xref: /netbsd-src/sys/kern/kern_lwp.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: kern_lwp.c,v 1.159 2011/06/13 21:32:42 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.
64  *
65  *	LSIDL
66  *
67  *		Idle: the LWP has been created but has not yet executed,
68  *		or it has ceased executing a unit of work and is waiting
69  *		to be started again.
70  *
71  *	LSSUSPENDED:
72  *
73  *		Suspended: the LWP has had its execution suspended by
74  *		another LWP in the same process using the _lwp_suspend()
75  *		system call.  User-level LWPs also enter the suspended
76  *		state when the system is shutting down.
77  *
78  *	The second set represent a "statement of intent" on behalf of the
79  *	LWP.  The LWP may in fact be executing on a processor, may be
80  *	sleeping or idle. It is expected to take the necessary action to
81  *	stop executing or become "running" again within a short timeframe.
82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83  *	Importantly, it indicates that its state is tied to a CPU.
84  *
85  *	LSZOMB:
86  *
87  *		Dead or dying: the LWP has released most of its resources
88  *		and is about to switch away into oblivion, or has already
89  *		switched away.  When it switches away, its few remaining
90  *		resources can be collected.
91  *
92  *	LSSLEEP:
93  *
94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
95  *		has switched away or will switch away shortly to allow other
96  *		LWPs to run on the CPU.
97  *
98  *	LSSTOP:
99  *
100  *		Stopped: the LWP has been stopped as a result of a job
101  *		control signal, or as a result of the ptrace() interface.
102  *
103  *		Stopped LWPs may run briefly within the kernel to handle
104  *		signals that they receive, but will not return to user space
105  *		until their process' state is changed away from stopped.
106  *
107  *		Single LWPs within a process can not be set stopped
108  *		selectively: all actions that can stop or continue LWPs
109  *		occur at the process level.
110  *
111  * State transitions
112  *
113  *	Note that the LSSTOP state may only be set when returning to
114  *	user space in userret(), or when sleeping interruptably.  The
115  *	LSSUSPENDED state may only be set in userret().  Before setting
116  *	those states, we try to ensure that the LWPs will release all
117  *	locks that they hold, and at a minimum try to ensure that the
118  *	LWP can be set runnable again by a signal.
119  *
120  *	LWPs may transition states in the following ways:
121  *
122  *	 RUN -------> ONPROC		ONPROC -----> RUN
123  *		    				    > SLEEP
124  *		    				    > STOPPED
125  *						    > SUSPENDED
126  *						    > ZOMB
127  *						    > IDL (special cases)
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *						    > ONPROC (special cases)
136  *
137  *	Some state transitions are only possible with kernel threads (eg
138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
139  *	free of unwanted side effects.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change.  Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
159  *	adaptive locks are not allowed to be released while the LWP's lock
160  *	is being held (unlike for other spin-locks).
161  *
162  *	States and their associated locks:
163  *
164  *	LSONPROC, LSZOMB:
165  *
166  *		Always covered by spc_lwplock, which protects running LWPs.
167  *		This is a per-CPU lock and matches lwp::l_cpu.
168  *
169  *	LSIDL, LSRUN:
170  *
171  *		Always covered by spc_mutex, which protects the run queues.
172  *		This is a per-CPU lock and matches lwp::l_cpu.
173  *
174  *	LSSLEEP:
175  *
176  *		Covered by a lock associated with the sleep queue that the
177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
178  *
179  *	LSSTOP, LSSUSPENDED:
180  *
181  *		If the LWP was previously sleeping (l_wchan != NULL), then
182  *		l_mutex references the sleep queue lock.  If the LWP was
183  *		runnable or on the CPU when halted, or has been removed from
184  *		the sleep queue since halted, then the lock is spc_lwplock.
185  *
186  *	The lock order is as follows:
187  *
188  *		spc::spc_lwplock ->
189  *		    sleeptab::st_mutex ->
190  *			tschain_t::tc_mutex ->
191  *			    spc::spc_mutex
192  *
193  *	Each process has an scheduler state lock (proc::p_lock), and a
194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195  *	so on.  When an LWP is to be entered into or removed from one of the
196  *	following states, p_lock must be held and the process wide counters
197  *	adjusted:
198  *
199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200  *
201  *	(But not always for kernel threads.  There are some special cases
202  *	as mentioned above.  See kern_softint.c.)
203  *
204  *	Note that an LWP is considered running or likely to run soon if in
205  *	one of the following states.  This affects the value of p_nrlwps:
206  *
207  *		LSRUN, LSONPROC, LSSLEEP
208  *
209  *	p_lock does not need to be held when transitioning among these
210  *	three states, hence p_lock is rarely taken for state transitions.
211  */
212 
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.159 2011/06/13 21:32:42 matt Exp $");
215 
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_sa.h"
219 #include "opt_dtrace.h"
220 
221 #define _LWP_API_PRIVATE
222 
223 #include <sys/param.h>
224 #include <sys/systm.h>
225 #include <sys/cpu.h>
226 #include <sys/pool.h>
227 #include <sys/proc.h>
228 #include <sys/sa.h>
229 #include <sys/savar.h>
230 #include <sys/syscallargs.h>
231 #include <sys/syscall_stats.h>
232 #include <sys/kauth.h>
233 #include <sys/sleepq.h>
234 #include <sys/lockdebug.h>
235 #include <sys/kmem.h>
236 #include <sys/pset.h>
237 #include <sys/intr.h>
238 #include <sys/lwpctl.h>
239 #include <sys/atomic.h>
240 #include <sys/filedesc.h>
241 #include <sys/dtrace_bsd.h>
242 #include <sys/sdt.h>
243 #include <sys/xcall.h>
244 
245 #include <uvm/uvm_extern.h>
246 #include <uvm/uvm_object.h>
247 
248 static pool_cache_t	lwp_cache	__read_mostly;
249 struct lwplist		alllwp		__cacheline_aligned;
250 
251 static void		lwp_dtor(void *, void *);
252 
253 /* DTrace proc provider probes */
254 SDT_PROBE_DEFINE(proc,,,lwp_create,
255 	"struct lwp *", NULL,
256 	NULL, NULL, NULL, NULL,
257 	NULL, NULL, NULL, NULL);
258 SDT_PROBE_DEFINE(proc,,,lwp_start,
259 	"struct lwp *", NULL,
260 	NULL, NULL, NULL, NULL,
261 	NULL, NULL, NULL, NULL);
262 SDT_PROBE_DEFINE(proc,,,lwp_exit,
263 	"struct lwp *", NULL,
264 	NULL, NULL, NULL, NULL,
265 	NULL, NULL, NULL, NULL);
266 
267 struct turnstile turnstile0;
268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
269 #ifdef LWP0_CPU_INFO
270 	.l_cpu = LWP0_CPU_INFO,
271 #endif
272 #ifdef LWP0_MD_INITIALIZER
273 	.l_md = LWP0_MD_INITIALIZER,
274 #endif
275 	.l_proc = &proc0,
276 	.l_lid = 1,
277 	.l_flag = LW_SYSTEM,
278 	.l_stat = LSONPROC,
279 	.l_ts = &turnstile0,
280 	.l_syncobj = &sched_syncobj,
281 	.l_refcnt = 1,
282 	.l_priority = PRI_USER + NPRI_USER - 1,
283 	.l_inheritedprio = -1,
284 	.l_class = SCHED_OTHER,
285 	.l_psid = PS_NONE,
286 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
287 	.l_name = __UNCONST("swapper"),
288 	.l_fd = &filedesc0,
289 };
290 
291 void
292 lwpinit(void)
293 {
294 
295 	LIST_INIT(&alllwp);
296 	lwpinit_specificdata();
297 	lwp_sys_init();
298 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
299 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
300 }
301 
302 void
303 lwp0_init(void)
304 {
305 	struct lwp *l = &lwp0;
306 
307 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
308 	KASSERT(l->l_lid == proc0.p_nlwpid);
309 
310 	LIST_INSERT_HEAD(&alllwp, l, l_list);
311 
312 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
313 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
314 	cv_init(&l->l_sigcv, "sigwait");
315 
316 	kauth_cred_hold(proc0.p_cred);
317 	l->l_cred = proc0.p_cred;
318 
319 	lwp_initspecific(l);
320 
321 	SYSCALL_TIME_LWP_INIT(l);
322 }
323 
324 static void
325 lwp_dtor(void *arg, void *obj)
326 {
327 	lwp_t *l = obj;
328 	uint64_t where;
329 	(void)l;
330 
331 	/*
332 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
333 	 * calls will exit before memory of LWP is returned to the pool, where
334 	 * KVA of LWP structure might be freed and re-used for other purposes.
335 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
336 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
337 	 * the value of l->l_cpu must be still valid at this point.
338 	 */
339 	KASSERT(l->l_cpu != NULL);
340 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
341 	xc_wait(where);
342 }
343 
344 /*
345  * Set an suspended.
346  *
347  * Must be called with p_lock held, and the LWP locked.  Will unlock the
348  * LWP before return.
349  */
350 int
351 lwp_suspend(struct lwp *curl, struct lwp *t)
352 {
353 	int error;
354 
355 	KASSERT(mutex_owned(t->l_proc->p_lock));
356 	KASSERT(lwp_locked(t, NULL));
357 
358 	KASSERT(curl != t || curl->l_stat == LSONPROC);
359 
360 	/*
361 	 * If the current LWP has been told to exit, we must not suspend anyone
362 	 * else or deadlock could occur.  We won't return to userspace.
363 	 */
364 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
365 		lwp_unlock(t);
366 		return (EDEADLK);
367 	}
368 
369 	error = 0;
370 
371 	switch (t->l_stat) {
372 	case LSRUN:
373 	case LSONPROC:
374 		t->l_flag |= LW_WSUSPEND;
375 		lwp_need_userret(t);
376 		lwp_unlock(t);
377 		break;
378 
379 	case LSSLEEP:
380 		t->l_flag |= LW_WSUSPEND;
381 
382 		/*
383 		 * Kick the LWP and try to get it to the kernel boundary
384 		 * so that it will release any locks that it holds.
385 		 * setrunnable() will release the lock.
386 		 */
387 		if ((t->l_flag & LW_SINTR) != 0)
388 			setrunnable(t);
389 		else
390 			lwp_unlock(t);
391 		break;
392 
393 	case LSSUSPENDED:
394 		lwp_unlock(t);
395 		break;
396 
397 	case LSSTOP:
398 		t->l_flag |= LW_WSUSPEND;
399 		setrunnable(t);
400 		break;
401 
402 	case LSIDL:
403 	case LSZOMB:
404 		error = EINTR; /* It's what Solaris does..... */
405 		lwp_unlock(t);
406 		break;
407 	}
408 
409 	return (error);
410 }
411 
412 /*
413  * Restart a suspended LWP.
414  *
415  * Must be called with p_lock held, and the LWP locked.  Will unlock the
416  * LWP before return.
417  */
418 void
419 lwp_continue(struct lwp *l)
420 {
421 
422 	KASSERT(mutex_owned(l->l_proc->p_lock));
423 	KASSERT(lwp_locked(l, NULL));
424 
425 	/* If rebooting or not suspended, then just bail out. */
426 	if ((l->l_flag & LW_WREBOOT) != 0) {
427 		lwp_unlock(l);
428 		return;
429 	}
430 
431 	l->l_flag &= ~LW_WSUSPEND;
432 
433 	if (l->l_stat != LSSUSPENDED) {
434 		lwp_unlock(l);
435 		return;
436 	}
437 
438 	/* setrunnable() will release the lock. */
439 	setrunnable(l);
440 }
441 
442 /*
443  * Restart a stopped LWP.
444  *
445  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
446  * LWP before return.
447  */
448 void
449 lwp_unstop(struct lwp *l)
450 {
451 	struct proc *p = l->l_proc;
452 
453 	KASSERT(mutex_owned(proc_lock));
454 	KASSERT(mutex_owned(p->p_lock));
455 
456 	lwp_lock(l);
457 
458 	/* If not stopped, then just bail out. */
459 	if (l->l_stat != LSSTOP) {
460 		lwp_unlock(l);
461 		return;
462 	}
463 
464 	p->p_stat = SACTIVE;
465 	p->p_sflag &= ~PS_STOPPING;
466 
467 	if (!p->p_waited)
468 		p->p_pptr->p_nstopchild--;
469 
470 	if (l->l_wchan == NULL) {
471 		/* setrunnable() will release the lock. */
472 		setrunnable(l);
473 	} else {
474 		l->l_stat = LSSLEEP;
475 		p->p_nrlwps++;
476 		lwp_unlock(l);
477 	}
478 }
479 
480 /*
481  * Wait for an LWP within the current process to exit.  If 'lid' is
482  * non-zero, we are waiting for a specific LWP.
483  *
484  * Must be called with p->p_lock held.
485  */
486 int
487 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
488 {
489 	struct proc *p = l->l_proc;
490 	struct lwp *l2;
491 	int nfound, error;
492 	lwpid_t curlid;
493 	bool exiting;
494 
495 	KASSERT(mutex_owned(p->p_lock));
496 
497 	p->p_nlwpwait++;
498 	l->l_waitingfor = lid;
499 	curlid = l->l_lid;
500 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
501 
502 	for (;;) {
503 		/*
504 		 * Avoid a race between exit1() and sigexit(): if the
505 		 * process is dumping core, then we need to bail out: call
506 		 * into lwp_userret() where we will be suspended until the
507 		 * deed is done.
508 		 */
509 		if ((p->p_sflag & PS_WCORE) != 0) {
510 			mutex_exit(p->p_lock);
511 			lwp_userret(l);
512 #ifdef DIAGNOSTIC
513 			panic("lwp_wait1");
514 #endif
515 			/* NOTREACHED */
516 		}
517 
518 		/*
519 		 * First off, drain any detached LWP that is waiting to be
520 		 * reaped.
521 		 */
522 		while ((l2 = p->p_zomblwp) != NULL) {
523 			p->p_zomblwp = NULL;
524 			lwp_free(l2, false, false);/* releases proc mutex */
525 			mutex_enter(p->p_lock);
526 		}
527 
528 		/*
529 		 * Now look for an LWP to collect.  If the whole process is
530 		 * exiting, count detached LWPs as eligible to be collected,
531 		 * but don't drain them here.
532 		 */
533 		nfound = 0;
534 		error = 0;
535 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
536 			/*
537 			 * If a specific wait and the target is waiting on
538 			 * us, then avoid deadlock.  This also traps LWPs
539 			 * that try to wait on themselves.
540 			 *
541 			 * Note that this does not handle more complicated
542 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
543 			 * can still be killed so it is not a major problem.
544 			 */
545 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
546 				error = EDEADLK;
547 				break;
548 			}
549 			if (l2 == l)
550 				continue;
551 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
552 				nfound += exiting;
553 				continue;
554 			}
555 			if (lid != 0) {
556 				if (l2->l_lid != lid)
557 					continue;
558 				/*
559 				 * Mark this LWP as the first waiter, if there
560 				 * is no other.
561 				 */
562 				if (l2->l_waiter == 0)
563 					l2->l_waiter = curlid;
564 			} else if (l2->l_waiter != 0) {
565 				/*
566 				 * It already has a waiter - so don't
567 				 * collect it.  If the waiter doesn't
568 				 * grab it we'll get another chance
569 				 * later.
570 				 */
571 				nfound++;
572 				continue;
573 			}
574 			nfound++;
575 
576 			/* No need to lock the LWP in order to see LSZOMB. */
577 			if (l2->l_stat != LSZOMB)
578 				continue;
579 
580 			/*
581 			 * We're no longer waiting.  Reset the "first waiter"
582 			 * pointer on the target, in case it was us.
583 			 */
584 			l->l_waitingfor = 0;
585 			l2->l_waiter = 0;
586 			p->p_nlwpwait--;
587 			if (departed)
588 				*departed = l2->l_lid;
589 			sched_lwp_collect(l2);
590 
591 			/* lwp_free() releases the proc lock. */
592 			lwp_free(l2, false, false);
593 			mutex_enter(p->p_lock);
594 			return 0;
595 		}
596 
597 		if (error != 0)
598 			break;
599 		if (nfound == 0) {
600 			error = ESRCH;
601 			break;
602 		}
603 
604 		/*
605 		 * The kernel is careful to ensure that it can not deadlock
606 		 * when exiting - just keep waiting.
607 		 */
608 		if (exiting) {
609 			KASSERT(p->p_nlwps > 1);
610 			cv_wait(&p->p_lwpcv, p->p_lock);
611 			continue;
612 		}
613 
614 		/*
615 		 * If all other LWPs are waiting for exits or suspends
616 		 * and the supply of zombies and potential zombies is
617 		 * exhausted, then we are about to deadlock.
618 		 *
619 		 * If the process is exiting (and this LWP is not the one
620 		 * that is coordinating the exit) then bail out now.
621 		 */
622 		if ((p->p_sflag & PS_WEXIT) != 0 ||
623 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
624 			error = EDEADLK;
625 			break;
626 		}
627 
628 		/*
629 		 * Sit around and wait for something to happen.  We'll be
630 		 * awoken if any of the conditions examined change: if an
631 		 * LWP exits, is collected, or is detached.
632 		 */
633 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
634 			break;
635 	}
636 
637 	/*
638 	 * We didn't find any LWPs to collect, we may have received a
639 	 * signal, or some other condition has caused us to bail out.
640 	 *
641 	 * If waiting on a specific LWP, clear the waiters marker: some
642 	 * other LWP may want it.  Then, kick all the remaining waiters
643 	 * so that they can re-check for zombies and for deadlock.
644 	 */
645 	if (lid != 0) {
646 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
647 			if (l2->l_lid == lid) {
648 				if (l2->l_waiter == curlid)
649 					l2->l_waiter = 0;
650 				break;
651 			}
652 		}
653 	}
654 	p->p_nlwpwait--;
655 	l->l_waitingfor = 0;
656 	cv_broadcast(&p->p_lwpcv);
657 
658 	return error;
659 }
660 
661 /*
662  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
663  * The new LWP is created in state LSIDL and must be set running,
664  * suspended, or stopped by the caller.
665  */
666 int
667 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
668 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
669 	   lwp_t **rnewlwpp, int sclass)
670 {
671 	struct lwp *l2, *isfree;
672 	turnstile_t *ts;
673 	lwpid_t lid;
674 
675 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
676 
677 	/*
678 	 * First off, reap any detached LWP waiting to be collected.
679 	 * We can re-use its LWP structure and turnstile.
680 	 */
681 	isfree = NULL;
682 	if (p2->p_zomblwp != NULL) {
683 		mutex_enter(p2->p_lock);
684 		if ((isfree = p2->p_zomblwp) != NULL) {
685 			p2->p_zomblwp = NULL;
686 			lwp_free(isfree, true, false);/* releases proc mutex */
687 		} else
688 			mutex_exit(p2->p_lock);
689 	}
690 	if (isfree == NULL) {
691 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
692 		memset(l2, 0, sizeof(*l2));
693 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
694 		SLIST_INIT(&l2->l_pi_lenders);
695 	} else {
696 		l2 = isfree;
697 		ts = l2->l_ts;
698 		KASSERT(l2->l_inheritedprio == -1);
699 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
700 		memset(l2, 0, sizeof(*l2));
701 		l2->l_ts = ts;
702 	}
703 
704 	l2->l_stat = LSIDL;
705 	l2->l_proc = p2;
706 	l2->l_refcnt = 1;
707 	l2->l_class = sclass;
708 
709 	/*
710 	 * If vfork(), we want the LWP to run fast and on the same CPU
711 	 * as its parent, so that it can reuse the VM context and cache
712 	 * footprint on the local CPU.
713 	 */
714 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
715 	l2->l_kpribase = PRI_KERNEL;
716 	l2->l_priority = l1->l_priority;
717 	l2->l_inheritedprio = -1;
718 	l2->l_flag = 0;
719 	l2->l_pflag = LP_MPSAFE;
720 	TAILQ_INIT(&l2->l_ld_locks);
721 
722 	/*
723 	 * For vfork, borrow parent's lwpctl context if it exists.
724 	 * This also causes us to return via lwp_userret.
725 	 */
726 	if (flags & LWP_VFORK && l1->l_lwpctl) {
727 		l2->l_lwpctl = l1->l_lwpctl;
728 		l2->l_flag |= LW_LWPCTL;
729 	}
730 
731 	/*
732 	 * If not the first LWP in the process, grab a reference to the
733 	 * descriptor table.
734 	 */
735 	l2->l_fd = p2->p_fd;
736 	if (p2->p_nlwps != 0) {
737 		KASSERT(l1->l_proc == p2);
738 		fd_hold(l2);
739 	} else {
740 		KASSERT(l1->l_proc != p2);
741 	}
742 
743 	if (p2->p_flag & PK_SYSTEM) {
744 		/* Mark it as a system LWP. */
745 		l2->l_flag |= LW_SYSTEM;
746 	}
747 
748 	kpreempt_disable();
749 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
750 	l2->l_cpu = l1->l_cpu;
751 	kpreempt_enable();
752 
753 	kdtrace_thread_ctor(NULL, l2);
754 	lwp_initspecific(l2);
755 	sched_lwp_fork(l1, l2);
756 	lwp_update_creds(l2);
757 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
758 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
759 	cv_init(&l2->l_sigcv, "sigwait");
760 	l2->l_syncobj = &sched_syncobj;
761 
762 	if (rnewlwpp != NULL)
763 		*rnewlwpp = l2;
764 
765 	/*
766 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
767 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
768 	 */
769 	pcu_save_all(l1);
770 
771 	uvm_lwp_setuarea(l2, uaddr);
772 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
773 	    (arg != NULL) ? arg : l2);
774 
775 	if ((flags & LWP_PIDLID) != 0) {
776 		lid = proc_alloc_pid(p2);
777 		l2->l_pflag |= LP_PIDLID;
778 	} else {
779 		lid = 0;
780 	}
781 
782 	mutex_enter(p2->p_lock);
783 
784 	if ((flags & LWP_DETACHED) != 0) {
785 		l2->l_prflag = LPR_DETACHED;
786 		p2->p_ndlwps++;
787 	} else
788 		l2->l_prflag = 0;
789 
790 	l2->l_sigmask = l1->l_sigmask;
791 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
792 	sigemptyset(&l2->l_sigpend.sp_set);
793 
794 	if (lid == 0) {
795 		p2->p_nlwpid++;
796 		if (p2->p_nlwpid == 0)
797 			p2->p_nlwpid++;
798 		lid = p2->p_nlwpid;
799 	}
800 	l2->l_lid = lid;
801 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
802 	p2->p_nlwps++;
803 	p2->p_nrlwps++;
804 
805 	if ((p2->p_flag & PK_SYSTEM) == 0) {
806 		/* Inherit an affinity */
807 		if (l1->l_flag & LW_AFFINITY) {
808 			/*
809 			 * Note that we hold the state lock while inheriting
810 			 * the affinity to avoid race with sched_setaffinity().
811 			 */
812 			lwp_lock(l1);
813 			if (l1->l_flag & LW_AFFINITY) {
814 				kcpuset_use(l1->l_affinity);
815 				l2->l_affinity = l1->l_affinity;
816 				l2->l_flag |= LW_AFFINITY;
817 			}
818 			lwp_unlock(l1);
819 		}
820 		lwp_lock(l2);
821 		/* Inherit a processor-set */
822 		l2->l_psid = l1->l_psid;
823 		/* Look for a CPU to start */
824 		l2->l_cpu = sched_takecpu(l2);
825 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
826 	}
827 	mutex_exit(p2->p_lock);
828 
829 	SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0);
830 
831 	mutex_enter(proc_lock);
832 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
833 	mutex_exit(proc_lock);
834 
835 	SYSCALL_TIME_LWP_INIT(l2);
836 
837 	if (p2->p_emul->e_lwp_fork)
838 		(*p2->p_emul->e_lwp_fork)(l1, l2);
839 
840 	return (0);
841 }
842 
843 /*
844  * Called by MD code when a new LWP begins execution.  Must be called
845  * with the previous LWP locked (so at splsched), or if there is no
846  * previous LWP, at splsched.
847  */
848 void
849 lwp_startup(struct lwp *prev, struct lwp *new)
850 {
851 
852 	SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0);
853 
854 	KASSERT(kpreempt_disabled());
855 	if (prev != NULL) {
856 		/*
857 		 * Normalize the count of the spin-mutexes, it was
858 		 * increased in mi_switch().  Unmark the state of
859 		 * context switch - it is finished for previous LWP.
860 		 */
861 		curcpu()->ci_mtx_count++;
862 		membar_exit();
863 		prev->l_ctxswtch = 0;
864 	}
865 	KPREEMPT_DISABLE(new);
866 	spl0();
867 	pmap_activate(new);
868 	LOCKDEBUG_BARRIER(NULL, 0);
869 	KPREEMPT_ENABLE(new);
870 	if ((new->l_pflag & LP_MPSAFE) == 0) {
871 		KERNEL_LOCK(1, new);
872 	}
873 }
874 
875 /*
876  * Exit an LWP.
877  */
878 void
879 lwp_exit(struct lwp *l)
880 {
881 	struct proc *p = l->l_proc;
882 	struct lwp *l2;
883 	bool current;
884 
885 	current = (l == curlwp);
886 
887 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
888 	KASSERT(p == curproc);
889 
890 	SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0);
891 
892 	/*
893 	 * Verify that we hold no locks other than the kernel lock.
894 	 */
895 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
896 
897 	/*
898 	 * If we are the last live LWP in a process, we need to exit the
899 	 * entire process.  We do so with an exit status of zero, because
900 	 * it's a "controlled" exit, and because that's what Solaris does.
901 	 *
902 	 * We are not quite a zombie yet, but for accounting purposes we
903 	 * must increment the count of zombies here.
904 	 *
905 	 * Note: the last LWP's specificdata will be deleted here.
906 	 */
907 	mutex_enter(p->p_lock);
908 	if (p->p_nlwps - p->p_nzlwps == 1) {
909 		KASSERT(current == true);
910 		/* XXXSMP kernel_lock not held */
911 		exit1(l, 0);
912 		/* NOTREACHED */
913 	}
914 	p->p_nzlwps++;
915 	mutex_exit(p->p_lock);
916 
917 	if (p->p_emul->e_lwp_exit)
918 		(*p->p_emul->e_lwp_exit)(l);
919 
920 	/* Drop filedesc reference. */
921 	fd_free();
922 
923 	/* Delete the specificdata while it's still safe to sleep. */
924 	lwp_finispecific(l);
925 
926 	/*
927 	 * Release our cached credentials.
928 	 */
929 	kauth_cred_free(l->l_cred);
930 	callout_destroy(&l->l_timeout_ch);
931 
932 	/*
933 	 * Remove the LWP from the global list.
934 	 * Free its LID from the PID namespace if needed.
935 	 */
936 	mutex_enter(proc_lock);
937 	LIST_REMOVE(l, l_list);
938 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
939 		proc_free_pid(l->l_lid);
940 	}
941 	mutex_exit(proc_lock);
942 
943 	/*
944 	 * Get rid of all references to the LWP that others (e.g. procfs)
945 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
946 	 * mark it waiting for collection in the proc structure.  Note that
947 	 * before we can do that, we need to free any other dead, deatched
948 	 * LWP waiting to meet its maker.
949 	 */
950 	mutex_enter(p->p_lock);
951 	lwp_drainrefs(l);
952 
953 	if ((l->l_prflag & LPR_DETACHED) != 0) {
954 		while ((l2 = p->p_zomblwp) != NULL) {
955 			p->p_zomblwp = NULL;
956 			lwp_free(l2, false, false);/* releases proc mutex */
957 			mutex_enter(p->p_lock);
958 			l->l_refcnt++;
959 			lwp_drainrefs(l);
960 		}
961 		p->p_zomblwp = l;
962 	}
963 
964 	/*
965 	 * If we find a pending signal for the process and we have been
966 	 * asked to check for signals, then we lose: arrange to have
967 	 * all other LWPs in the process check for signals.
968 	 */
969 	if ((l->l_flag & LW_PENDSIG) != 0 &&
970 	    firstsig(&p->p_sigpend.sp_set) != 0) {
971 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
972 			lwp_lock(l2);
973 			l2->l_flag |= LW_PENDSIG;
974 			lwp_unlock(l2);
975 		}
976 	}
977 
978 	/*
979 	 * Release any PCU resources before becoming a zombie.
980 	 */
981 	pcu_discard_all(l);
982 
983 	lwp_lock(l);
984 	l->l_stat = LSZOMB;
985 	if (l->l_name != NULL)
986 		strcpy(l->l_name, "(zombie)");
987 	if (l->l_flag & LW_AFFINITY) {
988 		l->l_flag &= ~LW_AFFINITY;
989 	} else {
990 		KASSERT(l->l_affinity == NULL);
991 	}
992 	lwp_unlock(l);
993 	p->p_nrlwps--;
994 	cv_broadcast(&p->p_lwpcv);
995 	if (l->l_lwpctl != NULL)
996 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
997 	mutex_exit(p->p_lock);
998 
999 	/* Safe without lock since LWP is in zombie state */
1000 	if (l->l_affinity) {
1001 		kcpuset_unuse(l->l_affinity, NULL);
1002 		l->l_affinity = NULL;
1003 	}
1004 
1005 	/*
1006 	 * We can no longer block.  At this point, lwp_free() may already
1007 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
1008 	 *
1009 	 * Free MD LWP resources.
1010 	 */
1011 	cpu_lwp_free(l, 0);
1012 
1013 	if (current) {
1014 		pmap_deactivate(l);
1015 
1016 		/*
1017 		 * Release the kernel lock, and switch away into
1018 		 * oblivion.
1019 		 */
1020 #ifdef notyet
1021 		/* XXXSMP hold in lwp_userret() */
1022 		KERNEL_UNLOCK_LAST(l);
1023 #else
1024 		KERNEL_UNLOCK_ALL(l, NULL);
1025 #endif
1026 		lwp_exit_switchaway(l);
1027 	}
1028 }
1029 
1030 /*
1031  * Free a dead LWP's remaining resources.
1032  *
1033  * XXXLWP limits.
1034  */
1035 void
1036 lwp_free(struct lwp *l, bool recycle, bool last)
1037 {
1038 	struct proc *p = l->l_proc;
1039 	struct rusage *ru;
1040 	ksiginfoq_t kq;
1041 
1042 	KASSERT(l != curlwp);
1043 
1044 	/*
1045 	 * If this was not the last LWP in the process, then adjust
1046 	 * counters and unlock.
1047 	 */
1048 	if (!last) {
1049 		/*
1050 		 * Add the LWP's run time to the process' base value.
1051 		 * This needs to co-incide with coming off p_lwps.
1052 		 */
1053 		bintime_add(&p->p_rtime, &l->l_rtime);
1054 		p->p_pctcpu += l->l_pctcpu;
1055 		ru = &p->p_stats->p_ru;
1056 		ruadd(ru, &l->l_ru);
1057 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1058 		ru->ru_nivcsw += l->l_nivcsw;
1059 		LIST_REMOVE(l, l_sibling);
1060 		p->p_nlwps--;
1061 		p->p_nzlwps--;
1062 		if ((l->l_prflag & LPR_DETACHED) != 0)
1063 			p->p_ndlwps--;
1064 
1065 		/*
1066 		 * Have any LWPs sleeping in lwp_wait() recheck for
1067 		 * deadlock.
1068 		 */
1069 		cv_broadcast(&p->p_lwpcv);
1070 		mutex_exit(p->p_lock);
1071 	}
1072 
1073 #ifdef MULTIPROCESSOR
1074 	/*
1075 	 * In the unlikely event that the LWP is still on the CPU,
1076 	 * then spin until it has switched away.  We need to release
1077 	 * all locks to avoid deadlock against interrupt handlers on
1078 	 * the target CPU.
1079 	 */
1080 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1081 		int count;
1082 		(void)count; /* XXXgcc */
1083 		KERNEL_UNLOCK_ALL(curlwp, &count);
1084 		while ((l->l_pflag & LP_RUNNING) != 0 ||
1085 		    l->l_cpu->ci_curlwp == l)
1086 			SPINLOCK_BACKOFF_HOOK;
1087 		KERNEL_LOCK(count, curlwp);
1088 	}
1089 #endif
1090 
1091 	/*
1092 	 * Destroy the LWP's remaining signal information.
1093 	 */
1094 	ksiginfo_queue_init(&kq);
1095 	sigclear(&l->l_sigpend, NULL, &kq);
1096 	ksiginfo_queue_drain(&kq);
1097 	cv_destroy(&l->l_sigcv);
1098 
1099 	/*
1100 	 * Free the LWP's turnstile and the LWP structure itself unless the
1101 	 * caller wants to recycle them.  Also, free the scheduler specific
1102 	 * data.
1103 	 *
1104 	 * We can't return turnstile0 to the pool (it didn't come from it),
1105 	 * so if it comes up just drop it quietly and move on.
1106 	 *
1107 	 * We don't recycle the VM resources at this time.
1108 	 */
1109 	if (l->l_lwpctl != NULL)
1110 		lwp_ctl_free(l);
1111 
1112 	if (!recycle && l->l_ts != &turnstile0)
1113 		pool_cache_put(turnstile_cache, l->l_ts);
1114 	if (l->l_name != NULL)
1115 		kmem_free(l->l_name, MAXCOMLEN);
1116 
1117 	cpu_lwp_free2(l);
1118 	uvm_lwp_exit(l);
1119 
1120 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1121 	KASSERT(l->l_inheritedprio == -1);
1122 	KASSERT(l->l_blcnt == 0);
1123 	kdtrace_thread_dtor(NULL, l);
1124 	if (!recycle)
1125 		pool_cache_put(lwp_cache, l);
1126 }
1127 
1128 /*
1129  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1130  */
1131 void
1132 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1133 {
1134 	struct schedstate_percpu *tspc;
1135 	int lstat = l->l_stat;
1136 
1137 	KASSERT(lwp_locked(l, NULL));
1138 	KASSERT(tci != NULL);
1139 
1140 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1141 	if ((l->l_pflag & LP_RUNNING) != 0) {
1142 		lstat = LSONPROC;
1143 	}
1144 
1145 	/*
1146 	 * The destination CPU could be changed while previous migration
1147 	 * was not finished.
1148 	 */
1149 	if (l->l_target_cpu != NULL) {
1150 		l->l_target_cpu = tci;
1151 		lwp_unlock(l);
1152 		return;
1153 	}
1154 
1155 	/* Nothing to do if trying to migrate to the same CPU */
1156 	if (l->l_cpu == tci) {
1157 		lwp_unlock(l);
1158 		return;
1159 	}
1160 
1161 	KASSERT(l->l_target_cpu == NULL);
1162 	tspc = &tci->ci_schedstate;
1163 	switch (lstat) {
1164 	case LSRUN:
1165 		l->l_target_cpu = tci;
1166 		break;
1167 	case LSIDL:
1168 		l->l_cpu = tci;
1169 		lwp_unlock_to(l, tspc->spc_mutex);
1170 		return;
1171 	case LSSLEEP:
1172 		l->l_cpu = tci;
1173 		break;
1174 	case LSSTOP:
1175 	case LSSUSPENDED:
1176 		l->l_cpu = tci;
1177 		if (l->l_wchan == NULL) {
1178 			lwp_unlock_to(l, tspc->spc_lwplock);
1179 			return;
1180 		}
1181 		break;
1182 	case LSONPROC:
1183 		l->l_target_cpu = tci;
1184 		spc_lock(l->l_cpu);
1185 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1186 		spc_unlock(l->l_cpu);
1187 		break;
1188 	}
1189 	lwp_unlock(l);
1190 }
1191 
1192 /*
1193  * Find the LWP in the process.  Arguments may be zero, in such case,
1194  * the calling process and first LWP in the list will be used.
1195  * On success - returns proc locked.
1196  */
1197 struct lwp *
1198 lwp_find2(pid_t pid, lwpid_t lid)
1199 {
1200 	proc_t *p;
1201 	lwp_t *l;
1202 
1203 	/* Find the process. */
1204 	if (pid != 0) {
1205 		mutex_enter(proc_lock);
1206 		p = proc_find(pid);
1207 		if (p == NULL) {
1208 			mutex_exit(proc_lock);
1209 			return NULL;
1210 		}
1211 		mutex_enter(p->p_lock);
1212 		mutex_exit(proc_lock);
1213 	} else {
1214 		p = curlwp->l_proc;
1215 		mutex_enter(p->p_lock);
1216 	}
1217 	/* Find the thread. */
1218 	if (lid != 0) {
1219 		l = lwp_find(p, lid);
1220 	} else {
1221 		l = LIST_FIRST(&p->p_lwps);
1222 	}
1223 	if (l == NULL) {
1224 		mutex_exit(p->p_lock);
1225 	}
1226 	return l;
1227 }
1228 
1229 /*
1230  * Look up a live LWP within the specified process, and return it locked.
1231  *
1232  * Must be called with p->p_lock held.
1233  */
1234 struct lwp *
1235 lwp_find(struct proc *p, lwpid_t id)
1236 {
1237 	struct lwp *l;
1238 
1239 	KASSERT(mutex_owned(p->p_lock));
1240 
1241 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1242 		if (l->l_lid == id)
1243 			break;
1244 	}
1245 
1246 	/*
1247 	 * No need to lock - all of these conditions will
1248 	 * be visible with the process level mutex held.
1249 	 */
1250 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1251 		l = NULL;
1252 
1253 	return l;
1254 }
1255 
1256 /*
1257  * Update an LWP's cached credentials to mirror the process' master copy.
1258  *
1259  * This happens early in the syscall path, on user trap, and on LWP
1260  * creation.  A long-running LWP can also voluntarily choose to update
1261  * it's credentials by calling this routine.  This may be called from
1262  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1263  */
1264 void
1265 lwp_update_creds(struct lwp *l)
1266 {
1267 	kauth_cred_t oc;
1268 	struct proc *p;
1269 
1270 	p = l->l_proc;
1271 	oc = l->l_cred;
1272 
1273 	mutex_enter(p->p_lock);
1274 	kauth_cred_hold(p->p_cred);
1275 	l->l_cred = p->p_cred;
1276 	l->l_prflag &= ~LPR_CRMOD;
1277 	mutex_exit(p->p_lock);
1278 	if (oc != NULL)
1279 		kauth_cred_free(oc);
1280 }
1281 
1282 /*
1283  * Verify that an LWP is locked, and optionally verify that the lock matches
1284  * one we specify.
1285  */
1286 int
1287 lwp_locked(struct lwp *l, kmutex_t *mtx)
1288 {
1289 	kmutex_t *cur = l->l_mutex;
1290 
1291 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1292 }
1293 
1294 /*
1295  * Lend a new mutex to an LWP.  The old mutex must be held.
1296  */
1297 void
1298 lwp_setlock(struct lwp *l, kmutex_t *new)
1299 {
1300 
1301 	KASSERT(mutex_owned(l->l_mutex));
1302 
1303 	membar_exit();
1304 	l->l_mutex = new;
1305 }
1306 
1307 /*
1308  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1309  * must be held.
1310  */
1311 void
1312 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1313 {
1314 	kmutex_t *old;
1315 
1316 	KASSERT(lwp_locked(l, NULL));
1317 
1318 	old = l->l_mutex;
1319 	membar_exit();
1320 	l->l_mutex = new;
1321 	mutex_spin_exit(old);
1322 }
1323 
1324 int
1325 lwp_trylock(struct lwp *l)
1326 {
1327 	kmutex_t *old;
1328 
1329 	for (;;) {
1330 		if (!mutex_tryenter(old = l->l_mutex))
1331 			return 0;
1332 		if (__predict_true(l->l_mutex == old))
1333 			return 1;
1334 		mutex_spin_exit(old);
1335 	}
1336 }
1337 
1338 void
1339 lwp_unsleep(lwp_t *l, bool cleanup)
1340 {
1341 
1342 	KASSERT(mutex_owned(l->l_mutex));
1343 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1344 }
1345 
1346 /*
1347  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1348  * set.
1349  */
1350 void
1351 lwp_userret(struct lwp *l)
1352 {
1353 	struct proc *p;
1354 	int sig;
1355 
1356 	KASSERT(l == curlwp);
1357 	KASSERT(l->l_stat == LSONPROC);
1358 	p = l->l_proc;
1359 
1360 #ifndef __HAVE_FAST_SOFTINTS
1361 	/* Run pending soft interrupts. */
1362 	if (l->l_cpu->ci_data.cpu_softints != 0)
1363 		softint_overlay();
1364 #endif
1365 
1366 #ifdef KERN_SA
1367 	/* Generate UNBLOCKED upcall if needed */
1368 	if (l->l_flag & LW_SA_BLOCKING) {
1369 		sa_unblock_userret(l);
1370 		/* NOTREACHED */
1371 	}
1372 #endif
1373 
1374 	/*
1375 	 * It should be safe to do this read unlocked on a multiprocessor
1376 	 * system..
1377 	 *
1378 	 * LW_SA_UPCALL will be handled after the while() loop, so don't
1379 	 * consider it now.
1380 	 */
1381 	while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) {
1382 		/*
1383 		 * Process pending signals first, unless the process
1384 		 * is dumping core or exiting, where we will instead
1385 		 * enter the LW_WSUSPEND case below.
1386 		 */
1387 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1388 		    LW_PENDSIG) {
1389 			mutex_enter(p->p_lock);
1390 			while ((sig = issignal(l)) != 0)
1391 				postsig(sig);
1392 			mutex_exit(p->p_lock);
1393 		}
1394 
1395 		/*
1396 		 * Core-dump or suspend pending.
1397 		 *
1398 		 * In case of core dump, suspend ourselves, so that the kernel
1399 		 * stack and therefore the userland registers saved in the
1400 		 * trapframe are around for coredump() to write them out.
1401 		 * We also need to save any PCU resources that we have so that
1402 		 * they accessible for coredump().  We issue a wakeup on
1403 		 * p->p_lwpcv so that sigexit() will write the core file out
1404 		 * once all other LWPs are suspended.
1405 		 */
1406 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1407 			pcu_save_all(l);
1408 			mutex_enter(p->p_lock);
1409 			p->p_nrlwps--;
1410 			cv_broadcast(&p->p_lwpcv);
1411 			lwp_lock(l);
1412 			l->l_stat = LSSUSPENDED;
1413 			lwp_unlock(l);
1414 			mutex_exit(p->p_lock);
1415 			lwp_lock(l);
1416 			mi_switch(l);
1417 		}
1418 
1419 		/* Process is exiting. */
1420 		if ((l->l_flag & LW_WEXIT) != 0) {
1421 			lwp_exit(l);
1422 			KASSERT(0);
1423 			/* NOTREACHED */
1424 		}
1425 
1426 		/* update lwpctl processor (for vfork child_return) */
1427 		if (l->l_flag & LW_LWPCTL) {
1428 			lwp_lock(l);
1429 			KASSERT(kpreempt_disabled());
1430 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1431 			l->l_lwpctl->lc_pctr++;
1432 			l->l_flag &= ~LW_LWPCTL;
1433 			lwp_unlock(l);
1434 		}
1435 	}
1436 
1437 #ifdef KERN_SA
1438 	/*
1439 	 * Timer events are handled specially.  We only try once to deliver
1440 	 * pending timer upcalls; if if fails, we can try again on the next
1441 	 * loop around.  If we need to re-enter lwp_userret(), MD code will
1442 	 * bounce us back here through the trap path after we return.
1443 	 */
1444 	if (p->p_timerpend)
1445 		timerupcall(l);
1446 	if (l->l_flag & LW_SA_UPCALL)
1447 		sa_upcall_userret(l);
1448 #endif /* KERN_SA */
1449 }
1450 
1451 /*
1452  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1453  */
1454 void
1455 lwp_need_userret(struct lwp *l)
1456 {
1457 	KASSERT(lwp_locked(l, NULL));
1458 
1459 	/*
1460 	 * Since the tests in lwp_userret() are done unlocked, make sure
1461 	 * that the condition will be seen before forcing the LWP to enter
1462 	 * kernel mode.
1463 	 */
1464 	membar_producer();
1465 	cpu_signotify(l);
1466 }
1467 
1468 /*
1469  * Add one reference to an LWP.  This will prevent the LWP from
1470  * exiting, thus keep the lwp structure and PCB around to inspect.
1471  */
1472 void
1473 lwp_addref(struct lwp *l)
1474 {
1475 
1476 	KASSERT(mutex_owned(l->l_proc->p_lock));
1477 	KASSERT(l->l_stat != LSZOMB);
1478 	KASSERT(l->l_refcnt != 0);
1479 
1480 	l->l_refcnt++;
1481 }
1482 
1483 /*
1484  * Remove one reference to an LWP.  If this is the last reference,
1485  * then we must finalize the LWP's death.
1486  */
1487 void
1488 lwp_delref(struct lwp *l)
1489 {
1490 	struct proc *p = l->l_proc;
1491 
1492 	mutex_enter(p->p_lock);
1493 	lwp_delref2(l);
1494 	mutex_exit(p->p_lock);
1495 }
1496 
1497 /*
1498  * Remove one reference to an LWP.  If this is the last reference,
1499  * then we must finalize the LWP's death.  The proc mutex is held
1500  * on entry.
1501  */
1502 void
1503 lwp_delref2(struct lwp *l)
1504 {
1505 	struct proc *p = l->l_proc;
1506 
1507 	KASSERT(mutex_owned(p->p_lock));
1508 	KASSERT(l->l_stat != LSZOMB);
1509 	KASSERT(l->l_refcnt > 0);
1510 	if (--l->l_refcnt == 0)
1511 		cv_broadcast(&p->p_lwpcv);
1512 }
1513 
1514 /*
1515  * Drain all references to the current LWP.
1516  */
1517 void
1518 lwp_drainrefs(struct lwp *l)
1519 {
1520 	struct proc *p = l->l_proc;
1521 
1522 	KASSERT(mutex_owned(p->p_lock));
1523 	KASSERT(l->l_refcnt != 0);
1524 
1525 	l->l_refcnt--;
1526 	while (l->l_refcnt != 0)
1527 		cv_wait(&p->p_lwpcv, p->p_lock);
1528 }
1529 
1530 /*
1531  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1532  * be held.
1533  */
1534 bool
1535 lwp_alive(lwp_t *l)
1536 {
1537 
1538 	KASSERT(mutex_owned(l->l_proc->p_lock));
1539 
1540 	switch (l->l_stat) {
1541 	case LSSLEEP:
1542 	case LSRUN:
1543 	case LSONPROC:
1544 	case LSSTOP:
1545 	case LSSUSPENDED:
1546 		return true;
1547 	default:
1548 		return false;
1549 	}
1550 }
1551 
1552 /*
1553  * Return first live LWP in the process.
1554  */
1555 lwp_t *
1556 lwp_find_first(proc_t *p)
1557 {
1558 	lwp_t *l;
1559 
1560 	KASSERT(mutex_owned(p->p_lock));
1561 
1562 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1563 		if (lwp_alive(l)) {
1564 			return l;
1565 		}
1566 	}
1567 
1568 	return NULL;
1569 }
1570 
1571 /*
1572  * Allocate a new lwpctl structure for a user LWP.
1573  */
1574 int
1575 lwp_ctl_alloc(vaddr_t *uaddr)
1576 {
1577 	lcproc_t *lp;
1578 	u_int bit, i, offset;
1579 	struct uvm_object *uao;
1580 	int error;
1581 	lcpage_t *lcp;
1582 	proc_t *p;
1583 	lwp_t *l;
1584 
1585 	l = curlwp;
1586 	p = l->l_proc;
1587 
1588 	/* don't allow a vforked process to create lwp ctls */
1589 	if (p->p_lflag & PL_PPWAIT)
1590 		return EBUSY;
1591 
1592 	if (l->l_lcpage != NULL) {
1593 		lcp = l->l_lcpage;
1594 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1595 		return 0;
1596 	}
1597 
1598 	/* First time around, allocate header structure for the process. */
1599 	if ((lp = p->p_lwpctl) == NULL) {
1600 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1601 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1602 		lp->lp_uao = NULL;
1603 		TAILQ_INIT(&lp->lp_pages);
1604 		mutex_enter(p->p_lock);
1605 		if (p->p_lwpctl == NULL) {
1606 			p->p_lwpctl = lp;
1607 			mutex_exit(p->p_lock);
1608 		} else {
1609 			mutex_exit(p->p_lock);
1610 			mutex_destroy(&lp->lp_lock);
1611 			kmem_free(lp, sizeof(*lp));
1612 			lp = p->p_lwpctl;
1613 		}
1614 	}
1615 
1616  	/*
1617  	 * Set up an anonymous memory region to hold the shared pages.
1618  	 * Map them into the process' address space.  The user vmspace
1619  	 * gets the first reference on the UAO.
1620  	 */
1621 	mutex_enter(&lp->lp_lock);
1622 	if (lp->lp_uao == NULL) {
1623 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1624 		lp->lp_cur = 0;
1625 		lp->lp_max = LWPCTL_UAREA_SZ;
1626 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1627 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1628 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1629 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1630 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1631 		if (error != 0) {
1632 			uao_detach(lp->lp_uao);
1633 			lp->lp_uao = NULL;
1634 			mutex_exit(&lp->lp_lock);
1635 			return error;
1636 		}
1637 	}
1638 
1639 	/* Get a free block and allocate for this LWP. */
1640 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1641 		if (lcp->lcp_nfree != 0)
1642 			break;
1643 	}
1644 	if (lcp == NULL) {
1645 		/* Nothing available - try to set up a free page. */
1646 		if (lp->lp_cur == lp->lp_max) {
1647 			mutex_exit(&lp->lp_lock);
1648 			return ENOMEM;
1649 		}
1650 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1651 		if (lcp == NULL) {
1652 			mutex_exit(&lp->lp_lock);
1653 			return ENOMEM;
1654 		}
1655 		/*
1656 		 * Wire the next page down in kernel space.  Since this
1657 		 * is a new mapping, we must add a reference.
1658 		 */
1659 		uao = lp->lp_uao;
1660 		(*uao->pgops->pgo_reference)(uao);
1661 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1662 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1663 		    uao, lp->lp_cur, PAGE_SIZE,
1664 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1665 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1666 		if (error != 0) {
1667 			mutex_exit(&lp->lp_lock);
1668 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1669 			(*uao->pgops->pgo_detach)(uao);
1670 			return error;
1671 		}
1672 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1673 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1674 		if (error != 0) {
1675 			mutex_exit(&lp->lp_lock);
1676 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1677 			    lcp->lcp_kaddr + PAGE_SIZE);
1678 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1679 			return error;
1680 		}
1681 		/* Prepare the page descriptor and link into the list. */
1682 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1683 		lp->lp_cur += PAGE_SIZE;
1684 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1685 		lcp->lcp_rotor = 0;
1686 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1687 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1688 	}
1689 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1690 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1691 			i = 0;
1692 	}
1693 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1694 	lcp->lcp_bitmap[i] ^= (1 << bit);
1695 	lcp->lcp_rotor = i;
1696 	lcp->lcp_nfree--;
1697 	l->l_lcpage = lcp;
1698 	offset = (i << 5) + bit;
1699 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1700 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1701 	mutex_exit(&lp->lp_lock);
1702 
1703 	KPREEMPT_DISABLE(l);
1704 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1705 	KPREEMPT_ENABLE(l);
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Free an lwpctl structure back to the per-process list.
1712  */
1713 void
1714 lwp_ctl_free(lwp_t *l)
1715 {
1716 	struct proc *p = l->l_proc;
1717 	lcproc_t *lp;
1718 	lcpage_t *lcp;
1719 	u_int map, offset;
1720 
1721 	/* don't free a lwp context we borrowed for vfork */
1722 	if (p->p_lflag & PL_PPWAIT) {
1723 		l->l_lwpctl = NULL;
1724 		return;
1725 	}
1726 
1727 	lp = p->p_lwpctl;
1728 	KASSERT(lp != NULL);
1729 
1730 	lcp = l->l_lcpage;
1731 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1732 	KASSERT(offset < LWPCTL_PER_PAGE);
1733 
1734 	mutex_enter(&lp->lp_lock);
1735 	lcp->lcp_nfree++;
1736 	map = offset >> 5;
1737 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1738 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1739 		lcp->lcp_rotor = map;
1740 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1741 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1742 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1743 	}
1744 	mutex_exit(&lp->lp_lock);
1745 }
1746 
1747 /*
1748  * Process is exiting; tear down lwpctl state.  This can only be safely
1749  * called by the last LWP in the process.
1750  */
1751 void
1752 lwp_ctl_exit(void)
1753 {
1754 	lcpage_t *lcp, *next;
1755 	lcproc_t *lp;
1756 	proc_t *p;
1757 	lwp_t *l;
1758 
1759 	l = curlwp;
1760 	l->l_lwpctl = NULL;
1761 	l->l_lcpage = NULL;
1762 	p = l->l_proc;
1763 	lp = p->p_lwpctl;
1764 
1765 	KASSERT(lp != NULL);
1766 	KASSERT(p->p_nlwps == 1);
1767 
1768 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1769 		next = TAILQ_NEXT(lcp, lcp_chain);
1770 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1771 		    lcp->lcp_kaddr + PAGE_SIZE);
1772 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1773 	}
1774 
1775 	if (lp->lp_uao != NULL) {
1776 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1777 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1778 	}
1779 
1780 	mutex_destroy(&lp->lp_lock);
1781 	kmem_free(lp, sizeof(*lp));
1782 	p->p_lwpctl = NULL;
1783 }
1784 
1785 /*
1786  * Return the current LWP's "preemption counter".  Used to detect
1787  * preemption across operations that can tolerate preemption without
1788  * crashing, but which may generate incorrect results if preempted.
1789  */
1790 uint64_t
1791 lwp_pctr(void)
1792 {
1793 
1794 	return curlwp->l_ncsw;
1795 }
1796 
1797 /*
1798  * Set an LWP's private data pointer.
1799  */
1800 int
1801 lwp_setprivate(struct lwp *l, void *ptr)
1802 {
1803 	int error = 0;
1804 
1805 	l->l_private = ptr;
1806 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1807 	error = cpu_lwp_setprivate(l, ptr);
1808 #endif
1809 	return error;
1810 }
1811 
1812 #if defined(DDB)
1813 #include <machine/pcb.h>
1814 
1815 void
1816 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1817 {
1818 	lwp_t *l;
1819 
1820 	LIST_FOREACH(l, &alllwp, l_list) {
1821 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1822 
1823 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1824 			continue;
1825 		}
1826 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1827 		    (void *)addr, (void *)stack,
1828 		    (size_t)(addr - stack), l);
1829 	}
1830 }
1831 #endif /* defined(DDB) */
1832