1 /* $NetBSD: kern_lwp.c,v 1.269 2023/12/20 21:03:50 andvar Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020, 2023 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Nathan J. Williams, and Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Overview 35 * 36 * Lightweight processes (LWPs) are the basic unit or thread of 37 * execution within the kernel. The core state of an LWP is described 38 * by "struct lwp", also known as lwp_t. 39 * 40 * Each LWP is contained within a process (described by "struct proc"), 41 * Every process contains at least one LWP, but may contain more. The 42 * process describes attributes shared among all of its LWPs such as a 43 * private address space, global execution state (stopped, active, 44 * zombie, ...), signal disposition and so on. On a multiprocessor 45 * machine, multiple LWPs be executing concurrently in the kernel. 46 * 47 * Execution states 48 * 49 * At any given time, an LWP has overall state that is described by 50 * lwp::l_stat. The states are broken into two sets below. The first 51 * set is guaranteed to represent the absolute, current state of the 52 * LWP: 53 * 54 * LSONPROC 55 * 56 * On processor: the LWP is executing on a CPU, either in the 57 * kernel or in user space. 58 * 59 * LSRUN 60 * 61 * Runnable: the LWP is parked on a run queue, and may soon be 62 * chosen to run by an idle processor, or by a processor that 63 * has been asked to preempt a currently running but lower 64 * priority LWP. 65 * 66 * LSIDL 67 * 68 * Idle: the LWP has been created but has not yet executed, or 69 * it has ceased executing a unit of work and is waiting to be 70 * started again. This state exists so that the LWP can occupy 71 * a slot in the process & PID table, but without having to 72 * worry about being touched; lookups of the LWP by ID will 73 * fail while in this state. The LWP will become visible for 74 * lookup once its state transitions further. Some special 75 * kernel threads also (ab)use this state to indicate that they 76 * are idle (soft interrupts and idle LWPs). 77 * 78 * LSSUSPENDED: 79 * 80 * Suspended: the LWP has had its execution suspended by 81 * another LWP in the same process using the _lwp_suspend() 82 * system call. User-level LWPs also enter the suspended 83 * state when the system is shutting down. 84 * 85 * The second set represent a "statement of intent" on behalf of the 86 * LWP. The LWP may in fact be executing on a processor, may be 87 * sleeping or idle. It is expected to take the necessary action to 88 * stop executing or become "running" again within a short timeframe. 89 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 90 * Importantly, it indicates that its state is tied to a CPU. 91 * 92 * LSZOMB: 93 * 94 * Dead or dying: the LWP has released most of its resources 95 * and is about to switch away into oblivion, or has already 96 * switched away. When it switches away, its few remaining 97 * resources can be collected. 98 * 99 * LSSLEEP: 100 * 101 * Sleeping: the LWP has entered itself onto a sleep queue, and 102 * has switched away or will switch away shortly to allow other 103 * LWPs to run on the CPU. 104 * 105 * LSSTOP: 106 * 107 * Stopped: the LWP has been stopped as a result of a job 108 * control signal, or as a result of the ptrace() interface. 109 * 110 * Stopped LWPs may run briefly within the kernel to handle 111 * signals that they receive, but will not return to user space 112 * until their process' state is changed away from stopped. 113 * 114 * Single LWPs within a process can not be set stopped 115 * selectively: all actions that can stop or continue LWPs 116 * occur at the process level. 117 * 118 * State transitions 119 * 120 * Note that the LSSTOP state may only be set when returning to 121 * user space in userret(), or when sleeping interruptably. The 122 * LSSUSPENDED state may only be set in userret(). Before setting 123 * those states, we try to ensure that the LWPs will release all 124 * locks that they hold, and at a minimum try to ensure that the 125 * LWP can be set runnable again by a signal. 126 * 127 * LWPs may transition states in the following ways: 128 * 129 * RUN -------> ONPROC ONPROC -----> RUN 130 * > SLEEP 131 * > STOPPED 132 * > SUSPENDED 133 * > ZOMB 134 * > IDL (special cases) 135 * 136 * STOPPED ---> RUN SUSPENDED --> RUN 137 * > SLEEP 138 * 139 * SLEEP -----> ONPROC IDL --------> RUN 140 * > RUN > SUSPENDED 141 * > STOPPED > STOPPED 142 * > ONPROC (special cases) 143 * 144 * Some state transitions are only possible with kernel threads (eg 145 * ONPROC -> IDL) and happen under tightly controlled circumstances 146 * free of unwanted side effects. 147 * 148 * Migration 149 * 150 * Migration of threads from one CPU to another could be performed 151 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 152 * functions. The universal lwp_migrate() function should be used for 153 * any other cases. Subsystems in the kernel must be aware that CPU 154 * of LWP may change, while it is not locked. 155 * 156 * Locking 157 * 158 * The majority of fields in 'struct lwp' are covered by a single, 159 * general spin lock pointed to by lwp::l_mutex. The locks covering 160 * each field are documented in sys/lwp.h. 161 * 162 * State transitions must be made with the LWP's general lock held, 163 * and may cause the LWP's lock pointer to change. Manipulation of 164 * the general lock is not performed directly, but through calls to 165 * lwp_lock(), lwp_unlock() and others. It should be noted that the 166 * adaptive locks are not allowed to be released while the LWP's lock 167 * is being held (unlike for other spin-locks). 168 * 169 * States and their associated locks: 170 * 171 * LSIDL, LSONPROC, LSZOMB, LSSUPENDED: 172 * 173 * Always covered by spc_lwplock, which protects LWPs not 174 * associated with any other sync object. This is a per-CPU 175 * lock and matches lwp::l_cpu. 176 * 177 * LSRUN: 178 * 179 * Always covered by spc_mutex, which protects the run queues. 180 * This is a per-CPU lock and matches lwp::l_cpu. 181 * 182 * LSSLEEP: 183 * 184 * Covered by a lock associated with the sleep queue (sometimes 185 * a turnstile sleep queue) that the LWP resides on. This can 186 * be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep). 187 * 188 * LSSTOP: 189 * 190 * If the LWP was previously sleeping (l_wchan != NULL), then 191 * l_mutex references the sleep queue lock. If the LWP was 192 * runnable or on the CPU when halted, or has been removed from 193 * the sleep queue since halted, then the lock is spc_lwplock. 194 * 195 * The lock order is as follows: 196 * 197 * sleepq -> turnstile -> spc_lwplock -> spc_mutex 198 * 199 * Each process has a scheduler state lock (proc::p_lock), and a 200 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 201 * so on. When an LWP is to be entered into or removed from one of the 202 * following states, p_lock must be held and the process wide counters 203 * adjusted: 204 * 205 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 206 * 207 * (But not always for kernel threads. There are some special cases 208 * as mentioned above: soft interrupts, and the idle loops.) 209 * 210 * Note that an LWP is considered running or likely to run soon if in 211 * one of the following states. This affects the value of p_nrlwps: 212 * 213 * LSRUN, LSONPROC, LSSLEEP 214 * 215 * p_lock does not need to be held when transitioning among these 216 * three states, hence p_lock is rarely taken for state transitions. 217 */ 218 219 #include <sys/cdefs.h> 220 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.269 2023/12/20 21:03:50 andvar Exp $"); 221 222 #include "opt_ddb.h" 223 #include "opt_lockdebug.h" 224 #include "opt_dtrace.h" 225 226 #define _LWP_API_PRIVATE 227 228 #include <sys/param.h> 229 230 #include <sys/atomic.h> 231 #include <sys/cprng.h> 232 #include <sys/cpu.h> 233 #include <sys/dtrace_bsd.h> 234 #include <sys/filedesc.h> 235 #include <sys/fstrans.h> 236 #include <sys/futex.h> 237 #include <sys/intr.h> 238 #include <sys/kauth.h> 239 #include <sys/kcov.h> 240 #include <sys/kmem.h> 241 #include <sys/lockdebug.h> 242 #include <sys/lwpctl.h> 243 #include <sys/msan.h> 244 #include <sys/pool.h> 245 #include <sys/proc.h> 246 #include <sys/pset.h> 247 #include <sys/psref.h> 248 #include <sys/ptrace.h> 249 #include <sys/sdt.h> 250 #include <sys/sleepq.h> 251 #include <sys/syncobj.h> 252 #include <sys/syscall_stats.h> 253 #include <sys/syscallargs.h> 254 #include <sys/sysctl.h> 255 #include <sys/systm.h> 256 #include <sys/uidinfo.h> 257 #include <sys/xcall.h> 258 259 #include <uvm/uvm_extern.h> 260 #include <uvm/uvm_object.h> 261 262 static pool_cache_t lwp_cache __read_mostly; 263 struct lwplist alllwp __cacheline_aligned; 264 265 static int lwp_ctor(void *, void *, int); 266 static void lwp_dtor(void *, void *); 267 268 /* DTrace proc provider probes */ 269 SDT_PROVIDER_DEFINE(proc); 270 271 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *"); 272 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *"); 273 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *"); 274 275 struct turnstile turnstile0 __cacheline_aligned; 276 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 277 #ifdef LWP0_CPU_INFO 278 .l_cpu = LWP0_CPU_INFO, 279 #endif 280 #ifdef LWP0_MD_INITIALIZER 281 .l_md = LWP0_MD_INITIALIZER, 282 #endif 283 .l_proc = &proc0, 284 .l_lid = 0, /* we own proc0's slot in the pid table */ 285 .l_flag = LW_SYSTEM, 286 .l_stat = LSONPROC, 287 .l_ts = &turnstile0, 288 .l_syncobj = &sched_syncobj, 289 .l_refcnt = 0, 290 .l_priority = PRI_USER + NPRI_USER - 1, 291 .l_inheritedprio = -1, 292 .l_class = SCHED_OTHER, 293 .l_psid = PS_NONE, 294 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 295 .l_name = __UNCONST("swapper"), 296 .l_fd = &filedesc0, 297 }; 298 299 static int 300 lwp_maxlwp(void) 301 { 302 /* Assume 1 LWP per 1MiB. */ 303 uint64_t lwps_per = ctob(physmem) / (1024 * 1024); 304 305 return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP); 306 } 307 308 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 309 310 /* 311 * sysctl helper routine for kern.maxlwp. Ensures that the new 312 * values are not too low or too high. 313 */ 314 static int 315 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 316 { 317 int error, nmaxlwp; 318 struct sysctlnode node; 319 320 nmaxlwp = maxlwp; 321 node = *rnode; 322 node.sysctl_data = &nmaxlwp; 323 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 324 if (error || newp == NULL) 325 return error; 326 327 if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP) 328 return EINVAL; 329 if (nmaxlwp > lwp_maxlwp()) 330 return EINVAL; 331 maxlwp = nmaxlwp; 332 333 return 0; 334 } 335 336 static void 337 sysctl_kern_lwp_setup(void) 338 { 339 sysctl_createv(NULL, 0, NULL, NULL, 340 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 341 CTLTYPE_INT, "maxlwp", 342 SYSCTL_DESCR("Maximum number of simultaneous threads"), 343 sysctl_kern_maxlwp, 0, NULL, 0, 344 CTL_KERN, CTL_CREATE, CTL_EOL); 345 } 346 347 void 348 lwpinit(void) 349 { 350 351 LIST_INIT(&alllwp); 352 lwpinit_specificdata(); 353 /* 354 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 355 * calls will exit before memory of LWPs is returned to the pool, where 356 * KVA of LWP structure might be freed and re-used for other purposes. 357 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 358 * callers, therefore a regular passive serialization barrier will 359 * do the job. 360 */ 361 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 362 PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL); 363 364 maxlwp = lwp_maxlwp(); 365 sysctl_kern_lwp_setup(); 366 } 367 368 void 369 lwp0_init(void) 370 { 371 struct lwp *l = &lwp0; 372 373 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 374 375 LIST_INSERT_HEAD(&alllwp, l, l_list); 376 377 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 378 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 379 cv_init(&l->l_sigcv, "sigwait"); 380 cv_init(&l->l_waitcv, "vfork"); 381 382 l->l_cred = kauth_cred_hold(proc0.p_cred); 383 384 kdtrace_thread_ctor(NULL, l); 385 lwp_initspecific(l); 386 387 SYSCALL_TIME_LWP_INIT(l); 388 } 389 390 /* 391 * Initialize the non-zeroed portion of an lwp_t. 392 */ 393 static int 394 lwp_ctor(void *arg, void *obj, int flags) 395 { 396 lwp_t *l = obj; 397 398 l->l_stat = LSIDL; 399 l->l_cpu = curcpu(); 400 l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock; 401 l->l_ts = kmem_alloc(sizeof(*l->l_ts), flags == PR_WAITOK ? 402 KM_SLEEP : KM_NOSLEEP); 403 404 if (l->l_ts == NULL) { 405 return ENOMEM; 406 } else { 407 turnstile_ctor(l->l_ts); 408 return 0; 409 } 410 } 411 412 static void 413 lwp_dtor(void *arg, void *obj) 414 { 415 lwp_t *l = obj; 416 417 /* 418 * The value of l->l_cpu must still be valid at this point. 419 */ 420 KASSERT(l->l_cpu != NULL); 421 422 /* 423 * We can't return turnstile0 to the pool (it didn't come from it), 424 * so if it comes up just drop it quietly and move on. 425 */ 426 if (l->l_ts != &turnstile0) 427 kmem_free(l->l_ts, sizeof(*l->l_ts)); 428 } 429 430 /* 431 * Set an LWP suspended. 432 * 433 * Must be called with p_lock held, and the LWP locked. Will unlock the 434 * LWP before return. 435 */ 436 int 437 lwp_suspend(struct lwp *curl, struct lwp *t) 438 { 439 int error; 440 441 KASSERT(mutex_owned(t->l_proc->p_lock)); 442 KASSERT(lwp_locked(t, NULL)); 443 444 KASSERT(curl != t || curl->l_stat == LSONPROC); 445 446 /* 447 * If the current LWP has been told to exit, we must not suspend anyone 448 * else or deadlock could occur. We won't return to userspace. 449 */ 450 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 451 lwp_unlock(t); 452 return (EDEADLK); 453 } 454 455 if ((t->l_flag & LW_DBGSUSPEND) != 0) { 456 lwp_unlock(t); 457 return 0; 458 } 459 460 error = 0; 461 462 switch (t->l_stat) { 463 case LSRUN: 464 case LSONPROC: 465 t->l_flag |= LW_WSUSPEND; 466 lwp_need_userret(t); 467 lwp_unlock(t); 468 break; 469 470 case LSSLEEP: 471 t->l_flag |= LW_WSUSPEND; 472 lwp_need_userret(t); 473 474 /* 475 * Kick the LWP and try to get it to the kernel boundary 476 * so that it will release any locks that it holds. 477 * setrunnable() will release the lock. 478 */ 479 if ((t->l_flag & LW_SINTR) != 0) 480 setrunnable(t); 481 else 482 lwp_unlock(t); 483 break; 484 485 case LSSUSPENDED: 486 lwp_unlock(t); 487 break; 488 489 case LSSTOP: 490 t->l_flag |= LW_WSUSPEND; 491 lwp_need_userret(t); 492 setrunnable(t); 493 break; 494 495 case LSIDL: 496 case LSZOMB: 497 error = EINTR; /* It's what Solaris does..... */ 498 lwp_unlock(t); 499 break; 500 } 501 502 return (error); 503 } 504 505 /* 506 * Restart a suspended LWP. 507 * 508 * Must be called with p_lock held, and the LWP locked. Will unlock the 509 * LWP before return. 510 */ 511 void 512 lwp_continue(struct lwp *l) 513 { 514 515 KASSERT(mutex_owned(l->l_proc->p_lock)); 516 KASSERT(lwp_locked(l, NULL)); 517 518 /* If rebooting or not suspended, then just bail out. */ 519 if ((l->l_flag & LW_WREBOOT) != 0) { 520 lwp_unlock(l); 521 return; 522 } 523 524 l->l_flag &= ~LW_WSUSPEND; 525 526 if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) { 527 lwp_unlock(l); 528 return; 529 } 530 531 /* setrunnable() will release the lock. */ 532 setrunnable(l); 533 } 534 535 /* 536 * Restart a stopped LWP. 537 * 538 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 539 * LWP before return. 540 */ 541 void 542 lwp_unstop(struct lwp *l) 543 { 544 struct proc *p = l->l_proc; 545 546 KASSERT(mutex_owned(&proc_lock)); 547 KASSERT(mutex_owned(p->p_lock)); 548 549 lwp_lock(l); 550 551 KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); 552 553 /* If not stopped, then just bail out. */ 554 if (l->l_stat != LSSTOP) { 555 lwp_unlock(l); 556 return; 557 } 558 559 p->p_stat = SACTIVE; 560 p->p_sflag &= ~PS_STOPPING; 561 562 if (!p->p_waited) 563 p->p_pptr->p_nstopchild--; 564 565 if (l->l_wchan == NULL) { 566 /* setrunnable() will release the lock. */ 567 setrunnable(l); 568 } else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) { 569 /* setrunnable() so we can receive the signal */ 570 setrunnable(l); 571 } else { 572 l->l_stat = LSSLEEP; 573 p->p_nrlwps++; 574 lwp_unlock(l); 575 } 576 } 577 578 /* 579 * Wait for an LWP within the current process to exit. If 'lid' is 580 * non-zero, we are waiting for a specific LWP. 581 * 582 * Must be called with p->p_lock held. 583 */ 584 int 585 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 586 { 587 const lwpid_t curlid = l->l_lid; 588 proc_t *p = l->l_proc; 589 lwp_t *l2, *next; 590 int error; 591 592 KASSERT(mutex_owned(p->p_lock)); 593 594 p->p_nlwpwait++; 595 l->l_waitingfor = lid; 596 597 for (;;) { 598 int nfound; 599 600 /* 601 * Avoid a race between exit1() and sigexit(): if the 602 * process is dumping core, then we need to bail out: call 603 * into lwp_userret() where we will be suspended until the 604 * deed is done. 605 */ 606 if ((p->p_sflag & PS_WCORE) != 0) { 607 mutex_exit(p->p_lock); 608 lwp_userret(l); 609 KASSERT(false); 610 } 611 612 /* 613 * First off, drain any detached LWP that is waiting to be 614 * reaped. 615 */ 616 if ((l2 = p->p_zomblwp) != NULL) { 617 p->p_zomblwp = NULL; 618 lwp_free(l2, false, false);/* releases proc mutex */ 619 mutex_enter(p->p_lock); 620 continue; 621 } 622 623 /* 624 * Now look for an LWP to collect. If the whole process is 625 * exiting, count detached LWPs as eligible to be collected, 626 * but don't drain them here. 627 */ 628 nfound = 0; 629 error = 0; 630 631 /* 632 * If given a specific LID, go via pid_table and make sure 633 * it's not detached. 634 */ 635 if (lid != 0) { 636 l2 = proc_find_lwp(p, lid); 637 if (l2 == NULL) { 638 error = ESRCH; 639 break; 640 } 641 KASSERT(l2->l_lid == lid); 642 if ((l2->l_prflag & LPR_DETACHED) != 0) { 643 error = EINVAL; 644 break; 645 } 646 } else { 647 l2 = LIST_FIRST(&p->p_lwps); 648 } 649 for (; l2 != NULL; l2 = next) { 650 next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling)); 651 652 /* 653 * If a specific wait and the target is waiting on 654 * us, then avoid deadlock. This also traps LWPs 655 * that try to wait on themselves. 656 * 657 * Note that this does not handle more complicated 658 * cycles, like: t1 -> t2 -> t3 -> t1. The process 659 * can still be killed so it is not a major problem. 660 */ 661 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 662 error = EDEADLK; 663 break; 664 } 665 if (l2 == l) 666 continue; 667 if ((l2->l_prflag & LPR_DETACHED) != 0) { 668 nfound += exiting; 669 continue; 670 } 671 if (lid != 0) { 672 /* 673 * Mark this LWP as the first waiter, if there 674 * is no other. 675 */ 676 if (l2->l_waiter == 0) 677 l2->l_waiter = curlid; 678 } else if (l2->l_waiter != 0) { 679 /* 680 * It already has a waiter - so don't 681 * collect it. If the waiter doesn't 682 * grab it we'll get another chance 683 * later. 684 */ 685 nfound++; 686 continue; 687 } 688 nfound++; 689 690 /* No need to lock the LWP in order to see LSZOMB. */ 691 if (l2->l_stat != LSZOMB) 692 continue; 693 694 /* 695 * We're no longer waiting. Reset the "first waiter" 696 * pointer on the target, in case it was us. 697 */ 698 l->l_waitingfor = 0; 699 l2->l_waiter = 0; 700 p->p_nlwpwait--; 701 if (departed) 702 *departed = l2->l_lid; 703 sched_lwp_collect(l2); 704 705 /* lwp_free() releases the proc lock. */ 706 lwp_free(l2, false, false); 707 mutex_enter(p->p_lock); 708 return 0; 709 } 710 711 if (error != 0) 712 break; 713 if (nfound == 0) { 714 error = ESRCH; 715 break; 716 } 717 718 /* 719 * Note: since the lock will be dropped, need to restart on 720 * wakeup to run all LWPs again, e.g. there may be new LWPs. 721 */ 722 if (exiting) { 723 KASSERT(p->p_nlwps > 1); 724 error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1); 725 break; 726 } 727 728 /* 729 * Break out if all LWPs are in _lwp_wait(). There are 730 * other ways to hang the process with _lwp_wait(), but the 731 * sleep is interruptable so little point checking for them. 732 */ 733 if (p->p_nlwpwait == p->p_nlwps) { 734 error = EDEADLK; 735 break; 736 } 737 738 /* 739 * Sit around and wait for something to happen. We'll be 740 * awoken if any of the conditions examined change: if an 741 * LWP exits, is collected, or is detached. 742 */ 743 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 744 break; 745 } 746 747 /* 748 * We didn't find any LWPs to collect, we may have received a 749 * signal, or some other condition has caused us to bail out. 750 * 751 * If waiting on a specific LWP, clear the waiters marker: some 752 * other LWP may want it. Then, kick all the remaining waiters 753 * so that they can re-check for zombies and for deadlock. 754 */ 755 if (lid != 0) { 756 l2 = proc_find_lwp(p, lid); 757 KASSERT(l2 == NULL || l2->l_lid == lid); 758 759 if (l2 != NULL && l2->l_waiter == curlid) 760 l2->l_waiter = 0; 761 } 762 p->p_nlwpwait--; 763 l->l_waitingfor = 0; 764 cv_broadcast(&p->p_lwpcv); 765 766 return error; 767 } 768 769 /* 770 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 771 * The new LWP is created in state LSIDL and must be set running, 772 * suspended, or stopped by the caller. 773 */ 774 int 775 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 776 void *stack, size_t stacksize, void (*func)(void *), void *arg, 777 lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask, 778 const stack_t *sigstk) 779 { 780 struct lwp *l2; 781 782 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 783 784 /* 785 * Enforce limits, excluding the first lwp and kthreads. We must 786 * use the process credentials here when adjusting the limit, as 787 * they are what's tied to the accounting entity. However for 788 * authorizing the action, we'll use the LWP's credentials. 789 */ 790 mutex_enter(p2->p_lock); 791 if (p2->p_nlwps != 0 && p2 != &proc0) { 792 uid_t uid = kauth_cred_getuid(p2->p_cred); 793 int count = chglwpcnt(uid, 1); 794 if (__predict_false(count > 795 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 796 if (kauth_authorize_process(l1->l_cred, 797 KAUTH_PROCESS_RLIMIT, p2, 798 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 799 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 800 != 0) { 801 (void)chglwpcnt(uid, -1); 802 mutex_exit(p2->p_lock); 803 return EAGAIN; 804 } 805 } 806 } 807 808 /* 809 * First off, reap any detached LWP waiting to be collected. 810 * We can re-use its LWP structure and turnstile. 811 */ 812 if ((l2 = p2->p_zomblwp) != NULL) { 813 p2->p_zomblwp = NULL; 814 lwp_free(l2, true, false); 815 /* p2 now unlocked by lwp_free() */ 816 KASSERT(l2->l_ts != NULL); 817 KASSERT(l2->l_inheritedprio == -1); 818 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 819 memset(&l2->l_startzero, 0, sizeof(*l2) - 820 offsetof(lwp_t, l_startzero)); 821 } else { 822 mutex_exit(p2->p_lock); 823 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 824 memset(&l2->l_startzero, 0, sizeof(*l2) - 825 offsetof(lwp_t, l_startzero)); 826 SLIST_INIT(&l2->l_pi_lenders); 827 } 828 829 /* 830 * Because of lockless lookup via pid_table, the LWP can be locked 831 * and inspected briefly even after it's freed, so a few fields are 832 * kept stable. 833 */ 834 KASSERT(l2->l_stat == LSIDL); 835 KASSERT(l2->l_cpu != NULL); 836 KASSERT(l2->l_ts != NULL); 837 KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock); 838 839 l2->l_proc = p2; 840 l2->l_refcnt = 0; 841 l2->l_class = sclass; 842 843 /* 844 * Allocate a process ID for this LWP. We need to do this now 845 * while we can still unwind if it fails. Because we're marked 846 * as LSIDL, no lookups by the ID will succeed. 847 * 848 * N.B. this will always succeed for the first LWP in a process, 849 * because proc_alloc_lwpid() will usurp the slot. Also note 850 * that l2->l_proc MUST be valid so that lookups of the proc 851 * will succeed, even if the LWP itself is not visible. 852 */ 853 if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) { 854 pool_cache_put(lwp_cache, l2); 855 return EAGAIN; 856 } 857 858 /* 859 * If vfork(), we want the LWP to run fast and on the same CPU 860 * as its parent, so that it can reuse the VM context and cache 861 * footprint on the local CPU. 862 */ 863 l2->l_boostpri = ((flags & LWP_VFORK) ? PRI_KERNEL : PRI_USER); 864 l2->l_priority = l1->l_priority; 865 l2->l_inheritedprio = -1; 866 l2->l_protectprio = -1; 867 l2->l_auxprio = -1; 868 l2->l_flag = 0; 869 l2->l_pflag = LP_MPSAFE; 870 TAILQ_INIT(&l2->l_ld_locks); 871 l2->l_psrefs = 0; 872 kmsan_lwp_alloc(l2); 873 874 /* 875 * For vfork, borrow parent's lwpctl context if it exists. 876 * This also causes us to return via lwp_userret. 877 */ 878 if (flags & LWP_VFORK && l1->l_lwpctl) { 879 l2->l_lwpctl = l1->l_lwpctl; 880 l2->l_flag |= LW_LWPCTL; 881 } 882 883 /* 884 * If not the first LWP in the process, grab a reference to the 885 * descriptor table. 886 */ 887 l2->l_fd = p2->p_fd; 888 if (p2->p_nlwps != 0) { 889 KASSERT(l1->l_proc == p2); 890 fd_hold(l2); 891 } else { 892 KASSERT(l1->l_proc != p2); 893 } 894 895 if (p2->p_flag & PK_SYSTEM) { 896 /* Mark it as a system LWP. */ 897 l2->l_flag |= LW_SYSTEM; 898 } 899 900 kdtrace_thread_ctor(NULL, l2); 901 lwp_initspecific(l2); 902 sched_lwp_fork(l1, l2); 903 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 904 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 905 cv_init(&l2->l_sigcv, "sigwait"); 906 cv_init(&l2->l_waitcv, "vfork"); 907 l2->l_syncobj = &sched_syncobj; 908 PSREF_DEBUG_INIT_LWP(l2); 909 910 if (rnewlwpp != NULL) 911 *rnewlwpp = l2; 912 913 /* 914 * PCU state needs to be saved before calling uvm_lwp_fork() so that 915 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 916 */ 917 pcu_save_all(l1); 918 #if PCU_UNIT_COUNT > 0 919 l2->l_pcu_valid = l1->l_pcu_valid; 920 #endif 921 922 uvm_lwp_setuarea(l2, uaddr); 923 uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2); 924 925 mutex_enter(p2->p_lock); 926 l2->l_cred = kauth_cred_hold(p2->p_cred); 927 if ((flags & LWP_DETACHED) != 0) { 928 l2->l_prflag = LPR_DETACHED; 929 p2->p_ndlwps++; 930 } else 931 l2->l_prflag = 0; 932 933 if (l1->l_proc == p2) { 934 /* 935 * These flags are set while p_lock is held. Copy with 936 * p_lock held too, so the LWP doesn't sneak into the 937 * process without them being set. 938 */ 939 l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE)); 940 } else { 941 /* fork(): pending core/exit doesn't apply to child. */ 942 l2->l_flag |= (l1->l_flag & LW_WREBOOT); 943 } 944 945 l2->l_sigstk = *sigstk; 946 l2->l_sigmask = *sigmask; 947 TAILQ_INIT(&l2->l_sigpend.sp_info); 948 sigemptyset(&l2->l_sigpend.sp_set); 949 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 950 p2->p_nlwps++; 951 p2->p_nrlwps++; 952 953 KASSERT(l2->l_affinity == NULL); 954 955 /* Inherit the affinity mask. */ 956 if (l1->l_affinity) { 957 /* 958 * Note that we hold the state lock while inheriting 959 * the affinity to avoid race with sched_setaffinity(). 960 */ 961 lwp_lock(l1); 962 if (l1->l_affinity) { 963 kcpuset_use(l1->l_affinity); 964 l2->l_affinity = l1->l_affinity; 965 } 966 lwp_unlock(l1); 967 } 968 969 /* Ensure a trip through lwp_userret() if needed. */ 970 if ((l2->l_flag & LW_USERRET) != 0) { 971 lwp_need_userret(l2); 972 } 973 974 /* This marks the end of the "must be atomic" section. */ 975 mutex_exit(p2->p_lock); 976 977 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0); 978 979 mutex_enter(&proc_lock); 980 LIST_INSERT_HEAD(&alllwp, l2, l_list); 981 /* Inherit a processor-set */ 982 l2->l_psid = l1->l_psid; 983 mutex_exit(&proc_lock); 984 985 SYSCALL_TIME_LWP_INIT(l2); 986 987 if (p2->p_emul->e_lwp_fork) 988 (*p2->p_emul->e_lwp_fork)(l1, l2); 989 990 return (0); 991 } 992 993 /* 994 * Set a new LWP running. If the process is stopping, then the LWP is 995 * created stopped. 996 */ 997 void 998 lwp_start(lwp_t *l, int flags) 999 { 1000 proc_t *p = l->l_proc; 1001 1002 mutex_enter(p->p_lock); 1003 lwp_lock(l); 1004 KASSERT(l->l_stat == LSIDL); 1005 if ((flags & LWP_SUSPENDED) != 0) { 1006 /* It'll suspend itself in lwp_userret(). */ 1007 l->l_flag |= LW_WSUSPEND; 1008 lwp_need_userret(l); 1009 } 1010 if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) { 1011 KASSERT(l->l_wchan == NULL); 1012 l->l_stat = LSSTOP; 1013 p->p_nrlwps--; 1014 lwp_unlock(l); 1015 } else { 1016 setrunnable(l); 1017 /* LWP now unlocked */ 1018 } 1019 mutex_exit(p->p_lock); 1020 } 1021 1022 /* 1023 * Called by MD code when a new LWP begins execution. Must be called 1024 * with the previous LWP locked (so at splsched), or if there is no 1025 * previous LWP, at splsched. 1026 */ 1027 void 1028 lwp_startup(struct lwp *prev, struct lwp *new_lwp) 1029 { 1030 kmutex_t *lock; 1031 1032 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev); 1033 KASSERT(kpreempt_disabled()); 1034 KASSERT(prev != NULL); 1035 KASSERT((prev->l_pflag & LP_RUNNING) != 0); 1036 KASSERT(curcpu()->ci_mtx_count == -2); 1037 1038 /* 1039 * Immediately mark the previous LWP as no longer running and 1040 * unlock (to keep lock wait times short as possible). If a 1041 * zombie, don't touch after clearing LP_RUNNING as it could be 1042 * reaped by another CPU. Use atomic_store_release to ensure 1043 * this -- matches atomic_load_acquire in lwp_free. 1044 */ 1045 lock = prev->l_mutex; 1046 if (__predict_false(prev->l_stat == LSZOMB)) { 1047 atomic_store_release(&prev->l_pflag, 1048 prev->l_pflag & ~LP_RUNNING); 1049 } else { 1050 prev->l_pflag &= ~LP_RUNNING; 1051 } 1052 mutex_spin_exit(lock); 1053 1054 /* Correct spin mutex count after mi_switch(). */ 1055 curcpu()->ci_mtx_count = 0; 1056 1057 /* Install new VM context. */ 1058 if (__predict_true(new_lwp->l_proc->p_vmspace)) { 1059 pmap_activate(new_lwp); 1060 } 1061 1062 /* We remain at IPL_SCHED from mi_switch() - reset it. */ 1063 spl0(); 1064 1065 LOCKDEBUG_BARRIER(NULL, 0); 1066 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0); 1067 1068 /* For kthreads, acquire kernel lock if not MPSAFE. */ 1069 if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) { 1070 KERNEL_LOCK(1, new_lwp); 1071 } 1072 } 1073 1074 /* 1075 * Exit an LWP. 1076 * 1077 * *** WARNING *** This can be called with (l != curlwp) in error paths. 1078 */ 1079 void 1080 lwp_exit(struct lwp *l) 1081 { 1082 struct proc *p = l->l_proc; 1083 struct lwp *l2; 1084 bool current; 1085 1086 current = (l == curlwp); 1087 1088 KASSERT(current || l->l_stat == LSIDL); 1089 KASSERT(current || l->l_target_cpu == NULL); 1090 KASSERT(p == curproc); 1091 1092 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0); 1093 1094 /* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */ 1095 LOCKDEBUG_BARRIER(NULL, 0); 1096 KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked"); 1097 1098 /* 1099 * If we are the last live LWP in a process, we need to exit the 1100 * entire process. We do so with an exit status of zero, because 1101 * it's a "controlled" exit, and because that's what Solaris does. 1102 * 1103 * We are not quite a zombie yet, but for accounting purposes we 1104 * must increment the count of zombies here. 1105 * 1106 * Note: the last LWP's specificdata will be deleted here. 1107 */ 1108 mutex_enter(p->p_lock); 1109 if (p->p_nlwps - p->p_nzlwps == 1) { 1110 KASSERT(current == true); 1111 KASSERT(p != &proc0); 1112 exit1(l, 0, 0); 1113 /* NOTREACHED */ 1114 } 1115 p->p_nzlwps++; 1116 1117 /* 1118 * Perform any required thread cleanup. Do this early so 1119 * anyone wanting to look us up with lwp_getref_lwpid() will 1120 * fail to find us before we become a zombie. 1121 * 1122 * N.B. this will unlock p->p_lock on our behalf. 1123 */ 1124 lwp_thread_cleanup(l); 1125 1126 if (p->p_emul->e_lwp_exit) 1127 (*p->p_emul->e_lwp_exit)(l); 1128 1129 /* Drop filedesc reference. */ 1130 fd_free(); 1131 1132 /* Release fstrans private data. */ 1133 fstrans_lwp_dtor(l); 1134 1135 /* Delete the specificdata while it's still safe to sleep. */ 1136 lwp_finispecific(l); 1137 1138 /* 1139 * Release our cached credentials. 1140 */ 1141 kauth_cred_free(l->l_cred); 1142 callout_destroy(&l->l_timeout_ch); 1143 1144 /* 1145 * If traced, report LWP exit event to the debugger. 1146 * 1147 * Remove the LWP from the global list. 1148 * Free its LID from the PID namespace if needed. 1149 */ 1150 mutex_enter(&proc_lock); 1151 1152 if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) == 1153 (PSL_TRACED|PSL_TRACELWP_EXIT)) { 1154 mutex_enter(p->p_lock); 1155 if (ISSET(p->p_sflag, PS_WEXIT)) { 1156 mutex_exit(p->p_lock); 1157 /* 1158 * We are exiting, bail out without informing parent 1159 * about a terminating LWP as it would deadlock. 1160 */ 1161 } else { 1162 eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid); 1163 mutex_enter(&proc_lock); 1164 } 1165 } 1166 1167 LIST_REMOVE(l, l_list); 1168 mutex_exit(&proc_lock); 1169 1170 /* 1171 * Get rid of all references to the LWP that others (e.g. procfs) 1172 * may have, and mark the LWP as a zombie. If the LWP is detached, 1173 * mark it waiting for collection in the proc structure. Note that 1174 * before we can do that, we need to free any other dead, detached 1175 * LWP waiting to meet its maker. 1176 * 1177 * All conditions need to be observed upon under the same hold of 1178 * p_lock, because if the lock is dropped any of them can change. 1179 */ 1180 mutex_enter(p->p_lock); 1181 for (;;) { 1182 if (lwp_drainrefs(l)) 1183 continue; 1184 if ((l->l_prflag & LPR_DETACHED) != 0) { 1185 if ((l2 = p->p_zomblwp) != NULL) { 1186 p->p_zomblwp = NULL; 1187 lwp_free(l2, false, false); 1188 /* proc now unlocked */ 1189 mutex_enter(p->p_lock); 1190 continue; 1191 } 1192 p->p_zomblwp = l; 1193 } 1194 break; 1195 } 1196 1197 /* 1198 * If we find a pending signal for the process and we have been 1199 * asked to check for signals, then we lose: arrange to have 1200 * all other LWPs in the process check for signals. 1201 */ 1202 if ((l->l_flag & LW_PENDSIG) != 0 && 1203 firstsig(&p->p_sigpend.sp_set) != 0) { 1204 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1205 lwp_lock(l2); 1206 signotify(l2); 1207 lwp_unlock(l2); 1208 } 1209 } 1210 1211 /* 1212 * Release any PCU resources before becoming a zombie. 1213 */ 1214 pcu_discard_all(l); 1215 1216 lwp_lock(l); 1217 l->l_stat = LSZOMB; 1218 if (l->l_name != NULL) { 1219 strcpy(l->l_name, "(zombie)"); 1220 } 1221 lwp_unlock(l); 1222 p->p_nrlwps--; 1223 if (l->l_lwpctl != NULL) 1224 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1225 mutex_exit(p->p_lock); 1226 cv_broadcast(&p->p_lwpcv); 1227 1228 /* 1229 * We can no longer block. At this point, lwp_free() may already 1230 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1231 * 1232 * Free MD LWP resources. 1233 */ 1234 cpu_lwp_free(l, 0); 1235 1236 if (current) { 1237 /* Switch away into oblivion. */ 1238 lwp_lock(l); 1239 spc_lock(l->l_cpu); 1240 mi_switch(l); 1241 panic("lwp_exit"); 1242 } 1243 } 1244 1245 /* 1246 * Free a dead LWP's remaining resources. 1247 * 1248 * XXXLWP limits. 1249 */ 1250 void 1251 lwp_free(struct lwp *l, bool recycle, bool last) 1252 { 1253 struct proc *p = l->l_proc; 1254 struct rusage *ru; 1255 ksiginfoq_t kq; 1256 1257 KASSERT(l != curlwp); 1258 KASSERT(last || mutex_owned(p->p_lock)); 1259 1260 /* 1261 * We use the process credentials instead of the lwp credentials here 1262 * because the lwp credentials maybe cached (just after a setuid call) 1263 * and we don't want pay for syncing, since the lwp is going away 1264 * anyway 1265 */ 1266 if (p != &proc0 && p->p_nlwps != 1) 1267 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1); 1268 1269 /* 1270 * In the unlikely event that the LWP is still on the CPU, 1271 * then spin until it has switched away. 1272 * 1273 * atomic_load_acquire matches atomic_store_release in 1274 * lwp_startup and mi_switch. 1275 */ 1276 while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING) 1277 != 0)) { 1278 SPINLOCK_BACKOFF_HOOK; 1279 } 1280 1281 /* 1282 * Now that the LWP's known off the CPU, reset its state back to 1283 * LSIDL, which defeats anything that might have gotten a hold on 1284 * the LWP via pid_table before the ID was freed. It's important 1285 * to do this with both the LWP locked and p_lock held. 1286 * 1287 * Also reset the CPU and lock pointer back to curcpu(), since the 1288 * LWP will in all likelyhood be cached with the current CPU in 1289 * lwp_cache when we free it and later allocated from there again 1290 * (avoid incidental lock contention). 1291 */ 1292 lwp_lock(l); 1293 l->l_stat = LSIDL; 1294 l->l_cpu = curcpu(); 1295 lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock); 1296 1297 /* 1298 * If this was not the last LWP in the process, then adjust counters 1299 * and unlock. This is done differently for the last LWP in exit1(). 1300 */ 1301 if (!last) { 1302 /* 1303 * Add the LWP's run time to the process' base value. 1304 * This needs to co-incide with coming off p_lwps. 1305 */ 1306 bintime_add(&p->p_rtime, &l->l_rtime); 1307 p->p_pctcpu += l->l_pctcpu; 1308 ru = &p->p_stats->p_ru; 1309 ruadd(ru, &l->l_ru); 1310 LIST_REMOVE(l, l_sibling); 1311 p->p_nlwps--; 1312 p->p_nzlwps--; 1313 if ((l->l_prflag & LPR_DETACHED) != 0) 1314 p->p_ndlwps--; 1315 mutex_exit(p->p_lock); 1316 1317 /* 1318 * Have any LWPs sleeping in lwp_wait() recheck for 1319 * deadlock. 1320 */ 1321 cv_broadcast(&p->p_lwpcv); 1322 1323 /* Free the LWP ID. */ 1324 mutex_enter(&proc_lock); 1325 proc_free_lwpid(p, l->l_lid); 1326 mutex_exit(&proc_lock); 1327 } 1328 1329 /* 1330 * Destroy the LWP's remaining signal information. 1331 */ 1332 ksiginfo_queue_init(&kq); 1333 sigclear(&l->l_sigpend, NULL, &kq); 1334 ksiginfo_queue_drain(&kq); 1335 cv_destroy(&l->l_sigcv); 1336 cv_destroy(&l->l_waitcv); 1337 1338 /* 1339 * Free lwpctl structure and affinity. 1340 */ 1341 if (l->l_lwpctl) { 1342 lwp_ctl_free(l); 1343 } 1344 if (l->l_affinity) { 1345 kcpuset_unuse(l->l_affinity, NULL); 1346 l->l_affinity = NULL; 1347 } 1348 1349 /* 1350 * Free remaining data structures and the LWP itself unless the 1351 * caller wants to recycle. 1352 */ 1353 if (l->l_name != NULL) 1354 kmem_free(l->l_name, MAXCOMLEN); 1355 1356 kmsan_lwp_free(l); 1357 kcov_lwp_free(l); 1358 cpu_lwp_free2(l); 1359 uvm_lwp_exit(l); 1360 1361 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1362 KASSERT(l->l_inheritedprio == -1); 1363 KASSERT(l->l_blcnt == 0); 1364 kdtrace_thread_dtor(NULL, l); 1365 if (!recycle) 1366 pool_cache_put(lwp_cache, l); 1367 } 1368 1369 /* 1370 * Migrate the LWP to the another CPU. Unlocks the LWP. 1371 */ 1372 void 1373 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1374 { 1375 struct schedstate_percpu *tspc; 1376 int lstat = l->l_stat; 1377 1378 KASSERT(lwp_locked(l, NULL)); 1379 KASSERT(tci != NULL); 1380 1381 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1382 if ((l->l_pflag & LP_RUNNING) != 0) { 1383 lstat = LSONPROC; 1384 } 1385 1386 /* 1387 * The destination CPU could be changed while previous migration 1388 * was not finished. 1389 */ 1390 if (l->l_target_cpu != NULL) { 1391 l->l_target_cpu = tci; 1392 lwp_unlock(l); 1393 return; 1394 } 1395 1396 /* Nothing to do if trying to migrate to the same CPU */ 1397 if (l->l_cpu == tci) { 1398 lwp_unlock(l); 1399 return; 1400 } 1401 1402 KASSERT(l->l_target_cpu == NULL); 1403 tspc = &tci->ci_schedstate; 1404 switch (lstat) { 1405 case LSRUN: 1406 l->l_target_cpu = tci; 1407 break; 1408 case LSSLEEP: 1409 l->l_cpu = tci; 1410 break; 1411 case LSIDL: 1412 case LSSTOP: 1413 case LSSUSPENDED: 1414 l->l_cpu = tci; 1415 if (l->l_wchan == NULL) { 1416 lwp_unlock_to(l, tspc->spc_lwplock); 1417 return; 1418 } 1419 break; 1420 case LSONPROC: 1421 l->l_target_cpu = tci; 1422 spc_lock(l->l_cpu); 1423 sched_resched_cpu(l->l_cpu, PRI_USER_RT, true); 1424 /* spc now unlocked */ 1425 break; 1426 } 1427 lwp_unlock(l); 1428 } 1429 1430 #define lwp_find_exclude(l) \ 1431 ((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB) 1432 1433 /* 1434 * Find the LWP in the process. Arguments may be zero, in such case, 1435 * the calling process and first LWP in the list will be used. 1436 * On success - returns proc locked. 1437 * 1438 * => pid == 0 -> look in curproc. 1439 * => pid == -1 -> match any proc. 1440 * => otherwise look up the proc. 1441 * 1442 * => lid == 0 -> first LWP in the proc 1443 * => otherwise specific LWP 1444 */ 1445 struct lwp * 1446 lwp_find2(pid_t pid, lwpid_t lid) 1447 { 1448 proc_t *p; 1449 lwp_t *l; 1450 1451 /* First LWP of specified proc. */ 1452 if (lid == 0) { 1453 switch (pid) { 1454 case -1: 1455 /* No lookup keys. */ 1456 return NULL; 1457 case 0: 1458 p = curproc; 1459 mutex_enter(p->p_lock); 1460 break; 1461 default: 1462 mutex_enter(&proc_lock); 1463 p = proc_find(pid); 1464 if (__predict_false(p == NULL)) { 1465 mutex_exit(&proc_lock); 1466 return NULL; 1467 } 1468 mutex_enter(p->p_lock); 1469 mutex_exit(&proc_lock); 1470 break; 1471 } 1472 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1473 if (__predict_true(!lwp_find_exclude(l))) 1474 break; 1475 } 1476 goto out; 1477 } 1478 1479 l = proc_find_lwp_acquire_proc(lid, &p); 1480 if (l == NULL) 1481 return NULL; 1482 KASSERT(p != NULL); 1483 KASSERT(mutex_owned(p->p_lock)); 1484 1485 if (__predict_false(lwp_find_exclude(l))) { 1486 l = NULL; 1487 goto out; 1488 } 1489 1490 /* Apply proc filter, if applicable. */ 1491 switch (pid) { 1492 case -1: 1493 /* Match anything. */ 1494 break; 1495 case 0: 1496 if (p != curproc) 1497 l = NULL; 1498 break; 1499 default: 1500 if (p->p_pid != pid) 1501 l = NULL; 1502 break; 1503 } 1504 1505 out: 1506 if (__predict_false(l == NULL)) { 1507 mutex_exit(p->p_lock); 1508 } 1509 return l; 1510 } 1511 1512 /* 1513 * Look up a live LWP within the specified process. 1514 * 1515 * Must be called with p->p_lock held (as it looks at the radix tree, 1516 * and also wants to exclude idle and zombie LWPs). 1517 */ 1518 struct lwp * 1519 lwp_find(struct proc *p, lwpid_t id) 1520 { 1521 struct lwp *l; 1522 1523 KASSERT(mutex_owned(p->p_lock)); 1524 1525 l = proc_find_lwp(p, id); 1526 KASSERT(l == NULL || l->l_lid == id); 1527 1528 /* 1529 * No need to lock - all of these conditions will 1530 * be visible with the process level mutex held. 1531 */ 1532 if (__predict_false(l != NULL && lwp_find_exclude(l))) 1533 l = NULL; 1534 1535 return l; 1536 } 1537 1538 /* 1539 * Verify that an LWP is locked, and optionally verify that the lock matches 1540 * one we specify. 1541 */ 1542 int 1543 lwp_locked(struct lwp *l, kmutex_t *mtx) 1544 { 1545 kmutex_t *cur = l->l_mutex; 1546 1547 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1548 } 1549 1550 /* 1551 * Lend a new mutex to an LWP. The old mutex must be held. 1552 */ 1553 kmutex_t * 1554 lwp_setlock(struct lwp *l, kmutex_t *mtx) 1555 { 1556 kmutex_t *oldmtx = l->l_mutex; 1557 1558 KASSERT(mutex_owned(oldmtx)); 1559 1560 atomic_store_release(&l->l_mutex, mtx); 1561 return oldmtx; 1562 } 1563 1564 /* 1565 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1566 * must be held. 1567 */ 1568 void 1569 lwp_unlock_to(struct lwp *l, kmutex_t *mtx) 1570 { 1571 kmutex_t *old; 1572 1573 KASSERT(lwp_locked(l, NULL)); 1574 1575 old = l->l_mutex; 1576 atomic_store_release(&l->l_mutex, mtx); 1577 mutex_spin_exit(old); 1578 } 1579 1580 int 1581 lwp_trylock(struct lwp *l) 1582 { 1583 kmutex_t *old; 1584 1585 for (;;) { 1586 if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex))) 1587 return 0; 1588 if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old)) 1589 return 1; 1590 mutex_spin_exit(old); 1591 } 1592 } 1593 1594 void 1595 lwp_unsleep(lwp_t *l, bool unlock) 1596 { 1597 1598 KASSERT(mutex_owned(l->l_mutex)); 1599 (*l->l_syncobj->sobj_unsleep)(l, unlock); 1600 } 1601 1602 /* 1603 * Lock an LWP. 1604 */ 1605 void 1606 lwp_lock(lwp_t *l) 1607 { 1608 kmutex_t *old = atomic_load_consume(&l->l_mutex); 1609 1610 /* 1611 * Note: mutex_spin_enter() will have posted a read barrier. 1612 * Re-test l->l_mutex. If it has changed, we need to try again. 1613 */ 1614 mutex_spin_enter(old); 1615 while (__predict_false(atomic_load_relaxed(&l->l_mutex) != old)) { 1616 mutex_spin_exit(old); 1617 old = atomic_load_consume(&l->l_mutex); 1618 mutex_spin_enter(old); 1619 } 1620 } 1621 1622 /* 1623 * Unlock an LWP. 1624 */ 1625 void 1626 lwp_unlock(lwp_t *l) 1627 { 1628 1629 mutex_spin_exit(l->l_mutex); 1630 } 1631 1632 void 1633 lwp_changepri(lwp_t *l, pri_t pri) 1634 { 1635 1636 KASSERT(mutex_owned(l->l_mutex)); 1637 1638 if (l->l_priority == pri) 1639 return; 1640 1641 (*l->l_syncobj->sobj_changepri)(l, pri); 1642 KASSERT(l->l_priority == pri); 1643 } 1644 1645 void 1646 lwp_lendpri(lwp_t *l, pri_t pri) 1647 { 1648 KASSERT(mutex_owned(l->l_mutex)); 1649 1650 (*l->l_syncobj->sobj_lendpri)(l, pri); 1651 KASSERT(l->l_inheritedprio == pri); 1652 } 1653 1654 pri_t 1655 lwp_eprio(lwp_t *l) 1656 { 1657 pri_t pri = l->l_priority; 1658 1659 KASSERT(mutex_owned(l->l_mutex)); 1660 1661 /* 1662 * Timeshared/user LWPs get a temporary priority boost for blocking 1663 * in kernel. This is key to good interactive response on a loaded 1664 * system: without it, things will seem very sluggish to the user. 1665 * 1666 * The function of the boost is to get the LWP onto a CPU and 1667 * running quickly. Once that happens the LWP loses the priority 1668 * boost and could be preempted very quickly by another LWP but that 1669 * won't happen often enough to be an annoyance. 1670 */ 1671 if (pri <= MAXPRI_USER && l->l_boostpri > MAXPRI_USER) 1672 pri = (pri >> 1) + l->l_boostpri; 1673 1674 return MAX(l->l_auxprio, pri); 1675 } 1676 1677 /* 1678 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1679 * set or a preemption is required. 1680 */ 1681 void 1682 lwp_userret(struct lwp *l) 1683 { 1684 struct proc *p; 1685 int sig, f; 1686 1687 KASSERT(l == curlwp); 1688 KASSERT(l->l_stat == LSONPROC); 1689 p = l->l_proc; 1690 1691 for (;;) { 1692 /* 1693 * This is the main location that user preemptions are 1694 * processed. 1695 */ 1696 preempt_point(); 1697 1698 /* 1699 * It is safe to do this unlocked and without raised SPL, 1700 * since whenever a flag of interest is added to l_flag the 1701 * LWP will take an AST and come down this path again. If a 1702 * remote CPU posts the AST, it will be done with an IPI 1703 * (strongly synchronising). 1704 */ 1705 if ((f = atomic_load_relaxed(&l->l_flag) & LW_USERRET) == 0) { 1706 return; 1707 } 1708 1709 /* 1710 * Start out with the correct credentials. 1711 */ 1712 if ((f & LW_CACHECRED) != 0) { 1713 kauth_cred_t oc = l->l_cred; 1714 mutex_enter(p->p_lock); 1715 l->l_cred = kauth_cred_hold(p->p_cred); 1716 lwp_lock(l); 1717 l->l_flag &= ~LW_CACHECRED; 1718 lwp_unlock(l); 1719 mutex_exit(p->p_lock); 1720 kauth_cred_free(oc); 1721 } 1722 1723 /* 1724 * Process pending signals first, unless the process 1725 * is dumping core or exiting, where we will instead 1726 * enter the LW_WSUSPEND case below. 1727 */ 1728 if ((f & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == LW_PENDSIG) { 1729 mutex_enter(p->p_lock); 1730 while ((sig = issignal(l)) != 0) 1731 postsig(sig); 1732 mutex_exit(p->p_lock); 1733 continue; 1734 } 1735 1736 /* 1737 * Core-dump or suspend pending. 1738 * 1739 * In case of core dump, suspend ourselves, so that the kernel 1740 * stack and therefore the userland registers saved in the 1741 * trapframe are around for coredump() to write them out. 1742 * We also need to save any PCU resources that we have so that 1743 * they accessible for coredump(). We issue a wakeup on 1744 * p->p_lwpcv so that sigexit() will write the core file out 1745 * once all other LWPs are suspended. 1746 */ 1747 if ((f & LW_WSUSPEND) != 0) { 1748 pcu_save_all(l); 1749 mutex_enter(p->p_lock); 1750 p->p_nrlwps--; 1751 lwp_lock(l); 1752 l->l_stat = LSSUSPENDED; 1753 lwp_unlock(l); 1754 mutex_exit(p->p_lock); 1755 cv_broadcast(&p->p_lwpcv); 1756 lwp_lock(l); 1757 spc_lock(l->l_cpu); 1758 mi_switch(l); 1759 continue; 1760 } 1761 1762 /* 1763 * Process is exiting. The core dump and signal cases must 1764 * be handled first. 1765 */ 1766 if ((f & LW_WEXIT) != 0) { 1767 lwp_exit(l); 1768 KASSERT(0); 1769 /* NOTREACHED */ 1770 } 1771 1772 /* 1773 * Update lwpctl processor (for vfork child_return). 1774 */ 1775 if ((f & LW_LWPCTL) != 0) { 1776 lwp_lock(l); 1777 KASSERT(kpreempt_disabled()); 1778 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1779 l->l_lwpctl->lc_pctr++; 1780 l->l_flag &= ~LW_LWPCTL; 1781 lwp_unlock(l); 1782 continue; 1783 } 1784 } 1785 } 1786 1787 /* 1788 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1789 */ 1790 void 1791 lwp_need_userret(struct lwp *l) 1792 { 1793 1794 KASSERT(!cpu_intr_p()); 1795 KASSERT(lwp_locked(l, NULL) || l->l_stat == LSIDL); 1796 1797 /* 1798 * If the LWP is in any state other than LSONPROC, we know that it 1799 * is executing in-kernel and will hit userret() on the way out. 1800 * 1801 * If the LWP is curlwp, then we know we'll be back out to userspace 1802 * soon (can't be called from a hardware interrupt here). 1803 * 1804 * Otherwise, we can't be sure what the LWP is doing, so first make 1805 * sure the update to l_flag will be globally visible, and then 1806 * force the LWP to take a trip through trap() where it will do 1807 * userret(). 1808 */ 1809 if (l->l_stat == LSONPROC && l != curlwp) { 1810 membar_producer(); 1811 cpu_signotify(l); 1812 } 1813 } 1814 1815 /* 1816 * Add one reference to an LWP. This will prevent the LWP from 1817 * exiting, thus keep the lwp structure and PCB around to inspect. 1818 */ 1819 void 1820 lwp_addref(struct lwp *l) 1821 { 1822 KASSERT(mutex_owned(l->l_proc->p_lock)); 1823 KASSERT(l->l_stat != LSZOMB); 1824 l->l_refcnt++; 1825 } 1826 1827 /* 1828 * Remove one reference to an LWP. If this is the last reference, 1829 * then we must finalize the LWP's death. 1830 */ 1831 void 1832 lwp_delref(struct lwp *l) 1833 { 1834 struct proc *p = l->l_proc; 1835 1836 mutex_enter(p->p_lock); 1837 lwp_delref2(l); 1838 mutex_exit(p->p_lock); 1839 } 1840 1841 /* 1842 * Remove one reference to an LWP. If this is the last reference, 1843 * then we must finalize the LWP's death. The proc mutex is held 1844 * on entry. 1845 */ 1846 void 1847 lwp_delref2(struct lwp *l) 1848 { 1849 struct proc *p = l->l_proc; 1850 1851 KASSERT(mutex_owned(p->p_lock)); 1852 KASSERT(l->l_stat != LSZOMB); 1853 KASSERT(l->l_refcnt > 0); 1854 1855 if (--l->l_refcnt == 0) 1856 cv_broadcast(&p->p_lwpcv); 1857 } 1858 1859 /* 1860 * Drain all references to the current LWP. Returns true if 1861 * we blocked. 1862 */ 1863 bool 1864 lwp_drainrefs(struct lwp *l) 1865 { 1866 struct proc *p = l->l_proc; 1867 bool rv = false; 1868 1869 KASSERT(mutex_owned(p->p_lock)); 1870 1871 l->l_prflag |= LPR_DRAINING; 1872 1873 while (l->l_refcnt > 0) { 1874 rv = true; 1875 cv_wait(&p->p_lwpcv, p->p_lock); 1876 } 1877 return rv; 1878 } 1879 1880 /* 1881 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1882 * be held. 1883 */ 1884 bool 1885 lwp_alive(lwp_t *l) 1886 { 1887 1888 KASSERT(mutex_owned(l->l_proc->p_lock)); 1889 1890 switch (l->l_stat) { 1891 case LSSLEEP: 1892 case LSRUN: 1893 case LSONPROC: 1894 case LSSTOP: 1895 case LSSUSPENDED: 1896 return true; 1897 default: 1898 return false; 1899 } 1900 } 1901 1902 /* 1903 * Return first live LWP in the process. 1904 */ 1905 lwp_t * 1906 lwp_find_first(proc_t *p) 1907 { 1908 lwp_t *l; 1909 1910 KASSERT(mutex_owned(p->p_lock)); 1911 1912 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1913 if (lwp_alive(l)) { 1914 return l; 1915 } 1916 } 1917 1918 return NULL; 1919 } 1920 1921 /* 1922 * Allocate a new lwpctl structure for a user LWP. 1923 */ 1924 int 1925 lwp_ctl_alloc(vaddr_t *uaddr) 1926 { 1927 lcproc_t *lp; 1928 u_int bit, i, offset; 1929 struct uvm_object *uao; 1930 int error; 1931 lcpage_t *lcp; 1932 proc_t *p; 1933 lwp_t *l; 1934 1935 l = curlwp; 1936 p = l->l_proc; 1937 1938 /* don't allow a vforked process to create lwp ctls */ 1939 if (p->p_lflag & PL_PPWAIT) 1940 return EBUSY; 1941 1942 if (l->l_lcpage != NULL) { 1943 lcp = l->l_lcpage; 1944 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1945 return 0; 1946 } 1947 1948 /* First time around, allocate header structure for the process. */ 1949 if ((lp = p->p_lwpctl) == NULL) { 1950 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1951 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1952 lp->lp_uao = NULL; 1953 TAILQ_INIT(&lp->lp_pages); 1954 mutex_enter(p->p_lock); 1955 if (p->p_lwpctl == NULL) { 1956 p->p_lwpctl = lp; 1957 mutex_exit(p->p_lock); 1958 } else { 1959 mutex_exit(p->p_lock); 1960 mutex_destroy(&lp->lp_lock); 1961 kmem_free(lp, sizeof(*lp)); 1962 lp = p->p_lwpctl; 1963 } 1964 } 1965 1966 /* 1967 * Set up an anonymous memory region to hold the shared pages. 1968 * Map them into the process' address space. The user vmspace 1969 * gets the first reference on the UAO. 1970 */ 1971 mutex_enter(&lp->lp_lock); 1972 if (lp->lp_uao == NULL) { 1973 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1974 lp->lp_cur = 0; 1975 lp->lp_max = LWPCTL_UAREA_SZ; 1976 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1977 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ, 1978 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1979 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1980 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1981 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1982 if (error != 0) { 1983 uao_detach(lp->lp_uao); 1984 lp->lp_uao = NULL; 1985 mutex_exit(&lp->lp_lock); 1986 return error; 1987 } 1988 } 1989 1990 /* Get a free block and allocate for this LWP. */ 1991 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1992 if (lcp->lcp_nfree != 0) 1993 break; 1994 } 1995 if (lcp == NULL) { 1996 /* Nothing available - try to set up a free page. */ 1997 if (lp->lp_cur == lp->lp_max) { 1998 mutex_exit(&lp->lp_lock); 1999 return ENOMEM; 2000 } 2001 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 2002 2003 /* 2004 * Wire the next page down in kernel space. Since this 2005 * is a new mapping, we must add a reference. 2006 */ 2007 uao = lp->lp_uao; 2008 (*uao->pgops->pgo_reference)(uao); 2009 lcp->lcp_kaddr = vm_map_min(kernel_map); 2010 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 2011 uao, lp->lp_cur, PAGE_SIZE, 2012 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 2013 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 2014 if (error != 0) { 2015 mutex_exit(&lp->lp_lock); 2016 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 2017 (*uao->pgops->pgo_detach)(uao); 2018 return error; 2019 } 2020 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 2021 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 2022 if (error != 0) { 2023 mutex_exit(&lp->lp_lock); 2024 uvm_unmap(kernel_map, lcp->lcp_kaddr, 2025 lcp->lcp_kaddr + PAGE_SIZE); 2026 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 2027 return error; 2028 } 2029 /* Prepare the page descriptor and link into the list. */ 2030 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 2031 lp->lp_cur += PAGE_SIZE; 2032 lcp->lcp_nfree = LWPCTL_PER_PAGE; 2033 lcp->lcp_rotor = 0; 2034 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 2035 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 2036 } 2037 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 2038 if (++i >= LWPCTL_BITMAP_ENTRIES) 2039 i = 0; 2040 } 2041 bit = ffs(lcp->lcp_bitmap[i]) - 1; 2042 lcp->lcp_bitmap[i] ^= (1U << bit); 2043 lcp->lcp_rotor = i; 2044 lcp->lcp_nfree--; 2045 l->l_lcpage = lcp; 2046 offset = (i << 5) + bit; 2047 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 2048 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 2049 mutex_exit(&lp->lp_lock); 2050 2051 KPREEMPT_DISABLE(l); 2052 l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu()); 2053 KPREEMPT_ENABLE(l); 2054 2055 return 0; 2056 } 2057 2058 /* 2059 * Free an lwpctl structure back to the per-process list. 2060 */ 2061 void 2062 lwp_ctl_free(lwp_t *l) 2063 { 2064 struct proc *p = l->l_proc; 2065 lcproc_t *lp; 2066 lcpage_t *lcp; 2067 u_int map, offset; 2068 2069 /* don't free a lwp context we borrowed for vfork */ 2070 if (p->p_lflag & PL_PPWAIT) { 2071 l->l_lwpctl = NULL; 2072 return; 2073 } 2074 2075 lp = p->p_lwpctl; 2076 KASSERT(lp != NULL); 2077 2078 lcp = l->l_lcpage; 2079 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 2080 KASSERT(offset < LWPCTL_PER_PAGE); 2081 2082 mutex_enter(&lp->lp_lock); 2083 lcp->lcp_nfree++; 2084 map = offset >> 5; 2085 lcp->lcp_bitmap[map] |= (1U << (offset & 31)); 2086 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 2087 lcp->lcp_rotor = map; 2088 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 2089 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 2090 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 2091 } 2092 mutex_exit(&lp->lp_lock); 2093 } 2094 2095 /* 2096 * Process is exiting; tear down lwpctl state. This can only be safely 2097 * called by the last LWP in the process. 2098 */ 2099 void 2100 lwp_ctl_exit(void) 2101 { 2102 lcpage_t *lcp, *next; 2103 lcproc_t *lp; 2104 proc_t *p; 2105 lwp_t *l; 2106 2107 l = curlwp; 2108 l->l_lwpctl = NULL; 2109 l->l_lcpage = NULL; 2110 p = l->l_proc; 2111 lp = p->p_lwpctl; 2112 2113 KASSERT(lp != NULL); 2114 KASSERT(p->p_nlwps == 1); 2115 2116 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 2117 next = TAILQ_NEXT(lcp, lcp_chain); 2118 uvm_unmap(kernel_map, lcp->lcp_kaddr, 2119 lcp->lcp_kaddr + PAGE_SIZE); 2120 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 2121 } 2122 2123 if (lp->lp_uao != NULL) { 2124 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 2125 lp->lp_uva + LWPCTL_UAREA_SZ); 2126 } 2127 2128 mutex_destroy(&lp->lp_lock); 2129 kmem_free(lp, sizeof(*lp)); 2130 p->p_lwpctl = NULL; 2131 } 2132 2133 /* 2134 * Return the current LWP's "preemption counter". Used to detect 2135 * preemption across operations that can tolerate preemption without 2136 * crashing, but which may generate incorrect results if preempted. 2137 * 2138 * We do arithmetic in unsigned long to avoid undefined behaviour in 2139 * the event of arithmetic overflow on LP32, and issue __insn_barrier() 2140 * on both sides so this can safely be used to detect changes to the 2141 * preemption counter in loops around other memory accesses even in the 2142 * event of whole-program optimization (e.g., gcc -flto). 2143 */ 2144 long 2145 lwp_pctr(void) 2146 { 2147 unsigned long pctr; 2148 2149 __insn_barrier(); 2150 pctr = curlwp->l_ru.ru_nvcsw; 2151 pctr += curlwp->l_ru.ru_nivcsw; 2152 __insn_barrier(); 2153 return pctr; 2154 } 2155 2156 /* 2157 * Set an LWP's private data pointer. 2158 */ 2159 int 2160 lwp_setprivate(struct lwp *l, void *ptr) 2161 { 2162 int error = 0; 2163 2164 l->l_private = ptr; 2165 #ifdef __HAVE_CPU_LWP_SETPRIVATE 2166 error = cpu_lwp_setprivate(l, ptr); 2167 #endif 2168 return error; 2169 } 2170 2171 /* 2172 * Perform any thread-related cleanup on LWP exit. 2173 * N.B. l->l_proc->p_lock must be HELD on entry but will 2174 * be released before returning! 2175 */ 2176 void 2177 lwp_thread_cleanup(struct lwp *l) 2178 { 2179 2180 KASSERT(mutex_owned(l->l_proc->p_lock)); 2181 mutex_exit(l->l_proc->p_lock); 2182 2183 /* 2184 * If the LWP has robust futexes, release them all 2185 * now. 2186 */ 2187 if (__predict_false(l->l_robust_head != 0)) { 2188 futex_release_all_lwp(l); 2189 } 2190 } 2191 2192 #if defined(DDB) 2193 #include <machine/pcb.h> 2194 2195 void 2196 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 2197 { 2198 lwp_t *l; 2199 2200 LIST_FOREACH(l, &alllwp, l_list) { 2201 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 2202 2203 if (addr < stack || stack + KSTACK_SIZE <= addr) { 2204 continue; 2205 } 2206 (*pr)("%p is %p+%zu, LWP %p's stack\n", 2207 (void *)addr, (void *)stack, 2208 (size_t)(addr - stack), l); 2209 } 2210 } 2211 #endif /* defined(DDB) */ 2212