1 /* $NetBSD: kern_lwp.c,v 1.182 2015/11/26 13:15:34 martin Exp $ */ 2 3 /*- 4 * Copyright (c) 2001, 2006, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Nathan J. Williams, and Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Overview 34 * 35 * Lightweight processes (LWPs) are the basic unit or thread of 36 * execution within the kernel. The core state of an LWP is described 37 * by "struct lwp", also known as lwp_t. 38 * 39 * Each LWP is contained within a process (described by "struct proc"), 40 * Every process contains at least one LWP, but may contain more. The 41 * process describes attributes shared among all of its LWPs such as a 42 * private address space, global execution state (stopped, active, 43 * zombie, ...), signal disposition and so on. On a multiprocessor 44 * machine, multiple LWPs be executing concurrently in the kernel. 45 * 46 * Execution states 47 * 48 * At any given time, an LWP has overall state that is described by 49 * lwp::l_stat. The states are broken into two sets below. The first 50 * set is guaranteed to represent the absolute, current state of the 51 * LWP: 52 * 53 * LSONPROC 54 * 55 * On processor: the LWP is executing on a CPU, either in the 56 * kernel or in user space. 57 * 58 * LSRUN 59 * 60 * Runnable: the LWP is parked on a run queue, and may soon be 61 * chosen to run by an idle processor, or by a processor that 62 * has been asked to preempt a currently runnning but lower 63 * priority LWP. 64 * 65 * LSIDL 66 * 67 * Idle: the LWP has been created but has not yet executed, 68 * or it has ceased executing a unit of work and is waiting 69 * to be started again. 70 * 71 * LSSUSPENDED: 72 * 73 * Suspended: the LWP has had its execution suspended by 74 * another LWP in the same process using the _lwp_suspend() 75 * system call. User-level LWPs also enter the suspended 76 * state when the system is shutting down. 77 * 78 * The second set represent a "statement of intent" on behalf of the 79 * LWP. The LWP may in fact be executing on a processor, may be 80 * sleeping or idle. It is expected to take the necessary action to 81 * stop executing or become "running" again within a short timeframe. 82 * The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running. 83 * Importantly, it indicates that its state is tied to a CPU. 84 * 85 * LSZOMB: 86 * 87 * Dead or dying: the LWP has released most of its resources 88 * and is about to switch away into oblivion, or has already 89 * switched away. When it switches away, its few remaining 90 * resources can be collected. 91 * 92 * LSSLEEP: 93 * 94 * Sleeping: the LWP has entered itself onto a sleep queue, and 95 * has switched away or will switch away shortly to allow other 96 * LWPs to run on the CPU. 97 * 98 * LSSTOP: 99 * 100 * Stopped: the LWP has been stopped as a result of a job 101 * control signal, or as a result of the ptrace() interface. 102 * 103 * Stopped LWPs may run briefly within the kernel to handle 104 * signals that they receive, but will not return to user space 105 * until their process' state is changed away from stopped. 106 * 107 * Single LWPs within a process can not be set stopped 108 * selectively: all actions that can stop or continue LWPs 109 * occur at the process level. 110 * 111 * State transitions 112 * 113 * Note that the LSSTOP state may only be set when returning to 114 * user space in userret(), or when sleeping interruptably. The 115 * LSSUSPENDED state may only be set in userret(). Before setting 116 * those states, we try to ensure that the LWPs will release all 117 * locks that they hold, and at a minimum try to ensure that the 118 * LWP can be set runnable again by a signal. 119 * 120 * LWPs may transition states in the following ways: 121 * 122 * RUN -------> ONPROC ONPROC -----> RUN 123 * > SLEEP 124 * > STOPPED 125 * > SUSPENDED 126 * > ZOMB 127 * > IDL (special cases) 128 * 129 * STOPPED ---> RUN SUSPENDED --> RUN 130 * > SLEEP 131 * 132 * SLEEP -----> ONPROC IDL --------> RUN 133 * > RUN > SUSPENDED 134 * > STOPPED > STOPPED 135 * > ONPROC (special cases) 136 * 137 * Some state transitions are only possible with kernel threads (eg 138 * ONPROC -> IDL) and happen under tightly controlled circumstances 139 * free of unwanted side effects. 140 * 141 * Migration 142 * 143 * Migration of threads from one CPU to another could be performed 144 * internally by the scheduler via sched_takecpu() or sched_catchlwp() 145 * functions. The universal lwp_migrate() function should be used for 146 * any other cases. Subsystems in the kernel must be aware that CPU 147 * of LWP may change, while it is not locked. 148 * 149 * Locking 150 * 151 * The majority of fields in 'struct lwp' are covered by a single, 152 * general spin lock pointed to by lwp::l_mutex. The locks covering 153 * each field are documented in sys/lwp.h. 154 * 155 * State transitions must be made with the LWP's general lock held, 156 * and may cause the LWP's lock pointer to change. Manipulation of 157 * the general lock is not performed directly, but through calls to 158 * lwp_lock(), lwp_unlock() and others. It should be noted that the 159 * adaptive locks are not allowed to be released while the LWP's lock 160 * is being held (unlike for other spin-locks). 161 * 162 * States and their associated locks: 163 * 164 * LSONPROC, LSZOMB: 165 * 166 * Always covered by spc_lwplock, which protects running LWPs. 167 * This is a per-CPU lock and matches lwp::l_cpu. 168 * 169 * LSIDL, LSRUN: 170 * 171 * Always covered by spc_mutex, which protects the run queues. 172 * This is a per-CPU lock and matches lwp::l_cpu. 173 * 174 * LSSLEEP: 175 * 176 * Covered by a lock associated with the sleep queue that the 177 * LWP resides on. Matches lwp::l_sleepq::sq_mutex. 178 * 179 * LSSTOP, LSSUSPENDED: 180 * 181 * If the LWP was previously sleeping (l_wchan != NULL), then 182 * l_mutex references the sleep queue lock. If the LWP was 183 * runnable or on the CPU when halted, or has been removed from 184 * the sleep queue since halted, then the lock is spc_lwplock. 185 * 186 * The lock order is as follows: 187 * 188 * spc::spc_lwplock -> 189 * sleeptab::st_mutex -> 190 * tschain_t::tc_mutex -> 191 * spc::spc_mutex 192 * 193 * Each process has an scheduler state lock (proc::p_lock), and a 194 * number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and 195 * so on. When an LWP is to be entered into or removed from one of the 196 * following states, p_lock must be held and the process wide counters 197 * adjusted: 198 * 199 * LSIDL, LSZOMB, LSSTOP, LSSUSPENDED 200 * 201 * (But not always for kernel threads. There are some special cases 202 * as mentioned above. See kern_softint.c.) 203 * 204 * Note that an LWP is considered running or likely to run soon if in 205 * one of the following states. This affects the value of p_nrlwps: 206 * 207 * LSRUN, LSONPROC, LSSLEEP 208 * 209 * p_lock does not need to be held when transitioning among these 210 * three states, hence p_lock is rarely taken for state transitions. 211 */ 212 213 #include <sys/cdefs.h> 214 __KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.182 2015/11/26 13:15:34 martin Exp $"); 215 216 #include "opt_ddb.h" 217 #include "opt_lockdebug.h" 218 #include "opt_dtrace.h" 219 220 #define _LWP_API_PRIVATE 221 222 #include <sys/param.h> 223 #include <sys/systm.h> 224 #include <sys/cpu.h> 225 #include <sys/pool.h> 226 #include <sys/proc.h> 227 #include <sys/syscallargs.h> 228 #include <sys/syscall_stats.h> 229 #include <sys/kauth.h> 230 #include <sys/pserialize.h> 231 #include <sys/sleepq.h> 232 #include <sys/lockdebug.h> 233 #include <sys/kmem.h> 234 #include <sys/pset.h> 235 #include <sys/intr.h> 236 #include <sys/lwpctl.h> 237 #include <sys/atomic.h> 238 #include <sys/filedesc.h> 239 #include <sys/dtrace_bsd.h> 240 #include <sys/sdt.h> 241 #include <sys/xcall.h> 242 #include <sys/uidinfo.h> 243 #include <sys/sysctl.h> 244 245 #include <uvm/uvm_extern.h> 246 #include <uvm/uvm_object.h> 247 248 static pool_cache_t lwp_cache __read_mostly; 249 struct lwplist alllwp __cacheline_aligned; 250 251 static void lwp_dtor(void *, void *); 252 253 /* DTrace proc provider probes */ 254 SDT_PROVIDER_DEFINE(proc); 255 256 SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *"); 257 SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *"); 258 SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *"); 259 260 struct turnstile turnstile0; 261 struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = { 262 #ifdef LWP0_CPU_INFO 263 .l_cpu = LWP0_CPU_INFO, 264 #endif 265 #ifdef LWP0_MD_INITIALIZER 266 .l_md = LWP0_MD_INITIALIZER, 267 #endif 268 .l_proc = &proc0, 269 .l_lid = 1, 270 .l_flag = LW_SYSTEM, 271 .l_stat = LSONPROC, 272 .l_ts = &turnstile0, 273 .l_syncobj = &sched_syncobj, 274 .l_refcnt = 1, 275 .l_priority = PRI_USER + NPRI_USER - 1, 276 .l_inheritedprio = -1, 277 .l_class = SCHED_OTHER, 278 .l_psid = PS_NONE, 279 .l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders), 280 .l_name = __UNCONST("swapper"), 281 .l_fd = &filedesc0, 282 }; 283 284 static int sysctl_kern_maxlwp(SYSCTLFN_PROTO); 285 286 /* 287 * sysctl helper routine for kern.maxlwp. Ensures that the new 288 * values are not too low or too high. 289 */ 290 static int 291 sysctl_kern_maxlwp(SYSCTLFN_ARGS) 292 { 293 int error, nmaxlwp; 294 struct sysctlnode node; 295 296 nmaxlwp = maxlwp; 297 node = *rnode; 298 node.sysctl_data = &nmaxlwp; 299 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 300 if (error || newp == NULL) 301 return error; 302 303 if (nmaxlwp < 0 || nmaxlwp >= 65536) 304 return EINVAL; 305 if (nmaxlwp > cpu_maxlwp()) 306 return EINVAL; 307 maxlwp = nmaxlwp; 308 309 return 0; 310 } 311 312 static void 313 sysctl_kern_lwp_setup(void) 314 { 315 struct sysctllog *clog = NULL; 316 317 sysctl_createv(&clog, 0, NULL, NULL, 318 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 319 CTLTYPE_INT, "maxlwp", 320 SYSCTL_DESCR("Maximum number of simultaneous threads"), 321 sysctl_kern_maxlwp, 0, NULL, 0, 322 CTL_KERN, CTL_CREATE, CTL_EOL); 323 } 324 325 void 326 lwpinit(void) 327 { 328 329 LIST_INIT(&alllwp); 330 lwpinit_specificdata(); 331 lwp_sys_init(); 332 lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0, 0, 333 "lwppl", NULL, IPL_NONE, NULL, lwp_dtor, NULL); 334 335 maxlwp = cpu_maxlwp(); 336 sysctl_kern_lwp_setup(); 337 } 338 339 void 340 lwp0_init(void) 341 { 342 struct lwp *l = &lwp0; 343 344 KASSERT((void *)uvm_lwp_getuarea(l) != NULL); 345 KASSERT(l->l_lid == proc0.p_nlwpid); 346 347 LIST_INSERT_HEAD(&alllwp, l, l_list); 348 349 callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE); 350 callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l); 351 cv_init(&l->l_sigcv, "sigwait"); 352 cv_init(&l->l_waitcv, "vfork"); 353 354 kauth_cred_hold(proc0.p_cred); 355 l->l_cred = proc0.p_cred; 356 357 kdtrace_thread_ctor(NULL, l); 358 lwp_initspecific(l); 359 360 SYSCALL_TIME_LWP_INIT(l); 361 } 362 363 static void 364 lwp_dtor(void *arg, void *obj) 365 { 366 lwp_t *l = obj; 367 uint64_t where; 368 (void)l; 369 370 /* 371 * Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu() 372 * calls will exit before memory of LWP is returned to the pool, where 373 * KVA of LWP structure might be freed and re-used for other purposes. 374 * Kernel preemption is disabled around mutex_oncpu() and rw_oncpu() 375 * callers, therefore cross-call to all CPUs will do the job. Also, 376 * the value of l->l_cpu must be still valid at this point. 377 */ 378 KASSERT(l->l_cpu != NULL); 379 where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL); 380 xc_wait(where); 381 } 382 383 /* 384 * Set an suspended. 385 * 386 * Must be called with p_lock held, and the LWP locked. Will unlock the 387 * LWP before return. 388 */ 389 int 390 lwp_suspend(struct lwp *curl, struct lwp *t) 391 { 392 int error; 393 394 KASSERT(mutex_owned(t->l_proc->p_lock)); 395 KASSERT(lwp_locked(t, NULL)); 396 397 KASSERT(curl != t || curl->l_stat == LSONPROC); 398 399 /* 400 * If the current LWP has been told to exit, we must not suspend anyone 401 * else or deadlock could occur. We won't return to userspace. 402 */ 403 if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) { 404 lwp_unlock(t); 405 return (EDEADLK); 406 } 407 408 error = 0; 409 410 switch (t->l_stat) { 411 case LSRUN: 412 case LSONPROC: 413 t->l_flag |= LW_WSUSPEND; 414 lwp_need_userret(t); 415 lwp_unlock(t); 416 break; 417 418 case LSSLEEP: 419 t->l_flag |= LW_WSUSPEND; 420 421 /* 422 * Kick the LWP and try to get it to the kernel boundary 423 * so that it will release any locks that it holds. 424 * setrunnable() will release the lock. 425 */ 426 if ((t->l_flag & LW_SINTR) != 0) 427 setrunnable(t); 428 else 429 lwp_unlock(t); 430 break; 431 432 case LSSUSPENDED: 433 lwp_unlock(t); 434 break; 435 436 case LSSTOP: 437 t->l_flag |= LW_WSUSPEND; 438 setrunnable(t); 439 break; 440 441 case LSIDL: 442 case LSZOMB: 443 error = EINTR; /* It's what Solaris does..... */ 444 lwp_unlock(t); 445 break; 446 } 447 448 return (error); 449 } 450 451 /* 452 * Restart a suspended LWP. 453 * 454 * Must be called with p_lock held, and the LWP locked. Will unlock the 455 * LWP before return. 456 */ 457 void 458 lwp_continue(struct lwp *l) 459 { 460 461 KASSERT(mutex_owned(l->l_proc->p_lock)); 462 KASSERT(lwp_locked(l, NULL)); 463 464 /* If rebooting or not suspended, then just bail out. */ 465 if ((l->l_flag & LW_WREBOOT) != 0) { 466 lwp_unlock(l); 467 return; 468 } 469 470 l->l_flag &= ~LW_WSUSPEND; 471 472 if (l->l_stat != LSSUSPENDED) { 473 lwp_unlock(l); 474 return; 475 } 476 477 /* setrunnable() will release the lock. */ 478 setrunnable(l); 479 } 480 481 /* 482 * Restart a stopped LWP. 483 * 484 * Must be called with p_lock held, and the LWP NOT locked. Will unlock the 485 * LWP before return. 486 */ 487 void 488 lwp_unstop(struct lwp *l) 489 { 490 struct proc *p = l->l_proc; 491 492 KASSERT(mutex_owned(proc_lock)); 493 KASSERT(mutex_owned(p->p_lock)); 494 495 lwp_lock(l); 496 497 /* If not stopped, then just bail out. */ 498 if (l->l_stat != LSSTOP) { 499 lwp_unlock(l); 500 return; 501 } 502 503 p->p_stat = SACTIVE; 504 p->p_sflag &= ~PS_STOPPING; 505 506 if (!p->p_waited) 507 p->p_pptr->p_nstopchild--; 508 509 if (l->l_wchan == NULL) { 510 /* setrunnable() will release the lock. */ 511 setrunnable(l); 512 } else if (p->p_xstat && (l->l_flag & LW_SINTR) != 0) { 513 /* setrunnable() so we can receive the signal */ 514 setrunnable(l); 515 } else { 516 l->l_stat = LSSLEEP; 517 p->p_nrlwps++; 518 lwp_unlock(l); 519 } 520 } 521 522 /* 523 * Wait for an LWP within the current process to exit. If 'lid' is 524 * non-zero, we are waiting for a specific LWP. 525 * 526 * Must be called with p->p_lock held. 527 */ 528 int 529 lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting) 530 { 531 const lwpid_t curlid = l->l_lid; 532 proc_t *p = l->l_proc; 533 lwp_t *l2; 534 int error; 535 536 KASSERT(mutex_owned(p->p_lock)); 537 538 p->p_nlwpwait++; 539 l->l_waitingfor = lid; 540 541 for (;;) { 542 int nfound; 543 544 /* 545 * Avoid a race between exit1() and sigexit(): if the 546 * process is dumping core, then we need to bail out: call 547 * into lwp_userret() where we will be suspended until the 548 * deed is done. 549 */ 550 if ((p->p_sflag & PS_WCORE) != 0) { 551 mutex_exit(p->p_lock); 552 lwp_userret(l); 553 KASSERT(false); 554 } 555 556 /* 557 * First off, drain any detached LWP that is waiting to be 558 * reaped. 559 */ 560 while ((l2 = p->p_zomblwp) != NULL) { 561 p->p_zomblwp = NULL; 562 lwp_free(l2, false, false);/* releases proc mutex */ 563 mutex_enter(p->p_lock); 564 } 565 566 /* 567 * Now look for an LWP to collect. If the whole process is 568 * exiting, count detached LWPs as eligible to be collected, 569 * but don't drain them here. 570 */ 571 nfound = 0; 572 error = 0; 573 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 574 /* 575 * If a specific wait and the target is waiting on 576 * us, then avoid deadlock. This also traps LWPs 577 * that try to wait on themselves. 578 * 579 * Note that this does not handle more complicated 580 * cycles, like: t1 -> t2 -> t3 -> t1. The process 581 * can still be killed so it is not a major problem. 582 */ 583 if (l2->l_lid == lid && l2->l_waitingfor == curlid) { 584 error = EDEADLK; 585 break; 586 } 587 if (l2 == l) 588 continue; 589 if ((l2->l_prflag & LPR_DETACHED) != 0) { 590 nfound += exiting; 591 continue; 592 } 593 if (lid != 0) { 594 if (l2->l_lid != lid) 595 continue; 596 /* 597 * Mark this LWP as the first waiter, if there 598 * is no other. 599 */ 600 if (l2->l_waiter == 0) 601 l2->l_waiter = curlid; 602 } else if (l2->l_waiter != 0) { 603 /* 604 * It already has a waiter - so don't 605 * collect it. If the waiter doesn't 606 * grab it we'll get another chance 607 * later. 608 */ 609 nfound++; 610 continue; 611 } 612 nfound++; 613 614 /* No need to lock the LWP in order to see LSZOMB. */ 615 if (l2->l_stat != LSZOMB) 616 continue; 617 618 /* 619 * We're no longer waiting. Reset the "first waiter" 620 * pointer on the target, in case it was us. 621 */ 622 l->l_waitingfor = 0; 623 l2->l_waiter = 0; 624 p->p_nlwpwait--; 625 if (departed) 626 *departed = l2->l_lid; 627 sched_lwp_collect(l2); 628 629 /* lwp_free() releases the proc lock. */ 630 lwp_free(l2, false, false); 631 mutex_enter(p->p_lock); 632 return 0; 633 } 634 635 if (error != 0) 636 break; 637 if (nfound == 0) { 638 error = ESRCH; 639 break; 640 } 641 642 /* 643 * Note: since the lock will be dropped, need to restart on 644 * wakeup to run all LWPs again, e.g. there may be new LWPs. 645 */ 646 if (exiting) { 647 KASSERT(p->p_nlwps > 1); 648 cv_wait(&p->p_lwpcv, p->p_lock); 649 error = EAGAIN; 650 break; 651 } 652 653 /* 654 * If all other LWPs are waiting for exits or suspends 655 * and the supply of zombies and potential zombies is 656 * exhausted, then we are about to deadlock. 657 * 658 * If the process is exiting (and this LWP is not the one 659 * that is coordinating the exit) then bail out now. 660 */ 661 if ((p->p_sflag & PS_WEXIT) != 0 || 662 p->p_nrlwps + p->p_nzlwps - p->p_ndlwps <= p->p_nlwpwait) { 663 error = EDEADLK; 664 break; 665 } 666 667 /* 668 * Sit around and wait for something to happen. We'll be 669 * awoken if any of the conditions examined change: if an 670 * LWP exits, is collected, or is detached. 671 */ 672 if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0) 673 break; 674 } 675 676 /* 677 * We didn't find any LWPs to collect, we may have received a 678 * signal, or some other condition has caused us to bail out. 679 * 680 * If waiting on a specific LWP, clear the waiters marker: some 681 * other LWP may want it. Then, kick all the remaining waiters 682 * so that they can re-check for zombies and for deadlock. 683 */ 684 if (lid != 0) { 685 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 686 if (l2->l_lid == lid) { 687 if (l2->l_waiter == curlid) 688 l2->l_waiter = 0; 689 break; 690 } 691 } 692 } 693 p->p_nlwpwait--; 694 l->l_waitingfor = 0; 695 cv_broadcast(&p->p_lwpcv); 696 697 return error; 698 } 699 700 static lwpid_t 701 lwp_find_free_lid(lwpid_t try_lid, lwp_t * new_lwp, proc_t *p) 702 { 703 #define LID_SCAN (1u << 31) 704 lwp_t *scan, *free_before; 705 lwpid_t nxt_lid; 706 707 /* 708 * We want the first unused lid greater than or equal to 709 * try_lid (modulo 2^31). 710 * (If nothing else ld.elf_so doesn't want lwpid with the top bit set.) 711 * We must not return 0, and avoiding 'LID_SCAN - 1' makes 712 * the outer test easier. 713 * This would be much easier if the list were sorted in 714 * increasing order. 715 * The list is kept sorted in decreasing order. 716 * This code is only used after a process has generated 2^31 lwp. 717 * 718 * Code assumes it can always find an id. 719 */ 720 721 try_lid &= LID_SCAN - 1; 722 if (try_lid <= 1) 723 try_lid = 2; 724 725 free_before = NULL; 726 nxt_lid = LID_SCAN - 1; 727 LIST_FOREACH(scan, &p->p_lwps, l_sibling) { 728 if (scan->l_lid != nxt_lid) { 729 /* There are available lid before this entry */ 730 free_before = scan; 731 if (try_lid > scan->l_lid) 732 break; 733 } 734 if (try_lid == scan->l_lid) { 735 /* The ideal lid is busy, take a higher one */ 736 if (free_before != NULL) { 737 try_lid = free_before->l_lid + 1; 738 break; 739 } 740 /* No higher ones, reuse low numbers */ 741 try_lid = 2; 742 } 743 744 nxt_lid = scan->l_lid - 1; 745 if (LIST_NEXT(scan, l_sibling) == NULL) { 746 /* The value we have is lower than any existing lwp */ 747 LIST_INSERT_AFTER(scan, new_lwp, l_sibling); 748 return try_lid; 749 } 750 } 751 752 LIST_INSERT_BEFORE(free_before, new_lwp, l_sibling); 753 return try_lid; 754 } 755 756 /* 757 * Create a new LWP within process 'p2', using LWP 'l1' as a template. 758 * The new LWP is created in state LSIDL and must be set running, 759 * suspended, or stopped by the caller. 760 */ 761 int 762 lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags, 763 void *stack, size_t stacksize, void (*func)(void *), void *arg, 764 lwp_t **rnewlwpp, int sclass) 765 { 766 struct lwp *l2, *isfree; 767 turnstile_t *ts; 768 lwpid_t lid; 769 770 KASSERT(l1 == curlwp || l1->l_proc == &proc0); 771 772 /* 773 * Enforce limits, excluding the first lwp and kthreads. 774 */ 775 if (p2->p_nlwps != 0 && p2 != &proc0) { 776 uid_t uid = kauth_cred_getuid(l1->l_cred); 777 int count = chglwpcnt(uid, 1); 778 if (__predict_false(count > 779 p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) { 780 if (kauth_authorize_process(l1->l_cred, 781 KAUTH_PROCESS_RLIMIT, p2, 782 KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 783 &p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR)) 784 != 0) { 785 (void)chglwpcnt(uid, -1); 786 return EAGAIN; 787 } 788 } 789 } 790 791 /* 792 * First off, reap any detached LWP waiting to be collected. 793 * We can re-use its LWP structure and turnstile. 794 */ 795 isfree = NULL; 796 if (p2->p_zomblwp != NULL) { 797 mutex_enter(p2->p_lock); 798 if ((isfree = p2->p_zomblwp) != NULL) { 799 p2->p_zomblwp = NULL; 800 lwp_free(isfree, true, false);/* releases proc mutex */ 801 } else 802 mutex_exit(p2->p_lock); 803 } 804 if (isfree == NULL) { 805 l2 = pool_cache_get(lwp_cache, PR_WAITOK); 806 memset(l2, 0, sizeof(*l2)); 807 l2->l_ts = pool_cache_get(turnstile_cache, PR_WAITOK); 808 SLIST_INIT(&l2->l_pi_lenders); 809 } else { 810 l2 = isfree; 811 ts = l2->l_ts; 812 KASSERT(l2->l_inheritedprio == -1); 813 KASSERT(SLIST_EMPTY(&l2->l_pi_lenders)); 814 memset(l2, 0, sizeof(*l2)); 815 l2->l_ts = ts; 816 } 817 818 l2->l_stat = LSIDL; 819 l2->l_proc = p2; 820 l2->l_refcnt = 1; 821 l2->l_class = sclass; 822 823 /* 824 * If vfork(), we want the LWP to run fast and on the same CPU 825 * as its parent, so that it can reuse the VM context and cache 826 * footprint on the local CPU. 827 */ 828 l2->l_kpriority = ((flags & LWP_VFORK) ? true : false); 829 l2->l_kpribase = PRI_KERNEL; 830 l2->l_priority = l1->l_priority; 831 l2->l_inheritedprio = -1; 832 l2->l_flag = 0; 833 l2->l_pflag = LP_MPSAFE; 834 TAILQ_INIT(&l2->l_ld_locks); 835 836 /* 837 * For vfork, borrow parent's lwpctl context if it exists. 838 * This also causes us to return via lwp_userret. 839 */ 840 if (flags & LWP_VFORK && l1->l_lwpctl) { 841 l2->l_lwpctl = l1->l_lwpctl; 842 l2->l_flag |= LW_LWPCTL; 843 } 844 845 /* 846 * If not the first LWP in the process, grab a reference to the 847 * descriptor table. 848 */ 849 l2->l_fd = p2->p_fd; 850 if (p2->p_nlwps != 0) { 851 KASSERT(l1->l_proc == p2); 852 fd_hold(l2); 853 } else { 854 KASSERT(l1->l_proc != p2); 855 } 856 857 if (p2->p_flag & PK_SYSTEM) { 858 /* Mark it as a system LWP. */ 859 l2->l_flag |= LW_SYSTEM; 860 } 861 862 kpreempt_disable(); 863 l2->l_mutex = l1->l_cpu->ci_schedstate.spc_mutex; 864 l2->l_cpu = l1->l_cpu; 865 kpreempt_enable(); 866 867 kdtrace_thread_ctor(NULL, l2); 868 lwp_initspecific(l2); 869 sched_lwp_fork(l1, l2); 870 lwp_update_creds(l2); 871 callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE); 872 callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2); 873 cv_init(&l2->l_sigcv, "sigwait"); 874 cv_init(&l2->l_waitcv, "vfork"); 875 l2->l_syncobj = &sched_syncobj; 876 877 if (rnewlwpp != NULL) 878 *rnewlwpp = l2; 879 880 /* 881 * PCU state needs to be saved before calling uvm_lwp_fork() so that 882 * the MD cpu_lwp_fork() can copy the saved state to the new LWP. 883 */ 884 pcu_save_all(l1); 885 886 uvm_lwp_setuarea(l2, uaddr); 887 uvm_lwp_fork(l1, l2, stack, stacksize, func, 888 (arg != NULL) ? arg : l2); 889 890 if ((flags & LWP_PIDLID) != 0) { 891 lid = proc_alloc_pid(p2); 892 l2->l_pflag |= LP_PIDLID; 893 } else { 894 lid = 0; 895 } 896 897 mutex_enter(p2->p_lock); 898 899 if ((flags & LWP_DETACHED) != 0) { 900 l2->l_prflag = LPR_DETACHED; 901 p2->p_ndlwps++; 902 } else 903 l2->l_prflag = 0; 904 905 l2->l_sigstk = l1->l_sigstk; 906 l2->l_sigmask = l1->l_sigmask; 907 TAILQ_INIT(&l2->l_sigpend.sp_info); 908 sigemptyset(&l2->l_sigpend.sp_set); 909 910 if (__predict_true(lid == 0)) { 911 /* 912 * XXX: l_lid are expected to be unique (for a process) 913 * if LWP_PIDLID is sometimes set this won't be true. 914 * Once 2^31 threads have been allocated we have to 915 * scan to ensure we allocate a unique value. 916 */ 917 lid = ++p2->p_nlwpid; 918 if (__predict_false(lid & LID_SCAN)) { 919 lid = lwp_find_free_lid(lid, l2, p2); 920 p2->p_nlwpid = lid | LID_SCAN; 921 /* l2 as been inserted into p_lwps in order */ 922 goto skip_insert; 923 } 924 p2->p_nlwpid = lid; 925 } 926 LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling); 927 skip_insert: 928 l2->l_lid = lid; 929 p2->p_nlwps++; 930 p2->p_nrlwps++; 931 932 KASSERT(l2->l_affinity == NULL); 933 934 if ((p2->p_flag & PK_SYSTEM) == 0) { 935 /* Inherit the affinity mask. */ 936 if (l1->l_affinity) { 937 /* 938 * Note that we hold the state lock while inheriting 939 * the affinity to avoid race with sched_setaffinity(). 940 */ 941 lwp_lock(l1); 942 if (l1->l_affinity) { 943 kcpuset_use(l1->l_affinity); 944 l2->l_affinity = l1->l_affinity; 945 } 946 lwp_unlock(l1); 947 } 948 lwp_lock(l2); 949 /* Inherit a processor-set */ 950 l2->l_psid = l1->l_psid; 951 /* Look for a CPU to start */ 952 l2->l_cpu = sched_takecpu(l2); 953 lwp_unlock_to(l2, l2->l_cpu->ci_schedstate.spc_mutex); 954 } 955 mutex_exit(p2->p_lock); 956 957 SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0); 958 959 mutex_enter(proc_lock); 960 LIST_INSERT_HEAD(&alllwp, l2, l_list); 961 mutex_exit(proc_lock); 962 963 SYSCALL_TIME_LWP_INIT(l2); 964 965 if (p2->p_emul->e_lwp_fork) 966 (*p2->p_emul->e_lwp_fork)(l1, l2); 967 968 return (0); 969 } 970 971 /* 972 * Called by MD code when a new LWP begins execution. Must be called 973 * with the previous LWP locked (so at splsched), or if there is no 974 * previous LWP, at splsched. 975 */ 976 void 977 lwp_startup(struct lwp *prev, struct lwp *new_lwp) 978 { 979 KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev); 980 981 SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0); 982 983 KASSERT(kpreempt_disabled()); 984 if (prev != NULL) { 985 /* 986 * Normalize the count of the spin-mutexes, it was 987 * increased in mi_switch(). Unmark the state of 988 * context switch - it is finished for previous LWP. 989 */ 990 curcpu()->ci_mtx_count++; 991 membar_exit(); 992 prev->l_ctxswtch = 0; 993 } 994 KPREEMPT_DISABLE(new_lwp); 995 if (__predict_true(new_lwp->l_proc->p_vmspace)) 996 pmap_activate(new_lwp); 997 spl0(); 998 999 /* Note trip through cpu_switchto(). */ 1000 pserialize_switchpoint(); 1001 1002 LOCKDEBUG_BARRIER(NULL, 0); 1003 KPREEMPT_ENABLE(new_lwp); 1004 if ((new_lwp->l_pflag & LP_MPSAFE) == 0) { 1005 KERNEL_LOCK(1, new_lwp); 1006 } 1007 } 1008 1009 /* 1010 * Exit an LWP. 1011 */ 1012 void 1013 lwp_exit(struct lwp *l) 1014 { 1015 struct proc *p = l->l_proc; 1016 struct lwp *l2; 1017 bool current; 1018 1019 current = (l == curlwp); 1020 1021 KASSERT(current || (l->l_stat == LSIDL && l->l_target_cpu == NULL)); 1022 KASSERT(p == curproc); 1023 1024 SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0); 1025 1026 /* 1027 * Verify that we hold no locks other than the kernel lock. 1028 */ 1029 LOCKDEBUG_BARRIER(&kernel_lock, 0); 1030 1031 /* 1032 * If we are the last live LWP in a process, we need to exit the 1033 * entire process. We do so with an exit status of zero, because 1034 * it's a "controlled" exit, and because that's what Solaris does. 1035 * 1036 * We are not quite a zombie yet, but for accounting purposes we 1037 * must increment the count of zombies here. 1038 * 1039 * Note: the last LWP's specificdata will be deleted here. 1040 */ 1041 mutex_enter(p->p_lock); 1042 if (p->p_nlwps - p->p_nzlwps == 1) { 1043 KASSERT(current == true); 1044 KASSERT(p != &proc0); 1045 /* XXXSMP kernel_lock not held */ 1046 exit1(l, 0); 1047 /* NOTREACHED */ 1048 } 1049 p->p_nzlwps++; 1050 mutex_exit(p->p_lock); 1051 1052 if (p->p_emul->e_lwp_exit) 1053 (*p->p_emul->e_lwp_exit)(l); 1054 1055 /* Drop filedesc reference. */ 1056 fd_free(); 1057 1058 /* Delete the specificdata while it's still safe to sleep. */ 1059 lwp_finispecific(l); 1060 1061 /* 1062 * Release our cached credentials. 1063 */ 1064 kauth_cred_free(l->l_cred); 1065 callout_destroy(&l->l_timeout_ch); 1066 1067 /* 1068 * Remove the LWP from the global list. 1069 * Free its LID from the PID namespace if needed. 1070 */ 1071 mutex_enter(proc_lock); 1072 LIST_REMOVE(l, l_list); 1073 if ((l->l_pflag & LP_PIDLID) != 0 && l->l_lid != p->p_pid) { 1074 proc_free_pid(l->l_lid); 1075 } 1076 mutex_exit(proc_lock); 1077 1078 /* 1079 * Get rid of all references to the LWP that others (e.g. procfs) 1080 * may have, and mark the LWP as a zombie. If the LWP is detached, 1081 * mark it waiting for collection in the proc structure. Note that 1082 * before we can do that, we need to free any other dead, deatched 1083 * LWP waiting to meet its maker. 1084 */ 1085 mutex_enter(p->p_lock); 1086 lwp_drainrefs(l); 1087 1088 if ((l->l_prflag & LPR_DETACHED) != 0) { 1089 while ((l2 = p->p_zomblwp) != NULL) { 1090 p->p_zomblwp = NULL; 1091 lwp_free(l2, false, false);/* releases proc mutex */ 1092 mutex_enter(p->p_lock); 1093 l->l_refcnt++; 1094 lwp_drainrefs(l); 1095 } 1096 p->p_zomblwp = l; 1097 } 1098 1099 /* 1100 * If we find a pending signal for the process and we have been 1101 * asked to check for signals, then we lose: arrange to have 1102 * all other LWPs in the process check for signals. 1103 */ 1104 if ((l->l_flag & LW_PENDSIG) != 0 && 1105 firstsig(&p->p_sigpend.sp_set) != 0) { 1106 LIST_FOREACH(l2, &p->p_lwps, l_sibling) { 1107 lwp_lock(l2); 1108 l2->l_flag |= LW_PENDSIG; 1109 lwp_unlock(l2); 1110 } 1111 } 1112 1113 /* 1114 * Release any PCU resources before becoming a zombie. 1115 */ 1116 pcu_discard_all(l); 1117 1118 lwp_lock(l); 1119 l->l_stat = LSZOMB; 1120 if (l->l_name != NULL) { 1121 strcpy(l->l_name, "(zombie)"); 1122 } 1123 lwp_unlock(l); 1124 p->p_nrlwps--; 1125 cv_broadcast(&p->p_lwpcv); 1126 if (l->l_lwpctl != NULL) 1127 l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED; 1128 mutex_exit(p->p_lock); 1129 1130 /* 1131 * We can no longer block. At this point, lwp_free() may already 1132 * be gunning for us. On a multi-CPU system, we may be off p_lwps. 1133 * 1134 * Free MD LWP resources. 1135 */ 1136 cpu_lwp_free(l, 0); 1137 1138 if (current) { 1139 pmap_deactivate(l); 1140 1141 /* 1142 * Release the kernel lock, and switch away into 1143 * oblivion. 1144 */ 1145 #ifdef notyet 1146 /* XXXSMP hold in lwp_userret() */ 1147 KERNEL_UNLOCK_LAST(l); 1148 #else 1149 KERNEL_UNLOCK_ALL(l, NULL); 1150 #endif 1151 lwp_exit_switchaway(l); 1152 } 1153 } 1154 1155 /* 1156 * Free a dead LWP's remaining resources. 1157 * 1158 * XXXLWP limits. 1159 */ 1160 void 1161 lwp_free(struct lwp *l, bool recycle, bool last) 1162 { 1163 struct proc *p = l->l_proc; 1164 struct rusage *ru; 1165 ksiginfoq_t kq; 1166 1167 KASSERT(l != curlwp); 1168 KASSERT(last || mutex_owned(p->p_lock)); 1169 1170 /* 1171 * We use the process credentials instead of the lwp credentials here 1172 * because the lwp credentials maybe cached (just after a setuid call) 1173 * and we don't want pay for syncing, since the lwp is going away 1174 * anyway 1175 */ 1176 if (p != &proc0 && p->p_nlwps != 1) 1177 (void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1); 1178 /* 1179 * If this was not the last LWP in the process, then adjust 1180 * counters and unlock. 1181 */ 1182 if (!last) { 1183 /* 1184 * Add the LWP's run time to the process' base value. 1185 * This needs to co-incide with coming off p_lwps. 1186 */ 1187 bintime_add(&p->p_rtime, &l->l_rtime); 1188 p->p_pctcpu += l->l_pctcpu; 1189 ru = &p->p_stats->p_ru; 1190 ruadd(ru, &l->l_ru); 1191 ru->ru_nvcsw += (l->l_ncsw - l->l_nivcsw); 1192 ru->ru_nivcsw += l->l_nivcsw; 1193 LIST_REMOVE(l, l_sibling); 1194 p->p_nlwps--; 1195 p->p_nzlwps--; 1196 if ((l->l_prflag & LPR_DETACHED) != 0) 1197 p->p_ndlwps--; 1198 1199 /* 1200 * Have any LWPs sleeping in lwp_wait() recheck for 1201 * deadlock. 1202 */ 1203 cv_broadcast(&p->p_lwpcv); 1204 mutex_exit(p->p_lock); 1205 } 1206 1207 #ifdef MULTIPROCESSOR 1208 /* 1209 * In the unlikely event that the LWP is still on the CPU, 1210 * then spin until it has switched away. We need to release 1211 * all locks to avoid deadlock against interrupt handlers on 1212 * the target CPU. 1213 */ 1214 if ((l->l_pflag & LP_RUNNING) != 0 || l->l_cpu->ci_curlwp == l) { 1215 int count; 1216 (void)count; /* XXXgcc */ 1217 KERNEL_UNLOCK_ALL(curlwp, &count); 1218 while ((l->l_pflag & LP_RUNNING) != 0 || 1219 l->l_cpu->ci_curlwp == l) 1220 SPINLOCK_BACKOFF_HOOK; 1221 KERNEL_LOCK(count, curlwp); 1222 } 1223 #endif 1224 1225 /* 1226 * Destroy the LWP's remaining signal information. 1227 */ 1228 ksiginfo_queue_init(&kq); 1229 sigclear(&l->l_sigpend, NULL, &kq); 1230 ksiginfo_queue_drain(&kq); 1231 cv_destroy(&l->l_sigcv); 1232 cv_destroy(&l->l_waitcv); 1233 1234 /* 1235 * Free lwpctl structure and affinity. 1236 */ 1237 if (l->l_lwpctl) { 1238 lwp_ctl_free(l); 1239 } 1240 if (l->l_affinity) { 1241 kcpuset_unuse(l->l_affinity, NULL); 1242 l->l_affinity = NULL; 1243 } 1244 1245 /* 1246 * Free the LWP's turnstile and the LWP structure itself unless the 1247 * caller wants to recycle them. Also, free the scheduler specific 1248 * data. 1249 * 1250 * We can't return turnstile0 to the pool (it didn't come from it), 1251 * so if it comes up just drop it quietly and move on. 1252 * 1253 * We don't recycle the VM resources at this time. 1254 */ 1255 1256 if (!recycle && l->l_ts != &turnstile0) 1257 pool_cache_put(turnstile_cache, l->l_ts); 1258 if (l->l_name != NULL) 1259 kmem_free(l->l_name, MAXCOMLEN); 1260 1261 cpu_lwp_free2(l); 1262 uvm_lwp_exit(l); 1263 1264 KASSERT(SLIST_EMPTY(&l->l_pi_lenders)); 1265 KASSERT(l->l_inheritedprio == -1); 1266 KASSERT(l->l_blcnt == 0); 1267 kdtrace_thread_dtor(NULL, l); 1268 if (!recycle) 1269 pool_cache_put(lwp_cache, l); 1270 } 1271 1272 /* 1273 * Migrate the LWP to the another CPU. Unlocks the LWP. 1274 */ 1275 void 1276 lwp_migrate(lwp_t *l, struct cpu_info *tci) 1277 { 1278 struct schedstate_percpu *tspc; 1279 int lstat = l->l_stat; 1280 1281 KASSERT(lwp_locked(l, NULL)); 1282 KASSERT(tci != NULL); 1283 1284 /* If LWP is still on the CPU, it must be handled like LSONPROC */ 1285 if ((l->l_pflag & LP_RUNNING) != 0) { 1286 lstat = LSONPROC; 1287 } 1288 1289 /* 1290 * The destination CPU could be changed while previous migration 1291 * was not finished. 1292 */ 1293 if (l->l_target_cpu != NULL) { 1294 l->l_target_cpu = tci; 1295 lwp_unlock(l); 1296 return; 1297 } 1298 1299 /* Nothing to do if trying to migrate to the same CPU */ 1300 if (l->l_cpu == tci) { 1301 lwp_unlock(l); 1302 return; 1303 } 1304 1305 KASSERT(l->l_target_cpu == NULL); 1306 tspc = &tci->ci_schedstate; 1307 switch (lstat) { 1308 case LSRUN: 1309 l->l_target_cpu = tci; 1310 break; 1311 case LSIDL: 1312 l->l_cpu = tci; 1313 lwp_unlock_to(l, tspc->spc_mutex); 1314 return; 1315 case LSSLEEP: 1316 l->l_cpu = tci; 1317 break; 1318 case LSSTOP: 1319 case LSSUSPENDED: 1320 l->l_cpu = tci; 1321 if (l->l_wchan == NULL) { 1322 lwp_unlock_to(l, tspc->spc_lwplock); 1323 return; 1324 } 1325 break; 1326 case LSONPROC: 1327 l->l_target_cpu = tci; 1328 spc_lock(l->l_cpu); 1329 cpu_need_resched(l->l_cpu, RESCHED_KPREEMPT); 1330 spc_unlock(l->l_cpu); 1331 break; 1332 } 1333 lwp_unlock(l); 1334 } 1335 1336 /* 1337 * Find the LWP in the process. Arguments may be zero, in such case, 1338 * the calling process and first LWP in the list will be used. 1339 * On success - returns proc locked. 1340 */ 1341 struct lwp * 1342 lwp_find2(pid_t pid, lwpid_t lid) 1343 { 1344 proc_t *p; 1345 lwp_t *l; 1346 1347 /* Find the process. */ 1348 if (pid != 0) { 1349 mutex_enter(proc_lock); 1350 p = proc_find(pid); 1351 if (p == NULL) { 1352 mutex_exit(proc_lock); 1353 return NULL; 1354 } 1355 mutex_enter(p->p_lock); 1356 mutex_exit(proc_lock); 1357 } else { 1358 p = curlwp->l_proc; 1359 mutex_enter(p->p_lock); 1360 } 1361 /* Find the thread. */ 1362 if (lid != 0) { 1363 l = lwp_find(p, lid); 1364 } else { 1365 l = LIST_FIRST(&p->p_lwps); 1366 } 1367 if (l == NULL) { 1368 mutex_exit(p->p_lock); 1369 } 1370 return l; 1371 } 1372 1373 /* 1374 * Look up a live LWP within the specified process. 1375 * 1376 * Must be called with p->p_lock held. 1377 */ 1378 struct lwp * 1379 lwp_find(struct proc *p, lwpid_t id) 1380 { 1381 struct lwp *l; 1382 1383 KASSERT(mutex_owned(p->p_lock)); 1384 1385 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1386 if (l->l_lid == id) 1387 break; 1388 } 1389 1390 /* 1391 * No need to lock - all of these conditions will 1392 * be visible with the process level mutex held. 1393 */ 1394 if (l != NULL && (l->l_stat == LSIDL || l->l_stat == LSZOMB)) 1395 l = NULL; 1396 1397 return l; 1398 } 1399 1400 /* 1401 * Update an LWP's cached credentials to mirror the process' master copy. 1402 * 1403 * This happens early in the syscall path, on user trap, and on LWP 1404 * creation. A long-running LWP can also voluntarily choose to update 1405 * its credentials by calling this routine. This may be called from 1406 * LWP_CACHE_CREDS(), which checks l->l_cred != p->p_cred beforehand. 1407 */ 1408 void 1409 lwp_update_creds(struct lwp *l) 1410 { 1411 kauth_cred_t oc; 1412 struct proc *p; 1413 1414 p = l->l_proc; 1415 oc = l->l_cred; 1416 1417 mutex_enter(p->p_lock); 1418 kauth_cred_hold(p->p_cred); 1419 l->l_cred = p->p_cred; 1420 l->l_prflag &= ~LPR_CRMOD; 1421 mutex_exit(p->p_lock); 1422 if (oc != NULL) 1423 kauth_cred_free(oc); 1424 } 1425 1426 /* 1427 * Verify that an LWP is locked, and optionally verify that the lock matches 1428 * one we specify. 1429 */ 1430 int 1431 lwp_locked(struct lwp *l, kmutex_t *mtx) 1432 { 1433 kmutex_t *cur = l->l_mutex; 1434 1435 return mutex_owned(cur) && (mtx == cur || mtx == NULL); 1436 } 1437 1438 /* 1439 * Lend a new mutex to an LWP. The old mutex must be held. 1440 */ 1441 void 1442 lwp_setlock(struct lwp *l, kmutex_t *mtx) 1443 { 1444 1445 KASSERT(mutex_owned(l->l_mutex)); 1446 1447 membar_exit(); 1448 l->l_mutex = mtx; 1449 } 1450 1451 /* 1452 * Lend a new mutex to an LWP, and release the old mutex. The old mutex 1453 * must be held. 1454 */ 1455 void 1456 lwp_unlock_to(struct lwp *l, kmutex_t *mtx) 1457 { 1458 kmutex_t *old; 1459 1460 KASSERT(lwp_locked(l, NULL)); 1461 1462 old = l->l_mutex; 1463 membar_exit(); 1464 l->l_mutex = mtx; 1465 mutex_spin_exit(old); 1466 } 1467 1468 int 1469 lwp_trylock(struct lwp *l) 1470 { 1471 kmutex_t *old; 1472 1473 for (;;) { 1474 if (!mutex_tryenter(old = l->l_mutex)) 1475 return 0; 1476 if (__predict_true(l->l_mutex == old)) 1477 return 1; 1478 mutex_spin_exit(old); 1479 } 1480 } 1481 1482 void 1483 lwp_unsleep(lwp_t *l, bool cleanup) 1484 { 1485 1486 KASSERT(mutex_owned(l->l_mutex)); 1487 (*l->l_syncobj->sobj_unsleep)(l, cleanup); 1488 } 1489 1490 /* 1491 * Handle exceptions for mi_userret(). Called if a member of LW_USERRET is 1492 * set. 1493 */ 1494 void 1495 lwp_userret(struct lwp *l) 1496 { 1497 struct proc *p; 1498 int sig; 1499 1500 KASSERT(l == curlwp); 1501 KASSERT(l->l_stat == LSONPROC); 1502 p = l->l_proc; 1503 1504 #ifndef __HAVE_FAST_SOFTINTS 1505 /* Run pending soft interrupts. */ 1506 if (l->l_cpu->ci_data.cpu_softints != 0) 1507 softint_overlay(); 1508 #endif 1509 1510 /* 1511 * It is safe to do this read unlocked on a MP system.. 1512 */ 1513 while ((l->l_flag & LW_USERRET) != 0) { 1514 /* 1515 * Process pending signals first, unless the process 1516 * is dumping core or exiting, where we will instead 1517 * enter the LW_WSUSPEND case below. 1518 */ 1519 if ((l->l_flag & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == 1520 LW_PENDSIG) { 1521 mutex_enter(p->p_lock); 1522 while ((sig = issignal(l)) != 0) 1523 postsig(sig); 1524 mutex_exit(p->p_lock); 1525 } 1526 1527 /* 1528 * Core-dump or suspend pending. 1529 * 1530 * In case of core dump, suspend ourselves, so that the kernel 1531 * stack and therefore the userland registers saved in the 1532 * trapframe are around for coredump() to write them out. 1533 * We also need to save any PCU resources that we have so that 1534 * they accessible for coredump(). We issue a wakeup on 1535 * p->p_lwpcv so that sigexit() will write the core file out 1536 * once all other LWPs are suspended. 1537 */ 1538 if ((l->l_flag & LW_WSUSPEND) != 0) { 1539 pcu_save_all(l); 1540 mutex_enter(p->p_lock); 1541 p->p_nrlwps--; 1542 cv_broadcast(&p->p_lwpcv); 1543 lwp_lock(l); 1544 l->l_stat = LSSUSPENDED; 1545 lwp_unlock(l); 1546 mutex_exit(p->p_lock); 1547 lwp_lock(l); 1548 mi_switch(l); 1549 } 1550 1551 /* Process is exiting. */ 1552 if ((l->l_flag & LW_WEXIT) != 0) { 1553 lwp_exit(l); 1554 KASSERT(0); 1555 /* NOTREACHED */ 1556 } 1557 1558 /* update lwpctl processor (for vfork child_return) */ 1559 if (l->l_flag & LW_LWPCTL) { 1560 lwp_lock(l); 1561 KASSERT(kpreempt_disabled()); 1562 l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu); 1563 l->l_lwpctl->lc_pctr++; 1564 l->l_flag &= ~LW_LWPCTL; 1565 lwp_unlock(l); 1566 } 1567 } 1568 } 1569 1570 /* 1571 * Force an LWP to enter the kernel, to take a trip through lwp_userret(). 1572 */ 1573 void 1574 lwp_need_userret(struct lwp *l) 1575 { 1576 KASSERT(lwp_locked(l, NULL)); 1577 1578 /* 1579 * Since the tests in lwp_userret() are done unlocked, make sure 1580 * that the condition will be seen before forcing the LWP to enter 1581 * kernel mode. 1582 */ 1583 membar_producer(); 1584 cpu_signotify(l); 1585 } 1586 1587 /* 1588 * Add one reference to an LWP. This will prevent the LWP from 1589 * exiting, thus keep the lwp structure and PCB around to inspect. 1590 */ 1591 void 1592 lwp_addref(struct lwp *l) 1593 { 1594 1595 KASSERT(mutex_owned(l->l_proc->p_lock)); 1596 KASSERT(l->l_stat != LSZOMB); 1597 KASSERT(l->l_refcnt != 0); 1598 1599 l->l_refcnt++; 1600 } 1601 1602 /* 1603 * Remove one reference to an LWP. If this is the last reference, 1604 * then we must finalize the LWP's death. 1605 */ 1606 void 1607 lwp_delref(struct lwp *l) 1608 { 1609 struct proc *p = l->l_proc; 1610 1611 mutex_enter(p->p_lock); 1612 lwp_delref2(l); 1613 mutex_exit(p->p_lock); 1614 } 1615 1616 /* 1617 * Remove one reference to an LWP. If this is the last reference, 1618 * then we must finalize the LWP's death. The proc mutex is held 1619 * on entry. 1620 */ 1621 void 1622 lwp_delref2(struct lwp *l) 1623 { 1624 struct proc *p = l->l_proc; 1625 1626 KASSERT(mutex_owned(p->p_lock)); 1627 KASSERT(l->l_stat != LSZOMB); 1628 KASSERT(l->l_refcnt > 0); 1629 if (--l->l_refcnt == 0) 1630 cv_broadcast(&p->p_lwpcv); 1631 } 1632 1633 /* 1634 * Drain all references to the current LWP. 1635 */ 1636 void 1637 lwp_drainrefs(struct lwp *l) 1638 { 1639 struct proc *p = l->l_proc; 1640 1641 KASSERT(mutex_owned(p->p_lock)); 1642 KASSERT(l->l_refcnt != 0); 1643 1644 l->l_refcnt--; 1645 while (l->l_refcnt != 0) 1646 cv_wait(&p->p_lwpcv, p->p_lock); 1647 } 1648 1649 /* 1650 * Return true if the specified LWP is 'alive'. Only p->p_lock need 1651 * be held. 1652 */ 1653 bool 1654 lwp_alive(lwp_t *l) 1655 { 1656 1657 KASSERT(mutex_owned(l->l_proc->p_lock)); 1658 1659 switch (l->l_stat) { 1660 case LSSLEEP: 1661 case LSRUN: 1662 case LSONPROC: 1663 case LSSTOP: 1664 case LSSUSPENDED: 1665 return true; 1666 default: 1667 return false; 1668 } 1669 } 1670 1671 /* 1672 * Return first live LWP in the process. 1673 */ 1674 lwp_t * 1675 lwp_find_first(proc_t *p) 1676 { 1677 lwp_t *l; 1678 1679 KASSERT(mutex_owned(p->p_lock)); 1680 1681 LIST_FOREACH(l, &p->p_lwps, l_sibling) { 1682 if (lwp_alive(l)) { 1683 return l; 1684 } 1685 } 1686 1687 return NULL; 1688 } 1689 1690 /* 1691 * Allocate a new lwpctl structure for a user LWP. 1692 */ 1693 int 1694 lwp_ctl_alloc(vaddr_t *uaddr) 1695 { 1696 lcproc_t *lp; 1697 u_int bit, i, offset; 1698 struct uvm_object *uao; 1699 int error; 1700 lcpage_t *lcp; 1701 proc_t *p; 1702 lwp_t *l; 1703 1704 l = curlwp; 1705 p = l->l_proc; 1706 1707 /* don't allow a vforked process to create lwp ctls */ 1708 if (p->p_lflag & PL_PPWAIT) 1709 return EBUSY; 1710 1711 if (l->l_lcpage != NULL) { 1712 lcp = l->l_lcpage; 1713 *uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr; 1714 return 0; 1715 } 1716 1717 /* First time around, allocate header structure for the process. */ 1718 if ((lp = p->p_lwpctl) == NULL) { 1719 lp = kmem_alloc(sizeof(*lp), KM_SLEEP); 1720 mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE); 1721 lp->lp_uao = NULL; 1722 TAILQ_INIT(&lp->lp_pages); 1723 mutex_enter(p->p_lock); 1724 if (p->p_lwpctl == NULL) { 1725 p->p_lwpctl = lp; 1726 mutex_exit(p->p_lock); 1727 } else { 1728 mutex_exit(p->p_lock); 1729 mutex_destroy(&lp->lp_lock); 1730 kmem_free(lp, sizeof(*lp)); 1731 lp = p->p_lwpctl; 1732 } 1733 } 1734 1735 /* 1736 * Set up an anonymous memory region to hold the shared pages. 1737 * Map them into the process' address space. The user vmspace 1738 * gets the first reference on the UAO. 1739 */ 1740 mutex_enter(&lp->lp_lock); 1741 if (lp->lp_uao == NULL) { 1742 lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0); 1743 lp->lp_cur = 0; 1744 lp->lp_max = LWPCTL_UAREA_SZ; 1745 lp->lp_uva = p->p_emul->e_vm_default_addr(p, 1746 (vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ, 1747 p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1748 error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva, 1749 LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW, 1750 UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0)); 1751 if (error != 0) { 1752 uao_detach(lp->lp_uao); 1753 lp->lp_uao = NULL; 1754 mutex_exit(&lp->lp_lock); 1755 return error; 1756 } 1757 } 1758 1759 /* Get a free block and allocate for this LWP. */ 1760 TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) { 1761 if (lcp->lcp_nfree != 0) 1762 break; 1763 } 1764 if (lcp == NULL) { 1765 /* Nothing available - try to set up a free page. */ 1766 if (lp->lp_cur == lp->lp_max) { 1767 mutex_exit(&lp->lp_lock); 1768 return ENOMEM; 1769 } 1770 lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP); 1771 if (lcp == NULL) { 1772 mutex_exit(&lp->lp_lock); 1773 return ENOMEM; 1774 } 1775 /* 1776 * Wire the next page down in kernel space. Since this 1777 * is a new mapping, we must add a reference. 1778 */ 1779 uao = lp->lp_uao; 1780 (*uao->pgops->pgo_reference)(uao); 1781 lcp->lcp_kaddr = vm_map_min(kernel_map); 1782 error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE, 1783 uao, lp->lp_cur, PAGE_SIZE, 1784 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1785 UVM_INH_NONE, UVM_ADV_RANDOM, 0)); 1786 if (error != 0) { 1787 mutex_exit(&lp->lp_lock); 1788 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1789 (*uao->pgops->pgo_detach)(uao); 1790 return error; 1791 } 1792 error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr, 1793 lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0); 1794 if (error != 0) { 1795 mutex_exit(&lp->lp_lock); 1796 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1797 lcp->lcp_kaddr + PAGE_SIZE); 1798 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1799 return error; 1800 } 1801 /* Prepare the page descriptor and link into the list. */ 1802 lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur; 1803 lp->lp_cur += PAGE_SIZE; 1804 lcp->lcp_nfree = LWPCTL_PER_PAGE; 1805 lcp->lcp_rotor = 0; 1806 memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ); 1807 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1808 } 1809 for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) { 1810 if (++i >= LWPCTL_BITMAP_ENTRIES) 1811 i = 0; 1812 } 1813 bit = ffs(lcp->lcp_bitmap[i]) - 1; 1814 lcp->lcp_bitmap[i] ^= (1 << bit); 1815 lcp->lcp_rotor = i; 1816 lcp->lcp_nfree--; 1817 l->l_lcpage = lcp; 1818 offset = (i << 5) + bit; 1819 l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset; 1820 *uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t); 1821 mutex_exit(&lp->lp_lock); 1822 1823 KPREEMPT_DISABLE(l); 1824 l->l_lwpctl->lc_curcpu = (int)curcpu()->ci_data.cpu_index; 1825 KPREEMPT_ENABLE(l); 1826 1827 return 0; 1828 } 1829 1830 /* 1831 * Free an lwpctl structure back to the per-process list. 1832 */ 1833 void 1834 lwp_ctl_free(lwp_t *l) 1835 { 1836 struct proc *p = l->l_proc; 1837 lcproc_t *lp; 1838 lcpage_t *lcp; 1839 u_int map, offset; 1840 1841 /* don't free a lwp context we borrowed for vfork */ 1842 if (p->p_lflag & PL_PPWAIT) { 1843 l->l_lwpctl = NULL; 1844 return; 1845 } 1846 1847 lp = p->p_lwpctl; 1848 KASSERT(lp != NULL); 1849 1850 lcp = l->l_lcpage; 1851 offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr); 1852 KASSERT(offset < LWPCTL_PER_PAGE); 1853 1854 mutex_enter(&lp->lp_lock); 1855 lcp->lcp_nfree++; 1856 map = offset >> 5; 1857 lcp->lcp_bitmap[map] |= (1 << (offset & 31)); 1858 if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0) 1859 lcp->lcp_rotor = map; 1860 if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) { 1861 TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain); 1862 TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain); 1863 } 1864 mutex_exit(&lp->lp_lock); 1865 } 1866 1867 /* 1868 * Process is exiting; tear down lwpctl state. This can only be safely 1869 * called by the last LWP in the process. 1870 */ 1871 void 1872 lwp_ctl_exit(void) 1873 { 1874 lcpage_t *lcp, *next; 1875 lcproc_t *lp; 1876 proc_t *p; 1877 lwp_t *l; 1878 1879 l = curlwp; 1880 l->l_lwpctl = NULL; 1881 l->l_lcpage = NULL; 1882 p = l->l_proc; 1883 lp = p->p_lwpctl; 1884 1885 KASSERT(lp != NULL); 1886 KASSERT(p->p_nlwps == 1); 1887 1888 for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) { 1889 next = TAILQ_NEXT(lcp, lcp_chain); 1890 uvm_unmap(kernel_map, lcp->lcp_kaddr, 1891 lcp->lcp_kaddr + PAGE_SIZE); 1892 kmem_free(lcp, LWPCTL_LCPAGE_SZ); 1893 } 1894 1895 if (lp->lp_uao != NULL) { 1896 uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva, 1897 lp->lp_uva + LWPCTL_UAREA_SZ); 1898 } 1899 1900 mutex_destroy(&lp->lp_lock); 1901 kmem_free(lp, sizeof(*lp)); 1902 p->p_lwpctl = NULL; 1903 } 1904 1905 /* 1906 * Return the current LWP's "preemption counter". Used to detect 1907 * preemption across operations that can tolerate preemption without 1908 * crashing, but which may generate incorrect results if preempted. 1909 */ 1910 uint64_t 1911 lwp_pctr(void) 1912 { 1913 1914 return curlwp->l_ncsw; 1915 } 1916 1917 /* 1918 * Set an LWP's private data pointer. 1919 */ 1920 int 1921 lwp_setprivate(struct lwp *l, void *ptr) 1922 { 1923 int error = 0; 1924 1925 l->l_private = ptr; 1926 #ifdef __HAVE_CPU_LWP_SETPRIVATE 1927 error = cpu_lwp_setprivate(l, ptr); 1928 #endif 1929 return error; 1930 } 1931 1932 #if defined(DDB) 1933 #include <machine/pcb.h> 1934 1935 void 1936 lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...)) 1937 { 1938 lwp_t *l; 1939 1940 LIST_FOREACH(l, &alllwp, l_list) { 1941 uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l); 1942 1943 if (addr < stack || stack + KSTACK_SIZE <= addr) { 1944 continue; 1945 } 1946 (*pr)("%p is %p+%zu, LWP %p's stack\n", 1947 (void *)addr, (void *)stack, 1948 (size_t)(addr - stack), l); 1949 } 1950 } 1951 #endif /* defined(DDB) */ 1952