xref: /netbsd-src/sys/kern/kern_fork.c (revision 5bbd2a12505d72a8177929a37b5cee489d0a1cfd)
1 /*	$NetBSD: kern_fork.c,v 1.191 2012/07/27 20:52:49 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  * (c) UNIX System Laboratories, Inc.
37  * All or some portions of this file are derived from material licensed
38  * to the University of California by American Telephone and Telegraph
39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40  * the permission of UNIX System Laboratories, Inc.
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. Neither the name of the University nor the names of its contributors
51  *    may be used to endorse or promote products derived from this software
52  *    without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  *
66  *	@(#)kern_fork.c	8.8 (Berkeley) 2/14/95
67  */
68 
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.191 2012/07/27 20:52:49 christos Exp $");
71 
72 #include "opt_ktrace.h"
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/filedesc.h>
77 #include <sys/kernel.h>
78 #include <sys/pool.h>
79 #include <sys/mount.h>
80 #include <sys/proc.h>
81 #include <sys/ras.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vnode.h>
84 #include <sys/file.h>
85 #include <sys/acct.h>
86 #include <sys/ktrace.h>
87 #include <sys/sched.h>
88 #include <sys/signalvar.h>
89 #include <sys/kauth.h>
90 #include <sys/atomic.h>
91 #include <sys/syscallargs.h>
92 #include <sys/uidinfo.h>
93 #include <sys/sdt.h>
94 #include <sys/ptrace.h>
95 
96 #include <uvm/uvm_extern.h>
97 
98 /*
99  * DTrace SDT provider definitions
100  */
101 SDT_PROBE_DEFINE(proc,,,create,
102 	    "struct proc *", NULL,	/* new process */
103 	    "struct proc *", NULL,	/* parent process */
104 	    "int", NULL,		/* flags */
105 	    NULL, NULL, NULL, NULL);
106 
107 u_int	nprocs __cacheline_aligned = 1;		/* process 0 */
108 
109 /*
110  * Number of ticks to sleep if fork() would fail due to process hitting
111  * limits. Exported in miliseconds to userland via sysctl.
112  */
113 int	forkfsleep = 0;
114 
115 int
116 sys_fork(struct lwp *l, const void *v, register_t *retval)
117 {
118 
119 	return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval, NULL);
120 }
121 
122 /*
123  * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM).
124  * Address space is not shared, but parent is blocked until child exit.
125  */
126 int
127 sys_vfork(struct lwp *l, const void *v, register_t *retval)
128 {
129 
130 	return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL,
131 	    retval, NULL);
132 }
133 
134 /*
135  * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2)
136  * semantics.  Address space is shared, and parent is blocked until child exit.
137  */
138 int
139 sys___vfork14(struct lwp *l, const void *v, register_t *retval)
140 {
141 
142 	return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0,
143 	    NULL, NULL, retval, NULL);
144 }
145 
146 /*
147  * Linux-compatible __clone(2) system call.
148  */
149 int
150 sys___clone(struct lwp *l, const struct sys___clone_args *uap,
151     register_t *retval)
152 {
153 	/* {
154 		syscallarg(int) flags;
155 		syscallarg(void *) stack;
156 	} */
157 	int flags, sig;
158 
159 	/*
160 	 * We don't support the CLONE_PID or CLONE_PTRACE flags.
161 	 */
162 	if (SCARG(uap, flags) & (CLONE_PID|CLONE_PTRACE))
163 		return EINVAL;
164 
165 	/*
166 	 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same.
167 	 */
168 	if (SCARG(uap, flags) & CLONE_SIGHAND
169 	    && (SCARG(uap, flags) & CLONE_VM) == 0)
170 		return EINVAL;
171 
172 	flags = 0;
173 
174 	if (SCARG(uap, flags) & CLONE_VM)
175 		flags |= FORK_SHAREVM;
176 	if (SCARG(uap, flags) & CLONE_FS)
177 		flags |= FORK_SHARECWD;
178 	if (SCARG(uap, flags) & CLONE_FILES)
179 		flags |= FORK_SHAREFILES;
180 	if (SCARG(uap, flags) & CLONE_SIGHAND)
181 		flags |= FORK_SHARESIGS;
182 	if (SCARG(uap, flags) & CLONE_VFORK)
183 		flags |= FORK_PPWAIT;
184 
185 	sig = SCARG(uap, flags) & CLONE_CSIGNAL;
186 	if (sig < 0 || sig >= _NSIG)
187 		return EINVAL;
188 
189 	/*
190 	 * Note that the Linux API does not provide a portable way of
191 	 * specifying the stack area; the caller must know if the stack
192 	 * grows up or down.  So, we pass a stack size of 0, so that the
193 	 * code that makes this adjustment is a noop.
194 	 */
195 	return fork1(l, flags, sig, SCARG(uap, stack), 0,
196 	    NULL, NULL, retval, NULL);
197 }
198 
199 /*
200  * Print the 'table full' message once per 10 seconds.
201  */
202 static struct timeval fork_tfmrate = { 10, 0 };
203 
204 /*
205  * General fork call.  Note that another LWP in the process may call exec()
206  * or exit() while we are forking.  It's safe to continue here, because
207  * neither operation will complete until all LWPs have exited the process.
208  */
209 int
210 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
211     void (*func)(void *), void *arg, register_t *retval,
212     struct proc **rnewprocp)
213 {
214 	struct proc	*p1, *p2, *parent;
215 	struct plimit   *p1_lim;
216 	uid_t		uid;
217 	struct lwp	*l2;
218 	int		count;
219 	vaddr_t		uaddr;
220 	int		tnprocs;
221 	int		tracefork;
222 	int		error = 0;
223 
224 	p1 = l1->l_proc;
225 	uid = kauth_cred_getuid(l1->l_cred);
226 	tnprocs = atomic_inc_uint_nv(&nprocs);
227 
228 	/*
229 	 * Although process entries are dynamically created, we still keep
230 	 * a global limit on the maximum number we will create.
231 	 */
232 	if (__predict_false(tnprocs >= maxproc))
233 		error = -1;
234 	else
235 		error = kauth_authorize_process(l1->l_cred,
236 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
237 
238 	if (error) {
239 		static struct timeval lasttfm;
240 		atomic_dec_uint(&nprocs);
241 		if (ratecheck(&lasttfm, &fork_tfmrate))
242 			tablefull("proc", "increase kern.maxproc or NPROC");
243 		if (forkfsleep)
244 			kpause("forkmx", false, forkfsleep, NULL);
245 		return EAGAIN;
246 	}
247 
248 	/*
249 	 * Enforce limits.
250 	 */
251 	count = chgproccnt(uid, 1);
252 	if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
253 		if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
254 		    p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
255 		    &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
256 			(void)chgproccnt(uid, -1);
257 			atomic_dec_uint(&nprocs);
258 			if (forkfsleep)
259 				kpause("forkulim", false, forkfsleep, NULL);
260 			return EAGAIN;
261 		}
262 	}
263 
264 	/*
265 	 * Allocate virtual address space for the U-area now, while it
266 	 * is still easy to abort the fork operation if we're out of
267 	 * kernel virtual address space.
268 	 */
269 	uaddr = uvm_uarea_alloc();
270 	if (__predict_false(uaddr == 0)) {
271 		(void)chgproccnt(uid, -1);
272 		atomic_dec_uint(&nprocs);
273 		return ENOMEM;
274 	}
275 
276 	/*
277 	 * We are now committed to the fork.  From here on, we may
278 	 * block on resources, but resource allocation may NOT fail.
279 	 */
280 
281 	/* Allocate new proc. */
282 	p2 = proc_alloc();
283 
284 	/*
285 	 * Make a proc table entry for the new process.
286 	 * Start by zeroing the section of proc that is zero-initialized,
287 	 * then copy the section that is copied directly from the parent.
288 	 */
289 	memset(&p2->p_startzero, 0,
290 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
291 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
292 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
293 
294 	CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
295 
296 	LIST_INIT(&p2->p_lwps);
297 	LIST_INIT(&p2->p_sigwaiters);
298 
299 	/*
300 	 * Duplicate sub-structures as needed.
301 	 * Increase reference counts on shared objects.
302 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
303 	 * handling are important in order to keep a consistent behaviour
304 	 * for the child after the fork.  If we are a 32-bit process, the
305 	 * child will be too.
306 	 */
307 	p2->p_flag =
308 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
309 	p2->p_emul = p1->p_emul;
310 	p2->p_execsw = p1->p_execsw;
311 
312 	if (flags & FORK_SYSTEM) {
313 		/*
314 		 * Mark it as a system process.  Set P_NOCLDWAIT so that
315 		 * children are reparented to init(8) when they exit.
316 		 * init(8) can easily wait them out for us.
317 		 */
318 		p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
319 	}
320 
321 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
322 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
323 	rw_init(&p2->p_reflock);
324 	cv_init(&p2->p_waitcv, "wait");
325 	cv_init(&p2->p_lwpcv, "lwpwait");
326 
327 	/*
328 	 * Share a lock between the processes if they are to share signal
329 	 * state: we must synchronize access to it.
330 	 */
331 	if (flags & FORK_SHARESIGS) {
332 		p2->p_lock = p1->p_lock;
333 		mutex_obj_hold(p1->p_lock);
334 	} else
335 		p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
336 
337 	kauth_proc_fork(p1, p2);
338 
339 	p2->p_raslist = NULL;
340 #if defined(__HAVE_RAS)
341 	ras_fork(p1, p2);
342 #endif
343 
344 	/* bump references to the text vnode (for procfs) */
345 	p2->p_textvp = p1->p_textvp;
346 	if (p2->p_textvp)
347 		vref(p2->p_textvp);
348 
349 	if (flags & FORK_SHAREFILES)
350 		fd_share(p2);
351 	else if (flags & FORK_CLEANFILES)
352 		p2->p_fd = fd_init(NULL);
353 	else
354 		p2->p_fd = fd_copy();
355 
356 	/* XXX racy */
357 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
358 
359 	if (flags & FORK_SHARECWD)
360 		cwdshare(p2);
361 	else
362 		p2->p_cwdi = cwdinit();
363 
364 	/*
365 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
366 	 * we just need increase pl_refcnt.
367 	 */
368 	p1_lim = p1->p_limit;
369 	if (!p1_lim->pl_writeable) {
370 		lim_addref(p1_lim);
371 		p2->p_limit = p1_lim;
372 	} else {
373 		p2->p_limit = lim_copy(p1_lim);
374 	}
375 
376 	if (flags & FORK_PPWAIT) {
377 		/* Mark ourselves as waiting for a child. */
378 		l1->l_pflag |= LP_VFORKWAIT;
379 		p2->p_lflag = PL_PPWAIT;
380 		p2->p_vforklwp = l1;
381 	} else {
382 		p2->p_lflag = 0;
383 	}
384 	p2->p_sflag = 0;
385 	p2->p_slflag = 0;
386 	parent = (flags & FORK_NOWAIT) ? initproc : p1;
387 	p2->p_pptr = parent;
388 	p2->p_ppid = parent->p_pid;
389 	LIST_INIT(&p2->p_children);
390 
391 	p2->p_aio = NULL;
392 
393 #ifdef KTRACE
394 	/*
395 	 * Copy traceflag and tracefile if enabled.
396 	 * If not inherited, these were zeroed above.
397 	 */
398 	if (p1->p_traceflag & KTRFAC_INHERIT) {
399 		mutex_enter(&ktrace_lock);
400 		p2->p_traceflag = p1->p_traceflag;
401 		if ((p2->p_tracep = p1->p_tracep) != NULL)
402 			ktradref(p2);
403 		mutex_exit(&ktrace_lock);
404 	}
405 #endif
406 
407 	/*
408 	 * Create signal actions for the child process.
409 	 */
410 	p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
411 	mutex_enter(p1->p_lock);
412 	p2->p_sflag |=
413 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
414 	sched_proc_fork(p1, p2);
415 	mutex_exit(p1->p_lock);
416 
417 	p2->p_stflag = p1->p_stflag;
418 
419 	/*
420 	 * p_stats.
421 	 * Copy parts of p_stats, and zero out the rest.
422 	 */
423 	p2->p_stats = pstatscopy(p1->p_stats);
424 
425 	/*
426 	 * Set up the new process address space.
427 	 */
428 	uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);
429 
430 	/*
431 	 * Finish creating the child process.
432 	 * It will return through a different path later.
433 	 */
434 	lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
435 	    stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
436 	    l1->l_class);
437 
438 	/*
439 	 * Inherit l_private from the parent.
440 	 * Note that we cannot use lwp_setprivate() here since that
441 	 * also sets the CPU TLS register, which is incorrect if the
442 	 * process has changed that without letting the kernel know.
443 	 */
444 	l2->l_private = l1->l_private;
445 
446 	/*
447 	 * If emulation has a process fork hook, call it now.
448 	 */
449 	if (p2->p_emul->e_proc_fork)
450 		(*p2->p_emul->e_proc_fork)(p2, l1, flags);
451 
452 	/*
453 	 * ...and finally, any other random fork hooks that subsystems
454 	 * might have registered.
455 	 */
456 	doforkhooks(p2, p1);
457 
458 	SDT_PROBE(proc,,,create, p2, p1, flags, 0, 0);
459 
460 	/*
461 	 * It's now safe for the scheduler and other processes to see the
462 	 * child process.
463 	 */
464 	mutex_enter(proc_lock);
465 
466 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
467 		p2->p_lflag |= PL_CONTROLT;
468 
469 	LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
470 	p2->p_exitsig = exitsig;		/* signal for parent on exit */
471 
472 	/*
473 	 * We don't want to tracefork vfork()ed processes because they
474 	 * will not receive the SIGTRAP until it is too late.
475 	 */
476 	tracefork = (p1->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
477 	    (PSL_TRACEFORK|PSL_TRACED) && (flags && FORK_PPWAIT) == 0;
478 	if (tracefork) {
479 		p2->p_slflag |= PSL_TRACED;
480 		p2->p_opptr = p2->p_pptr;
481 		if (p2->p_pptr != p1->p_pptr) {
482 			struct proc *parent1 = p2->p_pptr;
483 
484 			if (parent1->p_lock < p2->p_lock) {
485 				if (!mutex_tryenter(parent1->p_lock)) {
486 					mutex_exit(p2->p_lock);
487 					mutex_enter(parent1->p_lock);
488 				}
489 			} else if (parent1->p_lock > p2->p_lock) {
490 				mutex_enter(parent1->p_lock);
491 			}
492 			parent1->p_slflag |= PSL_CHTRACED;
493 			proc_reparent(p2, p1->p_pptr);
494 			if (parent1->p_lock != p2->p_lock)
495 				mutex_exit(parent1->p_lock);
496 		}
497 
498 		/*
499 		 * Set ptrace status.
500 		 */
501 		p1->p_fpid = p2->p_pid;
502 		p2->p_fpid = p1->p_pid;
503 	}
504 
505 	LIST_INSERT_AFTER(p1, p2, p_pglist);
506 	LIST_INSERT_HEAD(&allproc, p2, p_list);
507 
508 	p2->p_trace_enabled = trace_is_enabled(p2);
509 #ifdef __HAVE_SYSCALL_INTERN
510 	(*p2->p_emul->e_syscall_intern)(p2);
511 #endif
512 
513 	/*
514 	 * Update stats now that we know the fork was successful.
515 	 */
516 	uvmexp.forks++;
517 	if (flags & FORK_PPWAIT)
518 		uvmexp.forks_ppwait++;
519 	if (flags & FORK_SHAREVM)
520 		uvmexp.forks_sharevm++;
521 
522 	/*
523 	 * Pass a pointer to the new process to the caller.
524 	 */
525 	if (rnewprocp != NULL)
526 		*rnewprocp = p2;
527 
528 	if (ktrpoint(KTR_EMUL))
529 		p2->p_traceflag |= KTRFAC_TRC_EMUL;
530 
531 	/*
532 	 * Notify any interested parties about the new process.
533 	 */
534 	if (!SLIST_EMPTY(&p1->p_klist)) {
535 		mutex_exit(proc_lock);
536 		KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
537 		mutex_enter(proc_lock);
538 	}
539 
540 	/*
541 	 * Make child runnable, set start time, and add to run queue except
542 	 * if the parent requested the child to start in SSTOP state.
543 	 */
544 	mutex_enter(p2->p_lock);
545 
546 	/*
547 	 * Start profiling.
548 	 */
549 	if ((p2->p_stflag & PST_PROFIL) != 0) {
550 		mutex_spin_enter(&p2->p_stmutex);
551 		startprofclock(p2);
552 		mutex_spin_exit(&p2->p_stmutex);
553 	}
554 
555 	getmicrotime(&p2->p_stats->p_start);
556 	p2->p_acflag = AFORK;
557 	lwp_lock(l2);
558 	KASSERT(p2->p_nrlwps == 1);
559 	if (p2->p_sflag & PS_STOPFORK) {
560 		struct schedstate_percpu *spc = &l2->l_cpu->ci_schedstate;
561 		p2->p_nrlwps = 0;
562 		p2->p_stat = SSTOP;
563 		p2->p_waited = 0;
564 		p1->p_nstopchild++;
565 		l2->l_stat = LSSTOP;
566 		KASSERT(l2->l_wchan == NULL);
567 		lwp_unlock_to(l2, spc->spc_lwplock);
568 	} else {
569 		p2->p_nrlwps = 1;
570 		p2->p_stat = SACTIVE;
571 		l2->l_stat = LSRUN;
572 		sched_enqueue(l2, false);
573 		lwp_unlock(l2);
574 	}
575 
576 	/*
577 	 * Return child pid to parent process,
578 	 * marking us as parent via retval[1].
579 	 */
580 	if (retval != NULL) {
581 		retval[0] = p2->p_pid;
582 		retval[1] = 0;
583 	}
584 	mutex_exit(p2->p_lock);
585 
586 	/*
587 	 * Preserve synchronization semantics of vfork.  If waiting for
588 	 * child to exec or exit, sleep until it clears LP_VFORKWAIT.
589 	 */
590 #if 0
591 	while (l1->l_pflag & LP_VFORKWAIT) {
592 		cv_wait(&l1->l_waitcv, proc_lock);
593 	}
594 #else
595 	while (p2->p_lflag & PL_PPWAIT)
596 		cv_wait(&p1->p_waitcv, proc_lock);
597 #endif
598 
599 	/*
600 	 * Let the parent know that we are tracing its child.
601 	 */
602 	if (tracefork) {
603 		ksiginfo_t ksi;
604 
605 		KSI_INIT_EMPTY(&ksi);
606 		ksi.ksi_signo = SIGTRAP;
607 		ksi.ksi_lid = l1->l_lid;
608 		kpsignal(p1, &ksi, NULL);
609 	}
610 	mutex_exit(proc_lock);
611 
612 	return 0;
613 }
614