1 /* $NetBSD: kern_fork.c,v 1.160 2008/03/23 17:40:25 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1982, 1986, 1989, 1991, 1993 42 * The Regents of the University of California. All rights reserved. 43 * (c) UNIX System Laboratories, Inc. 44 * All or some portions of this file are derived from material licensed 45 * to the University of California by American Telephone and Telegraph 46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 47 * the permission of UNIX System Laboratories, Inc. 48 * 49 * Redistribution and use in source and binary forms, with or without 50 * modification, are permitted provided that the following conditions 51 * are met: 52 * 1. Redistributions of source code must retain the above copyright 53 * notice, this list of conditions and the following disclaimer. 54 * 2. Redistributions in binary form must reproduce the above copyright 55 * notice, this list of conditions and the following disclaimer in the 56 * documentation and/or other materials provided with the distribution. 57 * 3. Neither the name of the University nor the names of its contributors 58 * may be used to endorse or promote products derived from this software 59 * without specific prior written permission. 60 * 61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 71 * SUCH DAMAGE. 72 * 73 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95 74 */ 75 76 #include <sys/cdefs.h> 77 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.160 2008/03/23 17:40:25 ad Exp $"); 78 79 #include "opt_ktrace.h" 80 #include "opt_multiprocessor.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/filedesc.h> 85 #include <sys/kernel.h> 86 #include <sys/malloc.h> 87 #include <sys/pool.h> 88 #include <sys/mount.h> 89 #include <sys/proc.h> 90 #include <sys/ras.h> 91 #include <sys/resourcevar.h> 92 #include <sys/vnode.h> 93 #include <sys/file.h> 94 #include <sys/acct.h> 95 #include <sys/ktrace.h> 96 #include <sys/vmmeter.h> 97 #include <sys/sched.h> 98 #include <sys/signalvar.h> 99 #include <sys/kauth.h> 100 #include <sys/atomic.h> 101 #include <sys/syscallargs.h> 102 103 #include <uvm/uvm_extern.h> 104 105 u_int nprocs = 1; /* process 0 */ 106 107 /* 108 * Number of ticks to sleep if fork() would fail due to process hitting 109 * limits. Exported in miliseconds to userland via sysctl. 110 */ 111 int forkfsleep = 0; 112 113 /*ARGSUSED*/ 114 int 115 sys_fork(struct lwp *l, const void *v, register_t *retval) 116 { 117 118 return (fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL)); 119 } 120 121 /* 122 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM). 123 * Address space is not shared, but parent is blocked until child exit. 124 */ 125 /*ARGSUSED*/ 126 int 127 sys_vfork(struct lwp *l, const void *v, register_t *retval) 128 { 129 130 return (fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL, 131 retval, NULL)); 132 } 133 134 /* 135 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2) 136 * semantics. Address space is shared, and parent is blocked until child exit. 137 */ 138 /*ARGSUSED*/ 139 int 140 sys___vfork14(struct lwp *l, const void *v, register_t *retval) 141 { 142 143 return (fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0, 144 NULL, NULL, retval, NULL)); 145 } 146 147 /* 148 * Linux-compatible __clone(2) system call. 149 */ 150 int 151 sys___clone(struct lwp *l, const struct sys___clone_args *uap, register_t *retval) 152 { 153 /* { 154 syscallarg(int) flags; 155 syscallarg(void *) stack; 156 } */ 157 int flags, sig; 158 159 /* 160 * We don't support the CLONE_PID or CLONE_PTRACE flags. 161 */ 162 if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE)) 163 return (EINVAL); 164 165 /* 166 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same. 167 */ 168 if (SCARG(uap, flags) & CLONE_SIGHAND 169 && (SCARG(uap, flags) & CLONE_VM) == 0) 170 return (EINVAL); 171 172 flags = 0; 173 174 if (SCARG(uap, flags) & CLONE_VM) 175 flags |= FORK_SHAREVM; 176 if (SCARG(uap, flags) & CLONE_FS) 177 flags |= FORK_SHARECWD; 178 if (SCARG(uap, flags) & CLONE_FILES) 179 flags |= FORK_SHAREFILES; 180 if (SCARG(uap, flags) & CLONE_SIGHAND) 181 flags |= FORK_SHARESIGS; 182 if (SCARG(uap, flags) & CLONE_VFORK) 183 flags |= FORK_PPWAIT; 184 185 sig = SCARG(uap, flags) & CLONE_CSIGNAL; 186 if (sig < 0 || sig >= _NSIG) 187 return (EINVAL); 188 189 /* 190 * Note that the Linux API does not provide a portable way of 191 * specifying the stack area; the caller must know if the stack 192 * grows up or down. So, we pass a stack size of 0, so that the 193 * code that makes this adjustment is a noop. 194 */ 195 return (fork1(l, flags, sig, SCARG(uap, stack), 0, 196 NULL, NULL, retval, NULL)); 197 } 198 199 /* print the 'table full' message once per 10 seconds */ 200 struct timeval fork_tfmrate = { 10, 0 }; 201 202 /* 203 * General fork call. Note that another LWP in the process may call exec() 204 * or exit() while we are forking. It's safe to continue here, because 205 * neither operation will complete until all LWPs have exited the process. 206 */ 207 int 208 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize, 209 void (*func)(void *), void *arg, register_t *retval, 210 struct proc **rnewprocp) 211 { 212 struct proc *p1, *p2, *parent; 213 struct plimit *p1_lim; 214 uid_t uid; 215 struct lwp *l2; 216 int count; 217 vaddr_t uaddr; 218 bool inmem; 219 int tmp; 220 int tnprocs; 221 int error = 0; 222 223 p1 = l1->l_proc; 224 mutex_enter(&p1->p_mutex); 225 uid = kauth_cred_getuid(p1->p_cred); 226 mutex_exit(&p1->p_mutex); 227 tnprocs = atomic_inc_uint_nv(&nprocs); 228 229 /* 230 * Although process entries are dynamically created, we still keep 231 * a global limit on the maximum number we will create. 232 */ 233 if (__predict_false(tnprocs >= maxproc)) 234 error = -1; 235 else 236 error = kauth_authorize_process(l1->l_cred, 237 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 238 239 if (error) { 240 static struct timeval lasttfm; 241 atomic_dec_uint(&nprocs); 242 if (ratecheck(&lasttfm, &fork_tfmrate)) 243 tablefull("proc", "increase kern.maxproc or NPROC"); 244 if (forkfsleep) 245 (void)tsleep(&nprocs, PUSER, "forkmx", forkfsleep); 246 return (EAGAIN); 247 } 248 249 /* 250 * Enforce limits. 251 */ 252 count = chgproccnt(uid, 1); 253 if (uid != 0 && 254 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 255 (void)chgproccnt(uid, -1); 256 atomic_dec_uint(&nprocs); 257 if (forkfsleep) 258 (void)tsleep(&nprocs, PUSER, "forkulim", forkfsleep); 259 return (EAGAIN); 260 } 261 262 /* 263 * Allocate virtual address space for the U-area now, while it 264 * is still easy to abort the fork operation if we're out of 265 * kernel virtual address space. The actual U-area pages will 266 * be allocated and wired in uvm_fork() if needed. 267 */ 268 269 inmem = uvm_uarea_alloc(&uaddr); 270 if (__predict_false(uaddr == 0)) { 271 (void)chgproccnt(uid, -1); 272 atomic_dec_uint(&nprocs); 273 return (ENOMEM); 274 } 275 276 /* 277 * We are now committed to the fork. From here on, we may 278 * block on resources, but resource allocation may NOT fail. 279 */ 280 281 /* Allocate new proc. */ 282 p2 = proc_alloc(); 283 284 /* 285 * Make a proc table entry for the new process. 286 * Start by zeroing the section of proc that is zero-initialized, 287 * then copy the section that is copied directly from the parent. 288 */ 289 memset(&p2->p_startzero, 0, 290 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 291 memcpy(&p2->p_startcopy, &p1->p_startcopy, 292 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 293 294 CIRCLEQ_INIT(&p2->p_sigpend.sp_info); 295 296 LIST_INIT(&p2->p_lwps); 297 LIST_INIT(&p2->p_sigwaiters); 298 299 /* 300 * Duplicate sub-structures as needed. 301 * Increase reference counts on shared objects. 302 * The p_stats and p_sigacts substructs are set in uvm_fork(). 303 * Inherit flags we want to keep. The flags related to SIGCHLD 304 * handling are important in order to keep a consistent behaviour 305 * for the child after the fork. 306 */ 307 p2->p_flag = p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN); 308 p2->p_emul = p1->p_emul; 309 p2->p_execsw = p1->p_execsw; 310 311 if (flags & FORK_SYSTEM) { 312 /* 313 * Mark it as a system process. Set P_NOCLDWAIT so that 314 * children are reparented to init(8) when they exit. 315 * init(8) can easily wait them out for us. 316 */ 317 p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT); 318 } 319 320 /* XXX p_smutex can be IPL_VM except for audio drivers */ 321 mutex_init(&p2->p_smutex, MUTEX_DEFAULT, IPL_SCHED); 322 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 323 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 324 mutex_init(&p2->p_mutex, MUTEX_DEFAULT, IPL_NONE); 325 rw_init(&p2->p_reflock); 326 cv_init(&p2->p_waitcv, "wait"); 327 cv_init(&p2->p_lwpcv, "lwpwait"); 328 329 kauth_proc_fork(p1, p2); 330 331 p2->p_raslist = NULL; 332 #if defined(__HAVE_RAS) 333 ras_fork(p1, p2); 334 #endif 335 336 /* bump references to the text vnode (for procfs) */ 337 p2->p_textvp = p1->p_textvp; 338 if (p2->p_textvp) 339 VREF(p2->p_textvp); 340 341 if (flags & FORK_SHAREFILES) 342 fd_share(p2); 343 else if (flags & FORK_CLEANFILES) 344 p2->p_fd = fd_init(NULL); 345 else 346 p2->p_fd = fd_copy(); 347 348 if (flags & FORK_SHARECWD) 349 cwdshare(p2); 350 else 351 p2->p_cwdi = cwdinit(); 352 353 /* 354 * p_limit (rlimit stuff) is usually copy-on-write, so we just need 355 * to bump pl_refcnt. 356 * However in some cases (see compat irix, and plausibly from clone) 357 * the parent and child share limits - in which case nothing else 358 * must have a copy of the limits (PL_SHAREMOD is set). 359 */ 360 if (__predict_false(flags & FORK_SHARELIMIT)) 361 lim_privatise(p1, 1); 362 p1_lim = p1->p_limit; 363 if (p1_lim->pl_flags & PL_WRITEABLE && !(flags & FORK_SHARELIMIT)) 364 p2->p_limit = lim_copy(p1_lim); 365 else { 366 lim_addref(p1_lim); 367 p2->p_limit = p1_lim; 368 } 369 370 p2->p_sflag = ((flags & FORK_PPWAIT) ? PS_PPWAIT : 0); 371 p2->p_lflag = 0; 372 p2->p_slflag = 0; 373 parent = (flags & FORK_NOWAIT) ? initproc : p1; 374 p2->p_pptr = parent; 375 LIST_INIT(&p2->p_children); 376 377 p2->p_aio = NULL; 378 379 #ifdef KTRACE 380 /* 381 * Copy traceflag and tracefile if enabled. 382 * If not inherited, these were zeroed above. 383 */ 384 if (p1->p_traceflag & KTRFAC_INHERIT) { 385 mutex_enter(&ktrace_lock); 386 p2->p_traceflag = p1->p_traceflag; 387 if ((p2->p_tracep = p1->p_tracep) != NULL) 388 ktradref(p2); 389 mutex_exit(&ktrace_lock); 390 } 391 #endif 392 393 /* 394 * Create signal actions for the child process. 395 */ 396 p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS); 397 mutex_enter(&p1->p_smutex); 398 p2->p_sflag |= 399 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 400 sched_proc_fork(p1, p2); 401 mutex_exit(&p1->p_smutex); 402 403 p2->p_stflag = p1->p_stflag; 404 405 /* 406 * p_stats. 407 * Copy parts of p_stats, and zero out the rest. 408 */ 409 p2->p_stats = pstatscopy(p1->p_stats); 410 411 /* 412 * If emulation has process fork hook, call it now. 413 */ 414 if (p2->p_emul->e_proc_fork) 415 (*p2->p_emul->e_proc_fork)(p2, p1, flags); 416 417 /* 418 * ...and finally, any other random fork hooks that subsystems 419 * might have registered. 420 */ 421 doforkhooks(p2, p1); 422 423 /* 424 * This begins the section where we must prevent the parent 425 * from being swapped. 426 */ 427 uvm_lwp_hold(l1); 428 uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false); 429 430 /* 431 * Finish creating the child process. 432 * It will return through a different path later. 433 */ 434 lwp_create(l1, p2, uaddr, inmem, 0, stack, stacksize, 435 (func != NULL) ? func : child_return, arg, &l2, 436 l1->l_class); 437 438 /* 439 * It's now safe for the scheduler and other processes to see the 440 * child process. 441 */ 442 mutex_enter(&proclist_lock); 443 444 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 445 p2->p_lflag |= PL_CONTROLT; 446 447 LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling); 448 p2->p_exitsig = exitsig; /* signal for parent on exit */ 449 450 mutex_enter(&proclist_mutex); 451 LIST_INSERT_AFTER(p1, p2, p_pglist); 452 mutex_exit(&proclist_mutex); 453 LIST_INSERT_HEAD(&allproc, p2, p_list); 454 455 mutex_exit(&proclist_lock); 456 457 p2->p_trace_enabled = trace_is_enabled(p2); 458 #ifdef __HAVE_SYSCALL_INTERN 459 (*p2->p_emul->e_syscall_intern)(p2); 460 #endif 461 462 /* 463 * Now can be swapped. 464 */ 465 uvm_lwp_rele(l1); 466 467 /* 468 * Notify any interested parties about the new process. 469 */ 470 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid); 471 472 /* 473 * Update stats now that we know the fork was successful. 474 */ 475 uvmexp.forks++; 476 if (flags & FORK_PPWAIT) 477 uvmexp.forks_ppwait++; 478 if (flags & FORK_SHAREVM) 479 uvmexp.forks_sharevm++; 480 481 /* 482 * Pass a pointer to the new process to the caller. 483 */ 484 if (rnewprocp != NULL) 485 *rnewprocp = p2; 486 487 if (ktrpoint(KTR_EMUL)) 488 p2->p_traceflag |= KTRFAC_TRC_EMUL; 489 490 /* 491 * Make child runnable, set start time, and add to run queue except 492 * if the parent requested the child to start in SSTOP state. 493 */ 494 tmp = (p2->p_userret != NULL ? LW_WUSERRET : 0); 495 mutex_enter(&proclist_mutex); 496 mutex_enter(&p2->p_smutex); 497 498 getmicrotime(&p2->p_stats->p_start); 499 p2->p_acflag = AFORK; 500 if (p2->p_sflag & PS_STOPFORK) { 501 lwp_lock(l2); 502 p2->p_nrlwps = 0; 503 p2->p_stat = SSTOP; 504 p2->p_waited = 0; 505 p1->p_nstopchild++; 506 l2->l_stat = LSSTOP; 507 l2->l_flag |= tmp; 508 lwp_unlock(l2); 509 } else { 510 p2->p_nrlwps = 1; 511 p2->p_stat = SACTIVE; 512 lwp_lock(l2); 513 l2->l_stat = LSRUN; 514 l2->l_flag |= tmp; 515 sched_enqueue(l2, false); 516 lwp_unlock(l2); 517 } 518 519 mutex_exit(&proclist_mutex); 520 521 /* 522 * Start profiling. 523 */ 524 if ((p2->p_stflag & PST_PROFIL) != 0) { 525 mutex_spin_enter(&p2->p_stmutex); 526 startprofclock(p2); 527 mutex_spin_exit(&p2->p_stmutex); 528 } 529 530 /* 531 * Preserve synchronization semantics of vfork. If waiting for 532 * child to exec or exit, set PS_PPWAIT on child, and sleep on our 533 * proc (in case of exit). 534 */ 535 if (flags & FORK_PPWAIT) 536 while (p2->p_sflag & PS_PPWAIT) 537 cv_wait(&p1->p_waitcv, &p2->p_smutex); 538 539 mutex_exit(&p2->p_smutex); 540 541 /* 542 * Return child pid to parent process, 543 * marking us as parent via retval[1]. 544 */ 545 if (retval != NULL) { 546 retval[0] = p2->p_pid; 547 retval[1] = 0; 548 } 549 550 return (0); 551 } 552