1 /* $NetBSD: kern_lwp.c,v 1.159 2011/06/13 21:32:42 matt Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.159 2011/06/13 21:32:42 matt Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_sa.h" 219 #include "opt_dtrace.h" 220 221 #define _LWP_API_PRIVATE 222 223 #include <sys/param.h> 224 #include <sys/systm.h> 225 #include <sys/cpu.h> 226 #include <sys/pool.h> 227 #include <sys/proc.h> 228 #include <sys/sa.h> 229 #include <sys/savar.h> 230 #include <sys/syscallargs.h> 231 #include <sys/syscall_stats.h> 232 #include <sys/kauth.h> 233 #include <sys/sleepq.h> 234 #include <sys/lockdebug.h> 235 #include <sys/kmem.h> 236 #include <sys/pset.h> 237 #include <sys/intr.h> 238 #include <sys/lwpctl.h> 239 #include <sys/atomic.h> 240 #include <sys/filedesc.h> 241 #include <sys/dtrace_bsd.h> 242 #include <sys/sdt.h> 243 #include <sys/xcall.h> 244 245 #include <uvm/uvm_extern.h> 246 #include <uvm/uvm_object.h> 247 248 static pool_cache_t lwp_cache __read_mostly; 249 struct lwplist alllwp __cacheline_aligned; 250 251 static void lwp_dtor(void *, void *); 252 253 /* DTrace proc provider probes */ 254 SDT_PROBE_DEFINE(proc,,,lwp_create, 255 "struct lwp *", NULL, 256 NULL, NULL, NULL, NULL, 257 NULL, NULL, NULL, NULL); 258 SDT_PROBE_DEFINE(proc,,,lwp_start, 259 "struct lwp *", NULL, 260 NULL, NULL, NULL, NULL, 261 NULL, NULL, NULL, NULL); 262 SDT_PROBE_DEFINE(proc,,,lwp_exit, 263 "struct lwp *", NULL, 264 NULL, NULL, NULL, NULL, 265 NULL, NULL, NULL, NULL); 266 267 struct turnstile turnstile0; 268 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 269 #ifdef LWP0_CPU_INFO 270 .l_cpu = LWP0_CPU_INFO, 271 #endif 272 #ifdef LWP0_MD_INITIALIZER 273 .l_md = LWP0_MD_INITIALIZER, 274 #endif 275 .l_proc = &proc0, 276 .l_lid = 1, 277 .l_flag = LW_SYSTEM, 278 .l_stat = LSONPROC, 279 .l_ts = &turnstile0, 280 .l_syncobj = &sched_syncobj, 281 .l_refcnt = 1, 282 .l_priority = PRI_USER + NPRI_USER - 1, 283 .l_inheritedprio = -1, 284 .l_class = SCHED_OTHER, 285 .l_psid = PS_NONE, 286 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 287 .l_name = __UNCONST("swapper"), 288 .l_fd = &filedesc0, 289 }; 290 291 void 292 lwpinit(void) 293 { 294 295 LIST_INIT(&alllwp); 296 lwpinit_specificdata(); 297 lwp_sys_init(); 298 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 299 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 300 } 301 302 void 303 lwp0_init(void) 304 { 305 struct lwp *l = &lwp0; 306 307 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 308 KASSERT(l->l_lid == proc0.p_nlwpid); 309 310 LIST_INSERT_HEAD(&alllwp, l, l_list); 311 312 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 313 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 314 cv_init(&l->l_sigcv, "sigwait"); 315 316 kauth_cred_hold(proc0.p_cred); 317 l->l_cred = proc0.p_cred; 318 319 lwp_initspecific(l); 320 321 SYSCALL_TIME_LWP_INIT(l); 322 } 323 324 static void 325 lwp_dtor(void *arg, void *obj) 326 { 327 lwp_t *l = obj; 328 uint64_t where; 329 (void)l; 330 331 /* 332 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 333 * calls will exit before memory of LWP is returned to the pool, where 334 * KVA of LWP structure might be freed and re-used for other purposes. 335 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 336 * callers, therefore cross-call to all CPUs will do the job. Also, 337 * the value of l->l_cpu must be still valid at this point. 338 */ 339 KASSERT(l->l_cpu != NULL); 340 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 341 xc_wait(where); 342 } 343 344 /* 345 * Set an suspended. 346 * 347 * Must be called with p_lock held, and the LWP locked. Will unlock the 348 * LWP before return. 349 */ 350 int 351 lwp_suspend(struct lwp *curl, struct lwp *t) 352 { 353 int error; 354 355 KASSERT(mutex_owned(t->l_proc->p_lock)); 356 KASSERT(lwp_locked(t, NULL)); 357 358 KASSERT(curl != t || curl->l_stat == LSONPROC); 359 360 /* 361 * If the current LWP has been told to exit, we must not suspend anyone 362 * else or deadlock could occur. We won't return to userspace. 363 */ 364 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 365 lwp_unlock(t); 366 return (EDEADLK); 367 } 368 369 error = 0; 370 371 switch (t->l_stat) { 372 case LSRUN: 373 case LSONPROC: 374 t->l_flag |= LW_WSUSPEND; 375 lwp_need_userret(t); 376 lwp_unlock(t); 377 break; 378 379 case LSSLEEP: 380 t->l_flag |= LW_WSUSPEND; 381 382 /* 383 * Kick the LWP and try to get it to the kernel boundary 384 * so that it will release any locks that it holds. 385 * setrunnable() will release the lock. 386 */ 387 if ((t->l_flag & LW_SINTR) != 0) 388 setrunnable(t); 389 else 390 lwp_unlock(t); 391 break; 392 393 case LSSUSPENDED: 394 lwp_unlock(t); 395 break; 396 397 case LSSTOP: 398 t->l_flag |= LW_WSUSPEND; 399 setrunnable(t); 400 break; 401 402 case LSIDL: 403 case LSZOMB: 404 error = EINTR; /* It's what Solaris does..... */ 405 lwp_unlock(t); 406 break; 407 } 408 409 return (error); 410 } 411 412 /* 413 * Restart a suspended LWP. 414 * 415 * Must be called with p_lock held, and the LWP locked. Will unlock the 416 * LWP before return. 417 */ 418 void 419 lwp_continue(struct lwp *l) 420 { 421 422 KASSERT(mutex_owned(l->l_proc->p_lock)); 423 KASSERT(lwp_locked(l, NULL)); 424 425 /* If rebooting or not suspended, then just bail out. */ 426 if ((l->l_flag & LW_WREBOOT) != 0) { 427 lwp_unlock(l); 428 return; 429 } 430 431 l->l_flag &= ~LW_WSUSPEND; 432 433 if (l->l_stat != LSSUSPENDED) { 434 lwp_unlock(l); 435 return; 436 } 437 438 /* setrunnable() will release the lock. */ 439 setrunnable(l); 440 } 441 442 /* 443 * Restart a stopped LWP. 444 * 445 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 446 * LWP before return. 447 */ 448 void 449 lwp_unstop(struct lwp *l) 450 { 451 struct proc *p = l->l_proc; 452 453 KASSERT(mutex_owned(proc_lock)); 454 KASSERT(mutex_owned(p->p_lock)); 455 456 lwp_lock(l); 457 458 /* If not stopped, then just bail out. */ 459 if (l->l_stat != LSSTOP) { 460 lwp_unlock(l); 461 return; 462 } 463 464 p->p_stat = SACTIVE; 465 p->p_sflag &= ~PS_STOPPING; 466 467 if (!p->p_waited) 468 p->p_pptr->p_nstopchild--; 469 470 if (l->l_wchan == NULL) { 471 /* setrunnable() will release the lock. */ 472 setrunnable(l); 473 } else { 474 l->l_stat = LSSLEEP; 475 p->p_nrlwps++; 476 lwp_unlock(l); 477 } 478 } 479 480 /* 481 * Wait for an LWP within the current process to exit. If 'lid' is 482 * non-zero, we are waiting for a specific LWP. 483 * 484 * Must be called with p->p_lock held. 485 */ 486 int 487 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags) 488 { 489 struct proc *p = l->l_proc; 490 struct lwp *l2; 491 int nfound, error; 492 lwpid_t curlid; 493 bool exiting; 494 495 KASSERT(mutex_owned(p->p_lock)); 496 497 p->p_nlwpwait++; 498 l->l_waitingfor = lid; 499 curlid = l->l_lid; 500 exiting = ((flags & LWPWAIT_EXITCONTROL) != 0); 501 502 for (;;) { 503 /* 504 * Avoid a race between exit1() and sigexit(): if the 505 * process is dumping core, then we need to bail out: call 506 * into lwp_userret() where we will be suspended until the 507 * deed is done. 508 */ 509 if ((p->p_sflag & PS_WCORE) != 0) { 510 mutex_exit(p->p_lock); 511 lwp_userret(l); 512 #ifdef DIAGNOSTIC 513 panic("lwp_wait1"); 514 #endif 515 /* NOTREACHED */ 516 } 517 518 /* 519 * First off, drain any detached LWP that is waiting to be 520 * reaped. 521 */ 522 while ((l2 = p->p_zomblwp) != NULL) { 523 p->p_zomblwp = NULL; 524 lwp_free(l2, false, false);/* releases proc mutex */ 525 mutex_enter(p->p_lock); 526 } 527 528 /* 529 * Now look for an LWP to collect. If the whole process is 530 * exiting, count detached LWPs as eligible to be collected, 531 * but don't drain them here. 532 */ 533 nfound = 0; 534 error = 0; 535 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 536 /* 537 * If a specific wait and the target is waiting on 538 * us, then avoid deadlock. This also traps LWPs 539 * that try to wait on themselves. 540 * 541 * Note that this does not handle more complicated 542 * cycles, like: t1 -> t2 -> t3 -> t1. The process 543 * can still be killed so it is not a major problem. 544 */ 545 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 546 error = EDEADLK; 547 break; 548 } 549 if (l2 == l) 550 continue; 551 if ((l2->l_prflag & LPR_DETACHED) != 0) { 552 nfound += exiting; 553 continue; 554 } 555 if (lid != 0) { 556 if (l2->l_lid != lid) 557 continue; 558 /* 559 * Mark this LWP as the first waiter, if there 560 * is no other. 561 */ 562 if (l2->l_waiter == 0) 563 l2->l_waiter = curlid; 564 } else if (l2->l_waiter != 0) { 565 /* 566 * It already has a waiter - so don't 567 * collect it. If the waiter doesn't 568 * grab it we'll get another chance 569 * later. 570 */ 571 nfound++; 572 continue; 573 } 574 nfound++; 575 576 /* No need to lock the LWP in order to see LSZOMB. */ 577 if (l2->l_stat != LSZOMB) 578 continue; 579 580 /* 581 * We're no longer waiting. Reset the "first waiter" 582 * pointer on the target, in case it was us. 583 */ 584 l->l_waitingfor = 0; 585 l2->l_waiter = 0; 586 p->p_nlwpwait--; 587 if (departed) 588 *departed = l2->l_lid; 589 sched_lwp_collect(l2); 590 591 /* lwp_free() releases the proc lock. */ 592 lwp_free(l2, false, false); 593 mutex_enter(p->p_lock); 594 return 0; 595 } 596 597 if (error != 0) 598 break; 599 if (nfound == 0) { 600 error = ESRCH; 601 break; 602 } 603 604 /* 605 * The kernel is careful to ensure that it can not deadlock 606 * when exiting - just keep waiting. 607 */ 608 if (exiting) { 609 KASSERT(p->p_nlwps > 1); 610 cv_wait(&p->p_lwpcv, p->p_lock); 611 continue; 612 } 613 614 /* 615 * If all other LWPs are waiting for exits or suspends 616 * and the supply of zombies and potential zombies is 617 * exhausted, then we are about to deadlock. 618 * 619 * If the process is exiting (and this LWP is not the one 620 * that is coordinating the exit) then bail out now. 621 */ 622 if ((p->p_sflag & PS_WEXIT) != 0 || 623 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 624 error = EDEADLK; 625 break; 626 } 627 628 /* 629 * Sit around and wait for something to happen. We'll be 630 * awoken if any of the conditions examined change: if an 631 * LWP exits, is collected, or is detached. 632 */ 633 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 634 break; 635 } 636 637 /* 638 * We didn't find any LWPs to collect, we may have received a 639 * signal, or some other condition has caused us to bail out. 640 * 641 * If waiting on a specific LWP, clear the waiters marker: some 642 * other LWP may want it. Then, kick all the remaining waiters 643 * so that they can re-check for zombies and for deadlock. 644 */ 645 if (lid != 0) { 646 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 647 if (l2->l_lid == lid) { 648 if (l2->l_waiter == curlid) 649 l2->l_waiter = 0; 650 break; 651 } 652 } 653 } 654 p->p_nlwpwait--; 655 l->l_waitingfor = 0; 656 cv_broadcast(&p->p_lwpcv); 657 658 return error; 659 } 660 661 /* 662 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 663 * The new LWP is created in state LSIDL and must be set running, 664 * suspended, or stopped by the caller. 665 */ 666 int 667 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 668 void *stack, size_t stacksize, void (*func)(void *), void *arg, 669 lwp_t **rnewlwpp, int sclass) 670 { 671 struct lwp *l2, *isfree; 672 turnstile_t *ts; 673 lwpid_t lid; 674 675 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 676 677 /* 678 * First off, reap any detached LWP waiting to be collected. 679 * We can re-use its LWP structure and turnstile. 680 */ 681 isfree = NULL; 682 if (p2->p_zomblwp != NULL) { 683 mutex_enter(p2->p_lock); 684 if ((isfree = p2->p_zomblwp) != NULL) { 685 p2->p_zomblwp = NULL; 686 lwp_free(isfree, true, false);/* releases proc mutex */ 687 } else 688 mutex_exit(p2->p_lock); 689 } 690 if (isfree == NULL) { 691 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 692 memset(l2, 0, sizeof(*l2)); 693 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 694 SLIST_INIT(&l2->l_pi_lenders); 695 } else { 696 l2 = isfree; 697 ts = l2->l_ts; 698 KASSERT(l2->l_inheritedprio == -1); 699 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 700 memset(l2, 0, sizeof(*l2)); 701 l2->l_ts = ts; 702 } 703 704 l2->l_stat = LSIDL; 705 l2->l_proc = p2; 706 l2->l_refcnt = 1; 707 l2->l_class = sclass; 708 709 /* 710 * If vfork(), we want the LWP to run fast and on the same CPU 711 * as its parent, so that it can reuse the VM context and cache 712 * footprint on the local CPU. 713 */ 714 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 715 l2->l_kpribase = PRI_KERNEL; 716 l2->l_priority = l1->l_priority; 717 l2->l_inheritedprio = -1; 718 l2->l_flag = 0; 719 l2->l_pflag = LP_MPSAFE; 720 TAILQ_INIT(&l2->l_ld_locks); 721 722 /* 723 * For vfork, borrow parent's lwpctl context if it exists. 724 * This also causes us to return via lwp_userret. 725 */ 726 if (flags & LWP_VFORK && l1->l_lwpctl) { 727 l2->l_lwpctl = l1->l_lwpctl; 728 l2->l_flag |= LW_LWPCTL; 729 } 730 731 /* 732 * If not the first LWP in the process, grab a reference to the 733 * descriptor table. 734 */ 735 l2->l_fd = p2->p_fd; 736 if (p2->p_nlwps != 0) { 737 KASSERT(l1->l_proc == p2); 738 fd_hold(l2); 739 } else { 740 KASSERT(l1->l_proc != p2); 741 } 742 743 if (p2->p_flag & PK_SYSTEM) { 744 /* Mark it as a system LWP. */ 745 l2->l_flag |= LW_SYSTEM; 746 } 747 748 kpreempt_disable(); 749 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 750 l2->l_cpu = l1->l_cpu; 751 kpreempt_enable(); 752 753 kdtrace_thread_ctor(NULL, l2); 754 lwp_initspecific(l2); 755 sched_lwp_fork(l1, l2); 756 lwp_update_creds(l2); 757 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 758 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 759 cv_init(&l2->l_sigcv, "sigwait"); 760 l2->l_syncobj = &sched_syncobj; 761 762 if (rnewlwpp != NULL) 763 *rnewlwpp = l2; 764 765 /* 766 * PCU state needs to be saved before calling uvm_lwp_fork() so that 767 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 768 */ 769 pcu_save_all(l1); 770 771 uvm_lwp_setuarea(l2, uaddr); 772 uvm_lwp_fork(l1, l2, stack, stacksize, func, 773 (arg != NULL) ? arg : l2); 774 775 if ((flags & LWP_PIDLID) != 0) { 776 lid = proc_alloc_pid(p2); 777 l2->l_pflag |= LP_PIDLID; 778 } else { 779 lid = 0; 780 } 781 782 mutex_enter(p2->p_lock); 783 784 if ((flags & LWP_DETACHED) != 0) { 785 l2->l_prflag = LPR_DETACHED; 786 p2->p_ndlwps++; 787 } else 788 l2->l_prflag = 0; 789 790 l2->l_sigmask = l1->l_sigmask; 791 CIRCLEQ_INIT(&l2->l_sigpend.sp_info); 792 sigemptyset(&l2->l_sigpend.sp_set); 793 794 if (lid == 0) { 795 p2->p_nlwpid++; 796 if (p2->p_nlwpid == 0) 797 p2->p_nlwpid++; 798 lid = p2->p_nlwpid; 799 } 800 l2->l_lid = lid; 801 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 802 p2->p_nlwps++; 803 p2->p_nrlwps++; 804 805 if ((p2->p_flag & PK_SYSTEM) == 0) { 806 /* Inherit an affinity */ 807 if (l1->l_flag & LW_AFFINITY) { 808 /* 809 * Note that we hold the state lock while inheriting 810 * the affinity to avoid race with sched_setaffinity(). 811 */ 812 lwp_lock(l1); 813 if (l1->l_flag & LW_AFFINITY) { 814 kcpuset_use(l1->l_affinity); 815 l2->l_affinity = l1->l_affinity; 816 l2->l_flag |= LW_AFFINITY; 817 } 818 lwp_unlock(l1); 819 } 820 lwp_lock(l2); 821 /* Inherit a processor-set */ 822 l2->l_psid = l1->l_psid; 823 /* Look for a CPU to start */ 824 l2->l_cpu = sched_takecpu(l2); 825 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 826 } 827 mutex_exit(p2->p_lock); 828 829 SDT_PROBE(proc,,,lwp_create, l2, 0,0,0,0); 830 831 mutex_enter(proc_lock); 832 LIST_INSERT_HEAD(&alllwp, l2, l_list); 833 mutex_exit(proc_lock); 834 835 SYSCALL_TIME_LWP_INIT(l2); 836 837 if (p2->p_emul->e_lwp_fork) 838 (*p2->p_emul->e_lwp_fork)(l1, l2); 839 840 return (0); 841 } 842 843 /* 844 * Called by MD code when a new LWP begins execution. Must be called 845 * with the previous LWP locked (so at splsched), or if there is no 846 * previous LWP, at splsched. 847 */ 848 void 849 lwp_startup(struct lwp *prev, struct lwp *new) 850 { 851 852 SDT_PROBE(proc,,,lwp_start, new, 0,0,0,0); 853 854 KASSERT(kpreempt_disabled()); 855 if (prev != NULL) { 856 /* 857 * Normalize the count of the spin-mutexes, it was 858 * increased in mi_switch(). Unmark the state of 859 * context switch - it is finished for previous LWP. 860 */ 861 curcpu()->ci_mtx_count++; 862 membar_exit(); 863 prev->l_ctxswtch = 0; 864 } 865 KPREEMPT_DISABLE(new); 866 spl0(); 867 pmap_activate(new); 868 LOCKDEBUG_BARRIER(NULL, 0); 869 KPREEMPT_ENABLE(new); 870 if ((new->l_pflag & LP_MPSAFE) == 0) { 871 KERNEL_LOCK(1, new); 872 } 873 } 874 875 /* 876 * Exit an LWP. 877 */ 878 void 879 lwp_exit(struct lwp *l) 880 { 881 struct proc *p = l->l_proc; 882 struct lwp *l2; 883 bool current; 884 885 current = (l == curlwp); 886 887 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 888 KASSERT(p == curproc); 889 890 SDT_PROBE(proc,,,lwp_exit, l, 0,0,0,0); 891 892 /* 893 * Verify that we hold no locks other than the kernel lock. 894 */ 895 LOCKDEBUG_BARRIER(&kernel_lock, 0); 896 897 /* 898 * If we are the last live LWP in a process, we need to exit the 899 * entire process. We do so with an exit status of zero, because 900 * it's a "controlled" exit, and because that's what Solaris does. 901 * 902 * We are not quite a zombie yet, but for accounting purposes we 903 * must increment the count of zombies here. 904 * 905 * Note: the last LWP's specificdata will be deleted here. 906 */ 907 mutex_enter(p->p_lock); 908 if (p->p_nlwps - p->p_nzlwps == 1) { 909 KASSERT(current == true); 910 /* XXXSMP kernel_lock not held */ 911 exit1(l, 0); 912 /* NOTREACHED */ 913 } 914 p->p_nzlwps++; 915 mutex_exit(p->p_lock); 916 917 if (p->p_emul->e_lwp_exit) 918 (*p->p_emul->e_lwp_exit)(l); 919 920 /* Drop filedesc reference. */ 921 fd_free(); 922 923 /* Delete the specificdata while it's still safe to sleep. */ 924 lwp_finispecific(l); 925 926 /* 927 * Release our cached credentials. 928 */ 929 kauth_cred_free(l->l_cred); 930 callout_destroy(&l->l_timeout_ch); 931 932 /* 933 * Remove the LWP from the global list. 934 * Free its LID from the PID namespace if needed. 935 */ 936 mutex_enter(proc_lock); 937 LIST_REMOVE(l, l_list); 938 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 939 proc_free_pid(l->l_lid); 940 } 941 mutex_exit(proc_lock); 942 943 /* 944 * Get rid of all references to the LWP that others (e.g. procfs) 945 * may have, and mark the LWP as a zombie. If the LWP is detached, 946 * mark it waiting for collection in the proc structure. Note that 947 * before we can do that, we need to free any other dead, deatched 948 * LWP waiting to meet its maker. 949 */ 950 mutex_enter(p->p_lock); 951 lwp_drainrefs(l); 952 953 if ((l->l_prflag & LPR_DETACHED) != 0) { 954 while ((l2 = p->p_zomblwp) != NULL) { 955 p->p_zomblwp = NULL; 956 lwp_free(l2, false, false);/* releases proc mutex */ 957 mutex_enter(p->p_lock); 958 l->l_refcnt++; 959 lwp_drainrefs(l); 960 } 961 p->p_zomblwp = l; 962 } 963 964 /* 965 * If we find a pending signal for the process and we have been 966 * asked to check for signals, then we lose: arrange to have 967 * all other LWPs in the process check for signals. 968 */ 969 if ((l->l_flag & LW_PENDSIG) != 0 && 970 firstsig(&p->p_sigpend.sp_set) != 0) { 971 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 972 lwp_lock(l2); 973 l2->l_flag |= LW_PENDSIG; 974 lwp_unlock(l2); 975 } 976 } 977 978 /* 979 * Release any PCU resources before becoming a zombie. 980 */ 981 pcu_discard_all(l); 982 983 lwp_lock(l); 984 l->l_stat = LSZOMB; 985 if (l->l_name != NULL) 986 strcpy(l->l_name, "(zombie)"); 987 if (l->l_flag & LW_AFFINITY) { 988 l->l_flag &= ~LW_AFFINITY; 989 } else { 990 KASSERT(l->l_affinity == NULL); 991 } 992 lwp_unlock(l); 993 p->p_nrlwps--; 994 cv_broadcast(&p->p_lwpcv); 995 if (l->l_lwpctl != NULL) 996 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 997 mutex_exit(p->p_lock); 998 999 /* Safe without lock since LWP is in zombie state */ 1000 if (l->l_affinity) { 1001 kcpuset_unuse(l->l_affinity, NULL); 1002 l->l_affinity = NULL; 1003 } 1004 1005 /* 1006 * We can no longer block. At this point, lwp_free() may already 1007 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1008 * 1009 * Free MD LWP resources. 1010 */ 1011 cpu_lwp_free(l, 0); 1012 1013 if (current) { 1014 pmap_deactivate(l); 1015 1016 /* 1017 * Release the kernel lock, and switch away into 1018 * oblivion. 1019 */ 1020 #ifdef notyet 1021 /* XXXSMP hold in lwp_userret() */ 1022 KERNEL_UNLOCK_LAST(l); 1023 #else 1024 KERNEL_UNLOCK_ALL(l, NULL); 1025 #endif 1026 lwp_exit_switchaway(l); 1027 } 1028 } 1029 1030 /* 1031 * Free a dead LWP's remaining resources. 1032 * 1033 * XXXLWP limits. 1034 */ 1035 void 1036 lwp_free(struct lwp *l, bool recycle, bool last) 1037 { 1038 struct proc *p = l->l_proc; 1039 struct rusage *ru; 1040 ksiginfoq_t kq; 1041 1042 KASSERT(l != curlwp); 1043 1044 /* 1045 * If this was not the last LWP in the process, then adjust 1046 * counters and unlock. 1047 */ 1048 if (!last) { 1049 /* 1050 * Add the LWP's run time to the process' base value. 1051 * This needs to co-incide with coming off p_lwps. 1052 */ 1053 bintime_add(&p->p_rtime, &l->l_rtime); 1054 p->p_pctcpu += l->l_pctcpu; 1055 ru = &p->p_stats->p_ru; 1056 ruadd(ru, &l->l_ru); 1057 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1058 ru->ru_nivcsw += l->l_nivcsw; 1059 LIST_REMOVE(l, l_sibling); 1060 p->p_nlwps--; 1061 p->p_nzlwps--; 1062 if ((l->l_prflag & LPR_DETACHED) != 0) 1063 p->p_ndlwps--; 1064 1065 /* 1066 * Have any LWPs sleeping in lwp_wait() recheck for 1067 * deadlock. 1068 */ 1069 cv_broadcast(&p->p_lwpcv); 1070 mutex_exit(p->p_lock); 1071 } 1072 1073 #ifdef MULTIPROCESSOR 1074 /* 1075 * In the unlikely event that the LWP is still on the CPU, 1076 * then spin until it has switched away. We need to release 1077 * all locks to avoid deadlock against interrupt handlers on 1078 * the target CPU. 1079 */ 1080 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1081 int count; 1082 (void)count; /* XXXgcc */ 1083 KERNEL_UNLOCK_ALL(curlwp, &count); 1084 while ((l->l_pflag & LP_RUNNING) != 0 || 1085 l->l_cpu->ci_curlwp == l) 1086 SPINLOCK_BACKOFF_HOOK; 1087 KERNEL_LOCK(count, curlwp); 1088 } 1089 #endif 1090 1091 /* 1092 * Destroy the LWP's remaining signal information. 1093 */ 1094 ksiginfo_queue_init(&kq); 1095 sigclear(&l->l_sigpend, NULL, &kq); 1096 ksiginfo_queue_drain(&kq); 1097 cv_destroy(&l->l_sigcv); 1098 1099 /* 1100 * Free the LWP's turnstile and the LWP structure itself unless the 1101 * caller wants to recycle them. Also, free the scheduler specific 1102 * data. 1103 * 1104 * We can't return turnstile0 to the pool (it didn't come from it), 1105 * so if it comes up just drop it quietly and move on. 1106 * 1107 * We don't recycle the VM resources at this time. 1108 */ 1109 if (l->l_lwpctl != NULL) 1110 lwp_ctl_free(l); 1111 1112 if (!recycle && l->l_ts != &turnstile0) 1113 pool_cache_put(turnstile_cache, l->l_ts); 1114 if (l->l_name != NULL) 1115 kmem_free(l->l_name, MAXCOMLEN); 1116 1117 cpu_lwp_free2(l); 1118 uvm_lwp_exit(l); 1119 1120 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1121 KASSERT(l->l_inheritedprio == -1); 1122 KASSERT(l->l_blcnt == 0); 1123 kdtrace_thread_dtor(NULL, l); 1124 if (!recycle) 1125 pool_cache_put(lwp_cache, l); 1126 } 1127 1128 /* 1129 * Migrate the LWP to the another CPU. Unlocks the LWP. 1130 */ 1131 void 1132 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1133 { 1134 struct schedstate_percpu *tspc; 1135 int lstat = l->l_stat; 1136 1137 KASSERT(lwp_locked(l, NULL)); 1138 KASSERT(tci != NULL); 1139 1140 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1141 if ((l->l_pflag & LP_RUNNING) != 0) { 1142 lstat = LSONPROC; 1143 } 1144 1145 /* 1146 * The destination CPU could be changed while previous migration 1147 * was not finished. 1148 */ 1149 if (l->l_target_cpu != NULL) { 1150 l->l_target_cpu = tci; 1151 lwp_unlock(l); 1152 return; 1153 } 1154 1155 /* Nothing to do if trying to migrate to the same CPU */ 1156 if (l->l_cpu == tci) { 1157 lwp_unlock(l); 1158 return; 1159 } 1160 1161 KASSERT(l->l_target_cpu == NULL); 1162 tspc = &tci->ci_schedstate; 1163 switch (lstat) { 1164 case LSRUN: 1165 l->l_target_cpu = tci; 1166 break; 1167 case LSIDL: 1168 l->l_cpu = tci; 1169 lwp_unlock_to(l, tspc->spc_mutex); 1170 return; 1171 case LSSLEEP: 1172 l->l_cpu = tci; 1173 break; 1174 case LSSTOP: 1175 case LSSUSPENDED: 1176 l->l_cpu = tci; 1177 if (l->l_wchan == NULL) { 1178 lwp_unlock_to(l, tspc->spc_lwplock); 1179 return; 1180 } 1181 break; 1182 case LSONPROC: 1183 l->l_target_cpu = tci; 1184 spc_lock(l->l_cpu); 1185 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1186 spc_unlock(l->l_cpu); 1187 break; 1188 } 1189 lwp_unlock(l); 1190 } 1191 1192 /* 1193 * Find the LWP in the process. Arguments may be zero, in such case, 1194 * the calling process and first LWP in the list will be used. 1195 * On success - returns proc locked. 1196 */ 1197 struct lwp * 1198 lwp_find2(pid_t pid, lwpid_t lid) 1199 { 1200 proc_t *p; 1201 lwp_t *l; 1202 1203 /* Find the process. */ 1204 if (pid != 0) { 1205 mutex_enter(proc_lock); 1206 p = proc_find(pid); 1207 if (p == NULL) { 1208 mutex_exit(proc_lock); 1209 return NULL; 1210 } 1211 mutex_enter(p->p_lock); 1212 mutex_exit(proc_lock); 1213 } else { 1214 p = curlwp->l_proc; 1215 mutex_enter(p->p_lock); 1216 } 1217 /* Find the thread. */ 1218 if (lid != 0) { 1219 l = lwp_find(p, lid); 1220 } else { 1221 l = LIST_FIRST(&p->p_lwps); 1222 } 1223 if (l == NULL) { 1224 mutex_exit(p->p_lock); 1225 } 1226 return l; 1227 } 1228 1229 /* 1230 * Look up a live LWP within the specified process, and return it locked. 1231 * 1232 * Must be called with p->p_lock held. 1233 */ 1234 struct lwp * 1235 lwp_find(struct proc *p, lwpid_t id) 1236 { 1237 struct lwp *l; 1238 1239 KASSERT(mutex_owned(p->p_lock)); 1240 1241 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1242 if (l->l_lid == id) 1243 break; 1244 } 1245 1246 /* 1247 * No need to lock - all of these conditions will 1248 * be visible with the process level mutex held. 1249 */ 1250 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1251 l = NULL; 1252 1253 return l; 1254 } 1255 1256 /* 1257 * Update an LWP's cached credentials to mirror the process' master copy. 1258 * 1259 * This happens early in the syscall path, on user trap, and on LWP 1260 * creation. A long-running LWP can also voluntarily choose to update 1261 * it's credentials by calling this routine. This may be called from 1262 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1263 */ 1264 void 1265 lwp_update_creds(struct lwp *l) 1266 { 1267 kauth_cred_t oc; 1268 struct proc *p; 1269 1270 p = l->l_proc; 1271 oc = l->l_cred; 1272 1273 mutex_enter(p->p_lock); 1274 kauth_cred_hold(p->p_cred); 1275 l->l_cred = p->p_cred; 1276 l->l_prflag &= ~LPR_CRMOD; 1277 mutex_exit(p->p_lock); 1278 if (oc != NULL) 1279 kauth_cred_free(oc); 1280 } 1281 1282 /* 1283 * Verify that an LWP is locked, and optionally verify that the lock matches 1284 * one we specify. 1285 */ 1286 int 1287 lwp_locked(struct lwp *l, kmutex_t *mtx) 1288 { 1289 kmutex_t *cur = l->l_mutex; 1290 1291 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1292 } 1293 1294 /* 1295 * Lend a new mutex to an LWP. The old mutex must be held. 1296 */ 1297 void 1298 lwp_setlock(struct lwp *l, kmutex_t *new) 1299 { 1300 1301 KASSERT(mutex_owned(l->l_mutex)); 1302 1303 membar_exit(); 1304 l->l_mutex = new; 1305 } 1306 1307 /* 1308 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1309 * must be held. 1310 */ 1311 void 1312 lwp_unlock_to(struct lwp *l, kmutex_t *new) 1313 { 1314 kmutex_t *old; 1315 1316 KASSERT(lwp_locked(l, NULL)); 1317 1318 old = l->l_mutex; 1319 membar_exit(); 1320 l->l_mutex = new; 1321 mutex_spin_exit(old); 1322 } 1323 1324 int 1325 lwp_trylock(struct lwp *l) 1326 { 1327 kmutex_t *old; 1328 1329 for (;;) { 1330 if (!mutex_tryenter(old = l->l_mutex)) 1331 return 0; 1332 if (__predict_true(l->l_mutex == old)) 1333 return 1; 1334 mutex_spin_exit(old); 1335 } 1336 } 1337 1338 void 1339 lwp_unsleep(lwp_t *l, bool cleanup) 1340 { 1341 1342 KASSERT(mutex_owned(l->l_mutex)); 1343 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1344 } 1345 1346 /* 1347 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1348 * set. 1349 */ 1350 void 1351 lwp_userret(struct lwp *l) 1352 { 1353 struct proc *p; 1354 int sig; 1355 1356 KASSERT(l == curlwp); 1357 KASSERT(l->l_stat == LSONPROC); 1358 p = l->l_proc; 1359 1360 #ifndef __HAVE_FAST_SOFTINTS 1361 /* Run pending soft interrupts. */ 1362 if (l->l_cpu->ci_data.cpu_softints != 0) 1363 softint_overlay(); 1364 #endif 1365 1366 #ifdef KERN_SA 1367 /* Generate UNBLOCKED upcall if needed */ 1368 if (l->l_flag & LW_SA_BLOCKING) { 1369 sa_unblock_userret(l); 1370 /* NOTREACHED */ 1371 } 1372 #endif 1373 1374 /* 1375 * It should be safe to do this read unlocked on a multiprocessor 1376 * system.. 1377 * 1378 * LW_SA_UPCALL will be handled after the while() loop, so don't 1379 * consider it now. 1380 */ 1381 while ((l->l_flag & (LW_USERRET & ~(LW_SA_UPCALL))) != 0) { 1382 /* 1383 * Process pending signals first, unless the process 1384 * is dumping core or exiting, where we will instead 1385 * enter the LW_WSUSPEND case below. 1386 */ 1387 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1388 LW_PENDSIG) { 1389 mutex_enter(p->p_lock); 1390 while ((sig = issignal(l)) != 0) 1391 postsig(sig); 1392 mutex_exit(p->p_lock); 1393 } 1394 1395 /* 1396 * Core-dump or suspend pending. 1397 * 1398 * In case of core dump, suspend ourselves, so that the kernel 1399 * stack and therefore the userland registers saved in the 1400 * trapframe are around for coredump() to write them out. 1401 * We also need to save any PCU resources that we have so that 1402 * they accessible for coredump(). We issue a wakeup on 1403 * p->p_lwpcv so that sigexit() will write the core file out 1404 * once all other LWPs are suspended. 1405 */ 1406 if ((l->l_flag & LW_WSUSPEND) != 0) { 1407 pcu_save_all(l); 1408 mutex_enter(p->p_lock); 1409 p->p_nrlwps--; 1410 cv_broadcast(&p->p_lwpcv); 1411 lwp_lock(l); 1412 l->l_stat = LSSUSPENDED; 1413 lwp_unlock(l); 1414 mutex_exit(p->p_lock); 1415 lwp_lock(l); 1416 mi_switch(l); 1417 } 1418 1419 /* Process is exiting. */ 1420 if ((l->l_flag & LW_WEXIT) != 0) { 1421 lwp_exit(l); 1422 KASSERT(0); 1423 /* NOTREACHED */ 1424 } 1425 1426 /* update lwpctl processor (for vfork child_return) */ 1427 if (l->l_flag & LW_LWPCTL) { 1428 lwp_lock(l); 1429 KASSERT(kpreempt_disabled()); 1430 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1431 l->l_lwpctl->lc_pctr++; 1432 l->l_flag &= ~LW_LWPCTL; 1433 lwp_unlock(l); 1434 } 1435 } 1436 1437 #ifdef KERN_SA 1438 /* 1439 * Timer events are handled specially. We only try once to deliver 1440 * pending timer upcalls; if if fails, we can try again on the next 1441 * loop around. If we need to re-enter lwp_userret(), MD code will 1442 * bounce us back here through the trap path after we return. 1443 */ 1444 if (p->p_timerpend) 1445 timerupcall(l); 1446 if (l->l_flag & LW_SA_UPCALL) 1447 sa_upcall_userret(l); 1448 #endif /* KERN_SA */ 1449 } 1450 1451 /* 1452 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1453 */ 1454 void 1455 lwp_need_userret(struct lwp *l) 1456 { 1457 KASSERT(lwp_locked(l, NULL)); 1458 1459 /* 1460 * Since the tests in lwp_userret() are done unlocked, make sure 1461 * that the condition will be seen before forcing the LWP to enter 1462 * kernel mode. 1463 */ 1464 membar_producer(); 1465 cpu_signotify(l); 1466 } 1467 1468 /* 1469 * Add one reference to an LWP. This will prevent the LWP from 1470 * exiting, thus keep the lwp structure and PCB around to inspect. 1471 */ 1472 void 1473 lwp_addref(struct lwp *l) 1474 { 1475 1476 KASSERT(mutex_owned(l->l_proc->p_lock)); 1477 KASSERT(l->l_stat != LSZOMB); 1478 KASSERT(l->l_refcnt != 0); 1479 1480 l->l_refcnt++; 1481 } 1482 1483 /* 1484 * Remove one reference to an LWP. If this is the last reference, 1485 * then we must finalize the LWP's death. 1486 */ 1487 void 1488 lwp_delref(struct lwp *l) 1489 { 1490 struct proc *p = l->l_proc; 1491 1492 mutex_enter(p->p_lock); 1493 lwp_delref2(l); 1494 mutex_exit(p->p_lock); 1495 } 1496 1497 /* 1498 * Remove one reference to an LWP. If this is the last reference, 1499 * then we must finalize the LWP's death. The proc mutex is held 1500 * on entry. 1501 */ 1502 void 1503 lwp_delref2(struct lwp *l) 1504 { 1505 struct proc *p = l->l_proc; 1506 1507 KASSERT(mutex_owned(p->p_lock)); 1508 KASSERT(l->l_stat != LSZOMB); 1509 KASSERT(l->l_refcnt > 0); 1510 if (--l->l_refcnt == 0) 1511 cv_broadcast(&p->p_lwpcv); 1512 } 1513 1514 /* 1515 * Drain all references to the current LWP. 1516 */ 1517 void 1518 lwp_drainrefs(struct lwp *l) 1519 { 1520 struct proc *p = l->l_proc; 1521 1522 KASSERT(mutex_owned(p->p_lock)); 1523 KASSERT(l->l_refcnt != 0); 1524 1525 l->l_refcnt--; 1526 while (l->l_refcnt != 0) 1527 cv_wait(&p->p_lwpcv, p->p_lock); 1528 } 1529 1530 /* 1531 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1532 * be held. 1533 */ 1534 bool 1535 lwp_alive(lwp_t *l) 1536 { 1537 1538 KASSERT(mutex_owned(l->l_proc->p_lock)); 1539 1540 switch (l->l_stat) { 1541 case LSSLEEP: 1542 case LSRUN: 1543 case LSONPROC: 1544 case LSSTOP: 1545 case LSSUSPENDED: 1546 return true; 1547 default: 1548 return false; 1549 } 1550 } 1551 1552 /* 1553 * Return first live LWP in the process. 1554 */ 1555 lwp_t * 1556 lwp_find_first(proc_t *p) 1557 { 1558 lwp_t *l; 1559 1560 KASSERT(mutex_owned(p->p_lock)); 1561 1562 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1563 if (lwp_alive(l)) { 1564 return l; 1565 } 1566 } 1567 1568 return NULL; 1569 } 1570 1571 /* 1572 * Allocate a new lwpctl structure for a user LWP. 1573 */ 1574 int 1575 lwp_ctl_alloc(vaddr_t *uaddr) 1576 { 1577 lcproc_t *lp; 1578 u_int bit, i, offset; 1579 struct uvm_object *uao; 1580 int error; 1581 lcpage_t *lcp; 1582 proc_t *p; 1583 lwp_t *l; 1584 1585 l = curlwp; 1586 p = l->l_proc; 1587 1588 /* don't allow a vforked process to create lwp ctls */ 1589 if (p->p_lflag & PL_PPWAIT) 1590 return EBUSY; 1591 1592 if (l->l_lcpage != NULL) { 1593 lcp = l->l_lcpage; 1594 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1595 return 0; 1596 } 1597 1598 /* First time around, allocate header structure for the process. */ 1599 if ((lp = p->p_lwpctl) == NULL) { 1600 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1601 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1602 lp->lp_uao = NULL; 1603 TAILQ_INIT(&lp->lp_pages); 1604 mutex_enter(p->p_lock); 1605 if (p->p_lwpctl == NULL) { 1606 p->p_lwpctl = lp; 1607 mutex_exit(p->p_lock); 1608 } else { 1609 mutex_exit(p->p_lock); 1610 mutex_destroy(&lp->lp_lock); 1611 kmem_free(lp, sizeof(*lp)); 1612 lp = p->p_lwpctl; 1613 } 1614 } 1615 1616 /* 1617 * Set up an anonymous memory region to hold the shared pages. 1618 * Map them into the process' address space. The user vmspace 1619 * gets the first reference on the UAO. 1620 */ 1621 mutex_enter(&lp->lp_lock); 1622 if (lp->lp_uao == NULL) { 1623 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1624 lp->lp_cur = 0; 1625 lp->lp_max = LWPCTL_UAREA_SZ; 1626 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1627 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ); 1628 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1629 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1630 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1631 if (error != 0) { 1632 uao_detach(lp->lp_uao); 1633 lp->lp_uao = NULL; 1634 mutex_exit(&lp->lp_lock); 1635 return error; 1636 } 1637 } 1638 1639 /* Get a free block and allocate for this LWP. */ 1640 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1641 if (lcp->lcp_nfree != 0) 1642 break; 1643 } 1644 if (lcp == NULL) { 1645 /* Nothing available - try to set up a free page. */ 1646 if (lp->lp_cur == lp->lp_max) { 1647 mutex_exit(&lp->lp_lock); 1648 return ENOMEM; 1649 } 1650 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1651 if (lcp == NULL) { 1652 mutex_exit(&lp->lp_lock); 1653 return ENOMEM; 1654 } 1655 /* 1656 * Wire the next page down in kernel space. Since this 1657 * is a new mapping, we must add a reference. 1658 */ 1659 uao = lp->lp_uao; 1660 (*uao->pgops->pgo_reference)(uao); 1661 lcp->lcp_kaddr = vm_map_min(kernel_map); 1662 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1663 uao, lp->lp_cur, PAGE_SIZE, 1664 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1665 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1666 if (error != 0) { 1667 mutex_exit(&lp->lp_lock); 1668 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1669 (*uao->pgops->pgo_detach)(uao); 1670 return error; 1671 } 1672 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1673 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1674 if (error != 0) { 1675 mutex_exit(&lp->lp_lock); 1676 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1677 lcp->lcp_kaddr + PAGE_SIZE); 1678 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1679 return error; 1680 } 1681 /* Prepare the page descriptor and link into the list. */ 1682 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1683 lp->lp_cur += PAGE_SIZE; 1684 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1685 lcp->lcp_rotor = 0; 1686 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1687 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1688 } 1689 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1690 if (++i >= LWPCTL_BITMAP_ENTRIES) 1691 i = 0; 1692 } 1693 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1694 lcp->lcp_bitmap[i] ^= (1 << bit); 1695 lcp->lcp_rotor = i; 1696 lcp->lcp_nfree--; 1697 l->l_lcpage = lcp; 1698 offset = (i << 5) + bit; 1699 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1700 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1701 mutex_exit(&lp->lp_lock); 1702 1703 KPREEMPT_DISABLE(l); 1704 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1705 KPREEMPT_ENABLE(l); 1706 1707 return 0; 1708 } 1709 1710 /* 1711 * Free an lwpctl structure back to the per-process list. 1712 */ 1713 void 1714 lwp_ctl_free(lwp_t *l) 1715 { 1716 struct proc *p = l->l_proc; 1717 lcproc_t *lp; 1718 lcpage_t *lcp; 1719 u_int map, offset; 1720 1721 /* don't free a lwp context we borrowed for vfork */ 1722 if (p->p_lflag & PL_PPWAIT) { 1723 l->l_lwpctl = NULL; 1724 return; 1725 } 1726 1727 lp = p->p_lwpctl; 1728 KASSERT(lp != NULL); 1729 1730 lcp = l->l_lcpage; 1731 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1732 KASSERT(offset < LWPCTL_PER_PAGE); 1733 1734 mutex_enter(&lp->lp_lock); 1735 lcp->lcp_nfree++; 1736 map = offset >> 5; 1737 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1738 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1739 lcp->lcp_rotor = map; 1740 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1741 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1742 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1743 } 1744 mutex_exit(&lp->lp_lock); 1745 } 1746 1747 /* 1748 * Process is exiting; tear down lwpctl state. This can only be safely 1749 * called by the last LWP in the process. 1750 */ 1751 void 1752 lwp_ctl_exit(void) 1753 { 1754 lcpage_t *lcp, *next; 1755 lcproc_t *lp; 1756 proc_t *p; 1757 lwp_t *l; 1758 1759 l = curlwp; 1760 l->l_lwpctl = NULL; 1761 l->l_lcpage = NULL; 1762 p = l->l_proc; 1763 lp = p->p_lwpctl; 1764 1765 KASSERT(lp != NULL); 1766 KASSERT(p->p_nlwps == 1); 1767 1768 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1769 next = TAILQ_NEXT(lcp, lcp_chain); 1770 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1771 lcp->lcp_kaddr + PAGE_SIZE); 1772 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1773 } 1774 1775 if (lp->lp_uao != NULL) { 1776 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1777 lp->lp_uva + LWPCTL_UAREA_SZ); 1778 } 1779 1780 mutex_destroy(&lp->lp_lock); 1781 kmem_free(lp, sizeof(*lp)); 1782 p->p_lwpctl = NULL; 1783 } 1784 1785 /* 1786 * Return the current LWP's "preemption counter". Used to detect 1787 * preemption across operations that can tolerate preemption without 1788 * crashing, but which may generate incorrect results if preempted. 1789 */ 1790 uint64_t 1791 lwp_pctr(void) 1792 { 1793 1794 return curlwp->l_ncsw; 1795 } 1796 1797 /* 1798 * Set an LWP's private data pointer. 1799 */ 1800 int 1801 lwp_setprivate(struct lwp *l, void *ptr) 1802 { 1803 int error = 0; 1804 1805 l->l_private = ptr; 1806 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1807 error = cpu_lwp_setprivate(l, ptr); 1808 #endif 1809 return error; 1810 } 1811 1812 #if defined(DDB) 1813 #include <machine/pcb.h> 1814 1815 void 1816 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1817 { 1818 lwp_t *l; 1819 1820 LIST_FOREACH(l, &alllwp, l_list) { 1821 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1822 1823 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1824 continue; 1825 } 1826 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1827 (void *)addr, (void *)stack, 1828 (size_t)(addr - stack), l); 1829 } 1830 } 1831 #endif /* defined(DDB) */ 1832