xref: /netbsd-src/sys/kern/kern_lwp.c (revision 04028aa9310ca9c619eca5cf58ddf1e58624d1d7)
1 /*	$NetBSD: kern_lwp.c,v 1.182 2015/11/26 13:15:34 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Nathan J. Williams, and Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Overview
34  *
35  *	Lightweight processes (LWPs) are the basic unit or thread of
36  *	execution within the kernel.  The core state of an LWP is described
37  *	by "struct lwp", also known as lwp_t.
38  *
39  *	Each LWP is contained within a process (described by "struct proc"),
40  *	Every process contains at least one LWP, but may contain more.  The
41  *	process describes attributes shared among all of its LWPs such as a
42  *	private address space, global execution state (stopped, active,
43  *	zombie, ...), signal disposition and so on.  On a multiprocessor
44  *	machine, multiple LWPs be executing concurrently in the kernel.
45  *
46  * Execution states
47  *
48  *	At any given time, an LWP has overall state that is described by
49  *	lwp::l_stat.  The states are broken into two sets below.  The first
50  *	set is guaranteed to represent the absolute, current state of the
51  *	LWP:
52  *
53  *	LSONPROC
54  *
55  *		On processor: the LWP is executing on a CPU, either in the
56  *		kernel or in user space.
57  *
58  *	LSRUN
59  *
60  *		Runnable: the LWP is parked on a run queue, and may soon be
61  *		chosen to run by an idle processor, or by a processor that
62  *		has been asked to preempt a currently runnning but lower
63  *		priority LWP.
64  *
65  *	LSIDL
66  *
67  *		Idle: the LWP has been created but has not yet executed,
68  *		or it has ceased executing a unit of work and is waiting
69  *		to be started again.
70  *
71  *	LSSUSPENDED:
72  *
73  *		Suspended: the LWP has had its execution suspended by
74  *		another LWP in the same process using the _lwp_suspend()
75  *		system call.  User-level LWPs also enter the suspended
76  *		state when the system is shutting down.
77  *
78  *	The second set represent a "statement of intent" on behalf of the
79  *	LWP.  The LWP may in fact be executing on a processor, may be
80  *	sleeping or idle. It is expected to take the necessary action to
81  *	stop executing or become "running" again within a short timeframe.
82  *	The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
83  *	Importantly, it indicates that its state is tied to a CPU.
84  *
85  *	LSZOMB:
86  *
87  *		Dead or dying: the LWP has released most of its resources
88  *		and is about to switch away into oblivion, or has already
89  *		switched away.  When it switches away, its few remaining
90  *		resources can be collected.
91  *
92  *	LSSLEEP:
93  *
94  *		Sleeping: the LWP has entered itself onto a sleep queue, and
95  *		has switched away or will switch away shortly to allow other
96  *		LWPs to run on the CPU.
97  *
98  *	LSSTOP:
99  *
100  *		Stopped: the LWP has been stopped as a result of a job
101  *		control signal, or as a result of the ptrace() interface.
102  *
103  *		Stopped LWPs may run briefly within the kernel to handle
104  *		signals that they receive, but will not return to user space
105  *		until their process' state is changed away from stopped.
106  *
107  *		Single LWPs within a process can not be set stopped
108  *		selectively: all actions that can stop or continue LWPs
109  *		occur at the process level.
110  *
111  * State transitions
112  *
113  *	Note that the LSSTOP state may only be set when returning to
114  *	user space in userret(), or when sleeping interruptably.  The
115  *	LSSUSPENDED state may only be set in userret().  Before setting
116  *	those states, we try to ensure that the LWPs will release all
117  *	locks that they hold, and at a minimum try to ensure that the
118  *	LWP can be set runnable again by a signal.
119  *
120  *	LWPs may transition states in the following ways:
121  *
122  *	 RUN -------> ONPROC		ONPROC -----> RUN
123  *		    				    > SLEEP
124  *		    				    > STOPPED
125  *						    > SUSPENDED
126  *						    > ZOMB
127  *						    > IDL (special cases)
128  *
129  *	 STOPPED ---> RUN		SUSPENDED --> RUN
130  *	            > SLEEP
131  *
132  *	 SLEEP -----> ONPROC		IDL --------> RUN
133  *		    > RUN			    > SUSPENDED
134  *		    > STOPPED			    > STOPPED
135  *						    > ONPROC (special cases)
136  *
137  *	Some state transitions are only possible with kernel threads (eg
138  *	ONPROC -> IDL) and happen under tightly controlled circumstances
139  *	free of unwanted side effects.
140  *
141  * Migration
142  *
143  *	Migration of threads from one CPU to another could be performed
144  *	internally by the scheduler via sched_takecpu() or sched_catchlwp()
145  *	functions.  The universal lwp_migrate() function should be used for
146  *	any other cases.  Subsystems in the kernel must be aware that CPU
147  *	of LWP may change, while it is not locked.
148  *
149  * Locking
150  *
151  *	The majority of fields in 'struct lwp' are covered by a single,
152  *	general spin lock pointed to by lwp::l_mutex.  The locks covering
153  *	each field are documented in sys/lwp.h.
154  *
155  *	State transitions must be made with the LWP's general lock held,
156  *	and may cause the LWP's lock pointer to change.  Manipulation of
157  *	the general lock is not performed directly, but through calls to
158  *	lwp_lock(), lwp_unlock() and others.  It should be noted that the
159  *	adaptive locks are not allowed to be released while the LWP's lock
160  *	is being held (unlike for other spin-locks).
161  *
162  *	States and their associated locks:
163  *
164  *	LSONPROC, LSZOMB:
165  *
166  *		Always covered by spc_lwplock, which protects running LWPs.
167  *		This is a per-CPU lock and matches lwp::l_cpu.
168  *
169  *	LSIDL, LSRUN:
170  *
171  *		Always covered by spc_mutex, which protects the run queues.
172  *		This is a per-CPU lock and matches lwp::l_cpu.
173  *
174  *	LSSLEEP:
175  *
176  *		Covered by a lock associated with the sleep queue that the
177  *		LWP resides on.  Matches lwp::l_sleepq::sq_mutex.
178  *
179  *	LSSTOP, LSSUSPENDED:
180  *
181  *		If the LWP was previously sleeping (l_wchan != NULL), then
182  *		l_mutex references the sleep queue lock.  If the LWP was
183  *		runnable or on the CPU when halted, or has been removed from
184  *		the sleep queue since halted, then the lock is spc_lwplock.
185  *
186  *	The lock order is as follows:
187  *
188  *		spc::spc_lwplock ->
189  *		    sleeptab::st_mutex ->
190  *			tschain_t::tc_mutex ->
191  *			    spc::spc_mutex
192  *
193  *	Each process has an scheduler state lock (proc::p_lock), and a
194  *	number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
195  *	so on.  When an LWP is to be entered into or removed from one of the
196  *	following states, p_lock must be held and the process wide counters
197  *	adjusted:
198  *
199  *		LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
200  *
201  *	(But not always for kernel threads.  There are some special cases
202  *	as mentioned above.  See kern_softint.c.)
203  *
204  *	Note that an LWP is considered running or likely to run soon if in
205  *	one of the following states.  This affects the value of p_nrlwps:
206  *
207  *		LSRUN, LSONPROC, LSSLEEP
208  *
209  *	p_lock does not need to be held when transitioning among these
210  *	three states, hence p_lock is rarely taken for state transitions.
211  */
212 
213 #include <sys/cdefs.h>
214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.182 2015/11/26 13:15:34 martin Exp $");
215 
216 #include "opt_ddb.h"
217 #include "opt_lockdebug.h"
218 #include "opt_dtrace.h"
219 
220 #define _LWP_API_PRIVATE
221 
222 #include <sys/param.h>
223 #include <sys/systm.h>
224 #include <sys/cpu.h>
225 #include <sys/pool.h>
226 #include <sys/proc.h>
227 #include <sys/syscallargs.h>
228 #include <sys/syscall_stats.h>
229 #include <sys/kauth.h>
230 #include <sys/pserialize.h>
231 #include <sys/sleepq.h>
232 #include <sys/lockdebug.h>
233 #include <sys/kmem.h>
234 #include <sys/pset.h>
235 #include <sys/intr.h>
236 #include <sys/lwpctl.h>
237 #include <sys/atomic.h>
238 #include <sys/filedesc.h>
239 #include <sys/dtrace_bsd.h>
240 #include <sys/sdt.h>
241 #include <sys/xcall.h>
242 #include <sys/uidinfo.h>
243 #include <sys/sysctl.h>
244 
245 #include <uvm/uvm_extern.h>
246 #include <uvm/uvm_object.h>
247 
248 static pool_cache_t	lwp_cache	__read_mostly;
249 struct lwplist		alllwp		__cacheline_aligned;
250 
251 static void		lwp_dtor(void *, void *);
252 
253 /* DTrace proc provider probes */
254 SDT_PROVIDER_DEFINE(proc);
255 
256 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
257 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
259 
260 struct turnstile turnstile0;
261 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
262 #ifdef LWP0_CPU_INFO
263 	.l_cpu = LWP0_CPU_INFO,
264 #endif
265 #ifdef LWP0_MD_INITIALIZER
266 	.l_md = LWP0_MD_INITIALIZER,
267 #endif
268 	.l_proc = &proc0,
269 	.l_lid = 1,
270 	.l_flag = LW_SYSTEM,
271 	.l_stat = LSONPROC,
272 	.l_ts = &turnstile0,
273 	.l_syncobj = &sched_syncobj,
274 	.l_refcnt = 1,
275 	.l_priority = PRI_USER + NPRI_USER - 1,
276 	.l_inheritedprio = -1,
277 	.l_class = SCHED_OTHER,
278 	.l_psid = PS_NONE,
279 	.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
280 	.l_name = __UNCONST("swapper"),
281 	.l_fd = &filedesc0,
282 };
283 
284 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
285 
286 /*
287  * sysctl helper routine for kern.maxlwp. Ensures that the new
288  * values are not too low or too high.
289  */
290 static int
291 sysctl_kern_maxlwp(SYSCTLFN_ARGS)
292 {
293 	int error, nmaxlwp;
294 	struct sysctlnode node;
295 
296 	nmaxlwp = maxlwp;
297 	node = *rnode;
298 	node.sysctl_data = &nmaxlwp;
299 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
300 	if (error || newp == NULL)
301 		return error;
302 
303 	if (nmaxlwp < 0 || nmaxlwp >= 65536)
304 		return EINVAL;
305 	if (nmaxlwp > cpu_maxlwp())
306 		return EINVAL;
307 	maxlwp = nmaxlwp;
308 
309 	return 0;
310 }
311 
312 static void
313 sysctl_kern_lwp_setup(void)
314 {
315 	struct sysctllog *clog = NULL;
316 
317 	sysctl_createv(&clog, 0, NULL, NULL,
318 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
319 		       CTLTYPE_INT, "maxlwp",
320 		       SYSCTL_DESCR("Maximum number of simultaneous threads"),
321 		       sysctl_kern_maxlwp, 0, NULL, 0,
322 		       CTL_KERN, CTL_CREATE, CTL_EOL);
323 }
324 
325 void
326 lwpinit(void)
327 {
328 
329 	LIST_INIT(&alllwp);
330 	lwpinit_specificdata();
331 	lwp_sys_init();
332 	lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0,
333 	    "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL);
334 
335 	maxlwp = cpu_maxlwp();
336 	sysctl_kern_lwp_setup();
337 }
338 
339 void
340 lwp0_init(void)
341 {
342 	struct lwp *l = &lwp0;
343 
344 	KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
345 	KASSERT(l->l_lid == proc0.p_nlwpid);
346 
347 	LIST_INSERT_HEAD(&alllwp, l, l_list);
348 
349 	callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
350 	callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
351 	cv_init(&l->l_sigcv, "sigwait");
352 	cv_init(&l->l_waitcv, "vfork");
353 
354 	kauth_cred_hold(proc0.p_cred);
355 	l->l_cred = proc0.p_cred;
356 
357 	kdtrace_thread_ctor(NULL, l);
358 	lwp_initspecific(l);
359 
360 	SYSCALL_TIME_LWP_INIT(l);
361 }
362 
363 static void
364 lwp_dtor(void *arg, void *obj)
365 {
366 	lwp_t *l = obj;
367 	uint64_t where;
368 	(void)l;
369 
370 	/*
371 	 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
372 	 * calls will exit before memory of LWP is returned to the pool, where
373 	 * KVA of LWP structure might be freed and re-used for other purposes.
374 	 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
375 	 * callers, therefore cross-call to all CPUs will do the job.  Also,
376 	 * the value of l->l_cpu must be still valid at this point.
377 	 */
378 	KASSERT(l->l_cpu != NULL);
379 	where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);
380 	xc_wait(where);
381 }
382 
383 /*
384  * Set an suspended.
385  *
386  * Must be called with p_lock held, and the LWP locked.  Will unlock the
387  * LWP before return.
388  */
389 int
390 lwp_suspend(struct lwp *curl, struct lwp *t)
391 {
392 	int error;
393 
394 	KASSERT(mutex_owned(t->l_proc->p_lock));
395 	KASSERT(lwp_locked(t, NULL));
396 
397 	KASSERT(curl != t || curl->l_stat == LSONPROC);
398 
399 	/*
400 	 * If the current LWP has been told to exit, we must not suspend anyone
401 	 * else or deadlock could occur.  We won't return to userspace.
402 	 */
403 	if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
404 		lwp_unlock(t);
405 		return (EDEADLK);
406 	}
407 
408 	error = 0;
409 
410 	switch (t->l_stat) {
411 	case LSRUN:
412 	case LSONPROC:
413 		t->l_flag |= LW_WSUSPEND;
414 		lwp_need_userret(t);
415 		lwp_unlock(t);
416 		break;
417 
418 	case LSSLEEP:
419 		t->l_flag |= LW_WSUSPEND;
420 
421 		/*
422 		 * Kick the LWP and try to get it to the kernel boundary
423 		 * so that it will release any locks that it holds.
424 		 * setrunnable() will release the lock.
425 		 */
426 		if ((t->l_flag & LW_SINTR) != 0)
427 			setrunnable(t);
428 		else
429 			lwp_unlock(t);
430 		break;
431 
432 	case LSSUSPENDED:
433 		lwp_unlock(t);
434 		break;
435 
436 	case LSSTOP:
437 		t->l_flag |= LW_WSUSPEND;
438 		setrunnable(t);
439 		break;
440 
441 	case LSIDL:
442 	case LSZOMB:
443 		error = EINTR; /* It's what Solaris does..... */
444 		lwp_unlock(t);
445 		break;
446 	}
447 
448 	return (error);
449 }
450 
451 /*
452  * Restart a suspended LWP.
453  *
454  * Must be called with p_lock held, and the LWP locked.  Will unlock the
455  * LWP before return.
456  */
457 void
458 lwp_continue(struct lwp *l)
459 {
460 
461 	KASSERT(mutex_owned(l->l_proc->p_lock));
462 	KASSERT(lwp_locked(l, NULL));
463 
464 	/* If rebooting or not suspended, then just bail out. */
465 	if ((l->l_flag & LW_WREBOOT) != 0) {
466 		lwp_unlock(l);
467 		return;
468 	}
469 
470 	l->l_flag &= ~LW_WSUSPEND;
471 
472 	if (l->l_stat != LSSUSPENDED) {
473 		lwp_unlock(l);
474 		return;
475 	}
476 
477 	/* setrunnable() will release the lock. */
478 	setrunnable(l);
479 }
480 
481 /*
482  * Restart a stopped LWP.
483  *
484  * Must be called with p_lock held, and the LWP NOT locked.  Will unlock the
485  * LWP before return.
486  */
487 void
488 lwp_unstop(struct lwp *l)
489 {
490 	struct proc *p = l->l_proc;
491 
492 	KASSERT(mutex_owned(proc_lock));
493 	KASSERT(mutex_owned(p->p_lock));
494 
495 	lwp_lock(l);
496 
497 	/* If not stopped, then just bail out. */
498 	if (l->l_stat != LSSTOP) {
499 		lwp_unlock(l);
500 		return;
501 	}
502 
503 	p->p_stat = SACTIVE;
504 	p->p_sflag &= ~PS_STOPPING;
505 
506 	if (!p->p_waited)
507 		p->p_pptr->p_nstopchild--;
508 
509 	if (l->l_wchan == NULL) {
510 		/* setrunnable() will release the lock. */
511 		setrunnable(l);
512 	} else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) {
513 		/* setrunnable() so we can receive the signal */
514 		setrunnable(l);
515 	} else {
516 		l->l_stat = LSSLEEP;
517 		p->p_nrlwps++;
518 		lwp_unlock(l);
519 	}
520 }
521 
522 /*
523  * Wait for an LWP within the current process to exit.  If 'lid' is
524  * non-zero, we are waiting for a specific LWP.
525  *
526  * Must be called with p->p_lock held.
527  */
528 int
529 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
530 {
531 	const lwpid_t curlid = l->l_lid;
532 	proc_t *p = l->l_proc;
533 	lwp_t *l2;
534 	int error;
535 
536 	KASSERT(mutex_owned(p->p_lock));
537 
538 	p->p_nlwpwait++;
539 	l->l_waitingfor = lid;
540 
541 	for (;;) {
542 		int nfound;
543 
544 		/*
545 		 * Avoid a race between exit1() and sigexit(): if the
546 		 * process is dumping core, then we need to bail out: call
547 		 * into lwp_userret() where we will be suspended until the
548 		 * deed is done.
549 		 */
550 		if ((p->p_sflag & PS_WCORE) != 0) {
551 			mutex_exit(p->p_lock);
552 			lwp_userret(l);
553 			KASSERT(false);
554 		}
555 
556 		/*
557 		 * First off, drain any detached LWP that is waiting to be
558 		 * reaped.
559 		 */
560 		while ((l2 = p->p_zomblwp) != NULL) {
561 			p->p_zomblwp = NULL;
562 			lwp_free(l2, false, false);/* releases proc mutex */
563 			mutex_enter(p->p_lock);
564 		}
565 
566 		/*
567 		 * Now look for an LWP to collect.  If the whole process is
568 		 * exiting, count detached LWPs as eligible to be collected,
569 		 * but don't drain them here.
570 		 */
571 		nfound = 0;
572 		error = 0;
573 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
574 			/*
575 			 * If a specific wait and the target is waiting on
576 			 * us, then avoid deadlock.  This also traps LWPs
577 			 * that try to wait on themselves.
578 			 *
579 			 * Note that this does not handle more complicated
580 			 * cycles, like: t1 -> t2 -> t3 -> t1.  The process
581 			 * can still be killed so it is not a major problem.
582 			 */
583 			if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
584 				error = EDEADLK;
585 				break;
586 			}
587 			if (l2 == l)
588 				continue;
589 			if ((l2->l_prflag & LPR_DETACHED) != 0) {
590 				nfound += exiting;
591 				continue;
592 			}
593 			if (lid != 0) {
594 				if (l2->l_lid != lid)
595 					continue;
596 				/*
597 				 * Mark this LWP as the first waiter, if there
598 				 * is no other.
599 				 */
600 				if (l2->l_waiter == 0)
601 					l2->l_waiter = curlid;
602 			} else if (l2->l_waiter != 0) {
603 				/*
604 				 * It already has a waiter - so don't
605 				 * collect it.  If the waiter doesn't
606 				 * grab it we'll get another chance
607 				 * later.
608 				 */
609 				nfound++;
610 				continue;
611 			}
612 			nfound++;
613 
614 			/* No need to lock the LWP in order to see LSZOMB. */
615 			if (l2->l_stat != LSZOMB)
616 				continue;
617 
618 			/*
619 			 * We're no longer waiting.  Reset the "first waiter"
620 			 * pointer on the target, in case it was us.
621 			 */
622 			l->l_waitingfor = 0;
623 			l2->l_waiter = 0;
624 			p->p_nlwpwait--;
625 			if (departed)
626 				*departed = l2->l_lid;
627 			sched_lwp_collect(l2);
628 
629 			/* lwp_free() releases the proc lock. */
630 			lwp_free(l2, false, false);
631 			mutex_enter(p->p_lock);
632 			return 0;
633 		}
634 
635 		if (error != 0)
636 			break;
637 		if (nfound == 0) {
638 			error = ESRCH;
639 			break;
640 		}
641 
642 		/*
643 		 * Note: since the lock will be dropped, need to restart on
644 		 * wakeup to run all LWPs again, e.g. there may be new LWPs.
645 		 */
646 		if (exiting) {
647 			KASSERT(p->p_nlwps > 1);
648 			cv_wait(&p->p_lwpcv, p->p_lock);
649 			error = EAGAIN;
650 			break;
651 		}
652 
653 		/*
654 		 * If all other LWPs are waiting for exits or suspends
655 		 * and the supply of zombies and potential zombies is
656 		 * exhausted, then we are about to deadlock.
657 		 *
658 		 * If the process is exiting (and this LWP is not the one
659 		 * that is coordinating the exit) then bail out now.
660 		 */
661 		if ((p->p_sflag & PS_WEXIT) != 0 ||
662 		    p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) {
663 			error = EDEADLK;
664 			break;
665 		}
666 
667 		/*
668 		 * Sit around and wait for something to happen.  We'll be
669 		 * awoken if any of the conditions examined change: if an
670 		 * LWP exits, is collected, or is detached.
671 		 */
672 		if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
673 			break;
674 	}
675 
676 	/*
677 	 * We didn't find any LWPs to collect, we may have received a
678 	 * signal, or some other condition has caused us to bail out.
679 	 *
680 	 * If waiting on a specific LWP, clear the waiters marker: some
681 	 * other LWP may want it.  Then, kick all the remaining waiters
682 	 * so that they can re-check for zombies and for deadlock.
683 	 */
684 	if (lid != 0) {
685 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
686 			if (l2->l_lid == lid) {
687 				if (l2->l_waiter == curlid)
688 					l2->l_waiter = 0;
689 				break;
690 			}
691 		}
692 	}
693 	p->p_nlwpwait--;
694 	l->l_waitingfor = 0;
695 	cv_broadcast(&p->p_lwpcv);
696 
697 	return error;
698 }
699 
700 static lwpid_t
701 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p)
702 {
703 	#define LID_SCAN (1u << 31)
704 	lwp_t *scan, *free_before;
705 	lwpid_t nxt_lid;
706 
707 	/*
708 	 * We want the first unused lid greater than or equal to
709 	 * try_lid (modulo 2^31).
710 	 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.)
711 	 * We must not return 0, and avoiding 'LID_SCAN - 1' makes
712 	 * the outer test easier.
713 	 * This would be much easier if the list were sorted in
714 	 * increasing order.
715 	 * The list is kept sorted in decreasing order.
716 	 * This code is only used after a process has generated 2^31 lwp.
717 	 *
718 	 * Code assumes it can always find an id.
719 	 */
720 
721 	try_lid &= LID_SCAN - 1;
722 	if (try_lid <= 1)
723 		try_lid = 2;
724 
725 	free_before = NULL;
726 	nxt_lid = LID_SCAN - 1;
727 	LIST_FOREACH(scan, &p->p_lwps, l_sibling) {
728 		if (scan->l_lid != nxt_lid) {
729 			/* There are available lid before this entry */
730 			free_before = scan;
731 			if (try_lid > scan->l_lid)
732 				break;
733 		}
734 		if (try_lid == scan->l_lid) {
735 			/* The ideal lid is busy, take a higher one */
736 			if (free_before != NULL) {
737 				try_lid = free_before->l_lid + 1;
738 				break;
739 			}
740 			/* No higher ones, reuse low numbers */
741 			try_lid = 2;
742 		}
743 
744 		nxt_lid = scan->l_lid - 1;
745 		if (LIST_NEXT(scan, l_sibling) == NULL) {
746 		    /* The value we have is lower than any existing lwp */
747 		    LIST_INSERT_AFTER(scan, new_lwp, l_sibling);
748 		    return try_lid;
749 		}
750 	}
751 
752 	LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling);
753 	return try_lid;
754 }
755 
756 /*
757  * Create a new LWP within process 'p2', using LWP 'l1' as a template.
758  * The new LWP is created in state LSIDL and must be set running,
759  * suspended, or stopped by the caller.
760  */
761 int
762 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
763 	   void *stack, size_t stacksize, void (*func)(void *), void *arg,
764 	   lwp_t **rnewlwpp, int sclass)
765 {
766 	struct lwp *l2, *isfree;
767 	turnstile_t *ts;
768 	lwpid_t lid;
769 
770 	KASSERT(l1 == curlwp || l1->l_proc == &proc0);
771 
772 	/*
773 	 * Enforce limits, excluding the first lwp and kthreads.
774 	 */
775 	if (p2->p_nlwps != 0 && p2 != &proc0) {
776 		uid_t uid = kauth_cred_getuid(l1->l_cred);
777 		int count = chglwpcnt(uid, 1);
778 		if (__predict_false(count >
779 		    p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
780 			if (kauth_authorize_process(l1->l_cred,
781 			    KAUTH_PROCESS_RLIMIT, p2,
782 			    KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
783 			    &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
784 			    != 0) {
785 				(void)chglwpcnt(uid, -1);
786 				return EAGAIN;
787 			}
788 		}
789 	}
790 
791 	/*
792 	 * First off, reap any detached LWP waiting to be collected.
793 	 * We can re-use its LWP structure and turnstile.
794 	 */
795 	isfree = NULL;
796 	if (p2->p_zomblwp != NULL) {
797 		mutex_enter(p2->p_lock);
798 		if ((isfree = p2->p_zomblwp) != NULL) {
799 			p2->p_zomblwp = NULL;
800 			lwp_free(isfree, true, false);/* releases proc mutex */
801 		} else
802 			mutex_exit(p2->p_lock);
803 	}
804 	if (isfree == NULL) {
805 		l2 = pool_cache_get(lwp_cache, PR_WAITOK);
806 		memset(l2, 0, sizeof(*l2));
807 		l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK);
808 		SLIST_INIT(&l2->l_pi_lenders);
809 	} else {
810 		l2 = isfree;
811 		ts = l2->l_ts;
812 		KASSERT(l2->l_inheritedprio == -1);
813 		KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
814 		memset(l2, 0, sizeof(*l2));
815 		l2->l_ts = ts;
816 	}
817 
818 	l2->l_stat = LSIDL;
819 	l2->l_proc = p2;
820 	l2->l_refcnt = 1;
821 	l2->l_class = sclass;
822 
823 	/*
824 	 * If vfork(), we want the LWP to run fast and on the same CPU
825 	 * as its parent, so that it can reuse the VM context and cache
826 	 * footprint on the local CPU.
827 	 */
828 	l2->l_kpriority = ((flags & LWP_VFORK) ? true : false);
829 	l2->l_kpribase = PRI_KERNEL;
830 	l2->l_priority = l1->l_priority;
831 	l2->l_inheritedprio = -1;
832 	l2->l_flag = 0;
833 	l2->l_pflag = LP_MPSAFE;
834 	TAILQ_INIT(&l2->l_ld_locks);
835 
836 	/*
837 	 * For vfork, borrow parent's lwpctl context if it exists.
838 	 * This also causes us to return via lwp_userret.
839 	 */
840 	if (flags & LWP_VFORK && l1->l_lwpctl) {
841 		l2->l_lwpctl = l1->l_lwpctl;
842 		l2->l_flag |= LW_LWPCTL;
843 	}
844 
845 	/*
846 	 * If not the first LWP in the process, grab a reference to the
847 	 * descriptor table.
848 	 */
849 	l2->l_fd = p2->p_fd;
850 	if (p2->p_nlwps != 0) {
851 		KASSERT(l1->l_proc == p2);
852 		fd_hold(l2);
853 	} else {
854 		KASSERT(l1->l_proc != p2);
855 	}
856 
857 	if (p2->p_flag & PK_SYSTEM) {
858 		/* Mark it as a system LWP. */
859 		l2->l_flag |= LW_SYSTEM;
860 	}
861 
862 	kpreempt_disable();
863 	l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex;
864 	l2->l_cpu = l1->l_cpu;
865 	kpreempt_enable();
866 
867 	kdtrace_thread_ctor(NULL, l2);
868 	lwp_initspecific(l2);
869 	sched_lwp_fork(l1, l2);
870 	lwp_update_creds(l2);
871 	callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
872 	callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
873 	cv_init(&l2->l_sigcv, "sigwait");
874 	cv_init(&l2->l_waitcv, "vfork");
875 	l2->l_syncobj = &sched_syncobj;
876 
877 	if (rnewlwpp != NULL)
878 		*rnewlwpp = l2;
879 
880 	/*
881 	 * PCU state needs to be saved before calling uvm_lwp_fork() so that
882 	 * the MD cpu_lwp_fork() can copy the saved state to the new LWP.
883 	 */
884 	pcu_save_all(l1);
885 
886 	uvm_lwp_setuarea(l2, uaddr);
887 	uvm_lwp_fork(l1, l2, stack, stacksize, func,
888 	    (arg != NULL) ? arg : l2);
889 
890 	if ((flags & LWP_PIDLID) != 0) {
891 		lid = proc_alloc_pid(p2);
892 		l2->l_pflag |= LP_PIDLID;
893 	} else {
894 		lid = 0;
895 	}
896 
897 	mutex_enter(p2->p_lock);
898 
899 	if ((flags & LWP_DETACHED) != 0) {
900 		l2->l_prflag = LPR_DETACHED;
901 		p2->p_ndlwps++;
902 	} else
903 		l2->l_prflag = 0;
904 
905 	l2->l_sigstk = l1->l_sigstk;
906 	l2->l_sigmask = l1->l_sigmask;
907 	TAILQ_INIT(&l2->l_sigpend.sp_info);
908 	sigemptyset(&l2->l_sigpend.sp_set);
909 
910 	if (__predict_true(lid == 0)) {
911 		/*
912 		 * XXX: l_lid are expected to be unique (for a process)
913 		 * if LWP_PIDLID is sometimes set this won't be true.
914 		 * Once 2^31 threads have been allocated we have to
915 		 * scan to ensure we allocate a unique value.
916 		 */
917 		lid = ++p2->p_nlwpid;
918 		if (__predict_false(lid & LID_SCAN)) {
919 			lid = lwp_find_free_lid(lid, l2, p2);
920 			p2->p_nlwpid = lid | LID_SCAN;
921 			/* l2 as been inserted into p_lwps in order */
922 			goto skip_insert;
923 		}
924 		p2->p_nlwpid = lid;
925 	}
926 	LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
927     skip_insert:
928 	l2->l_lid = lid;
929 	p2->p_nlwps++;
930 	p2->p_nrlwps++;
931 
932 	KASSERT(l2->l_affinity == NULL);
933 
934 	if ((p2->p_flag & PK_SYSTEM) == 0) {
935 		/* Inherit the affinity mask. */
936 		if (l1->l_affinity) {
937 			/*
938 			 * Note that we hold the state lock while inheriting
939 			 * the affinity to avoid race with sched_setaffinity().
940 			 */
941 			lwp_lock(l1);
942 			if (l1->l_affinity) {
943 				kcpuset_use(l1->l_affinity);
944 				l2->l_affinity = l1->l_affinity;
945 			}
946 			lwp_unlock(l1);
947 		}
948 		lwp_lock(l2);
949 		/* Inherit a processor-set */
950 		l2->l_psid = l1->l_psid;
951 		/* Look for a CPU to start */
952 		l2->l_cpu = sched_takecpu(l2);
953 		lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex);
954 	}
955 	mutex_exit(p2->p_lock);
956 
957 	SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
958 
959 	mutex_enter(proc_lock);
960 	LIST_INSERT_HEAD(&alllwp, l2, l_list);
961 	mutex_exit(proc_lock);
962 
963 	SYSCALL_TIME_LWP_INIT(l2);
964 
965 	if (p2->p_emul->e_lwp_fork)
966 		(*p2->p_emul->e_lwp_fork)(l1, l2);
967 
968 	return (0);
969 }
970 
971 /*
972  * Called by MD code when a new LWP begins execution.  Must be called
973  * with the previous LWP locked (so at splsched), or if there is no
974  * previous LWP, at splsched.
975  */
976 void
977 lwp_startup(struct lwp *prev, struct lwp *new_lwp)
978 {
979 	KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
980 
981 	SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
982 
983 	KASSERT(kpreempt_disabled());
984 	if (prev != NULL) {
985 		/*
986 		 * Normalize the count of the spin-mutexes, it was
987 		 * increased in mi_switch().  Unmark the state of
988 		 * context switch - it is finished for previous LWP.
989 		 */
990 		curcpu()->ci_mtx_count++;
991 		membar_exit();
992 		prev->l_ctxswtch = 0;
993 	}
994 	KPREEMPT_DISABLE(new_lwp);
995 	if (__predict_true(new_lwp->l_proc->p_vmspace))
996 		pmap_activate(new_lwp);
997 	spl0();
998 
999 	/* Note trip through cpu_switchto(). */
1000 	pserialize_switchpoint();
1001 
1002 	LOCKDEBUG_BARRIER(NULL, 0);
1003 	KPREEMPT_ENABLE(new_lwp);
1004 	if ((new_lwp->l_pflag & LP_MPSAFE) == 0) {
1005 		KERNEL_LOCK(1, new_lwp);
1006 	}
1007 }
1008 
1009 /*
1010  * Exit an LWP.
1011  */
1012 void
1013 lwp_exit(struct lwp *l)
1014 {
1015 	struct proc *p = l->l_proc;
1016 	struct lwp *l2;
1017 	bool current;
1018 
1019 	current = (l == curlwp);
1020 
1021 	KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL));
1022 	KASSERT(p == curproc);
1023 
1024 	SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
1025 
1026 	/*
1027 	 * Verify that we hold no locks other than the kernel lock.
1028 	 */
1029 	LOCKDEBUG_BARRIER(&kernel_lock, 0);
1030 
1031 	/*
1032 	 * If we are the last live LWP in a process, we need to exit the
1033 	 * entire process.  We do so with an exit status of zero, because
1034 	 * it's a "controlled" exit, and because that's what Solaris does.
1035 	 *
1036 	 * We are not quite a zombie yet, but for accounting purposes we
1037 	 * must increment the count of zombies here.
1038 	 *
1039 	 * Note: the last LWP's specificdata will be deleted here.
1040 	 */
1041 	mutex_enter(p->p_lock);
1042 	if (p->p_nlwps - p->p_nzlwps == 1) {
1043 		KASSERT(current == true);
1044 		KASSERT(p != &proc0);
1045 		/* XXXSMP kernel_lock not held */
1046 		exit1(l, 0);
1047 		/* NOTREACHED */
1048 	}
1049 	p->p_nzlwps++;
1050 	mutex_exit(p->p_lock);
1051 
1052 	if (p->p_emul->e_lwp_exit)
1053 		(*p->p_emul->e_lwp_exit)(l);
1054 
1055 	/* Drop filedesc reference. */
1056 	fd_free();
1057 
1058 	/* Delete the specificdata while it's still safe to sleep. */
1059 	lwp_finispecific(l);
1060 
1061 	/*
1062 	 * Release our cached credentials.
1063 	 */
1064 	kauth_cred_free(l->l_cred);
1065 	callout_destroy(&l->l_timeout_ch);
1066 
1067 	/*
1068 	 * Remove the LWP from the global list.
1069 	 * Free its LID from the PID namespace if needed.
1070 	 */
1071 	mutex_enter(proc_lock);
1072 	LIST_REMOVE(l, l_list);
1073 	if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) {
1074 		proc_free_pid(l->l_lid);
1075 	}
1076 	mutex_exit(proc_lock);
1077 
1078 	/*
1079 	 * Get rid of all references to the LWP that others (e.g. procfs)
1080 	 * may have, and mark the LWP as a zombie.  If the LWP is detached,
1081 	 * mark it waiting for collection in the proc structure.  Note that
1082 	 * before we can do that, we need to free any other dead, deatched
1083 	 * LWP waiting to meet its maker.
1084 	 */
1085 	mutex_enter(p->p_lock);
1086 	lwp_drainrefs(l);
1087 
1088 	if ((l->l_prflag & LPR_DETACHED) != 0) {
1089 		while ((l2 = p->p_zomblwp) != NULL) {
1090 			p->p_zomblwp = NULL;
1091 			lwp_free(l2, false, false);/* releases proc mutex */
1092 			mutex_enter(p->p_lock);
1093 			l->l_refcnt++;
1094 			lwp_drainrefs(l);
1095 		}
1096 		p->p_zomblwp = l;
1097 	}
1098 
1099 	/*
1100 	 * If we find a pending signal for the process and we have been
1101 	 * asked to check for signals, then we lose: arrange to have
1102 	 * all other LWPs in the process check for signals.
1103 	 */
1104 	if ((l->l_flag & LW_PENDSIG) != 0 &&
1105 	    firstsig(&p->p_sigpend.sp_set) != 0) {
1106 		LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
1107 			lwp_lock(l2);
1108 			l2->l_flag |= LW_PENDSIG;
1109 			lwp_unlock(l2);
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * Release any PCU resources before becoming a zombie.
1115 	 */
1116 	pcu_discard_all(l);
1117 
1118 	lwp_lock(l);
1119 	l->l_stat = LSZOMB;
1120 	if (l->l_name != NULL) {
1121 		strcpy(l->l_name, "(zombie)");
1122 	}
1123 	lwp_unlock(l);
1124 	p->p_nrlwps--;
1125 	cv_broadcast(&p->p_lwpcv);
1126 	if (l->l_lwpctl != NULL)
1127 		l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
1128 	mutex_exit(p->p_lock);
1129 
1130 	/*
1131 	 * We can no longer block.  At this point, lwp_free() may already
1132 	 * be gunning for us.  On a multi-CPU system, we may be off p_lwps.
1133 	 *
1134 	 * Free MD LWP resources.
1135 	 */
1136 	cpu_lwp_free(l, 0);
1137 
1138 	if (current) {
1139 		pmap_deactivate(l);
1140 
1141 		/*
1142 		 * Release the kernel lock, and switch away into
1143 		 * oblivion.
1144 		 */
1145 #ifdef notyet
1146 		/* XXXSMP hold in lwp_userret() */
1147 		KERNEL_UNLOCK_LAST(l);
1148 #else
1149 		KERNEL_UNLOCK_ALL(l, NULL);
1150 #endif
1151 		lwp_exit_switchaway(l);
1152 	}
1153 }
1154 
1155 /*
1156  * Free a dead LWP's remaining resources.
1157  *
1158  * XXXLWP limits.
1159  */
1160 void
1161 lwp_free(struct lwp *l, bool recycle, bool last)
1162 {
1163 	struct proc *p = l->l_proc;
1164 	struct rusage *ru;
1165 	ksiginfoq_t kq;
1166 
1167 	KASSERT(l != curlwp);
1168 	KASSERT(last || mutex_owned(p->p_lock));
1169 
1170 	/*
1171 	 * We use the process credentials instead of the lwp credentials here
1172 	 * because the lwp credentials maybe cached (just after a setuid call)
1173 	 * and we don't want pay for syncing, since the lwp is going away
1174 	 * anyway
1175 	 */
1176 	if (p != &proc0 && p->p_nlwps != 1)
1177 		(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
1178 	/*
1179 	 * If this was not the last LWP in the process, then adjust
1180 	 * counters and unlock.
1181 	 */
1182 	if (!last) {
1183 		/*
1184 		 * Add the LWP's run time to the process' base value.
1185 		 * This needs to co-incide with coming off p_lwps.
1186 		 */
1187 		bintime_add(&p->p_rtime, &l->l_rtime);
1188 		p->p_pctcpu += l->l_pctcpu;
1189 		ru = &p->p_stats->p_ru;
1190 		ruadd(ru, &l->l_ru);
1191 		ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw);
1192 		ru->ru_nivcsw += l->l_nivcsw;
1193 		LIST_REMOVE(l, l_sibling);
1194 		p->p_nlwps--;
1195 		p->p_nzlwps--;
1196 		if ((l->l_prflag & LPR_DETACHED) != 0)
1197 			p->p_ndlwps--;
1198 
1199 		/*
1200 		 * Have any LWPs sleeping in lwp_wait() recheck for
1201 		 * deadlock.
1202 		 */
1203 		cv_broadcast(&p->p_lwpcv);
1204 		mutex_exit(p->p_lock);
1205 	}
1206 
1207 #ifdef MULTIPROCESSOR
1208 	/*
1209 	 * In the unlikely event that the LWP is still on the CPU,
1210 	 * then spin until it has switched away.  We need to release
1211 	 * all locks to avoid deadlock against interrupt handlers on
1212 	 * the target CPU.
1213 	 */
1214 	if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) {
1215 		int count;
1216 		(void)count; /* XXXgcc */
1217 		KERNEL_UNLOCK_ALL(curlwp, &count);
1218 		while ((l->l_pflag & LP_RUNNING) != 0 ||
1219 		    l->l_cpu->ci_curlwp == l)
1220 			SPINLOCK_BACKOFF_HOOK;
1221 		KERNEL_LOCK(count, curlwp);
1222 	}
1223 #endif
1224 
1225 	/*
1226 	 * Destroy the LWP's remaining signal information.
1227 	 */
1228 	ksiginfo_queue_init(&kq);
1229 	sigclear(&l->l_sigpend, NULL, &kq);
1230 	ksiginfo_queue_drain(&kq);
1231 	cv_destroy(&l->l_sigcv);
1232 	cv_destroy(&l->l_waitcv);
1233 
1234 	/*
1235 	 * Free lwpctl structure and affinity.
1236 	 */
1237 	if (l->l_lwpctl) {
1238 		lwp_ctl_free(l);
1239 	}
1240 	if (l->l_affinity) {
1241 		kcpuset_unuse(l->l_affinity, NULL);
1242 		l->l_affinity = NULL;
1243 	}
1244 
1245 	/*
1246 	 * Free the LWP's turnstile and the LWP structure itself unless the
1247 	 * caller wants to recycle them.  Also, free the scheduler specific
1248 	 * data.
1249 	 *
1250 	 * We can't return turnstile0 to the pool (it didn't come from it),
1251 	 * so if it comes up just drop it quietly and move on.
1252 	 *
1253 	 * We don't recycle the VM resources at this time.
1254 	 */
1255 
1256 	if (!recycle && l->l_ts != &turnstile0)
1257 		pool_cache_put(turnstile_cache, l->l_ts);
1258 	if (l->l_name != NULL)
1259 		kmem_free(l->l_name, MAXCOMLEN);
1260 
1261 	cpu_lwp_free2(l);
1262 	uvm_lwp_exit(l);
1263 
1264 	KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
1265 	KASSERT(l->l_inheritedprio == -1);
1266 	KASSERT(l->l_blcnt == 0);
1267 	kdtrace_thread_dtor(NULL, l);
1268 	if (!recycle)
1269 		pool_cache_put(lwp_cache, l);
1270 }
1271 
1272 /*
1273  * Migrate the LWP to the another CPU.  Unlocks the LWP.
1274  */
1275 void
1276 lwp_migrate(lwp_t *l, struct cpu_info *tci)
1277 {
1278 	struct schedstate_percpu *tspc;
1279 	int lstat = l->l_stat;
1280 
1281 	KASSERT(lwp_locked(l, NULL));
1282 	KASSERT(tci != NULL);
1283 
1284 	/* If LWP is still on the CPU, it must be handled like LSONPROC */
1285 	if ((l->l_pflag & LP_RUNNING) != 0) {
1286 		lstat = LSONPROC;
1287 	}
1288 
1289 	/*
1290 	 * The destination CPU could be changed while previous migration
1291 	 * was not finished.
1292 	 */
1293 	if (l->l_target_cpu != NULL) {
1294 		l->l_target_cpu = tci;
1295 		lwp_unlock(l);
1296 		return;
1297 	}
1298 
1299 	/* Nothing to do if trying to migrate to the same CPU */
1300 	if (l->l_cpu == tci) {
1301 		lwp_unlock(l);
1302 		return;
1303 	}
1304 
1305 	KASSERT(l->l_target_cpu == NULL);
1306 	tspc = &tci->ci_schedstate;
1307 	switch (lstat) {
1308 	case LSRUN:
1309 		l->l_target_cpu = tci;
1310 		break;
1311 	case LSIDL:
1312 		l->l_cpu = tci;
1313 		lwp_unlock_to(l, tspc->spc_mutex);
1314 		return;
1315 	case LSSLEEP:
1316 		l->l_cpu = tci;
1317 		break;
1318 	case LSSTOP:
1319 	case LSSUSPENDED:
1320 		l->l_cpu = tci;
1321 		if (l->l_wchan == NULL) {
1322 			lwp_unlock_to(l, tspc->spc_lwplock);
1323 			return;
1324 		}
1325 		break;
1326 	case LSONPROC:
1327 		l->l_target_cpu = tci;
1328 		spc_lock(l->l_cpu);
1329 		cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT);
1330 		spc_unlock(l->l_cpu);
1331 		break;
1332 	}
1333 	lwp_unlock(l);
1334 }
1335 
1336 /*
1337  * Find the LWP in the process.  Arguments may be zero, in such case,
1338  * the calling process and first LWP in the list will be used.
1339  * On success - returns proc locked.
1340  */
1341 struct lwp *
1342 lwp_find2(pid_t pid, lwpid_t lid)
1343 {
1344 	proc_t *p;
1345 	lwp_t *l;
1346 
1347 	/* Find the process. */
1348 	if (pid != 0) {
1349 		mutex_enter(proc_lock);
1350 		p = proc_find(pid);
1351 		if (p == NULL) {
1352 			mutex_exit(proc_lock);
1353 			return NULL;
1354 		}
1355 		mutex_enter(p->p_lock);
1356 		mutex_exit(proc_lock);
1357 	} else {
1358 		p = curlwp->l_proc;
1359 		mutex_enter(p->p_lock);
1360 	}
1361 	/* Find the thread. */
1362 	if (lid != 0) {
1363 		l = lwp_find(p, lid);
1364 	} else {
1365 		l = LIST_FIRST(&p->p_lwps);
1366 	}
1367 	if (l == NULL) {
1368 		mutex_exit(p->p_lock);
1369 	}
1370 	return l;
1371 }
1372 
1373 /*
1374  * Look up a live LWP within the specified process.
1375  *
1376  * Must be called with p->p_lock held.
1377  */
1378 struct lwp *
1379 lwp_find(struct proc *p, lwpid_t id)
1380 {
1381 	struct lwp *l;
1382 
1383 	KASSERT(mutex_owned(p->p_lock));
1384 
1385 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1386 		if (l->l_lid == id)
1387 			break;
1388 	}
1389 
1390 	/*
1391 	 * No need to lock - all of these conditions will
1392 	 * be visible with the process level mutex held.
1393 	 */
1394 	if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB))
1395 		l = NULL;
1396 
1397 	return l;
1398 }
1399 
1400 /*
1401  * Update an LWP's cached credentials to mirror the process' master copy.
1402  *
1403  * This happens early in the syscall path, on user trap, and on LWP
1404  * creation.  A long-running LWP can also voluntarily choose to update
1405  * its credentials by calling this routine.  This may be called from
1406  * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand.
1407  */
1408 void
1409 lwp_update_creds(struct lwp *l)
1410 {
1411 	kauth_cred_t oc;
1412 	struct proc *p;
1413 
1414 	p = l->l_proc;
1415 	oc = l->l_cred;
1416 
1417 	mutex_enter(p->p_lock);
1418 	kauth_cred_hold(p->p_cred);
1419 	l->l_cred = p->p_cred;
1420 	l->l_prflag &= ~LPR_CRMOD;
1421 	mutex_exit(p->p_lock);
1422 	if (oc != NULL)
1423 		kauth_cred_free(oc);
1424 }
1425 
1426 /*
1427  * Verify that an LWP is locked, and optionally verify that the lock matches
1428  * one we specify.
1429  */
1430 int
1431 lwp_locked(struct lwp *l, kmutex_t *mtx)
1432 {
1433 	kmutex_t *cur = l->l_mutex;
1434 
1435 	return mutex_owned(cur) && (mtx == cur || mtx == NULL);
1436 }
1437 
1438 /*
1439  * Lend a new mutex to an LWP.  The old mutex must be held.
1440  */
1441 void
1442 lwp_setlock(struct lwp *l, kmutex_t *mtx)
1443 {
1444 
1445 	KASSERT(mutex_owned(l->l_mutex));
1446 
1447 	membar_exit();
1448 	l->l_mutex = mtx;
1449 }
1450 
1451 /*
1452  * Lend a new mutex to an LWP, and release the old mutex.  The old mutex
1453  * must be held.
1454  */
1455 void
1456 lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
1457 {
1458 	kmutex_t *old;
1459 
1460 	KASSERT(lwp_locked(l, NULL));
1461 
1462 	old = l->l_mutex;
1463 	membar_exit();
1464 	l->l_mutex = mtx;
1465 	mutex_spin_exit(old);
1466 }
1467 
1468 int
1469 lwp_trylock(struct lwp *l)
1470 {
1471 	kmutex_t *old;
1472 
1473 	for (;;) {
1474 		if (!mutex_tryenter(old = l->l_mutex))
1475 			return 0;
1476 		if (__predict_true(l->l_mutex == old))
1477 			return 1;
1478 		mutex_spin_exit(old);
1479 	}
1480 }
1481 
1482 void
1483 lwp_unsleep(lwp_t *l, bool cleanup)
1484 {
1485 
1486 	KASSERT(mutex_owned(l->l_mutex));
1487 	(*l->l_syncobj->sobj_unsleep)(l, cleanup);
1488 }
1489 
1490 /*
1491  * Handle exceptions for mi_userret().  Called if a member of LW_USERRET is
1492  * set.
1493  */
1494 void
1495 lwp_userret(struct lwp *l)
1496 {
1497 	struct proc *p;
1498 	int sig;
1499 
1500 	KASSERT(l == curlwp);
1501 	KASSERT(l->l_stat == LSONPROC);
1502 	p = l->l_proc;
1503 
1504 #ifndef __HAVE_FAST_SOFTINTS
1505 	/* Run pending soft interrupts. */
1506 	if (l->l_cpu->ci_data.cpu_softints != 0)
1507 		softint_overlay();
1508 #endif
1509 
1510 	/*
1511 	 * It is safe to do this read unlocked on a MP system..
1512 	 */
1513 	while ((l->l_flag & LW_USERRET) != 0) {
1514 		/*
1515 		 * Process pending signals first, unless the process
1516 		 * is dumping core or exiting, where we will instead
1517 		 * enter the LW_WSUSPEND case below.
1518 		 */
1519 		if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) ==
1520 		    LW_PENDSIG) {
1521 			mutex_enter(p->p_lock);
1522 			while ((sig = issignal(l)) != 0)
1523 				postsig(sig);
1524 			mutex_exit(p->p_lock);
1525 		}
1526 
1527 		/*
1528 		 * Core-dump or suspend pending.
1529 		 *
1530 		 * In case of core dump, suspend ourselves, so that the kernel
1531 		 * stack and therefore the userland registers saved in the
1532 		 * trapframe are around for coredump() to write them out.
1533 		 * We also need to save any PCU resources that we have so that
1534 		 * they accessible for coredump().  We issue a wakeup on
1535 		 * p->p_lwpcv so that sigexit() will write the core file out
1536 		 * once all other LWPs are suspended.
1537 		 */
1538 		if ((l->l_flag & LW_WSUSPEND) != 0) {
1539 			pcu_save_all(l);
1540 			mutex_enter(p->p_lock);
1541 			p->p_nrlwps--;
1542 			cv_broadcast(&p->p_lwpcv);
1543 			lwp_lock(l);
1544 			l->l_stat = LSSUSPENDED;
1545 			lwp_unlock(l);
1546 			mutex_exit(p->p_lock);
1547 			lwp_lock(l);
1548 			mi_switch(l);
1549 		}
1550 
1551 		/* Process is exiting. */
1552 		if ((l->l_flag & LW_WEXIT) != 0) {
1553 			lwp_exit(l);
1554 			KASSERT(0);
1555 			/* NOTREACHED */
1556 		}
1557 
1558 		/* update lwpctl processor (for vfork child_return) */
1559 		if (l->l_flag & LW_LWPCTL) {
1560 			lwp_lock(l);
1561 			KASSERT(kpreempt_disabled());
1562 			l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
1563 			l->l_lwpctl->lc_pctr++;
1564 			l->l_flag &= ~LW_LWPCTL;
1565 			lwp_unlock(l);
1566 		}
1567 	}
1568 }
1569 
1570 /*
1571  * Force an LWP to enter the kernel, to take a trip through lwp_userret().
1572  */
1573 void
1574 lwp_need_userret(struct lwp *l)
1575 {
1576 	KASSERT(lwp_locked(l, NULL));
1577 
1578 	/*
1579 	 * Since the tests in lwp_userret() are done unlocked, make sure
1580 	 * that the condition will be seen before forcing the LWP to enter
1581 	 * kernel mode.
1582 	 */
1583 	membar_producer();
1584 	cpu_signotify(l);
1585 }
1586 
1587 /*
1588  * Add one reference to an LWP.  This will prevent the LWP from
1589  * exiting, thus keep the lwp structure and PCB around to inspect.
1590  */
1591 void
1592 lwp_addref(struct lwp *l)
1593 {
1594 
1595 	KASSERT(mutex_owned(l->l_proc->p_lock));
1596 	KASSERT(l->l_stat != LSZOMB);
1597 	KASSERT(l->l_refcnt != 0);
1598 
1599 	l->l_refcnt++;
1600 }
1601 
1602 /*
1603  * Remove one reference to an LWP.  If this is the last reference,
1604  * then we must finalize the LWP's death.
1605  */
1606 void
1607 lwp_delref(struct lwp *l)
1608 {
1609 	struct proc *p = l->l_proc;
1610 
1611 	mutex_enter(p->p_lock);
1612 	lwp_delref2(l);
1613 	mutex_exit(p->p_lock);
1614 }
1615 
1616 /*
1617  * Remove one reference to an LWP.  If this is the last reference,
1618  * then we must finalize the LWP's death.  The proc mutex is held
1619  * on entry.
1620  */
1621 void
1622 lwp_delref2(struct lwp *l)
1623 {
1624 	struct proc *p = l->l_proc;
1625 
1626 	KASSERT(mutex_owned(p->p_lock));
1627 	KASSERT(l->l_stat != LSZOMB);
1628 	KASSERT(l->l_refcnt > 0);
1629 	if (--l->l_refcnt == 0)
1630 		cv_broadcast(&p->p_lwpcv);
1631 }
1632 
1633 /*
1634  * Drain all references to the current LWP.
1635  */
1636 void
1637 lwp_drainrefs(struct lwp *l)
1638 {
1639 	struct proc *p = l->l_proc;
1640 
1641 	KASSERT(mutex_owned(p->p_lock));
1642 	KASSERT(l->l_refcnt != 0);
1643 
1644 	l->l_refcnt--;
1645 	while (l->l_refcnt != 0)
1646 		cv_wait(&p->p_lwpcv, p->p_lock);
1647 }
1648 
1649 /*
1650  * Return true if the specified LWP is 'alive'.  Only p->p_lock need
1651  * be held.
1652  */
1653 bool
1654 lwp_alive(lwp_t *l)
1655 {
1656 
1657 	KASSERT(mutex_owned(l->l_proc->p_lock));
1658 
1659 	switch (l->l_stat) {
1660 	case LSSLEEP:
1661 	case LSRUN:
1662 	case LSONPROC:
1663 	case LSSTOP:
1664 	case LSSUSPENDED:
1665 		return true;
1666 	default:
1667 		return false;
1668 	}
1669 }
1670 
1671 /*
1672  * Return first live LWP in the process.
1673  */
1674 lwp_t *
1675 lwp_find_first(proc_t *p)
1676 {
1677 	lwp_t *l;
1678 
1679 	KASSERT(mutex_owned(p->p_lock));
1680 
1681 	LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1682 		if (lwp_alive(l)) {
1683 			return l;
1684 		}
1685 	}
1686 
1687 	return NULL;
1688 }
1689 
1690 /*
1691  * Allocate a new lwpctl structure for a user LWP.
1692  */
1693 int
1694 lwp_ctl_alloc(vaddr_t *uaddr)
1695 {
1696 	lcproc_t *lp;
1697 	u_int bit, i, offset;
1698 	struct uvm_object *uao;
1699 	int error;
1700 	lcpage_t *lcp;
1701 	proc_t *p;
1702 	lwp_t *l;
1703 
1704 	l = curlwp;
1705 	p = l->l_proc;
1706 
1707 	/* don't allow a vforked process to create lwp ctls */
1708 	if (p->p_lflag & PL_PPWAIT)
1709 		return EBUSY;
1710 
1711 	if (l->l_lcpage != NULL) {
1712 		lcp = l->l_lcpage;
1713 		*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
1714 		return 0;
1715 	}
1716 
1717 	/* First time around, allocate header structure for the process. */
1718 	if ((lp = p->p_lwpctl) == NULL) {
1719 		lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
1720 		mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
1721 		lp->lp_uao = NULL;
1722 		TAILQ_INIT(&lp->lp_pages);
1723 		mutex_enter(p->p_lock);
1724 		if (p->p_lwpctl == NULL) {
1725 			p->p_lwpctl = lp;
1726 			mutex_exit(p->p_lock);
1727 		} else {
1728 			mutex_exit(p->p_lock);
1729 			mutex_destroy(&lp->lp_lock);
1730 			kmem_free(lp, sizeof(*lp));
1731 			lp = p->p_lwpctl;
1732 		}
1733 	}
1734 
1735  	/*
1736  	 * Set up an anonymous memory region to hold the shared pages.
1737  	 * Map them into the process' address space.  The user vmspace
1738  	 * gets the first reference on the UAO.
1739  	 */
1740 	mutex_enter(&lp->lp_lock);
1741 	if (lp->lp_uao == NULL) {
1742 		lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
1743 		lp->lp_cur = 0;
1744 		lp->lp_max = LWPCTL_UAREA_SZ;
1745 		lp->lp_uva = p->p_emul->e_vm_default_addr(p,
1746 		     (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
1747 		     p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1748 		error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
1749 		    LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
1750 		    UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
1751 		if (error != 0) {
1752 			uao_detach(lp->lp_uao);
1753 			lp->lp_uao = NULL;
1754 			mutex_exit(&lp->lp_lock);
1755 			return error;
1756 		}
1757 	}
1758 
1759 	/* Get a free block and allocate for this LWP. */
1760 	TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
1761 		if (lcp->lcp_nfree != 0)
1762 			break;
1763 	}
1764 	if (lcp == NULL) {
1765 		/* Nothing available - try to set up a free page. */
1766 		if (lp->lp_cur == lp->lp_max) {
1767 			mutex_exit(&lp->lp_lock);
1768 			return ENOMEM;
1769 		}
1770 		lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
1771 		if (lcp == NULL) {
1772 			mutex_exit(&lp->lp_lock);
1773 			return ENOMEM;
1774 		}
1775 		/*
1776 		 * Wire the next page down in kernel space.  Since this
1777 		 * is a new mapping, we must add a reference.
1778 		 */
1779 		uao = lp->lp_uao;
1780 		(*uao->pgops->pgo_reference)(uao);
1781 		lcp->lcp_kaddr = vm_map_min(kernel_map);
1782 		error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
1783 		    uao, lp->lp_cur, PAGE_SIZE,
1784 		    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1785 		    UVM_INH_NONE, UVM_ADV_RANDOM, 0));
1786 		if (error != 0) {
1787 			mutex_exit(&lp->lp_lock);
1788 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1789 			(*uao->pgops->pgo_detach)(uao);
1790 			return error;
1791 		}
1792 		error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
1793 		    lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
1794 		if (error != 0) {
1795 			mutex_exit(&lp->lp_lock);
1796 			uvm_unmap(kernel_map, lcp->lcp_kaddr,
1797 			    lcp->lcp_kaddr + PAGE_SIZE);
1798 			kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1799 			return error;
1800 		}
1801 		/* Prepare the page descriptor and link into the list. */
1802 		lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
1803 		lp->lp_cur += PAGE_SIZE;
1804 		lcp->lcp_nfree = LWPCTL_PER_PAGE;
1805 		lcp->lcp_rotor = 0;
1806 		memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
1807 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1808 	}
1809 	for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
1810 		if (++i >= LWPCTL_BITMAP_ENTRIES)
1811 			i = 0;
1812 	}
1813 	bit = ffs(lcp->lcp_bitmap[i]) - 1;
1814 	lcp->lcp_bitmap[i] ^= (1 << bit);
1815 	lcp->lcp_rotor = i;
1816 	lcp->lcp_nfree--;
1817 	l->l_lcpage = lcp;
1818 	offset = (i << 5) + bit;
1819 	l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
1820 	*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
1821 	mutex_exit(&lp->lp_lock);
1822 
1823 	KPREEMPT_DISABLE(l);
1824 	l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index;
1825 	KPREEMPT_ENABLE(l);
1826 
1827 	return 0;
1828 }
1829 
1830 /*
1831  * Free an lwpctl structure back to the per-process list.
1832  */
1833 void
1834 lwp_ctl_free(lwp_t *l)
1835 {
1836 	struct proc *p = l->l_proc;
1837 	lcproc_t *lp;
1838 	lcpage_t *lcp;
1839 	u_int map, offset;
1840 
1841 	/* don't free a lwp context we borrowed for vfork */
1842 	if (p->p_lflag & PL_PPWAIT) {
1843 		l->l_lwpctl = NULL;
1844 		return;
1845 	}
1846 
1847 	lp = p->p_lwpctl;
1848 	KASSERT(lp != NULL);
1849 
1850 	lcp = l->l_lcpage;
1851 	offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
1852 	KASSERT(offset < LWPCTL_PER_PAGE);
1853 
1854 	mutex_enter(&lp->lp_lock);
1855 	lcp->lcp_nfree++;
1856 	map = offset >> 5;
1857 	lcp->lcp_bitmap[map] |= (1 << (offset & 31));
1858 	if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
1859 		lcp->lcp_rotor = map;
1860 	if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
1861 		TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
1862 		TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
1863 	}
1864 	mutex_exit(&lp->lp_lock);
1865 }
1866 
1867 /*
1868  * Process is exiting; tear down lwpctl state.  This can only be safely
1869  * called by the last LWP in the process.
1870  */
1871 void
1872 lwp_ctl_exit(void)
1873 {
1874 	lcpage_t *lcp, *next;
1875 	lcproc_t *lp;
1876 	proc_t *p;
1877 	lwp_t *l;
1878 
1879 	l = curlwp;
1880 	l->l_lwpctl = NULL;
1881 	l->l_lcpage = NULL;
1882 	p = l->l_proc;
1883 	lp = p->p_lwpctl;
1884 
1885 	KASSERT(lp != NULL);
1886 	KASSERT(p->p_nlwps == 1);
1887 
1888 	for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
1889 		next = TAILQ_NEXT(lcp, lcp_chain);
1890 		uvm_unmap(kernel_map, lcp->lcp_kaddr,
1891 		    lcp->lcp_kaddr + PAGE_SIZE);
1892 		kmem_free(lcp, LWPCTL_LCPAGE_SZ);
1893 	}
1894 
1895 	if (lp->lp_uao != NULL) {
1896 		uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
1897 		    lp->lp_uva + LWPCTL_UAREA_SZ);
1898 	}
1899 
1900 	mutex_destroy(&lp->lp_lock);
1901 	kmem_free(lp, sizeof(*lp));
1902 	p->p_lwpctl = NULL;
1903 }
1904 
1905 /*
1906  * Return the current LWP's "preemption counter".  Used to detect
1907  * preemption across operations that can tolerate preemption without
1908  * crashing, but which may generate incorrect results if preempted.
1909  */
1910 uint64_t
1911 lwp_pctr(void)
1912 {
1913 
1914 	return curlwp->l_ncsw;
1915 }
1916 
1917 /*
1918  * Set an LWP's private data pointer.
1919  */
1920 int
1921 lwp_setprivate(struct lwp *l, void *ptr)
1922 {
1923 	int error = 0;
1924 
1925 	l->l_private = ptr;
1926 #ifdef __HAVE_CPU_LWP_SETPRIVATE
1927 	error = cpu_lwp_setprivate(l, ptr);
1928 #endif
1929 	return error;
1930 }
1931 
1932 #if defined(DDB)
1933 #include <machine/pcb.h>
1934 
1935 void
1936 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1937 {
1938 	lwp_t *l;
1939 
1940 	LIST_FOREACH(l, &alllwp, l_list) {
1941 		uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
1942 
1943 		if (addr < stack || stack + KSTACK_SIZE <= addr) {
1944 			continue;
1945 		}
1946 		(*pr)("%p is %p+%zu, LWP %p's stack\n",
1947 		    (void *)addr, (void *)stack,
1948 		    (size_t)(addr - stack), l);
1949 	}
1950 }
1951 #endif /* defined(DDB) */
1952