pgo_detach)(uao); 1634 return error; 1635 } 1636 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1637 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1638 if (error != 0) { 1639 mutex_exit(&lp->lp_lock); 1640 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1641 lcp->lcp_kaddr + PAGE_SIZE); 1642 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1643 return error; 1644 } 1645 /* Prepare the page descriptor and link into the list. */ 1646 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1647 lp->lp_cur += PAGE_SIZE; 1648 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1649 lcp->lcp_rotor = 0; 1650 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1651 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1652 } 1653 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1654 if (++i >= LWPCTL_BITMAP_ENTRIES) 1655 i = 0; 1656 } 1657 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1658 lcp->lcp_bitmap[i] ^= (1 << bit); 1659 lcp->lcp_rotor = i; 1660 lcp->lcp_nfree--; 1661 l->l_lcpage = lcp; 1662 offset = (i << 5) + bit; 1663 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1664 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1665 mutex_exit(&lp->lp_lock); 1666 1667 KPREEMPT_DISABLE(l); 1668 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1669 KPREEMPT_ENABLE(l); 1670 1671 return 0; 1672 } 1673 1674 /* 1675 * Free an lwpctl structure back to the per-process list. 1676 */ 1677 void 1678 lwp_ctl_free(lwp_t *l) 1679 { 1680 struct proc *p = l->l_proc; 1681 lcproc_t *lp; 1682 lcpage_t *lcp; 1683 u_int map, offset; 1684 1685 /* don't free a lwp context we borrowed for vfork */ 1686 if (p->p_lflag & PL_PPWAIT) { 1687 l->l_lwpctl = NULL; 1688 return; 1689 } 1690 1691 lp = p->p_lwpctl; 1692 KASSERT(lp != NULL); 1693 1694 lcp = l->l_lcpage; 1695 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1696 KASSERT(offset < LWPCTL_PER_PAGE); 1697 1698 mutex_enter(&lp->lp_lock); 1699 lcp->lcp_nfree++; 1700 map = offset >> 5; 1701 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1702 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1703 lcp->lcp_rotor = map; 1704 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1705 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1706 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1707 } 1708 mutex_exit(&lp->lp_lock); 1709 } 1710 1711 /* 1712 * Process is exiting; tear down lwpctl state. This can only be safely 1713 * called by the last LWP in the process. 1714 */ 1715 void 1716 lwp_ctl_exit(void) 1717 { 1718 lcpage_t *lcp, *next; 1719 lcproc_t *lp; 1720 proc_t *p; 1721 lwp_t *l; 1722 1723 l = curlwp; 1724 l->l_lwpctl = NULL; 1725 l->l_lcpage = NULL; 1726 p = l->l_proc; 1727 lp = p->p_lwpctl; 1728 1729 KASSERT(lp != NULL); 1730 KASSERT(p->p_nlwps == 1); 1731 1732 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1733 next = TAILQ_NEXT(lcp, lcp_chain); 1734 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1735 lcp->lcp_kaddr + PAGE_SIZE); 1736 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1737 } 1738 1739 if (lp->lp_uao != NULL) { 1740 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1741 lp->lp_uva + LWPCTL_UAREA_SZ); 1742 } 1743 1744 mutex_destroy(&lp->lp_lock); 1745 kmem_free(lp, sizeof(*lp)); 1746 p->p_lwpctl = NULL; 1747 } 1748 1749 /* 1750 * Return the current LWP's "preemption counter". Used to detect 1751 * preemption across operations that can tolerate preemption without 1752 * crashing, but which may generate incorrect results if preempted. 1753 */ 1754 uint64_t 1755 lwp_pctr(void) 1756 { 1757 1758 return curlwp->l_ncsw; 1759 } 1760 1761 /* 1762 * Set an LWP's private data pointer. 1763 */ 1764 int 1765 lwp_setprivate(struct lwp *l, void *ptr) 1766 { 1767 int error = 0; 1768 1769 l->l_private = ptr; 1770 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1771 error = cpu_lwp_setprivate(l, ptr); 1772 #endif 1773 return error; 1774 } 1775 1776 #if defined(DDB) 1777 #include <machine/pcb.h> 1778 1779 void 1780 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1781 { 1782 lwp_t *l; 1783 1784 LIST_FOREACH(l, &alllwp, l_list) { 1785 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1786 1787 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1788 continue; 1789 } 1790 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1791 (void *)addr, (void *)stack, 1792 (size_t)(addr - stack), l); 1793 } 1794 } 1795 #endif /* defined(DDB) */ 1796