xref: /netbsd-src/sys/kern/kern_fork.c (revision ead2c0eee3abe6bcf08c63bfc78eb8a93a579b2b)
1 /*	$NetBSD: kern_fork.c,v 1.187 2012/02/02 02:44:06 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.187 2012/02/02 02:44:06 christos Exp $");
71 
72 #include "opt_ktrace.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/filedesc.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 #include <sys/mount.h>
80 #include <sys/proc.h>
81 #include <sys/ras.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vnode.h>
84 #include <sys/file.h>
85 #include <sys/acct.h>
86 #include <sys/ktrace.h>
87 #include <sys/vmmeter.h>
88 #include <sys/sched.h>
89 #include <sys/signalvar.h>
90 #include <sys/kauth.h>
91 #include <sys/atomic.h>
92 #include <sys/syscallargs.h>
93 #include <sys/uidinfo.h>
94 #include <sys/sdt.h>
95 #include <sys/ptrace.h>
96 
97 #include <uvm/uvm_extern.h>
98 
99 /*
100  * DTrace SDT provider definitions
101  */
102 SDT_PROBE_DEFINE(proc,,,create,
103 	    "struct proc *", NULL,	/* new process */
104 	    "struct proc *", NULL,	/* parent process */
105 	    "int", NULL,		/* flags */
106 	    NULL, NULL, NULL, NULL);
107 
108 u_int	nprocs = 1;		/* process 0 */
109 
110 /*
111  * Number of ticks to sleep if fork() would fail due to process hitting
112  * limits. Exported in miliseconds to userland via sysctl.
113  */
114 int	forkfsleep = 0;
115 
116 /*ARGSUSED*/
117 int
118 sys_fork(struct lwp *l, const void *v, register_t *retval)
119 {
120 
121 	return (fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL));
122 }
123 
124 /*
125  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
126  * Address space is not shared, but parent is blocked until child exit.
127  */
128 /*ARGSUSED*/
129 int
130 sys_vfork(struct lwp *l, const void *v, register_t *retval)
131 {
132 
133 	return (fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
134 	    retval, NULL));
135 }
136 
137 /*
138  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
139  * semantics.  Address space is shared, and parent is blocked until child exit.
140  */
141 /*ARGSUSED*/
142 int
143 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
144 {
145 
146 	return (fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
147 	    NULL, NULL, retval, NULL));
148 }
149 
150 /*
151  * Linux-compatible __clone(2) system call.
152  */
153 int
154 sys___clone(struct lwp *l, const struct sys___clone_args *uap, register_t *retval)
155 {
156 	/* {
157 		syscallarg(int) flags;
158 		syscallarg(void *) stack;
159 	} */
160 	int flags, sig;
161 
162 	/*
163 	 * We don't support the CLONE_PID or CLONE_PTRACE flags.
164 	 */
165 	if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
166 		return (EINVAL);
167 
168 	/*
169 	 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
170 	 */
171 	if (SCARG(uap, flags) & CLONE_SIGHAND
172 	    && (SCARG(uap, flags) & CLONE_VM) == 0)
173 		return (EINVAL);
174 
175 	flags = 0;
176 
177 	if (SCARG(uap, flags) & CLONE_VM)
178 		flags |= FORK_SHAREVM;
179 	if (SCARG(uap, flags) & CLONE_FS)
180 		flags |= FORK_SHARECWD;
181 	if (SCARG(uap, flags) & CLONE_FILES)
182 		flags |= FORK_SHAREFILES;
183 	if (SCARG(uap, flags) & CLONE_SIGHAND)
184 		flags |= FORK_SHARESIGS;
185 	if (SCARG(uap, flags) & CLONE_VFORK)
186 		flags |= FORK_PPWAIT;
187 
188 	sig = SCARG(uap, flags) & CLONE_CSIGNAL;
189 	if (sig < 0 || sig >= _NSIG)
190 		return (EINVAL);
191 
192 	/*
193 	 * Note that the Linux API does not provide a portable way of
194 	 * specifying the stack area; the caller must know if the stack
195 	 * grows up or down.  So, we pass a stack size of 0, so that the
196 	 * code that makes this adjustment is a noop.
197 	 */
198 	return (fork1(l, flags, sig, SCARG(uap, stack), 0,
199 	    NULL, NULL, retval, NULL));
200 }
201 
202 /* print the 'table full' message once per 10 seconds */
203 struct timeval fork_tfmrate = { 10, 0 };
204 
205 /*
206  * General fork call.  Note that another LWP in the process may call exec()
207  * or exit() while we are forking.  It's safe to continue here, because
208  * neither operation will complete until all LWPs have exited the process.
209  */
210 int
211 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
212     void (*func)(void *), void *arg, register_t *retval,
213     struct proc **rnewprocp)
214 {
215 	struct proc	*p1, *p2, *parent;
216 	struct plimit   *p1_lim;
217 	uid_t		uid;
218 	struct lwp	*l2;
219 	int		count;
220 	vaddr_t		uaddr;
221 	int		tnprocs;
222 	int		tracefork;
223 	int		error = 0;
224 
225 	p1 = l1->l_proc;
226 	uid = kauth_cred_getuid(l1->l_cred);
227 	tnprocs = atomic_inc_uint_nv(&nprocs);
228 
229 	/*
230 	 * Although process entries are dynamically created, we still keep
231 	 * a global limit on the maximum number we will create.
232 	 */
233 	if (__predict_false(tnprocs >= maxproc))
234 		error = -1;
235 	else
236 		error = kauth_authorize_process(l1->l_cred,
237 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
238 
239 	if (error) {
240 		static struct timeval lasttfm;
241 		atomic_dec_uint(&nprocs);
242 		if (ratecheck(&lasttfm, &fork_tfmrate))
243 			tablefull("proc", "increase kern.maxproc or NPROC");
244 		if (forkfsleep)
245 			kpause("forkmx", false, forkfsleep, NULL);
246 		return (EAGAIN);
247 	}
248 
249 	/*
250 	 * Enforce limits.
251 	 */
252 	count = chgproccnt(uid, 1);
253 	if (kauth_authorize_generic(l1->l_cred, KAUTH_GENERIC_ISSUSER, NULL) !=
254 	    0 && __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
255 		(void)chgproccnt(uid, -1);
256 		atomic_dec_uint(&nprocs);
257 		if (forkfsleep)
258 			kpause("forkulim", false, forkfsleep, NULL);
259 		return (EAGAIN);
260 	}
261 
262 	/*
263 	 * Allocate virtual address space for the U-area now, while it
264 	 * is still easy to abort the fork operation if we're out of
265 	 * kernel virtual address space.
266 	 */
267 	uaddr = uvm_uarea_alloc();
268 	if (__predict_false(uaddr == 0)) {
269 		(void)chgproccnt(uid, -1);
270 		atomic_dec_uint(&nprocs);
271 		return (ENOMEM);
272 	}
273 
274 	/*
275 	 * We are now committed to the fork.  From here on, we may
276 	 * block on resources, but resource allocation may NOT fail.
277 	 */
278 
279 	/* Allocate new proc. */
280 	p2 = proc_alloc();
281 
282 	/*
283 	 * Make a proc table entry for the new process.
284 	 * Start by zeroing the section of proc that is zero-initialized,
285 	 * then copy the section that is copied directly from the parent.
286 	 */
287 	memset(&p2->p_startzero, 0,
288 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
289 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
290 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
291 
292 	CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
293 
294 	LIST_INIT(&p2->p_lwps);
295 	LIST_INIT(&p2->p_sigwaiters);
296 
297 	/*
298 	 * Duplicate sub-structures as needed.
299 	 * Increase reference counts on shared objects.
300 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
301 	 * handling are important in order to keep a consistent behaviour
302 	 * for the child after the fork.  If we are a 32-bit process, the
303 	 * child will be too.
304 	 */
305 	p2->p_flag =
306 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
307 	p2->p_emul = p1->p_emul;
308 	p2->p_execsw = p1->p_execsw;
309 
310 	if (flags & FORK_SYSTEM) {
311 		/*
312 		 * Mark it as a system process.  Set P_NOCLDWAIT so that
313 		 * children are reparented to init(8) when they exit.
314 		 * init(8) can easily wait them out for us.
315 		 */
316 		p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
317 	}
318 
319 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
320 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
321 	rw_init(&p2->p_reflock);
322 	cv_init(&p2->p_waitcv, "wait");
323 	cv_init(&p2->p_lwpcv, "lwpwait");
324 
325 	/*
326 	 * Share a lock between the processes if they are to share signal
327 	 * state: we must synchronize access to it.
328 	 */
329 	if (flags & FORK_SHARESIGS) {
330 		p2->p_lock = p1->p_lock;
331 		mutex_obj_hold(p1->p_lock);
332 	} else
333 		p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
334 
335 	kauth_proc_fork(p1, p2);
336 
337 	p2->p_raslist = NULL;
338 #if defined(__HAVE_RAS)
339 	ras_fork(p1, p2);
340 #endif
341 
342 	/* bump references to the text vnode (for procfs) */
343 	p2->p_textvp = p1->p_textvp;
344 	if (p2->p_textvp)
345 		vref(p2->p_textvp);
346 
347 	if (flags & FORK_SHAREFILES)
348 		fd_share(p2);
349 	else if (flags & FORK_CLEANFILES)
350 		p2->p_fd = fd_init(NULL);
351 	else
352 		p2->p_fd = fd_copy();
353 
354 	/* XXX racy */
355 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
356 
357 	if (flags & FORK_SHARECWD)
358 		cwdshare(p2);
359 	else
360 		p2->p_cwdi = cwdinit();
361 
362 	/*
363 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
364 	 * we just need increase pl_refcnt.
365 	 */
366 	p1_lim = p1->p_limit;
367 	if (!p1_lim->pl_writeable) {
368 		lim_addref(p1_lim);
369 		p2->p_limit = p1_lim;
370 	} else {
371 		p2->p_limit = lim_copy(p1_lim);
372 	}
373 
374 	p2->p_lflag = ((flags & FORK_PPWAIT) ? PL_PPWAIT : 0);
375 	p2->p_sflag = 0;
376 	p2->p_slflag = 0;
377 	parent = (flags & FORK_NOWAIT) ? initproc : p1;
378 	p2->p_pptr = parent;
379 	p2->p_ppid = parent->p_pid;
380 	LIST_INIT(&p2->p_children);
381 
382 	p2->p_aio = NULL;
383 
384 #ifdef KTRACE
385 	/*
386 	 * Copy traceflag and tracefile if enabled.
387 	 * If not inherited, these were zeroed above.
388 	 */
389 	if (p1->p_traceflag & KTRFAC_INHERIT) {
390 		mutex_enter(&ktrace_lock);
391 		p2->p_traceflag = p1->p_traceflag;
392 		if ((p2->p_tracep = p1->p_tracep) != NULL)
393 			ktradref(p2);
394 		mutex_exit(&ktrace_lock);
395 	}
396 #endif
397 
398 	/*
399 	 * Create signal actions for the child process.
400 	 */
401 	p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
402 	mutex_enter(p1->p_lock);
403 	p2->p_sflag |=
404 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
405 	sched_proc_fork(p1, p2);
406 	mutex_exit(p1->p_lock);
407 
408 	p2->p_stflag = p1->p_stflag;
409 
410 	/*
411 	 * p_stats.
412 	 * Copy parts of p_stats, and zero out the rest.
413 	 */
414 	p2->p_stats = pstatscopy(p1->p_stats);
415 
416 	/*
417 	 * Set up the new process address space.
418 	 */
419 	uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
420 
421 	/*
422 	 * Finish creating the child process.
423 	 * It will return through a different path later.
424 	 */
425 	lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
426 	    stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
427 	    l1->l_class);
428 
429 	/*
430 	 * Inherit l_private from the parent.
431 	 * Note that we cannot use lwp_setprivate() here since that
432 	 * also sets the CPU TLS register, which is incorrect if the
433 	 * process has changed that without letting the kernel know.
434 	 */
435 	l2->l_private = l1->l_private;
436 
437 	/*
438 	 * If emulation has a process fork hook, call it now.
439 	 */
440 	if (p2->p_emul->e_proc_fork)
441 		(*p2->p_emul->e_proc_fork)(p2, l1, flags);
442 
443 	/*
444 	 * ...and finally, any other random fork hooks that subsystems
445 	 * might have registered.
446 	 */
447 	doforkhooks(p2, p1);
448 
449 	SDT_PROBE(proc,,,create, p2, p1, flags, 0, 0);
450 
451 	/*
452 	 * It's now safe for the scheduler and other processes to see the
453 	 * child process.
454 	 */
455 	mutex_enter(proc_lock);
456 
457 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
458 		p2->p_lflag |= PL_CONTROLT;
459 
460 	LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
461 	p2->p_exitsig = exitsig;		/* signal for parent on exit */
462 
463 	/*
464 	 * We don't want to tracefork vfork()ed processes because they
465 	 * will not receive the SIGTRAP until it is too late.
466 	 */
467 	tracefork = (p1->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
468 	    (PSL_TRACEFORK|PSL_TRACED) && (flags && FORK_PPWAIT) == 0;
469 	if (tracefork) {
470 		p2->p_slflag |= PSL_TRACED;
471 		p2->p_opptr = p2->p_pptr;
472 		if (p2->p_pptr != p1->p_pptr) {
473 			struct proc *parent1 = p2->p_pptr;
474 
475 			if (parent1->p_lock < p2->p_lock) {
476 				if (!mutex_tryenter(parent1->p_lock)) {
477 					mutex_exit(p2->p_lock);
478 					mutex_enter(parent1->p_lock);
479 				}
480 			} else if (parent1->p_lock > p2->p_lock) {
481 				mutex_enter(parent1->p_lock);
482 			}
483 			parent1->p_slflag |= PSL_CHTRACED;
484 			proc_reparent(p2, p1->p_pptr);
485 			if (parent1->p_lock != p2->p_lock)
486 				mutex_exit(parent1->p_lock);
487 		}
488 
489 		/*
490 		 * Set ptrace status.
491 		 */
492 		p1->p_fpid = p2->p_pid;
493 		p2->p_fpid = p1->p_pid;
494 	}
495 
496 	LIST_INSERT_AFTER(p1, p2, p_pglist);
497 	LIST_INSERT_HEAD(&allproc, p2, p_list);
498 
499 	p2->p_trace_enabled = trace_is_enabled(p2);
500 #ifdef __HAVE_SYSCALL_INTERN
501 	(*p2->p_emul->e_syscall_intern)(p2);
502 #endif
503 
504 	/*
505 	 * Update stats now that we know the fork was successful.
506 	 */
507 	uvmexp.forks++;
508 	if (flags & FORK_PPWAIT)
509 		uvmexp.forks_ppwait++;
510 	if (flags & FORK_SHAREVM)
511 		uvmexp.forks_sharevm++;
512 
513 	/*
514 	 * Pass a pointer to the new process to the caller.
515 	 */
516 	if (rnewprocp != NULL)
517 		*rnewprocp = p2;
518 
519 	if (ktrpoint(KTR_EMUL))
520 		p2->p_traceflag |= KTRFAC_TRC_EMUL;
521 
522 	/*
523 	 * Notify any interested parties about the new process.
524 	 */
525 	if (!SLIST_EMPTY(&p1->p_klist)) {
526 		mutex_exit(proc_lock);
527 		KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
528 		mutex_enter(proc_lock);
529 	}
530 
531 	/*
532 	 * Make child runnable, set start time, and add to run queue except
533 	 * if the parent requested the child to start in SSTOP state.
534 	 */
535 	mutex_enter(p2->p_lock);
536 
537 	/*
538 	 * Start profiling.
539 	 */
540 	if ((p2->p_stflag & PST_PROFIL) != 0) {
541 		mutex_spin_enter(&p2->p_stmutex);
542 		startprofclock(p2);
543 		mutex_spin_exit(&p2->p_stmutex);
544 	}
545 
546 	getmicrotime(&p2->p_stats->p_start);
547 	p2->p_acflag = AFORK;
548 	lwp_lock(l2);
549 	KASSERT(p2->p_nrlwps == 1);
550 	if (p2->p_sflag & PS_STOPFORK) {
551 		struct schedstate_percpu *spc = &l2->l_cpu->ci_schedstate;
552 		p2->p_nrlwps = 0;
553 		p2->p_stat = SSTOP;
554 		p2->p_waited = 0;
555 		p1->p_nstopchild++;
556 		l2->l_stat = LSSTOP;
557 		KASSERT(l2->l_wchan == NULL);
558 		lwp_unlock_to(l2, spc->spc_lwplock);
559 	} else {
560 		p2->p_nrlwps = 1;
561 		p2->p_stat = SACTIVE;
562 		l2->l_stat = LSRUN;
563 		sched_enqueue(l2, false);
564 		lwp_unlock(l2);
565 	}
566 	mutex_exit(p2->p_lock);
567 
568 	/*
569 	 * Preserve synchronization semantics of vfork.  If waiting for
570 	 * child to exec or exit, set PL_PPWAIT on child, and sleep on our
571 	 * proc (in case of exit).
572 	 */
573 	while (p2->p_lflag & PL_PPWAIT)
574 		cv_wait(&p1->p_waitcv, proc_lock);
575 
576         /*
577          * Let the parent know that we are tracing its child.
578          */
579 	if (tracefork) {
580 		ksiginfo_t ksi;
581                 KSI_INIT_EMPTY(&ksi);
582                 ksi.ksi_signo = SIGTRAP;
583                 ksi.ksi_lid = l1->l_lid;
584                 kpsignal(p1, &ksi, NULL);
585 	}
586 
587 	mutex_exit(proc_lock);
588 
589 	/*
590 	 * Return child pid to parent process,
591 	 * marking us as parent via retval[1].
592 	 */
593 	if (retval != NULL) {
594 		retval[0] = p2->p_pid;
595 		retval[1] = 0;
596 	}
597 
598 	return (0);
599 }
600