1 /* $NetBSD: kern_fork.c,v 1.227 2021/10/10 18:07:51 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2001, 2004, 2006, 2007, 2008, 2019 5 * The NetBSD Foundation, Inc. 6 * All rights reserved. 7 * 8 * This code is derived from software contributed to The NetBSD Foundation 9 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 10 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 1982, 1986, 1989, 1991, 1993 36 * The Regents of the University of California. All rights reserved. 37 * (c) UNIX System Laboratories, Inc. 38 * All or some portions of this file are derived from material licensed 39 * to the University of California by American Telephone and Telegraph 40 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 41 * the permission of UNIX System Laboratories, Inc. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: kern_fork.c,v 1.227 2021/10/10 18:07:51 thorpej Exp $"); 72 73 #include "opt_ktrace.h" 74 #include "opt_dtrace.h" 75 76 #include <sys/param.h> 77 #include <sys/systm.h> 78 #include <sys/filedesc.h> 79 #include <sys/kernel.h> 80 #include <sys/pool.h> 81 #include <sys/mount.h> 82 #include <sys/proc.h> 83 #include <sys/ras.h> 84 #include <sys/resourcevar.h> 85 #include <sys/vnode.h> 86 #include <sys/file.h> 87 #include <sys/acct.h> 88 #include <sys/ktrace.h> 89 #include <sys/sched.h> 90 #include <sys/signalvar.h> 91 #include <sys/syscall.h> 92 #include <sys/kauth.h> 93 #include <sys/atomic.h> 94 #include <sys/syscallargs.h> 95 #include <sys/uidinfo.h> 96 #include <sys/sdt.h> 97 #include <sys/ptrace.h> 98 99 /* 100 * DTrace SDT provider definitions 101 */ 102 SDT_PROVIDER_DECLARE(proc); 103 SDT_PROBE_DEFINE3(proc, kernel, , create, 104 "struct proc *", /* new process */ 105 "struct proc *", /* parent process */ 106 "int" /* flags */); 107 108 u_int nprocs __cacheline_aligned = 1; /* process 0 */ 109 110 /* 111 * Number of ticks to sleep if fork() would fail due to process hitting 112 * limits. Exported in miliseconds to userland via sysctl. 113 */ 114 int forkfsleep = 0; 115 116 int 117 sys_fork(struct lwp *l, const void *v, register_t *retval) 118 { 119 120 return fork1(l, 0, SIGCHLD, NULL, 0, NULL, NULL, retval); 121 } 122 123 /* 124 * vfork(2) system call compatible with 4.4BSD (i.e. BSD with Mach VM). 125 * Address space is not shared, but parent is blocked until child exit. 126 */ 127 int 128 sys_vfork(struct lwp *l, const void *v, register_t *retval) 129 { 130 131 return fork1(l, FORK_PPWAIT, SIGCHLD, NULL, 0, NULL, NULL, 132 retval); 133 } 134 135 /* 136 * New vfork(2) system call for NetBSD, which implements original 3BSD vfork(2) 137 * semantics. Address space is shared, and parent is blocked until child exit. 138 */ 139 int 140 sys___vfork14(struct lwp *l, const void *v, register_t *retval) 141 { 142 143 return fork1(l, FORK_PPWAIT|FORK_SHAREVM, SIGCHLD, NULL, 0, 144 NULL, NULL, retval); 145 } 146 147 /* 148 * Linux-compatible __clone(2) system call. 149 */ 150 int 151 sys___clone(struct lwp *l, const struct sys___clone_args *uap, 152 register_t *retval) 153 { 154 /* { 155 syscallarg(int) flags; 156 syscallarg(void *) stack; 157 } */ 158 int flags, sig; 159 160 /* 161 * We don't support the CLONE_PTRACE flag. 162 */ 163 if (SCARG(uap, flags) & (CLONE_PTRACE)) 164 return EINVAL; 165 166 /* 167 * Linux enforces CLONE_VM with CLONE_SIGHAND, do same. 168 */ 169 if (SCARG(uap, flags) & CLONE_SIGHAND 170 && (SCARG(uap, flags) & CLONE_VM) == 0) 171 return EINVAL; 172 173 flags = 0; 174 175 if (SCARG(uap, flags) & CLONE_VM) 176 flags |= FORK_SHAREVM; 177 if (SCARG(uap, flags) & CLONE_FS) 178 flags |= FORK_SHARECWD; 179 if (SCARG(uap, flags) & CLONE_FILES) 180 flags |= FORK_SHAREFILES; 181 if (SCARG(uap, flags) & CLONE_SIGHAND) 182 flags |= FORK_SHARESIGS; 183 if (SCARG(uap, flags) & CLONE_VFORK) 184 flags |= FORK_PPWAIT; 185 186 sig = SCARG(uap, flags) & CLONE_CSIGNAL; 187 if (sig < 0 || sig >= _NSIG) 188 return EINVAL; 189 190 /* 191 * Note that the Linux API does not provide a portable way of 192 * specifying the stack area; the caller must know if the stack 193 * grows up or down. So, we pass a stack size of 0, so that the 194 * code that makes this adjustment is a noop. 195 */ 196 return fork1(l, flags, sig, SCARG(uap, stack), 0, 197 NULL, NULL, retval); 198 } 199 200 /* 201 * Print the 'table full' message once per 10 seconds. 202 */ 203 static struct timeval fork_tfmrate = { 10, 0 }; 204 205 /* 206 * Check if a process is traced and shall inform about FORK events. 207 */ 208 static inline bool 209 tracefork(struct proc *p, int flags) 210 { 211 212 return (p->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) == 213 (PSL_TRACEFORK|PSL_TRACED) && (flags & FORK_PPWAIT) == 0; 214 } 215 216 /* 217 * Check if a process is traced and shall inform about VFORK events. 218 */ 219 static inline bool 220 tracevfork(struct proc *p, int flags) 221 { 222 223 return (p->p_slflag & (PSL_TRACEVFORK|PSL_TRACED)) == 224 (PSL_TRACEVFORK|PSL_TRACED) && (flags & FORK_PPWAIT) != 0; 225 } 226 227 /* 228 * Check if a process is traced and shall inform about VFORK_DONE events. 229 */ 230 static inline bool 231 tracevforkdone(struct proc *p, int flags) 232 { 233 234 return (p->p_slflag & (PSL_TRACEVFORK_DONE|PSL_TRACED)) == 235 (PSL_TRACEVFORK_DONE|PSL_TRACED) && (flags & FORK_PPWAIT); 236 } 237 238 /* 239 * General fork call. Note that another LWP in the process may call exec() 240 * or exit() while we are forking. It's safe to continue here, because 241 * neither operation will complete until all LWPs have exited the process. 242 */ 243 int 244 fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize, 245 void (*func)(void *), void *arg, register_t *retval) 246 { 247 struct proc *p1, *p2, *parent; 248 struct plimit *p1_lim; 249 uid_t uid; 250 struct lwp *l2; 251 int count; 252 vaddr_t uaddr; 253 int tnprocs; 254 int error = 0; 255 256 p1 = l1->l_proc; 257 uid = kauth_cred_getuid(l1->l_cred); 258 tnprocs = atomic_inc_uint_nv(&nprocs); 259 260 /* 261 * Although process entries are dynamically created, we still keep 262 * a global limit on the maximum number we will create. 263 */ 264 if (__predict_false(tnprocs >= maxproc)) 265 error = -1; 266 else 267 error = kauth_authorize_process(l1->l_cred, 268 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 269 270 if (error) { 271 static struct timeval lasttfm; 272 atomic_dec_uint(&nprocs); 273 if (ratecheck(&lasttfm, &fork_tfmrate)) 274 tablefull("proc", "increase kern.maxproc or NPROC"); 275 if (forkfsleep) 276 kpause("forkmx", false, forkfsleep, NULL); 277 return EAGAIN; 278 } 279 280 /* 281 * Enforce limits. 282 */ 283 count = chgproccnt(uid, 1); 284 if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 285 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, 286 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 287 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) { 288 (void)chgproccnt(uid, -1); 289 atomic_dec_uint(&nprocs); 290 if (forkfsleep) 291 kpause("forkulim", false, forkfsleep, NULL); 292 return EAGAIN; 293 } 294 } 295 296 /* 297 * Allocate virtual address space for the U-area now, while it 298 * is still easy to abort the fork operation if we're out of 299 * kernel virtual address space. 300 */ 301 uaddr = uvm_uarea_alloc(); 302 if (__predict_false(uaddr == 0)) { 303 (void)chgproccnt(uid, -1); 304 atomic_dec_uint(&nprocs); 305 return ENOMEM; 306 } 307 308 /* Allocate new proc. */ 309 p2 = proc_alloc(); 310 if (p2 == NULL) { 311 /* We were unable to allocate a process ID. */ 312 return EAGAIN; 313 } 314 315 /* 316 * We are now committed to the fork. From here on, we may 317 * block on resources, but resource allocation may NOT fail. 318 */ 319 320 /* 321 * Make a proc table entry for the new process. 322 * Start by zeroing the section of proc that is zero-initialized, 323 * then copy the section that is copied directly from the parent. 324 */ 325 memset(&p2->p_startzero, 0, 326 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 327 memcpy(&p2->p_startcopy, &p1->p_startcopy, 328 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 329 330 TAILQ_INIT(&p2->p_sigpend.sp_info); 331 332 LIST_INIT(&p2->p_lwps); 333 LIST_INIT(&p2->p_sigwaiters); 334 335 /* 336 * Duplicate sub-structures as needed. 337 * Increase reference counts on shared objects. 338 * Inherit flags we want to keep. The flags related to SIGCHLD 339 * handling are important in order to keep a consistent behaviour 340 * for the child after the fork. If we are a 32-bit process, the 341 * child will be too. 342 */ 343 p2->p_flag = 344 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 345 p2->p_emul = p1->p_emul; 346 p2->p_execsw = p1->p_execsw; 347 348 if (flags & FORK_SYSTEM) { 349 /* 350 * Mark it as a system process. Set P_NOCLDWAIT so that 351 * children are reparented to init(8) when they exit. 352 * init(8) can easily wait them out for us. 353 */ 354 p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT); 355 } 356 357 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 358 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 359 rw_init(&p2->p_reflock); 360 cv_init(&p2->p_waitcv, "wait"); 361 cv_init(&p2->p_lwpcv, "lwpwait"); 362 363 /* 364 * Share a lock between the processes if they are to share signal 365 * state: we must synchronize access to it. 366 */ 367 if (flags & FORK_SHARESIGS) { 368 p2->p_lock = p1->p_lock; 369 mutex_obj_hold(p1->p_lock); 370 } else 371 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 372 373 kauth_proc_fork(p1, p2); 374 375 p2->p_raslist = NULL; 376 #if defined(__HAVE_RAS) 377 ras_fork(p1, p2); 378 #endif 379 380 /* bump references to the text vnode (for procfs) */ 381 p2->p_textvp = p1->p_textvp; 382 if (p2->p_textvp) 383 vref(p2->p_textvp); 384 if (p1->p_path) 385 p2->p_path = kmem_strdupsize(p1->p_path, NULL, KM_SLEEP); 386 else 387 p2->p_path = NULL; 388 389 if (flags & FORK_SHAREFILES) 390 fd_share(p2); 391 else if (flags & FORK_CLEANFILES) 392 p2->p_fd = fd_init(NULL); 393 else 394 p2->p_fd = fd_copy(); 395 396 /* XXX racy */ 397 p2->p_mqueue_cnt = p1->p_mqueue_cnt; 398 399 if (flags & FORK_SHARECWD) 400 cwdshare(p2); 401 else 402 p2->p_cwdi = cwdinit(); 403 404 /* 405 * Note: p_limit (rlimit stuff) is copy-on-write, so normally 406 * we just need increase pl_refcnt. 407 */ 408 p1_lim = p1->p_limit; 409 if (!p1_lim->pl_writeable) { 410 lim_addref(p1_lim); 411 p2->p_limit = p1_lim; 412 } else { 413 p2->p_limit = lim_copy(p1_lim); 414 } 415 416 if (flags & FORK_PPWAIT) { 417 /* Mark ourselves as waiting for a child. */ 418 p2->p_lflag = PL_PPWAIT; 419 l1->l_vforkwaiting = true; 420 p2->p_vforklwp = l1; 421 } else { 422 p2->p_lflag = 0; 423 l1->l_vforkwaiting = false; 424 } 425 p2->p_sflag = 0; 426 p2->p_slflag = 0; 427 parent = (flags & FORK_NOWAIT) ? initproc : p1; 428 p2->p_pptr = parent; 429 p2->p_ppid = parent->p_pid; 430 LIST_INIT(&p2->p_children); 431 432 p2->p_aio = NULL; 433 434 #ifdef KTRACE 435 /* 436 * Copy traceflag and tracefile if enabled. 437 * If not inherited, these were zeroed above. 438 */ 439 if (p1->p_traceflag & KTRFAC_INHERIT) { 440 mutex_enter(&ktrace_lock); 441 p2->p_traceflag = p1->p_traceflag; 442 if ((p2->p_tracep = p1->p_tracep) != NULL) 443 ktradref(p2); 444 mutex_exit(&ktrace_lock); 445 } 446 #endif 447 448 /* 449 * Create signal actions for the child process. 450 */ 451 p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS); 452 mutex_enter(p1->p_lock); 453 p2->p_sflag |= 454 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 455 sched_proc_fork(p1, p2); 456 mutex_exit(p1->p_lock); 457 458 p2->p_stflag = p1->p_stflag; 459 460 /* 461 * p_stats. 462 * Copy parts of p_stats, and zero out the rest. 463 */ 464 p2->p_stats = pstatscopy(p1->p_stats); 465 466 /* 467 * Set up the new process address space. 468 */ 469 uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false); 470 471 /* 472 * Finish creating the child process. 473 * It will return through a different path later. 474 */ 475 lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0, 476 stack, stacksize, (func != NULL) ? func : child_return, arg, &l2, 477 l1->l_class, &l1->l_sigmask, &l1->l_sigstk); 478 479 /* 480 * Inherit l_private from the parent. 481 * Note that we cannot use lwp_setprivate() here since that 482 * also sets the CPU TLS register, which is incorrect if the 483 * process has changed that without letting the kernel know. 484 */ 485 l2->l_private = l1->l_private; 486 487 /* 488 * If emulation has a process fork hook, call it now. 489 */ 490 if (p2->p_emul->e_proc_fork) 491 (*p2->p_emul->e_proc_fork)(p2, l1, flags); 492 493 /* 494 * ...and finally, any other random fork hooks that subsystems 495 * might have registered. 496 */ 497 doforkhooks(p2, p1); 498 499 SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0); 500 501 /* 502 * It's now safe for the scheduler and other processes to see the 503 * child process. 504 */ 505 mutex_enter(&proc_lock); 506 507 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 508 p2->p_lflag |= PL_CONTROLT; 509 510 LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling); 511 p2->p_exitsig = exitsig; /* signal for parent on exit */ 512 513 /* 514 * Trace fork(2) and vfork(2)-like events on demand in a debugger. 515 */ 516 if (tracefork(p1, flags) || tracevfork(p1, flags)) { 517 proc_changeparent(p2, p1->p_pptr); 518 SET(p2->p_slflag, PSL_TRACEDCHILD); 519 } 520 521 p2->p_oppid = p1->p_pid; /* Remember the original parent id. */ 522 523 LIST_INSERT_AFTER(p1, p2, p_pglist); 524 LIST_INSERT_HEAD(&allproc, p2, p_list); 525 526 p2->p_trace_enabled = trace_is_enabled(p2); 527 #ifdef __HAVE_SYSCALL_INTERN 528 (*p2->p_emul->e_syscall_intern)(p2); 529 #endif 530 531 /* 532 * Update stats now that we know the fork was successful. 533 */ 534 KPREEMPT_DISABLE(l1); 535 CPU_COUNT(CPU_COUNT_FORKS, 1); 536 if (flags & FORK_PPWAIT) 537 CPU_COUNT(CPU_COUNT_FORKS_PPWAIT, 1); 538 if (flags & FORK_SHAREVM) 539 CPU_COUNT(CPU_COUNT_FORKS_SHAREVM, 1); 540 KPREEMPT_ENABLE(l1); 541 542 if (ktrpoint(KTR_EMUL)) 543 p2->p_traceflag |= KTRFAC_TRC_EMUL; 544 545 /* 546 * Notify any interested parties about the new process. 547 */ 548 if (!SLIST_EMPTY(&p1->p_klist)) { 549 mutex_exit(&proc_lock); 550 knote_proc_fork(p1, p2); 551 mutex_enter(&proc_lock); 552 } 553 554 /* 555 * Make child runnable, set start time, and add to run queue except 556 * if the parent requested the child to start in SSTOP state. 557 */ 558 mutex_enter(p2->p_lock); 559 560 /* 561 * Start profiling. 562 */ 563 if ((p2->p_stflag & PST_PROFIL) != 0) { 564 mutex_spin_enter(&p2->p_stmutex); 565 startprofclock(p2); 566 mutex_spin_exit(&p2->p_stmutex); 567 } 568 569 getmicrotime(&p2->p_stats->p_start); 570 p2->p_acflag = AFORK; 571 lwp_lock(l2); 572 KASSERT(p2->p_nrlwps == 1); 573 KASSERT(l2->l_stat == LSIDL); 574 if (p2->p_sflag & PS_STOPFORK) { 575 p2->p_nrlwps = 0; 576 p2->p_stat = SSTOP; 577 p2->p_waited = 0; 578 p1->p_nstopchild++; 579 l2->l_stat = LSSTOP; 580 KASSERT(l2->l_wchan == NULL); 581 lwp_unlock(l2); 582 } else { 583 p2->p_nrlwps = 1; 584 p2->p_stat = SACTIVE; 585 setrunnable(l2); 586 /* LWP now unlocked */ 587 } 588 589 /* 590 * Return child pid to parent process, 591 * marking us as parent via retval[1]. 592 */ 593 if (retval != NULL) { 594 retval[0] = p2->p_pid; 595 retval[1] = 0; 596 } 597 598 mutex_exit(p2->p_lock); 599 600 /* 601 * Let the parent know that we are tracing its child. 602 */ 603 if (tracefork(p1, flags) || tracevfork(p1, flags)) { 604 mutex_enter(p1->p_lock); 605 eventswitch(TRAP_CHLD, 606 tracefork(p1, flags) ? PTRACE_FORK : PTRACE_VFORK, 607 retval[0]); 608 mutex_enter(&proc_lock); 609 } 610 611 /* 612 * Preserve synchronization semantics of vfork. If waiting for 613 * child to exec or exit, sleep until it clears p_vforkwaiting. 614 */ 615 while (l1->l_vforkwaiting) 616 cv_wait(&l1->l_waitcv, &proc_lock); 617 618 /* 619 * Let the parent know that we are tracing its child. 620 */ 621 if (tracevforkdone(p1, flags)) { 622 mutex_enter(p1->p_lock); 623 eventswitch(TRAP_CHLD, PTRACE_VFORK_DONE, retval[0]); 624 } else 625 mutex_exit(&proc_lock); 626 627 return 0; 628 } 629 630 /* 631 * MI code executed in each newly spawned process before returning to userland. 632 */ 633 void 634 child_return(void *arg) 635 { 636 struct lwp *l = curlwp; 637 struct proc *p = l->l_proc; 638 639 if ((p->p_slflag & (PSL_TRACED|PSL_TRACEDCHILD)) == 640 (PSL_TRACED|PSL_TRACEDCHILD)) { 641 eventswitchchild(p, TRAP_CHLD, 642 ISSET(p->p_lflag, PL_PPWAIT) ? PTRACE_VFORK : PTRACE_FORK); 643 } 644 645 md_child_return(l); 646 647 /* 648 * Return SYS_fork for all fork types, including vfork(2) and clone(2). 649 * 650 * This approach simplifies the code and avoids extra locking. 651 */ 652 ktrsysret(SYS_fork, 0, 0); 653 } 654