xref: /netbsd-src/sys/kern/kern_lwp.c (revision 11a6dbe72840351315e0652b2fc6663628c84cad)
1 /*	$NetBSD: kern_lwp.c,v 1.108 2008/04/28 20:24:03 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.  If the LWP is not swapped in (LW_INMEM == 0)
64  *		then the LWP is not on a run queue, but may be soon.
65  *
66  *	LSIDL
67  *
68  *		Idle: the LWP has been created but has not yet executed,
69  *		or it has ceased executing a unit of work and is waiting
70  *		to be started again.
71  *
72  *	LSSUSPENDED:
73  *
74  *		Suspended: the LWP has had its execution suspended by
75  *		another LWP in the same process using the _lwp_suspend()
76  *		system call.  User-level LWPs also enter the suspended
77  *		state when the system is shutting down.
78  *
79  *	The second set represent a "statement of intent" on behalf of the
80  *	LWP.  The LWP may in fact be executing on a processor, may be
81  *	sleeping or idle. It is expected to take the necessary action to
82  *	stop executing or become "running" again within a short timeframe.
83  *	The LW_RUNNING flag in lwp::l_flag indicates that an LWP is running.
84  *	Importantly, it indicates that its state is tied to a CPU.
85  *
86  *	LSZOMB:
87  *
88  *		Dead or dying: the LWP has released most of its resources
89  *		and is: a) about to switch away into oblivion b) has already
90  *		switched away.  When it switches away, its few remaining
91  *		resources can be collected.
92  *
93  *	LSSLEEP:
94  *
95  *		Sleeping: the LWP has entered itself onto a sleep queue, and
96  *		has switched away or will switch away shortly to allow other
97  *		LWPs to run on the CPU.
98  *
99  *	LSSTOP:
100  *
101  *		Stopped: the LWP has been stopped as a result of a job
102  *		control signal, or as a result of the ptrace() interface.
103  *
104  *		Stopped LWPs may run briefly within the kernel to handle
105  *		signals that they receive, but will not return to user space
106  *		until their process' state is changed away from stopped.
107  *
108  *		Single LWPs within a process can not be set stopped
109  *		selectively: all actions that can stop or continue LWPs
110  *		occur at the process level.
111  *
112  * State transitions
113  *
114  *	Note that the LSSTOP state may only be set when returning to
115  *	user space in userret(), or when sleeping interruptably.  The
116  *	LSSUSPENDED state may only be set in userret().  Before setting
117  *	those states, we try to ensure that the LWPs will release all
118  *	locks that they hold, and at a minimum try to ensure that the
119  *	LWP can be set runnable again by a signal.
120  *
121  *	LWPs may transition states in the following ways:
122  *
123  *	 RUN -------> ONPROC		ONPROC -----> RUN
124  *		    > STOPPED			    > SLEEP
125  *		    > SUSPENDED			    > STOPPED
126  *						    > SUSPENDED
127  *						    > ZOMB
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP			    > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *		    > SUSPENDED
136  *
137  *	Other state transitions are possible with kernel threads (eg
138  *	ONPROC -> IDL), but only happen under tightly controlled
139  *	circumstances the side effects are understood.
140  *
141  * Locking
142  *
143  *	The majority of fields in 'struct lwp' are covered by a single,
144  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
145  *	each field are documented in sys/lwp.h.
146  *
147  *	State transitions must be made with the LWP's general lock held,
148  *	and may cause the LWP's lock pointer to change. Manipulation of
149  *	the general lock is not performed directly, but through calls to
150  *	lwp_lock(), lwp_relock() and similar.
151  *
152  *	States and their associated locks:
153  *
154  *	LSONPROC, LSZOMB:
155  *
156  *		Always covered by spc_lwplock, which protects running LWPs.
157  *		This is a per-CPU lock.
158  *
159  *	LSIDL, LSRUN:
160  *
161  *		Always covered by spc_mutex, which protects the run queues.
162  *		This is a per-CPU lock.
163  *
164  *	LSSLEEP:
165  *
166  *		Covered by a lock associated with the sleep queue that the
167  *		LWP resides on, indirectly referenced by l_sleepq->sq_mutex.
168  *
169  *	LSSTOP, LSSUSPENDED:
170  *
171  *		If the LWP was previously sleeping (l_wchan != NULL), then
172  *		l_mutex references the sleep queue lock.  If the LWP was
173  *		runnable or on the CPU when halted, or has been removed from
174  *		the sleep queue since halted, then the lock is spc_lwplock.
175  *
176  *	The lock order is as follows:
177  *
178  *		spc::spc_lwplock ->
179  *		    sleepq_t::sq_mutex ->
180  *			tschain_t::tc_mutex ->
181  *			    spc::spc_mutex
182  *
183  *	Each process has an scheduler state lock (proc::p_lock), and a
184  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
185  *	so on.  When an LWP is to be entered into or removed from one of the
186  *	following states, p_lock must be held and the process wide counters
187  *	adjusted:
188  *
189  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
190  *
191  *	Note that an LWP is considered running or likely to run soon if in
192  *	one of the following states.  This affects the value of p_nrlwps:
193  *
194  *		LSRUN, LSONPROC, LSSLEEP
195  *
196  *	p_lock does not need to be held when transitioning among these
197  *	three states.
198  */
199 
200 #include <sys/cdefs.h>
201 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.108 2008/04/28 20:24:03 martin Exp $");
202 
203 #include "opt_ddb.h"
204 #include "opt_multiprocessor.h"
205 #include "opt_lockdebug.h"
206 
207 #define _LWP_API_PRIVATE
208 
209 #include <sys/param.h>
210 #include <sys/systm.h>
211 #include <sys/cpu.h>
212 #include <sys/pool.h>
213 #include <sys/proc.h>
214 #include <sys/syscallargs.h>
215 #include <sys/syscall_stats.h>
216 #include <sys/kauth.h>
217 #include <sys/sleepq.h>
218 #include <sys/user.h>
219 #include <sys/lockdebug.h>
220 #include <sys/kmem.h>
221 #include <sys/pset.h>
222 #include <sys/intr.h>
223 #include <sys/lwpctl.h>
224 #include <sys/atomic.h>
225 
226 #include <uvm/uvm_extern.h>
227 #include <uvm/uvm_object.h>
228 
229 struct lwplist	alllwp = LIST_HEAD_INITIALIZER(alllwp);
230 
231 POOL_INIT(lwp_uc_pool, sizeof(ucontext_t), 0, 0, 0, "lwpucpl",
232     &pool_allocator_nointr, IPL_NONE);
233 
234 static pool_cache_t lwp_cache;
235 static specificdata_domain_t lwp_specificdata_domain;
236 
237 void
238 lwpinit(void)
239 {
240 
241 	lwp_specificdata_domain = specificdata_domain_create();
242 	KASSERT(lwp_specificdata_domain != NULL);
243 	lwp_sys_init();
244 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
245 	    "lwppl", NULL, IPL_NONE, NULL, NULL, NULL);
246 }
247 
248 /*
249  * Set an suspended.
250  *
251  * Must be called with p_lock held, and the LWP locked.  Will unlock the
252  * LWP before return.
253  */
254 int
255 lwp_suspend(struct lwp *curl, struct lwp *t)
256 {
257 	int error;
258 
259 	KASSERT(mutex_owned(t->l_proc->p_lock));
260 	KASSERT(lwp_locked(t, NULL));
261 
262 	KASSERT(curl != t || curl->l_stat == LSONPROC);
263 
264 	/*
265 	 * If the current LWP has been told to exit, we must not suspend anyone
266 	 * else or deadlock could occur.  We won't return to userspace.
267 	 */
268 	if ((curl->l_stat & (LW_WEXIT | LW_WCORE)) != 0) {
269 		lwp_unlock(t);
270 		return (EDEADLK);
271 	}
272 
273 	error = 0;
274 
275 	switch (t->l_stat) {
276 	case LSRUN:
277 	case LSONPROC:
278 		t->l_flag |= LW_WSUSPEND;
279 		lwp_need_userret(t);
280 		lwp_unlock(t);
281 		break;
282 
283 	case LSSLEEP:
284 		t->l_flag |= LW_WSUSPEND;
285 
286 		/*
287 		 * Kick the LWP and try to get it to the kernel boundary
288 		 * so that it will release any locks that it holds.
289 		 * setrunnable() will release the lock.
290 		 */
291 		if ((t->l_flag & LW_SINTR) != 0)
292 			setrunnable(t);
293 		else
294 			lwp_unlock(t);
295 		break;
296 
297 	case LSSUSPENDED:
298 		lwp_unlock(t);
299 		break;
300 
301 	case LSSTOP:
302 		t->l_flag |= LW_WSUSPEND;
303 		setrunnable(t);
304 		break;
305 
306 	case LSIDL:
307 	case LSZOMB:
308 		error = EINTR; /* It's what Solaris does..... */
309 		lwp_unlock(t);
310 		break;
311 	}
312 
313 	return (error);
314 }
315 
316 /*
317  * Restart a suspended LWP.
318  *
319  * Must be called with p_lock held, and the LWP locked.  Will unlock the
320  * LWP before return.
321  */
322 void
323 lwp_continue(struct lwp *l)
324 {
325 
326 	KASSERT(mutex_owned(l->l_proc->p_lock));
327 	KASSERT(lwp_locked(l, NULL));
328 
329 	/* If rebooting or not suspended, then just bail out. */
330 	if ((l->l_flag & LW_WREBOOT) != 0) {
331 		lwp_unlock(l);
332 		return;
333 	}
334 
335 	l->l_flag &= ~LW_WSUSPEND;
336 
337 	if (l->l_stat != LSSUSPENDED) {
338 		lwp_unlock(l);
339 		return;
340 	}
341 
342 	/* setrunnable() will release the lock. */
343 	setrunnable(l);
344 }
345 
346 /*
347  * Wait for an LWP within the current process to exit.  If 'lid' is
348  * non-zero, we are waiting for a specific LWP.
349  *
350  * Must be called with p->p_lock held.
351  */
352 int
353 lwp_wait1(struct lwp *l, lwpid_t lid, lwpid_t *departed, int flags)
354 {
355 	struct proc *p = l->l_proc;
356 	struct lwp *l2;
357 	int nfound, error;
358 	lwpid_t curlid;
359 	bool exiting;
360 
361 	KASSERT(mutex_owned(p->p_lock));
362 
363 	p->p_nlwpwait++;
364 	l->l_waitingfor = lid;
365 	curlid = l->l_lid;
366 	exiting = ((flags & LWPWAIT_EXITCONTROL) != 0);
367 
368 	for (;;) {
369 		/*
370 		 * Avoid a race between exit1() and sigexit(): if the
371 		 * process is dumping core, then we need to bail out: call
372 		 * into lwp_userret() where we will be suspended until the
373 		 * deed is done.
374 		 */
375 		if ((p->p_sflag & PS_WCORE) != 0) {
376 			mutex_exit(p->p_lock);
377 			lwp_userret(l);
378 #ifdef DIAGNOSTIC
379 			panic("lwp_wait1");
380 #endif
381 			/* NOTREACHED */
382 		}
383 
384 		/*
385 		 * First off, drain any detached LWP that is waiting to be
386 		 * reaped.
387 		 */
388 		while ((l2 = p->p_zomblwp) != NULL) {
389 			p->p_zomblwp = NULL;
390 			lwp_free(l2, false, false);/* releases proc mutex */
391 			mutex_enter(p->p_lock);
392 		}
393 
394 		/*
395 		 * Now look for an LWP to collect.  If the whole process is
396 		 * exiting, count detached LWPs as eligible to be collected,
397 		 * but don't drain them here.
398 		 */
399 		nfound = 0;
400 		error = 0;
401 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
402 			/*
403 			 * If a specific wait and the target is waiting on
404 			 * us, then avoid deadlock.  This also traps LWPs
405 			 * that try to wait on themselves.
406 			 *
407 			 * Note that this does not handle more complicated
408 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
409 			 * can still be killed so it is not a major problem.
410 			 */
411 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
412 				error = EDEADLK;
413 				break;
414 			}
415 			if (l2 == l)
416 				continue;
417 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
418 				nfound += exiting;
419 				continue;
420 			}
421 			if (lid != 0) {
422 				if (l2->l_lid != lid)
423 					continue;
424 				/*
425 				 * Mark this LWP as the first waiter, if there
426 				 * is no other.
427 				 */
428 				if (l2->l_waiter == 0)
429 					l2->l_waiter = curlid;
430 			} else if (l2->l_waiter != 0) {
431 				/*
432 				 * It already has a waiter - so don't
433 				 * collect it.  If the waiter doesn't
434 				 * grab it we'll get another chance
435 				 * later.
436 				 */
437 				nfound++;
438 				continue;
439 			}
440 			nfound++;
441 
442 			/* No need to lock the LWP in order to see LSZOMB. */
443 			if (l2->l_stat != LSZOMB)
444 				continue;
445 
446 			/*
447 			 * We're no longer waiting.  Reset the "first waiter"
448 			 * pointer on the target, in case it was us.
449 			 */
450 			l->l_waitingfor = 0;
451 			l2->l_waiter = 0;
452 			p->p_nlwpwait--;
453 			if (departed)
454 				*departed = l2->l_lid;
455 			sched_lwp_collect(l2);
456 
457 			/* lwp_free() releases the proc lock. */
458 			lwp_free(l2, false, false);
459 			mutex_enter(p->p_lock);
460 			return 0;
461 		}
462 
463 		if (error != 0)
464 			break;
465 		if (nfound == 0) {
466 			error = ESRCH;
467 			break;
468 		}
469 
470 		/*
471 		 * The kernel is careful to ensure that it can not deadlock
472 		 * when exiting - just keep waiting.
473 		 */
474 		if (exiting) {
475 			KASSERT(p->p_nlwps > 1);
476 			cv_wait(&p->p_lwpcv, p->p_lock);
477 			continue;
478 		}
479 
480 		/*
481 		 * If all other LWPs are waiting for exits or suspends
482 		 * and the supply of zombies and potential zombies is
483 		 * exhausted, then we are about to deadlock.
484 		 *
485 		 * If the process is exiting (and this LWP is not the one
486 		 * that is coordinating the exit) then bail out now.
487 		 */
488 		if ((p->p_sflag & PS_WEXIT) != 0 ||
489 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
490 			error = EDEADLK;
491 			break;
492 		}
493 
494 		/*
495 		 * Sit around and wait for something to happen.  We'll be
496 		 * awoken if any of the conditions examined change: if an
497 		 * LWP exits, is collected, or is detached.
498 		 */
499 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
500 			break;
501 	}
502 
503 	/*
504 	 * We didn't find any LWPs to collect, we may have received a
505 	 * signal, or some other condition has caused us to bail out.
506 	 *
507 	 * If waiting on a specific LWP, clear the waiters marker: some
508 	 * other LWP may want it.  Then, kick all the remaining waiters
509 	 * so that they can re-check for zombies and for deadlock.
510 	 */
511 	if (lid != 0) {
512 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
513 			if (l2->l_lid == lid) {
514 				if (l2->l_waiter == curlid)
515 					l2->l_waiter = 0;
516 				break;
517 			}
518 		}
519 	}
520 	p->p_nlwpwait--;
521 	l->l_waitingfor = 0;
522 	cv_broadcast(&p->p_lwpcv);
523 
524 	return error;
525 }
526 
527 /*
528  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
529  * The new LWP is created in state LSIDL and must be set running,
530  * suspended, or stopped by the caller.
531  */
532 int
533 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, bool inmem, int flags,
534 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
535 	   lwp_t **rnewlwpp, int sclass)
536 {
537 	struct lwp *l2, *isfree;
538 	turnstile_t *ts;
539 
540 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
541 
542 	/*
543 	 * First off, reap any detached LWP waiting to be collected.
544 	 * We can re-use its LWP structure and turnstile.
545 	 */
546 	isfree = NULL;
547 	if (p2->p_zomblwp != NULL) {
548 		mutex_enter(p2->p_lock);
549 		if ((isfree = p2->p_zomblwp) != NULL) {
550 			p2->p_zomblwp = NULL;
551 			lwp_free(isfree, true, false);/* releases proc mutex */
552 		} else
553 			mutex_exit(p2->p_lock);
554 	}
555 	if (isfree == NULL) {
556 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
557 		memset(l2, 0, sizeof(*l2));
558 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
559 		SLIST_INIT(&l2->l_pi_lenders);
560 	} else {
561 		l2 = isfree;
562 		ts = l2->l_ts;
563 		KASSERT(l2->l_inheritedprio == -1);
564 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
565 		memset(l2, 0, sizeof(*l2));
566 		l2->l_ts = ts;
567 	}
568 
569 	l2->l_stat = LSIDL;
570 	l2->l_proc = p2;
571 	l2->l_refcnt = 1;
572 	l2->l_class = sclass;
573 	l2->l_kpriority = l1->l_kpriority;
574 	l2->l_kpribase = PRI_KERNEL;
575 	l2->l_priority = l1->l_priority;
576 	l2->l_inheritedprio = -1;
577 	l2->l_flag = inmem ? LW_INMEM : 0;
578 	l2->l_pflag = LP_MPSAFE;
579 	l2->l_fd = p2->p_fd;
580 
581 	if (p2->p_flag & PK_SYSTEM) {
582 		/* Mark it as a system LWP and not a candidate for swapping */
583 		l2->l_flag |= LW_SYSTEM;
584 	}
585 
586 	kpreempt_disable();
587 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
588 	l2->l_cpu = l1->l_cpu;
589 	kpreempt_enable();
590 
591 	lwp_initspecific(l2);
592 	sched_lwp_fork(l1, l2);
593 	lwp_update_creds(l2);
594 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
595 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
596 	mutex_init(&l2->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
597 	cv_init(&l2->l_sigcv, "sigwait");
598 	l2->l_syncobj = &sched_syncobj;
599 
600 	if (rnewlwpp != NULL)
601 		*rnewlwpp = l2;
602 
603 	l2->l_addr = UAREA_TO_USER(uaddr);
604 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
605 	    (arg != NULL) ? arg : l2);
606 
607 	mutex_enter(p2->p_lock);
608 
609 	if ((flags & LWP_DETACHED) != 0) {
610 		l2->l_prflag = LPR_DETACHED;
611 		p2->p_ndlwps++;
612 	} else
613 		l2->l_prflag = 0;
614 
615 	l2->l_sigmask = l1->l_sigmask;
616 	CIRCLEQ_INIT(&l2->l_sigpend.sp_info);
617 	sigemptyset(&l2->l_sigpend.sp_set);
618 
619 	p2->p_nlwpid++;
620 	if (p2->p_nlwpid == 0)
621 		p2->p_nlwpid++;
622 	l2->l_lid = p2->p_nlwpid;
623 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
624 	p2->p_nlwps++;
625 
626 	mutex_exit(p2->p_lock);
627 
628 	mutex_enter(proc_lock);
629 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
630 	mutex_exit(proc_lock);
631 
632 	if ((p2->p_flag & PK_SYSTEM) == 0) {
633 		/* Locking is needed, since LWP is in the list of all LWPs */
634 		lwp_lock(l2);
635 		/* Inherit a processor-set */
636 		l2->l_psid = l1->l_psid;
637 		/* Inherit an affinity */
638 		memcpy(&l2->l_affinity, &l1->l_affinity, sizeof(cpuset_t));
639 		/* Look for a CPU to start */
640 		l2->l_cpu = sched_takecpu(l2);
641 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
642 	}
643 
644 	SYSCALL_TIME_LWP_INIT(l2);
645 
646 	if (p2->p_emul->e_lwp_fork)
647 		(*p2->p_emul->e_lwp_fork)(l1, l2);
648 
649 	return (0);
650 }
651 
652 /*
653  * Called by MD code when a new LWP begins execution.  Must be called
654  * with the previous LWP locked (so at splsched), or if there is no
655  * previous LWP, at splsched.
656  */
657 void
658 lwp_startup(struct lwp *prev, struct lwp *new)
659 {
660 
661 	KASSERT(kpreempt_disabled());
662 	if (prev != NULL) {
663 		/*
664 		 * Normalize the count of the spin-mutexes, it was
665 		 * increased in mi_switch().  Unmark the state of
666 		 * context switch - it is finished for previous LWP.
667 		 */
668 		curcpu()->ci_mtx_count++;
669 		membar_exit();
670 		prev->l_ctxswtch = 0;
671 	}
672 	KPREEMPT_DISABLE(new);
673 	spl0();
674 	pmap_activate(new);
675 	LOCKDEBUG_BARRIER(NULL, 0);
676 	KPREEMPT_ENABLE(new);
677 	if ((new->l_pflag & LP_MPSAFE) == 0) {
678 		KERNEL_LOCK(1, new);
679 	}
680 }
681 
682 /*
683  * Exit an LWP.
684  */
685 void
686 lwp_exit(struct lwp *l)
687 {
688 	struct proc *p = l->l_proc;
689 	struct lwp *l2;
690 	bool current;
691 
692 	current = (l == curlwp);
693 
694 	KASSERT(current || l->l_stat == LSIDL);
695 
696 	/*
697 	 * Verify that we hold no locks other than the kernel lock.
698 	 */
699 #ifdef MULTIPROCESSOR
700 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
701 #else
702 	LOCKDEBUG_BARRIER(NULL, 0);
703 #endif
704 
705 	/*
706 	 * If we are the last live LWP in a process, we need to exit the
707 	 * entire process.  We do so with an exit status of zero, because
708 	 * it's a "controlled" exit, and because that's what Solaris does.
709 	 *
710 	 * We are not quite a zombie yet, but for accounting purposes we
711 	 * must increment the count of zombies here.
712 	 *
713 	 * Note: the last LWP's specificdata will be deleted here.
714 	 */
715 	mutex_enter(p->p_lock);
716 	if (p->p_nlwps - p->p_nzlwps == 1) {
717 		KASSERT(current == true);
718 		/* XXXSMP kernel_lock not held */
719 		exit1(l, 0);
720 		/* NOTREACHED */
721 	}
722 	p->p_nzlwps++;
723 	mutex_exit(p->p_lock);
724 
725 	if (p->p_emul->e_lwp_exit)
726 		(*p->p_emul->e_lwp_exit)(l);
727 
728 	/* Delete the specificdata while it's still safe to sleep. */
729 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
730 
731 	/*
732 	 * Release our cached credentials.
733 	 */
734 	kauth_cred_free(l->l_cred);
735 	callout_destroy(&l->l_timeout_ch);
736 
737 	/*
738 	 * While we can still block, mark the LWP as unswappable to
739 	 * prevent conflicts with the with the swapper.
740 	 */
741 	if (current)
742 		uvm_lwp_hold(l);
743 
744 	/*
745 	 * Remove the LWP from the global list.
746 	 */
747 	mutex_enter(proc_lock);
748 	LIST_REMOVE(l, l_list);
749 	mutex_exit(proc_lock);
750 
751 	/*
752 	 * Get rid of all references to the LWP that others (e.g. procfs)
753 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
754 	 * mark it waiting for collection in the proc structure.  Note that
755 	 * before we can do that, we need to free any other dead, deatched
756 	 * LWP waiting to meet its maker.
757 	 */
758 	mutex_enter(p->p_lock);
759 	lwp_drainrefs(l);
760 
761 	if ((l->l_prflag & LPR_DETACHED) != 0) {
762 		while ((l2 = p->p_zomblwp) != NULL) {
763 			p->p_zomblwp = NULL;
764 			lwp_free(l2, false, false);/* releases proc mutex */
765 			mutex_enter(p->p_lock);
766 			l->l_refcnt++;
767 			lwp_drainrefs(l);
768 		}
769 		p->p_zomblwp = l;
770 	}
771 
772 	/*
773 	 * If we find a pending signal for the process and we have been
774 	 * asked to check for signals, then we loose: arrange to have
775 	 * all other LWPs in the process check for signals.
776 	 */
777 	if ((l->l_flag & LW_PENDSIG) != 0 &&
778 	    firstsig(&p->p_sigpend.sp_set) != 0) {
779 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
780 			lwp_lock(l2);
781 			l2->l_flag |= LW_PENDSIG;
782 			lwp_unlock(l2);
783 		}
784 	}
785 
786 	lwp_lock(l);
787 	l->l_stat = LSZOMB;
788 	if (l->l_name != NULL)
789 		strcpy(l->l_name, "(zombie)");
790 	lwp_unlock(l);
791 	p->p_nrlwps--;
792 	cv_broadcast(&p->p_lwpcv);
793 	if (l->l_lwpctl != NULL)
794 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
795 	mutex_exit(p->p_lock);
796 
797 	/*
798 	 * We can no longer block.  At this point, lwp_free() may already
799 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
800 	 *
801 	 * Free MD LWP resources.
802 	 */
803 #ifndef __NO_CPU_LWP_FREE
804 	cpu_lwp_free(l, 0);
805 #endif
806 
807 	if (current) {
808 		pmap_deactivate(l);
809 
810 		/*
811 		 * Release the kernel lock, and switch away into
812 		 * oblivion.
813 		 */
814 #ifdef notyet
815 		/* XXXSMP hold in lwp_userret() */
816 		KERNEL_UNLOCK_LAST(l);
817 #else
818 		KERNEL_UNLOCK_ALL(l, NULL);
819 #endif
820 		lwp_exit_switchaway(l);
821 	}
822 }
823 
824 void
825 lwp_exit_switchaway(struct lwp *l)
826 {
827 	struct cpu_info *ci;
828 	struct lwp *idlelwp;
829 
830 	(void)splsched();
831 	l->l_flag &= ~LW_RUNNING;
832 	ci = curcpu();
833 	ci->ci_data.cpu_nswtch++;
834 	idlelwp = ci->ci_data.cpu_idlelwp;
835 	idlelwp->l_stat = LSONPROC;
836 
837 	/*
838 	 * cpu_onproc must be updated with the CPU locked, as
839 	 * aston() may try to set a AST pending on the LWP (and
840 	 * it does so with the CPU locked).  Otherwise, the LWP
841 	 * may be destroyed before the AST can be set, leading
842 	 * to a user-after-free.
843 	 */
844 	spc_lock(ci);
845 	ci->ci_data.cpu_onproc = idlelwp;
846 	spc_unlock(ci);
847 	cpu_switchto(NULL, idlelwp, false);
848 }
849 
850 /*
851  * Free a dead LWP's remaining resources.
852  *
853  * XXXLWP limits.
854  */
855 void
856 lwp_free(struct lwp *l, bool recycle, bool last)
857 {
858 	struct proc *p = l->l_proc;
859 	struct rusage *ru;
860 	ksiginfoq_t kq;
861 
862 	KASSERT(l != curlwp);
863 
864 	/*
865 	 * If this was not the last LWP in the process, then adjust
866 	 * counters and unlock.
867 	 */
868 	if (!last) {
869 		/*
870 		 * Add the LWP's run time to the process' base value.
871 		 * This needs to co-incide with coming off p_lwps.
872 		 */
873 		bintime_add(&p->p_rtime, &l->l_rtime);
874 		p->p_pctcpu += l->l_pctcpu;
875 		ru = &p->p_stats->p_ru;
876 		ruadd(ru, &l->l_ru);
877 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
878 		ru->ru_nivcsw += l->l_nivcsw;
879 		LIST_REMOVE(l, l_sibling);
880 		p->p_nlwps--;
881 		p->p_nzlwps--;
882 		if ((l->l_prflag & LPR_DETACHED) != 0)
883 			p->p_ndlwps--;
884 
885 		/*
886 		 * Have any LWPs sleeping in lwp_wait() recheck for
887 		 * deadlock.
888 		 */
889 		cv_broadcast(&p->p_lwpcv);
890 		mutex_exit(p->p_lock);
891 	}
892 
893 #ifdef MULTIPROCESSOR
894 	/*
895 	 * In the unlikely event that the LWP is still on the CPU,
896 	 * then spin until it has switched away.  We need to release
897 	 * all locks to avoid deadlock against interrupt handlers on
898 	 * the target CPU.
899 	 */
900 	if ((l->l_flag & LW_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
901 		int count;
902 		(void)count; /* XXXgcc */
903 		KERNEL_UNLOCK_ALL(curlwp, &count);
904 		while ((l->l_flag & LW_RUNNING) != 0 ||
905 		    l->l_cpu->ci_curlwp == l)
906 			SPINLOCK_BACKOFF_HOOK;
907 		KERNEL_LOCK(count, curlwp);
908 	}
909 #endif
910 
911 	/*
912 	 * Destroy the LWP's remaining signal information.
913 	 */
914 	ksiginfo_queue_init(&kq);
915 	sigclear(&l->l_sigpend, NULL, &kq);
916 	ksiginfo_queue_drain(&kq);
917 	cv_destroy(&l->l_sigcv);
918 	mutex_destroy(&l->l_swaplock);
919 
920 	/*
921 	 * Free the LWP's turnstile and the LWP structure itself unless the
922 	 * caller wants to recycle them.  Also, free the scheduler specific
923 	 * data.
924 	 *
925 	 * We can't return turnstile0 to the pool (it didn't come from it),
926 	 * so if it comes up just drop it quietly and move on.
927 	 *
928 	 * We don't recycle the VM resources at this time.
929 	 */
930 	if (l->l_lwpctl != NULL)
931 		lwp_ctl_free(l);
932 	sched_lwp_exit(l);
933 
934 	if (!recycle && l->l_ts != &turnstile0)
935 		pool_cache_put(turnstile_cache, l->l_ts);
936 	if (l->l_name != NULL)
937 		kmem_free(l->l_name, MAXCOMLEN);
938 #ifndef __NO_CPU_LWP_FREE
939 	cpu_lwp_free2(l);
940 #endif
941 	KASSERT((l->l_flag & LW_INMEM) != 0);
942 	uvm_lwp_exit(l);
943 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
944 	KASSERT(l->l_inheritedprio == -1);
945 	if (!recycle)
946 		pool_cache_put(lwp_cache, l);
947 }
948 
949 /*
950  * Pick a LWP to represent the process for those operations which
951  * want information about a "process" that is actually associated
952  * with a LWP.
953  *
954  * If 'locking' is false, no locking or lock checks are performed.
955  * This is intended for use by DDB.
956  *
957  * We don't bother locking the LWP here, since code that uses this
958  * interface is broken by design and an exact match is not required.
959  */
960 struct lwp *
961 proc_representative_lwp(struct proc *p, int *nrlwps, int locking)
962 {
963 	struct lwp *l, *onproc, *running, *sleeping, *stopped, *suspended;
964 	struct lwp *signalled;
965 	int cnt;
966 
967 	if (locking) {
968 		KASSERT(mutex_owned(p->p_lock));
969 	}
970 
971 	/* Trivial case: only one LWP */
972 	if (p->p_nlwps == 1) {
973 		l = LIST_FIRST(&p->p_lwps);
974 		if (nrlwps)
975 			*nrlwps = (l->l_stat == LSONPROC || l->l_stat == LSRUN);
976 		return l;
977 	}
978 
979 	cnt = 0;
980 	switch (p->p_stat) {
981 	case SSTOP:
982 	case SACTIVE:
983 		/* Pick the most live LWP */
984 		onproc = running = sleeping = stopped = suspended = NULL;
985 		signalled = NULL;
986 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
987 			if ((l->l_flag & LW_IDLE) != 0) {
988 				continue;
989 			}
990 			if (l->l_lid == p->p_sigctx.ps_lwp)
991 				signalled = l;
992 			switch (l->l_stat) {
993 			case LSONPROC:
994 				onproc = l;
995 				cnt++;
996 				break;
997 			case LSRUN:
998 				running = l;
999 				cnt++;
1000 				break;
1001 			case LSSLEEP:
1002 				sleeping = l;
1003 				break;
1004 			case LSSTOP:
1005 				stopped = l;
1006 				break;
1007 			case LSSUSPENDED:
1008 				suspended = l;
1009 				break;
1010 			}
1011 		}
1012 		if (nrlwps)
1013 			*nrlwps = cnt;
1014 		if (signalled)
1015 			l = signalled;
1016 		else if (onproc)
1017 			l = onproc;
1018 		else if (running)
1019 			l = running;
1020 		else if (sleeping)
1021 			l = sleeping;
1022 		else if (stopped)
1023 			l = stopped;
1024 		else if (suspended)
1025 			l = suspended;
1026 		else
1027 			break;
1028 		return l;
1029 #ifdef DIAGNOSTIC
1030 	case SIDL:
1031 	case SZOMB:
1032 	case SDYING:
1033 	case SDEAD:
1034 		if (locking)
1035 			mutex_exit(p->p_lock);
1036 		/* We have more than one LWP and we're in SIDL?
1037 		 * How'd that happen?
1038 		 */
1039 		panic("Too many LWPs in idle/dying process %d (%s) stat = %d",
1040 		    p->p_pid, p->p_comm, p->p_stat);
1041 		break;
1042 	default:
1043 		if (locking)
1044 			mutex_exit(p->p_lock);
1045 		panic("Process %d (%s) in unknown state %d",
1046 		    p->p_pid, p->p_comm, p->p_stat);
1047 #endif
1048 	}
1049 
1050 	if (locking)
1051 		mutex_exit(p->p_lock);
1052 	panic("proc_representative_lwp: couldn't find a lwp for process"
1053 		" %d (%s)", p->p_pid, p->p_comm);
1054 	/* NOTREACHED */
1055 	return NULL;
1056 }
1057 
1058 /*
1059  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1060  */
1061 void
1062 lwp_migrate(lwp_t *l, struct cpu_info *ci)
1063 {
1064 	struct schedstate_percpu *spc;
1065 	KASSERT(lwp_locked(l, NULL));
1066 
1067 	if (l->l_cpu == ci) {
1068 		lwp_unlock(l);
1069 		return;
1070 	}
1071 
1072 	spc = &ci->ci_schedstate;
1073 	switch (l->l_stat) {
1074 	case LSRUN:
1075 		if (l->l_flag & LW_INMEM) {
1076 			l->l_target_cpu = ci;
1077 			break;
1078 		}
1079 	case LSIDL:
1080 		l->l_cpu = ci;
1081 		lwp_unlock_to(l, spc->spc_mutex);
1082 		KASSERT(!mutex_owned(spc->spc_mutex));
1083 		return;
1084 	case LSSLEEP:
1085 		l->l_cpu = ci;
1086 		break;
1087 	case LSSTOP:
1088 	case LSSUSPENDED:
1089 		if (l->l_wchan != NULL) {
1090 			l->l_cpu = ci;
1091 			break;
1092 		}
1093 	case LSONPROC:
1094 		l->l_target_cpu = ci;
1095 		break;
1096 	}
1097 	lwp_unlock(l);
1098 }
1099 
1100 /*
1101  * Find the LWP in the process.  Arguments may be zero, in such case,
1102  * the calling process and first LWP in the list will be used.
1103  * On success - returns proc locked.
1104  */
1105 struct lwp *
1106 lwp_find2(pid_t pid, lwpid_t lid)
1107 {
1108 	proc_t *p;
1109 	lwp_t *l;
1110 
1111 	/* Find the process */
1112 	p = (pid == 0) ? curlwp->l_proc : p_find(pid, PFIND_UNLOCK_FAIL);
1113 	if (p == NULL)
1114 		return NULL;
1115 	mutex_enter(p->p_lock);
1116 	if (pid != 0) {
1117 		/* Case of p_find */
1118 		mutex_exit(proc_lock);
1119 	}
1120 
1121 	/* Find the thread */
1122 	l = (lid == 0) ? LIST_FIRST(&p->p_lwps) : lwp_find(p, lid);
1123 	if (l == NULL) {
1124 		mutex_exit(p->p_lock);
1125 	}
1126 
1127 	return l;
1128 }
1129 
1130 /*
1131  * Look up a live LWP within the speicifed process, and return it locked.
1132  *
1133  * Must be called with p->p_lock held.
1134  */
1135 struct lwp *
1136 lwp_find(struct proc *p, int id)
1137 {
1138 	struct lwp *l;
1139 
1140 	KASSERT(mutex_owned(p->p_lock));
1141 
1142 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1143 		if (l->l_lid == id)
1144 			break;
1145 	}
1146 
1147 	/*
1148 	 * No need to lock - all of these conditions will
1149 	 * be visible with the process level mutex held.
1150 	 */
1151 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1152 		l = NULL;
1153 
1154 	return l;
1155 }
1156 
1157 /*
1158  * Update an LWP's cached credentials to mirror the process' master copy.
1159  *
1160  * This happens early in the syscall path, on user trap, and on LWP
1161  * creation.  A long-running LWP can also voluntarily choose to update
1162  * it's credentials by calling this routine.  This may be called from
1163  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1164  */
1165 void
1166 lwp_update_creds(struct lwp *l)
1167 {
1168 	kauth_cred_t oc;
1169 	struct proc *p;
1170 
1171 	p = l->l_proc;
1172 	oc = l->l_cred;
1173 
1174 	mutex_enter(p->p_lock);
1175 	kauth_cred_hold(p->p_cred);
1176 	l->l_cred = p->p_cred;
1177 	l->l_prflag &= ~LPR_CRMOD;
1178 	mutex_exit(p->p_lock);
1179 	if (oc != NULL)
1180 		kauth_cred_free(oc);
1181 }
1182 
1183 /*
1184  * Verify that an LWP is locked, and optionally verify that the lock matches
1185  * one we specify.
1186  */
1187 int
1188 lwp_locked(struct lwp *l, kmutex_t *mtx)
1189 {
1190 	kmutex_t *cur = l->l_mutex;
1191 
1192 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1193 }
1194 
1195 /*
1196  * Lock an LWP.
1197  */
1198 void
1199 lwp_lock_retry(struct lwp *l, kmutex_t *old)
1200 {
1201 
1202 	/*
1203 	 * XXXgcc ignoring kmutex_t * volatile on i386
1204 	 *
1205 	 * gcc version 4.1.2 20061021 prerelease (NetBSD nb1 20061021)
1206 	 */
1207 #if 1
1208 	while (l->l_mutex != old) {
1209 #else
1210 	for (;;) {
1211 #endif
1212 		mutex_spin_exit(old);
1213 		old = l->l_mutex;
1214 		mutex_spin_enter(old);
1215 
1216 		/*
1217 		 * mutex_enter() will have posted a read barrier.  Re-test
1218 		 * l->l_mutex.  If it has changed, we need to try again.
1219 		 */
1220 #if 1
1221 	}
1222 #else
1223 	} while (__predict_false(l->l_mutex != old));
1224 #endif
1225 }
1226 
1227 /*
1228  * Lend a new mutex to an LWP.  The old mutex must be held.
1229  */
1230 void
1231 lwp_setlock(struct lwp *l, kmutex_t *new)
1232 {
1233 
1234 	KASSERT(mutex_owned(l->l_mutex));
1235 
1236 	membar_exit();
1237 	l->l_mutex = new;
1238 }
1239 
1240 /*
1241  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1242  * must be held.
1243  */
1244 void
1245 lwp_unlock_to(struct lwp *l, kmutex_t *new)
1246 {
1247 	kmutex_t *old;
1248 
1249 	KASSERT(mutex_owned(l->l_mutex));
1250 
1251 	old = l->l_mutex;
1252 	membar_exit();
1253 	l->l_mutex = new;
1254 	mutex_spin_exit(old);
1255 }
1256 
1257 /*
1258  * Acquire a new mutex, and donate it to an LWP.  The LWP must already be
1259  * locked.
1260  */
1261 void
1262 lwp_relock(struct lwp *l, kmutex_t *new)
1263 {
1264 	kmutex_t *old;
1265 
1266 	KASSERT(mutex_owned(l->l_mutex));
1267 
1268 	old = l->l_mutex;
1269 	if (old != new) {
1270 		mutex_spin_enter(new);
1271 		l->l_mutex = new;
1272 		mutex_spin_exit(old);
1273 	}
1274 }
1275 
1276 int
1277 lwp_trylock(struct lwp *l)
1278 {
1279 	kmutex_t *old;
1280 
1281 	for (;;) {
1282 		if (!mutex_tryenter(old = l->l_mutex))
1283 			return 0;
1284 		if (__predict_true(l->l_mutex == old))
1285 			return 1;
1286 		mutex_spin_exit(old);
1287 	}
1288 }
1289 
1290 u_int
1291 lwp_unsleep(lwp_t *l, bool cleanup)
1292 {
1293 
1294 	KASSERT(mutex_owned(l->l_mutex));
1295 
1296 	return (*l->l_syncobj->sobj_unsleep)(l, cleanup);
1297 }
1298 
1299 
1300 /*
1301  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1302  * set.
1303  */
1304 void
1305 lwp_userret(struct lwp *l)
1306 {
1307 	struct proc *p;
1308 	void (*hook)(void);
1309 	int sig;
1310 
1311 	p = l->l_proc;
1312 
1313 #ifndef __HAVE_FAST_SOFTINTS
1314 	/* Run pending soft interrupts. */
1315 	if (l->l_cpu->ci_data.cpu_softints != 0)
1316 		softint_overlay();
1317 #endif
1318 
1319 	/*
1320 	 * It should be safe to do this read unlocked on a multiprocessor
1321 	 * system..
1322 	 */
1323 	while ((l->l_flag & LW_USERRET) != 0) {
1324 		/*
1325 		 * Process pending signals first, unless the process
1326 		 * is dumping core or exiting, where we will instead
1327 		 * enter the LW_WSUSPEND case below.
1328 		 */
1329 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1330 		    LW_PENDSIG) {
1331 			mutex_enter(p->p_lock);
1332 			while ((sig = issignal(l)) != 0)
1333 				postsig(sig);
1334 			mutex_exit(p->p_lock);
1335 		}
1336 
1337 		/*
1338 		 * Core-dump or suspend pending.
1339 		 *
1340 		 * In case of core dump, suspend ourselves, so that the
1341 		 * kernel stack and therefore the userland registers saved
1342 		 * in the trapframe are around for coredump() to write them
1343 		 * out.  We issue a wakeup on p->p_lwpcv so that sigexit()
1344 		 * will write the core file out once all other LWPs are
1345 		 * suspended.
1346 		 */
1347 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1348 			mutex_enter(p->p_lock);
1349 			p->p_nrlwps--;
1350 			cv_broadcast(&p->p_lwpcv);
1351 			lwp_lock(l);
1352 			l->l_stat = LSSUSPENDED;
1353 			lwp_unlock(l);
1354 			mutex_exit(p->p_lock);
1355 			lwp_lock(l);
1356 			mi_switch(l);
1357 		}
1358 
1359 		/* Process is exiting. */
1360 		if ((l->l_flag & LW_WEXIT) != 0) {
1361 			lwp_exit(l);
1362 			KASSERT(0);
1363 			/* NOTREACHED */
1364 		}
1365 
1366 		/* Call userret hook; used by Linux emulation. */
1367 		if ((l->l_flag & LW_WUSERRET) != 0) {
1368 			lwp_lock(l);
1369 			l->l_flag &= ~LW_WUSERRET;
1370 			lwp_unlock(l);
1371 			hook = p->p_userret;
1372 			p->p_userret = NULL;
1373 			(*hook)();
1374 		}
1375 	}
1376 }
1377 
1378 /*
1379  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1380  */
1381 void
1382 lwp_need_userret(struct lwp *l)
1383 {
1384 	KASSERT(lwp_locked(l, NULL));
1385 
1386 	/*
1387 	 * Since the tests in lwp_userret() are done unlocked, make sure
1388 	 * that the condition will be seen before forcing the LWP to enter
1389 	 * kernel mode.
1390 	 */
1391 	membar_producer();
1392 	cpu_signotify(l);
1393 }
1394 
1395 /*
1396  * Add one reference to an LWP.  This will prevent the LWP from
1397  * exiting, thus keep the lwp structure and PCB around to inspect.
1398  */
1399 void
1400 lwp_addref(struct lwp *l)
1401 {
1402 
1403 	KASSERT(mutex_owned(l->l_proc->p_lock));
1404 	KASSERT(l->l_stat != LSZOMB);
1405 	KASSERT(l->l_refcnt != 0);
1406 
1407 	l->l_refcnt++;
1408 }
1409 
1410 /*
1411  * Remove one reference to an LWP.  If this is the last reference,
1412  * then we must finalize the LWP's death.
1413  */
1414 void
1415 lwp_delref(struct lwp *l)
1416 {
1417 	struct proc *p = l->l_proc;
1418 
1419 	mutex_enter(p->p_lock);
1420 	KASSERT(l->l_stat != LSZOMB);
1421 	KASSERT(l->l_refcnt > 0);
1422 	if (--l->l_refcnt == 0)
1423 		cv_broadcast(&p->p_lwpcv);
1424 	mutex_exit(p->p_lock);
1425 }
1426 
1427 /*
1428  * Drain all references to the current LWP.
1429  */
1430 void
1431 lwp_drainrefs(struct lwp *l)
1432 {
1433 	struct proc *p = l->l_proc;
1434 
1435 	KASSERT(mutex_owned(p->p_lock));
1436 	KASSERT(l->l_refcnt != 0);
1437 
1438 	l->l_refcnt--;
1439 	while (l->l_refcnt != 0)
1440 		cv_wait(&p->p_lwpcv, p->p_lock);
1441 }
1442 
1443 /*
1444  * lwp_specific_key_create --
1445  *	Create a key for subsystem lwp-specific data.
1446  */
1447 int
1448 lwp_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
1449 {
1450 
1451 	return (specificdata_key_create(lwp_specificdata_domain, keyp, dtor));
1452 }
1453 
1454 /*
1455  * lwp_specific_key_delete --
1456  *	Delete a key for subsystem lwp-specific data.
1457  */
1458 void
1459 lwp_specific_key_delete(specificdata_key_t key)
1460 {
1461 
1462 	specificdata_key_delete(lwp_specificdata_domain, key);
1463 }
1464 
1465 /*
1466  * lwp_initspecific --
1467  *	Initialize an LWP's specificdata container.
1468  */
1469 void
1470 lwp_initspecific(struct lwp *l)
1471 {
1472 	int error;
1473 
1474 	error = specificdata_init(lwp_specificdata_domain, &l->l_specdataref);
1475 	KASSERT(error == 0);
1476 }
1477 
1478 /*
1479  * lwp_finispecific --
1480  *	Finalize an LWP's specificdata container.
1481  */
1482 void
1483 lwp_finispecific(struct lwp *l)
1484 {
1485 
1486 	specificdata_fini(lwp_specificdata_domain, &l->l_specdataref);
1487 }
1488 
1489 /*
1490  * lwp_getspecific --
1491  *	Return lwp-specific data corresponding to the specified key.
1492  *
1493  *	Note: LWP specific data is NOT INTERLOCKED.  An LWP should access
1494  *	only its OWN SPECIFIC DATA.  If it is necessary to access another
1495  *	LWP's specifc data, care must be taken to ensure that doing so
1496  *	would not cause internal data structure inconsistency (i.e. caller
1497  *	can guarantee that the target LWP is not inside an lwp_getspecific()
1498  *	or lwp_setspecific() call).
1499  */
1500 void *
1501 lwp_getspecific(specificdata_key_t key)
1502 {
1503 
1504 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1505 						  &curlwp->l_specdataref, key));
1506 }
1507 
1508 void *
1509 _lwp_getspecific_by_lwp(struct lwp *l, specificdata_key_t key)
1510 {
1511 
1512 	return (specificdata_getspecific_unlocked(lwp_specificdata_domain,
1513 						  &l->l_specdataref, key));
1514 }
1515 
1516 /*
1517  * lwp_setspecific --
1518  *	Set lwp-specific data corresponding to the specified key.
1519  */
1520 void
1521 lwp_setspecific(specificdata_key_t key, void *data)
1522 {
1523 
1524 	specificdata_setspecific(lwp_specificdata_domain,
1525 				 &curlwp->l_specdataref, key, data);
1526 }
1527 
1528 /*
1529  * Allocate a new lwpctl structure for a user LWP.
1530  */
1531 int
1532 lwp_ctl_alloc(vaddr_t *uaddr)
1533 {
1534 	lcproc_t *lp;
1535 	u_int bit, i, offset;
1536 	struct uvm_object *uao;
1537 	int error;
1538 	lcpage_t *lcp;
1539 	proc_t *p;
1540 	lwp_t *l;
1541 
1542 	l = curlwp;
1543 	p = l->l_proc;
1544 
1545 	if (l->l_lcpage != NULL) {
1546 		lcp = l->l_lcpage;
1547 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1548 		return (EINVAL);
1549 	}
1550 
1551 	/* First time around, allocate header structure for the process. */
1552 	if ((lp = p->p_lwpctl) == NULL) {
1553 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1554 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1555 		lp->lp_uao = NULL;
1556 		TAILQ_INIT(&lp->lp_pages);
1557 		mutex_enter(p->p_lock);
1558 		if (p->p_lwpctl == NULL) {
1559 			p->p_lwpctl = lp;
1560 			mutex_exit(p->p_lock);
1561 		} else {
1562 			mutex_exit(p->p_lock);
1563 			mutex_destroy(&lp->lp_lock);
1564 			kmem_free(lp, sizeof(*lp));
1565 			lp = p->p_lwpctl;
1566 		}
1567 	}
1568 
1569  	/*
1570  	 * Set up an anonymous memory region to hold the shared pages.
1571  	 * Map them into the process' address space.  The user vmspace
1572  	 * gets the first reference on the UAO.
1573  	 */
1574 	mutex_enter(&lp->lp_lock);
1575 	if (lp->lp_uao == NULL) {
1576 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1577 		lp->lp_cur = 0;
1578 		lp->lp_max = LWPCTL_UAREA_SZ;
1579 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1580 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ);
1581 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1582 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1583 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1584 		if (error != 0) {
1585 			uao_detach(lp->lp_uao);
1586 			lp->lp_uao = NULL;
1587 			mutex_exit(&lp->lp_lock);
1588 			return error;
1589 		}
1590 	}
1591 
1592 	/* Get a free block and allocate for this LWP. */
1593 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1594 		if (lcp->lcp_nfree != 0)
1595 			break;
1596 	}
1597 	if (lcp == NULL) {
1598 		/* Nothing available - try to set up a free page. */
1599 		if (lp->lp_cur == lp->lp_max) {
1600 			mutex_exit(&lp->lp_lock);
1601 			return ENOMEM;
1602 		}
1603 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1604 		if (lcp == NULL) {
1605 			mutex_exit(&lp->lp_lock);
1606 			return ENOMEM;
1607 		}
1608 		/*
1609 		 * Wire the next page down in kernel space.  Since this
1610 		 * is a new mapping, we must add a reference.
1611 		 */
1612 		uao = lp->lp_uao;
1613 		(*uao->pgops->pgo_reference)(uao);
1614 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1615 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1616 		    uao, lp->lp_cur, PAGE_SIZE,
1617 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1618 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1619 		if (error != 0) {
1620 			mutex_exit(&lp->lp_lock);
1621 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1622 			(*uao->pgops->pgo_detach)(uao);
1623 			return error;
1624 		}
1625 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1626 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1627 		if (error != 0) {
1628 			mutex_exit(&lp->lp_lock);
1629 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1630 			    lcp->lcp_kaddr + PAGE_SIZE);
1631 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1632 			return error;
1633 		}
1634 		/* Prepare the page descriptor and link into the list. */
1635 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1636 		lp->lp_cur += PAGE_SIZE;
1637 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1638 		lcp->lcp_rotor = 0;
1639 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1640 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1641 	}
1642 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1643 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1644 			i = 0;
1645 	}
1646 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1647 	lcp->lcp_bitmap[i] ^= (1 << bit);
1648 	lcp->lcp_rotor = i;
1649 	lcp->lcp_nfree--;
1650 	l->l_lcpage = lcp;
1651 	offset = (i << 5) + bit;
1652 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1653 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1654 	mutex_exit(&lp->lp_lock);
1655 
1656 	KPREEMPT_DISABLE(l);
1657 	l->l_lwpctl->lc_curcpu = (short)curcpu()->ci_data.cpu_index;
1658 	KPREEMPT_ENABLE(l);
1659 
1660 	return 0;
1661 }
1662 
1663 /*
1664  * Free an lwpctl structure back to the per-process list.
1665  */
1666 void
1667 lwp_ctl_free(lwp_t *l)
1668 {
1669 	lcproc_t *lp;
1670 	lcpage_t *lcp;
1671 	u_int map, offset;
1672 
1673 	lp = l->l_proc->p_lwpctl;
1674 	KASSERT(lp != NULL);
1675 
1676 	lcp = l->l_lcpage;
1677 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1678 	KASSERT(offset < LWPCTL_PER_PAGE);
1679 
1680 	mutex_enter(&lp->lp_lock);
1681 	lcp->lcp_nfree++;
1682 	map = offset >> 5;
1683 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1684 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1685 		lcp->lcp_rotor = map;
1686 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1687 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1688 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1689 	}
1690 	mutex_exit(&lp->lp_lock);
1691 }
1692 
1693 /*
1694  * Process is exiting; tear down lwpctl state.  This can only be safely
1695  * called by the last LWP in the process.
1696  */
1697 void
1698 lwp_ctl_exit(void)
1699 {
1700 	lcpage_t *lcp, *next;
1701 	lcproc_t *lp;
1702 	proc_t *p;
1703 	lwp_t *l;
1704 
1705 	l = curlwp;
1706 	l->l_lwpctl = NULL;
1707 	l->l_lcpage = NULL;
1708 	p = l->l_proc;
1709 	lp = p->p_lwpctl;
1710 
1711 	KASSERT(lp != NULL);
1712 	KASSERT(p->p_nlwps == 1);
1713 
1714 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1715 		next = TAILQ_NEXT(lcp, lcp_chain);
1716 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1717 		    lcp->lcp_kaddr + PAGE_SIZE);
1718 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1719 	}
1720 
1721 	if (lp->lp_uao != NULL) {
1722 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1723 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1724 	}
1725 
1726 	mutex_destroy(&lp->lp_lock);
1727 	kmem_free(lp, sizeof(*lp));
1728 	p->p_lwpctl = NULL;
1729 }
1730 
1731 #if defined(DDB)
1732 void
1733 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1734 {
1735 	lwp_t *l;
1736 
1737 	LIST_FOREACH(l, &alllwp, l_list) {
1738 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1739 
1740 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1741 			continue;
1742 		}
1743 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1744 		    (void *)addr, (void *)stack,
1745 		    (size_t)(addr - stack), l);
1746 	}
1747 }
1748 #endif /* defined(DDB) */
1749