1 /* $NetBSD: kern_exec.c,v 1.412 2014/12/14 23:49:28 chs Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /*- 30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou 31 * Copyright (C) 1992 Wolfgang Solfrank. 32 * Copyright (C) 1992 TooLs GmbH. 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by TooLs GmbH. 46 * 4. The name of TooLs GmbH may not be used to endorse or promote products 47 * derived from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.412 2014/12/14 23:49:28 chs Exp $"); 63 64 #include "opt_exec.h" 65 #include "opt_execfmt.h" 66 #include "opt_ktrace.h" 67 #include "opt_modular.h" 68 #include "opt_syscall_debug.h" 69 #include "veriexec.h" 70 #include "opt_pax.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/filedesc.h> 75 #include <sys/kernel.h> 76 #include <sys/proc.h> 77 #include <sys/mount.h> 78 #include <sys/kmem.h> 79 #include <sys/namei.h> 80 #include <sys/vnode.h> 81 #include <sys/file.h> 82 #include <sys/acct.h> 83 #include <sys/atomic.h> 84 #include <sys/exec.h> 85 #include <sys/ktrace.h> 86 #include <sys/uidinfo.h> 87 #include <sys/wait.h> 88 #include <sys/mman.h> 89 #include <sys/ras.h> 90 #include <sys/signalvar.h> 91 #include <sys/stat.h> 92 #include <sys/syscall.h> 93 #include <sys/kauth.h> 94 #include <sys/lwpctl.h> 95 #include <sys/pax.h> 96 #include <sys/cpu.h> 97 #include <sys/module.h> 98 #include <sys/syscallvar.h> 99 #include <sys/syscallargs.h> 100 #if NVERIEXEC > 0 101 #include <sys/verified_exec.h> 102 #endif /* NVERIEXEC > 0 */ 103 #include <sys/sdt.h> 104 #include <sys/spawn.h> 105 #include <sys/prot.h> 106 #include <sys/cprng.h> 107 108 #include <uvm/uvm_extern.h> 109 110 #include <machine/reg.h> 111 112 #include <compat/common/compat_util.h> 113 114 #ifndef MD_TOPDOWN_INIT 115 #ifdef __USE_TOPDOWN_VM 116 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM 117 #else 118 #define MD_TOPDOWN_INIT(epp) 119 #endif 120 #endif 121 122 struct execve_data; 123 124 static size_t calcargs(struct execve_data * restrict, const size_t); 125 static size_t calcstack(struct execve_data * restrict, const size_t); 126 static int copyoutargs(struct execve_data * restrict, struct lwp *, 127 char * const); 128 static int copyoutpsstrs(struct execve_data * restrict, struct proc *); 129 static int copyinargs(struct execve_data * restrict, char * const *, 130 char * const *, execve_fetch_element_t, char **); 131 static int copyinargstrs(struct execve_data * restrict, char * const *, 132 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t)); 133 static int exec_sigcode_map(struct proc *, const struct emul *); 134 135 #ifdef DEBUG_EXEC 136 #define DPRINTF(a) printf a 137 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ 138 __LINE__, (s), (a), (b)) 139 static void dump_vmcmds(const struct exec_package * const, size_t, int); 140 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0) 141 #else 142 #define DPRINTF(a) 143 #define COPYPRINTF(s, a, b) 144 #define DUMPVMCMDS(p, x, e) do {} while (0) 145 #endif /* DEBUG_EXEC */ 146 147 /* 148 * DTrace SDT provider definitions 149 */ 150 SDT_PROBE_DEFINE(proc,,,exec,exec, 151 "char *", NULL, 152 NULL, NULL, NULL, NULL, 153 NULL, NULL, NULL, NULL); 154 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success, 155 "char *", NULL, 156 NULL, NULL, NULL, NULL, 157 NULL, NULL, NULL, NULL); 158 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure, 159 "int", NULL, 160 NULL, NULL, NULL, NULL, 161 NULL, NULL, NULL, NULL); 162 163 /* 164 * Exec function switch: 165 * 166 * Note that each makecmds function is responsible for loading the 167 * exec package with the necessary functions for any exec-type-specific 168 * handling. 169 * 170 * Functions for specific exec types should be defined in their own 171 * header file. 172 */ 173 static const struct execsw **execsw = NULL; 174 static int nexecs; 175 176 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ 177 178 /* list of dynamically loaded execsw entries */ 179 static LIST_HEAD(execlist_head, exec_entry) ex_head = 180 LIST_HEAD_INITIALIZER(ex_head); 181 struct exec_entry { 182 LIST_ENTRY(exec_entry) ex_list; 183 SLIST_ENTRY(exec_entry) ex_slist; 184 const struct execsw *ex_sw; 185 }; 186 187 #ifndef __HAVE_SYSCALL_INTERN 188 void syscall(void); 189 #endif 190 191 /* NetBSD emul struct */ 192 struct emul emul_netbsd = { 193 .e_name = "netbsd", 194 #ifdef EMUL_NATIVEROOT 195 .e_path = EMUL_NATIVEROOT, 196 #else 197 .e_path = NULL, 198 #endif 199 #ifndef __HAVE_MINIMAL_EMUL 200 .e_flags = EMUL_HAS_SYS___syscall, 201 .e_errno = NULL, 202 .e_nosys = SYS_syscall, 203 .e_nsysent = SYS_NSYSENT, 204 #endif 205 .e_sysent = sysent, 206 #ifdef SYSCALL_DEBUG 207 .e_syscallnames = syscallnames, 208 #else 209 .e_syscallnames = NULL, 210 #endif 211 .e_sendsig = sendsig, 212 .e_trapsignal = trapsignal, 213 .e_tracesig = NULL, 214 .e_sigcode = NULL, 215 .e_esigcode = NULL, 216 .e_sigobject = NULL, 217 .e_setregs = setregs, 218 .e_proc_exec = NULL, 219 .e_proc_fork = NULL, 220 .e_proc_exit = NULL, 221 .e_lwp_fork = NULL, 222 .e_lwp_exit = NULL, 223 #ifdef __HAVE_SYSCALL_INTERN 224 .e_syscall_intern = syscall_intern, 225 #else 226 .e_syscall = syscall, 227 #endif 228 .e_sysctlovly = NULL, 229 .e_fault = NULL, 230 .e_vm_default_addr = uvm_default_mapaddr, 231 .e_usertrap = NULL, 232 .e_ucsize = sizeof(ucontext_t), 233 .e_startlwp = startlwp 234 }; 235 236 /* 237 * Exec lock. Used to control access to execsw[] structures. 238 * This must not be static so that netbsd32 can access it, too. 239 */ 240 krwlock_t exec_lock; 241 242 static kmutex_t sigobject_lock; 243 244 /* 245 * Data used between a loadvm and execve part of an "exec" operation 246 */ 247 struct execve_data { 248 struct exec_package ed_pack; 249 struct pathbuf *ed_pathbuf; 250 struct vattr ed_attr; 251 struct ps_strings ed_arginfo; 252 char *ed_argp; 253 const char *ed_pathstring; 254 char *ed_resolvedpathbuf; 255 size_t ed_ps_strings_sz; 256 int ed_szsigcode; 257 size_t ed_argslen; 258 long ed_argc; 259 long ed_envc; 260 }; 261 262 /* 263 * data passed from parent lwp to child during a posix_spawn() 264 */ 265 struct spawn_exec_data { 266 struct execve_data sed_exec; 267 struct posix_spawn_file_actions 268 *sed_actions; 269 struct posix_spawnattr *sed_attrs; 270 struct proc *sed_parent; 271 kcondvar_t sed_cv_child_ready; 272 kmutex_t sed_mtx_child; 273 int sed_error; 274 volatile uint32_t sed_refcnt; 275 }; 276 277 static void * 278 exec_pool_alloc(struct pool *pp, int flags) 279 { 280 281 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0, 282 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 283 } 284 285 static void 286 exec_pool_free(struct pool *pp, void *addr) 287 { 288 289 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); 290 } 291 292 static struct pool exec_pool; 293 294 static struct pool_allocator exec_palloc = { 295 .pa_alloc = exec_pool_alloc, 296 .pa_free = exec_pool_free, 297 .pa_pagesz = NCARGS 298 }; 299 300 /* 301 * check exec: 302 * given an "executable" described in the exec package's namei info, 303 * see what we can do with it. 304 * 305 * ON ENTRY: 306 * exec package with appropriate namei info 307 * lwp pointer of exec'ing lwp 308 * NO SELF-LOCKED VNODES 309 * 310 * ON EXIT: 311 * error: nothing held, etc. exec header still allocated. 312 * ok: filled exec package, executable's vnode (unlocked). 313 * 314 * EXEC SWITCH ENTRY: 315 * Locked vnode to check, exec package, proc. 316 * 317 * EXEC SWITCH EXIT: 318 * ok: return 0, filled exec package, executable's vnode (unlocked). 319 * error: destructive: 320 * everything deallocated execept exec header. 321 * non-destructive: 322 * error code, executable's vnode (unlocked), 323 * exec header unmodified. 324 */ 325 int 326 /*ARGSUSED*/ 327 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) 328 { 329 int error, i; 330 struct vnode *vp; 331 struct nameidata nd; 332 size_t resid; 333 334 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 335 336 /* first get the vnode */ 337 if ((error = namei(&nd)) != 0) 338 return error; 339 epp->ep_vp = vp = nd.ni_vp; 340 /* normally this can't fail */ 341 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL); 342 KASSERT(error == 0); 343 344 #ifdef DIAGNOSTIC 345 /* paranoia (take this out once namei stuff stabilizes) */ 346 memset(nd.ni_pnbuf, '~', PATH_MAX); 347 #endif 348 349 /* check access and type */ 350 if (vp->v_type != VREG) { 351 error = EACCES; 352 goto bad1; 353 } 354 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) 355 goto bad1; 356 357 /* get attributes */ 358 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) 359 goto bad1; 360 361 /* Check mount point */ 362 if (vp->v_mount->mnt_flag & MNT_NOEXEC) { 363 error = EACCES; 364 goto bad1; 365 } 366 if (vp->v_mount->mnt_flag & MNT_NOSUID) 367 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); 368 369 /* try to open it */ 370 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) 371 goto bad1; 372 373 /* unlock vp, since we need it unlocked from here on out. */ 374 VOP_UNLOCK(vp); 375 376 #if NVERIEXEC > 0 377 error = veriexec_verify(l, vp, epp->ep_resolvedname, 378 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, 379 NULL); 380 if (error) 381 goto bad2; 382 #endif /* NVERIEXEC > 0 */ 383 384 #ifdef PAX_SEGVGUARD 385 error = pax_segvguard(l, vp, epp->ep_resolvedname, false); 386 if (error) 387 goto bad2; 388 #endif /* PAX_SEGVGUARD */ 389 390 /* now we have the file, get the exec header */ 391 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, 392 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); 393 if (error) 394 goto bad2; 395 epp->ep_hdrvalid = epp->ep_hdrlen - resid; 396 397 /* 398 * Set up default address space limits. Can be overridden 399 * by individual exec packages. 400 * 401 * XXX probably should be all done in the exec packages. 402 */ 403 epp->ep_vm_minaddr = VM_MIN_ADDRESS; 404 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; 405 /* 406 * set up the vmcmds for creation of the process 407 * address space 408 */ 409 error = ENOEXEC; 410 for (i = 0; i < nexecs; i++) { 411 int newerror; 412 413 epp->ep_esch = execsw[i]; 414 newerror = (*execsw[i]->es_makecmds)(l, epp); 415 416 if (!newerror) { 417 /* Seems ok: check that entry point is not too high */ 418 if (epp->ep_entry > epp->ep_vm_maxaddr) { 419 #ifdef DIAGNOSTIC 420 printf("%s: rejecting %p due to " 421 "too high entry address (> %p)\n", 422 __func__, (void *)epp->ep_entry, 423 (void *)epp->ep_vm_maxaddr); 424 #endif 425 error = ENOEXEC; 426 break; 427 } 428 /* Seems ok: check that entry point is not too low */ 429 if (epp->ep_entry < epp->ep_vm_minaddr) { 430 #ifdef DIAGNOSTIC 431 printf("%s: rejecting %p due to " 432 "too low entry address (< %p)\n", 433 __func__, (void *)epp->ep_entry, 434 (void *)epp->ep_vm_minaddr); 435 #endif 436 error = ENOEXEC; 437 break; 438 } 439 440 /* check limits */ 441 if ((epp->ep_tsize > MAXTSIZ) || 442 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit 443 [RLIMIT_DATA].rlim_cur)) { 444 #ifdef DIAGNOSTIC 445 printf("%s: rejecting due to " 446 "limits (t=%llu > %llu || d=%llu > %llu)\n", 447 __func__, 448 (unsigned long long)epp->ep_tsize, 449 (unsigned long long)MAXTSIZ, 450 (unsigned long long)epp->ep_dsize, 451 (unsigned long long) 452 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); 453 #endif 454 error = ENOMEM; 455 break; 456 } 457 return 0; 458 } 459 460 if (epp->ep_emul_root != NULL) { 461 vrele(epp->ep_emul_root); 462 epp->ep_emul_root = NULL; 463 } 464 if (epp->ep_interp != NULL) { 465 vrele(epp->ep_interp); 466 epp->ep_interp = NULL; 467 } 468 469 /* make sure the first "interesting" error code is saved. */ 470 if (error == ENOEXEC) 471 error = newerror; 472 473 if (epp->ep_flags & EXEC_DESTR) 474 /* Error from "#!" code, tidied up by recursive call */ 475 return error; 476 } 477 478 /* not found, error */ 479 480 /* 481 * free any vmspace-creation commands, 482 * and release their references 483 */ 484 kill_vmcmds(&epp->ep_vmcmds); 485 486 bad2: 487 /* 488 * close and release the vnode, restore the old one, free the 489 * pathname buf, and punt. 490 */ 491 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 492 VOP_CLOSE(vp, FREAD, l->l_cred); 493 vput(vp); 494 return error; 495 496 bad1: 497 /* 498 * free the namei pathname buffer, and put the vnode 499 * (which we don't yet have open). 500 */ 501 vput(vp); /* was still locked */ 502 return error; 503 } 504 505 #ifdef __MACHINE_STACK_GROWS_UP 506 #define STACK_PTHREADSPACE NBPG 507 #else 508 #define STACK_PTHREADSPACE 0 509 #endif 510 511 static int 512 execve_fetch_element(char * const *array, size_t index, char **value) 513 { 514 return copyin(array + index, value, sizeof(*value)); 515 } 516 517 /* 518 * exec system call 519 */ 520 int 521 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) 522 { 523 /* { 524 syscallarg(const char *) path; 525 syscallarg(char * const *) argp; 526 syscallarg(char * const *) envp; 527 } */ 528 529 return execve1(l, SCARG(uap, path), SCARG(uap, argp), 530 SCARG(uap, envp), execve_fetch_element); 531 } 532 533 int 534 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, 535 register_t *retval) 536 { 537 /* { 538 syscallarg(int) fd; 539 syscallarg(char * const *) argp; 540 syscallarg(char * const *) envp; 541 } */ 542 543 return ENOSYS; 544 } 545 546 /* 547 * Load modules to try and execute an image that we do not understand. 548 * If no execsw entries are present, we load those likely to be needed 549 * in order to run native images only. Otherwise, we autoload all 550 * possible modules that could let us run the binary. XXX lame 551 */ 552 static void 553 exec_autoload(void) 554 { 555 #ifdef MODULAR 556 static const char * const native[] = { 557 "exec_elf32", 558 "exec_elf64", 559 "exec_script", 560 NULL 561 }; 562 static const char * const compat[] = { 563 "exec_elf32", 564 "exec_elf64", 565 "exec_script", 566 "exec_aout", 567 "exec_coff", 568 "exec_ecoff", 569 "compat_aoutm68k", 570 "compat_freebsd", 571 "compat_ibcs2", 572 "compat_linux", 573 "compat_linux32", 574 "compat_netbsd32", 575 "compat_sunos", 576 "compat_sunos32", 577 "compat_svr4", 578 "compat_svr4_32", 579 "compat_ultrix", 580 NULL 581 }; 582 char const * const *list; 583 int i; 584 585 list = (nexecs == 0 ? native : compat); 586 for (i = 0; list[i] != NULL; i++) { 587 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) { 588 continue; 589 } 590 yield(); 591 } 592 #endif 593 } 594 595 static int 596 execve_loadvm(struct lwp *l, const char *path, char * const *args, 597 char * const *envs, execve_fetch_element_t fetch_element, 598 struct execve_data * restrict data) 599 { 600 struct exec_package * const epp = &data->ed_pack; 601 int error; 602 struct proc *p; 603 char *dp; 604 u_int modgen; 605 606 KASSERT(data != NULL); 607 608 p = l->l_proc; 609 modgen = 0; 610 611 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0); 612 613 /* 614 * Check if we have exceeded our number of processes limit. 615 * This is so that we handle the case where a root daemon 616 * forked, ran setuid to become the desired user and is trying 617 * to exec. The obvious place to do the reference counting check 618 * is setuid(), but we don't do the reference counting check there 619 * like other OS's do because then all the programs that use setuid() 620 * must be modified to check the return code of setuid() and exit(). 621 * It is dangerous to make setuid() fail, because it fails open and 622 * the program will continue to run as root. If we make it succeed 623 * and return an error code, again we are not enforcing the limit. 624 * The best place to enforce the limit is here, when the process tries 625 * to execute a new image, because eventually the process will need 626 * to call exec in order to do something useful. 627 */ 628 retry: 629 if (p->p_flag & PK_SUGID) { 630 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 631 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 632 &p->p_rlimit[RLIMIT_NPROC], 633 KAUTH_ARG(RLIMIT_NPROC)) != 0 && 634 chgproccnt(kauth_cred_getuid(l->l_cred), 0) > 635 p->p_rlimit[RLIMIT_NPROC].rlim_cur) 636 return EAGAIN; 637 } 638 639 /* 640 * Drain existing references and forbid new ones. The process 641 * should be left alone until we're done here. This is necessary 642 * to avoid race conditions - e.g. in ptrace() - that might allow 643 * a local user to illicitly obtain elevated privileges. 644 */ 645 rw_enter(&p->p_reflock, RW_WRITER); 646 647 /* 648 * Init the namei data to point the file user's program name. 649 * This is done here rather than in check_exec(), so that it's 650 * possible to override this settings if any of makecmd/probe 651 * functions call check_exec() recursively - for example, 652 * see exec_script_makecmds(). 653 */ 654 error = pathbuf_copyin(path, &data->ed_pathbuf); 655 if (error) { 656 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__, 657 path, error)); 658 goto clrflg; 659 } 660 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); 661 data->ed_resolvedpathbuf = PNBUF_GET(); 662 663 /* 664 * initialize the fields of the exec package. 665 */ 666 epp->ep_kname = data->ed_pathstring; 667 epp->ep_resolvedname = data->ed_resolvedpathbuf; 668 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); 669 epp->ep_hdrlen = exec_maxhdrsz; 670 epp->ep_hdrvalid = 0; 671 epp->ep_emul_arg = NULL; 672 epp->ep_emul_arg_free = NULL; 673 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds)); 674 epp->ep_vap = &data->ed_attr; 675 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0; 676 MD_TOPDOWN_INIT(epp); 677 epp->ep_emul_root = NULL; 678 epp->ep_interp = NULL; 679 epp->ep_esch = NULL; 680 epp->ep_pax_flags = 0; 681 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch)); 682 683 rw_enter(&exec_lock, RW_READER); 684 685 /* see if we can run it. */ 686 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) { 687 if (error != ENOENT) { 688 DPRINTF(("%s: check exec failed %d\n", 689 __func__, error)); 690 } 691 goto freehdr; 692 } 693 694 /* allocate an argument buffer */ 695 data->ed_argp = pool_get(&exec_pool, PR_WAITOK); 696 KASSERT(data->ed_argp != NULL); 697 dp = data->ed_argp; 698 699 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) { 700 goto bad; 701 } 702 703 /* 704 * Calculate the new stack size. 705 */ 706 707 #ifdef PAX_ASLR 708 #define ASLR_GAP(l) (pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0) 709 #else 710 #define ASLR_GAP(l) 0 711 #endif 712 713 #ifdef __MACHINE_STACK_GROWS_UP 714 /* 715 * copyargs() fills argc/argv/envp from the lower address even on 716 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP 717 * so that _rtld() use it. 718 */ 719 #define RTLD_GAP 32 720 #else 721 #define RTLD_GAP 0 722 #endif 723 724 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp; 725 726 data->ed_argslen = calcargs(data, argenvstrlen); 727 728 const size_t len = calcstack(data, ASLR_GAP(l) + RTLD_GAP); 729 730 if (len > epp->ep_ssize) { 731 /* in effect, compare to initial limit */ 732 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len)); 733 error = ENOMEM; 734 goto bad; 735 } 736 /* adjust "active stack depth" for process VSZ */ 737 epp->ep_ssize = len; 738 739 return 0; 740 741 bad: 742 /* free the vmspace-creation commands, and release their references */ 743 kill_vmcmds(&epp->ep_vmcmds); 744 /* kill any opened file descriptor, if necessary */ 745 if (epp->ep_flags & EXEC_HASFD) { 746 epp->ep_flags &= ~EXEC_HASFD; 747 fd_close(epp->ep_fd); 748 } 749 /* close and put the exec'd file */ 750 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 751 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 752 vput(epp->ep_vp); 753 pool_put(&exec_pool, data->ed_argp); 754 755 freehdr: 756 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 757 if (epp->ep_emul_root != NULL) 758 vrele(epp->ep_emul_root); 759 if (epp->ep_interp != NULL) 760 vrele(epp->ep_interp); 761 762 rw_exit(&exec_lock); 763 764 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 765 pathbuf_destroy(data->ed_pathbuf); 766 PNBUF_PUT(data->ed_resolvedpathbuf); 767 768 clrflg: 769 rw_exit(&p->p_reflock); 770 771 if (modgen != module_gen && error == ENOEXEC) { 772 modgen = module_gen; 773 exec_autoload(); 774 goto retry; 775 } 776 777 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 778 return error; 779 } 780 781 static int 782 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data) 783 { 784 struct exec_package * const epp = &data->ed_pack; 785 struct proc *p = l->l_proc; 786 struct exec_vmcmd *base_vcp; 787 int error = 0; 788 size_t i; 789 790 /* record proc's vnode, for use by procfs and others */ 791 if (p->p_textvp) 792 vrele(p->p_textvp); 793 vref(epp->ep_vp); 794 p->p_textvp = epp->ep_vp; 795 796 /* create the new process's VM space by running the vmcmds */ 797 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__); 798 799 DUMPVMCMDS(epp, 0, 0); 800 801 base_vcp = NULL; 802 803 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) { 804 struct exec_vmcmd *vcp; 805 806 vcp = &epp->ep_vmcmds.evs_cmds[i]; 807 if (vcp->ev_flags & VMCMD_RELATIVE) { 808 KASSERTMSG(base_vcp != NULL, 809 "%s: relative vmcmd with no base", __func__); 810 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0, 811 "%s: illegal base & relative vmcmd", __func__); 812 vcp->ev_addr += base_vcp->ev_addr; 813 } 814 error = (*vcp->ev_proc)(l, vcp); 815 if (error) 816 DUMPVMCMDS(epp, i, error); 817 if (vcp->ev_flags & VMCMD_BASE) 818 base_vcp = vcp; 819 } 820 821 /* free the vmspace-creation commands, and release their references */ 822 kill_vmcmds(&epp->ep_vmcmds); 823 824 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 825 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 826 vput(epp->ep_vp); 827 828 /* if an error happened, deallocate and punt */ 829 if (error != 0) { 830 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error)); 831 } 832 return error; 833 } 834 835 static void 836 execve_free_data(struct execve_data *data) 837 { 838 struct exec_package * const epp = &data->ed_pack; 839 840 /* free the vmspace-creation commands, and release their references */ 841 kill_vmcmds(&epp->ep_vmcmds); 842 /* kill any opened file descriptor, if necessary */ 843 if (epp->ep_flags & EXEC_HASFD) { 844 epp->ep_flags &= ~EXEC_HASFD; 845 fd_close(epp->ep_fd); 846 } 847 848 /* close and put the exec'd file */ 849 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 850 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred); 851 vput(epp->ep_vp); 852 pool_put(&exec_pool, data->ed_argp); 853 854 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 855 if (epp->ep_emul_root != NULL) 856 vrele(epp->ep_emul_root); 857 if (epp->ep_interp != NULL) 858 vrele(epp->ep_interp); 859 860 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 861 pathbuf_destroy(data->ed_pathbuf); 862 PNBUF_PUT(data->ed_resolvedpathbuf); 863 } 864 865 static void 866 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring) 867 { 868 const char *commandname; 869 size_t commandlen; 870 char *path; 871 872 /* set command name & other accounting info */ 873 commandname = strrchr(epp->ep_resolvedname, '/'); 874 if (commandname != NULL) { 875 commandname++; 876 } else { 877 commandname = epp->ep_resolvedname; 878 } 879 commandlen = min(strlen(commandname), MAXCOMLEN); 880 (void)memcpy(p->p_comm, commandname, commandlen); 881 p->p_comm[commandlen] = '\0'; 882 883 path = PNBUF_GET(); 884 885 /* 886 * If the path starts with /, we don't need to do any work. 887 * This handles the majority of the cases. 888 * In the future perhaps we could canonicalize it? 889 */ 890 if (pathstring[0] == '/') { 891 (void)strlcpy(path, pathstring, 892 MAXPATHLEN); 893 epp->ep_path = path; 894 } 895 #ifdef notyet 896 /* 897 * Although this works most of the time [since the entry was just 898 * entered in the cache] we don't use it because it will fail for 899 * entries that are not placed in the cache because their name is 900 * longer than NCHNAMLEN and it is not the cleanest interface, 901 * because there could be races. When the namei cache is re-written, 902 * this can be changed to use the appropriate function. 903 */ 904 else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p))) 905 epp->ep_path = path; 906 #endif 907 else { 908 #ifdef notyet 909 printf("Cannot get path for pid %d [%s] (error %d)\n", 910 (int)p->p_pid, p->p_comm, error); 911 #endif 912 epp->ep_path = NULL; 913 PNBUF_PUT(path); 914 } 915 } 916 917 /* XXX elsewhere */ 918 static int 919 credexec(struct lwp *l, struct vattr *attr) 920 { 921 struct proc *p = l->l_proc; 922 int error; 923 924 /* 925 * Deal with set[ug]id. MNT_NOSUID has already been used to disable 926 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked 927 * out additional references on the process for the moment. 928 */ 929 if ((p->p_slflag & PSL_TRACED) == 0 && 930 931 (((attr->va_mode & S_ISUID) != 0 && 932 kauth_cred_geteuid(l->l_cred) != attr->va_uid) || 933 934 ((attr->va_mode & S_ISGID) != 0 && 935 kauth_cred_getegid(l->l_cred) != attr->va_gid))) { 936 /* 937 * Mark the process as SUGID before we do 938 * anything that might block. 939 */ 940 proc_crmod_enter(); 941 proc_crmod_leave(NULL, NULL, true); 942 943 /* Make sure file descriptors 0..2 are in use. */ 944 if ((error = fd_checkstd()) != 0) { 945 DPRINTF(("%s: fdcheckstd failed %d\n", 946 __func__, error)); 947 return error; 948 } 949 950 /* 951 * Copy the credential so other references don't see our 952 * changes. 953 */ 954 l->l_cred = kauth_cred_copy(l->l_cred); 955 #ifdef KTRACE 956 /* 957 * If the persistent trace flag isn't set, turn off. 958 */ 959 if (p->p_tracep) { 960 mutex_enter(&ktrace_lock); 961 if (!(p->p_traceflag & KTRFAC_PERSISTENT)) 962 ktrderef(p); 963 mutex_exit(&ktrace_lock); 964 } 965 #endif 966 if (attr->va_mode & S_ISUID) 967 kauth_cred_seteuid(l->l_cred, attr->va_uid); 968 if (attr->va_mode & S_ISGID) 969 kauth_cred_setegid(l->l_cred, attr->va_gid); 970 } else { 971 if (kauth_cred_geteuid(l->l_cred) == 972 kauth_cred_getuid(l->l_cred) && 973 kauth_cred_getegid(l->l_cred) == 974 kauth_cred_getgid(l->l_cred)) 975 p->p_flag &= ~PK_SUGID; 976 } 977 978 /* 979 * Copy the credential so other references don't see our changes. 980 * Test to see if this is necessary first, since in the common case 981 * we won't need a private reference. 982 */ 983 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || 984 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { 985 l->l_cred = kauth_cred_copy(l->l_cred); 986 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); 987 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); 988 } 989 990 /* Update the master credentials. */ 991 if (l->l_cred != p->p_cred) { 992 kauth_cred_t ocred; 993 994 kauth_cred_hold(l->l_cred); 995 mutex_enter(p->p_lock); 996 ocred = p->p_cred; 997 p->p_cred = l->l_cred; 998 mutex_exit(p->p_lock); 999 kauth_cred_free(ocred); 1000 } 1001 1002 return 0; 1003 } 1004 1005 static void 1006 emulexec(struct lwp *l, struct exec_package *epp) 1007 { 1008 struct proc *p = l->l_proc; 1009 1010 /* The emulation root will usually have been found when we looked 1011 * for the elf interpreter (or similar), if not look now. */ 1012 if (epp->ep_esch->es_emul->e_path != NULL && 1013 epp->ep_emul_root == NULL) 1014 emul_find_root(l, epp); 1015 1016 /* Any old emulation root got removed by fdcloseexec */ 1017 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); 1018 p->p_cwdi->cwdi_edir = epp->ep_emul_root; 1019 rw_exit(&p->p_cwdi->cwdi_lock); 1020 epp->ep_emul_root = NULL; 1021 if (epp->ep_interp != NULL) 1022 vrele(epp->ep_interp); 1023 1024 /* 1025 * Call emulation specific exec hook. This can setup per-process 1026 * p->p_emuldata or do any other per-process stuff an emulation needs. 1027 * 1028 * If we are executing process of different emulation than the 1029 * original forked process, call e_proc_exit() of the old emulation 1030 * first, then e_proc_exec() of new emulation. If the emulation is 1031 * same, the exec hook code should deallocate any old emulation 1032 * resources held previously by this process. 1033 */ 1034 if (p->p_emul && p->p_emul->e_proc_exit 1035 && p->p_emul != epp->ep_esch->es_emul) 1036 (*p->p_emul->e_proc_exit)(p); 1037 1038 /* 1039 * This is now LWP 1. 1040 */ 1041 /* XXX elsewhere */ 1042 mutex_enter(p->p_lock); 1043 p->p_nlwpid = 1; 1044 l->l_lid = 1; 1045 mutex_exit(p->p_lock); 1046 1047 /* 1048 * Call exec hook. Emulation code may NOT store reference to anything 1049 * from &pack. 1050 */ 1051 if (epp->ep_esch->es_emul->e_proc_exec) 1052 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp); 1053 1054 /* update p_emul, the old value is no longer needed */ 1055 p->p_emul = epp->ep_esch->es_emul; 1056 1057 /* ...and the same for p_execsw */ 1058 p->p_execsw = epp->ep_esch; 1059 1060 #ifdef __HAVE_SYSCALL_INTERN 1061 (*p->p_emul->e_syscall_intern)(p); 1062 #endif 1063 ktremul(); 1064 } 1065 1066 static int 1067 execve_runproc(struct lwp *l, struct execve_data * restrict data, 1068 bool no_local_exec_lock, bool is_spawn) 1069 { 1070 struct exec_package * const epp = &data->ed_pack; 1071 int error = 0; 1072 struct proc *p; 1073 1074 /* 1075 * In case of a posix_spawn operation, the child doing the exec 1076 * might not hold the reader lock on exec_lock, but the parent 1077 * will do this instead. 1078 */ 1079 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock)); 1080 KASSERT(!no_local_exec_lock || is_spawn); 1081 KASSERT(data != NULL); 1082 1083 p = l->l_proc; 1084 1085 /* Get rid of other LWPs. */ 1086 if (p->p_nlwps > 1) { 1087 mutex_enter(p->p_lock); 1088 exit_lwps(l); 1089 mutex_exit(p->p_lock); 1090 } 1091 KDASSERT(p->p_nlwps == 1); 1092 1093 /* Destroy any lwpctl info. */ 1094 if (p->p_lwpctl != NULL) 1095 lwp_ctl_exit(); 1096 1097 /* Remove POSIX timers */ 1098 timers_free(p, TIMERS_POSIX); 1099 1100 /* 1101 * Do whatever is necessary to prepare the address space 1102 * for remapping. Note that this might replace the current 1103 * vmspace with another! 1104 */ 1105 if (is_spawn) 1106 uvmspace_spawn(l, epp->ep_vm_minaddr, 1107 epp->ep_vm_maxaddr, 1108 epp->ep_flags & EXEC_TOPDOWN_VM); 1109 else 1110 uvmspace_exec(l, epp->ep_vm_minaddr, 1111 epp->ep_vm_maxaddr, 1112 epp->ep_flags & EXEC_TOPDOWN_VM); 1113 1114 struct vmspace *vm; 1115 vm = p->p_vmspace; 1116 vm->vm_taddr = (void *)epp->ep_taddr; 1117 vm->vm_tsize = btoc(epp->ep_tsize); 1118 vm->vm_daddr = (void*)epp->ep_daddr; 1119 vm->vm_dsize = btoc(epp->ep_dsize); 1120 vm->vm_ssize = btoc(epp->ep_ssize); 1121 vm->vm_issize = 0; 1122 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr; 1123 vm->vm_minsaddr = (void *)epp->ep_minsaddr; 1124 1125 #ifdef PAX_ASLR 1126 pax_aslr_init(l, vm); 1127 #endif /* PAX_ASLR */ 1128 1129 /* Now map address space. */ 1130 error = execve_dovmcmds(l, data); 1131 if (error != 0) 1132 goto exec_abort; 1133 1134 pathexec(epp, p, data->ed_pathstring); 1135 1136 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize); 1137 1138 error = copyoutargs(data, l, newstack); 1139 if (error != 0) 1140 goto exec_abort; 1141 1142 cwdexec(p); 1143 fd_closeexec(); /* handle close on exec */ 1144 1145 if (__predict_false(ktrace_on)) 1146 fd_ktrexecfd(); 1147 1148 execsigs(p); /* reset catched signals */ 1149 1150 mutex_enter(p->p_lock); 1151 l->l_ctxlink = NULL; /* reset ucontext link */ 1152 p->p_acflag &= ~AFORK; 1153 p->p_flag |= PK_EXEC; 1154 mutex_exit(p->p_lock); 1155 1156 /* 1157 * Stop profiling. 1158 */ 1159 if ((p->p_stflag & PST_PROFIL) != 0) { 1160 mutex_spin_enter(&p->p_stmutex); 1161 stopprofclock(p); 1162 mutex_spin_exit(&p->p_stmutex); 1163 } 1164 1165 /* 1166 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have 1167 * exited and exec()/exit() are the only places it will be cleared. 1168 */ 1169 if ((p->p_lflag & PL_PPWAIT) != 0) { 1170 #if 0 1171 lwp_t *lp; 1172 1173 mutex_enter(proc_lock); 1174 lp = p->p_vforklwp; 1175 p->p_vforklwp = NULL; 1176 1177 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1178 p->p_lflag &= ~PL_PPWAIT; 1179 1180 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */ 1181 cv_broadcast(&lp->l_waitcv); 1182 mutex_exit(proc_lock); 1183 #else 1184 mutex_enter(proc_lock); 1185 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1186 p->p_lflag &= ~PL_PPWAIT; 1187 cv_broadcast(&p->p_pptr->p_waitcv); 1188 mutex_exit(proc_lock); 1189 #endif 1190 } 1191 1192 error = credexec(l, &data->ed_attr); 1193 if (error) 1194 goto exec_abort; 1195 1196 #if defined(__HAVE_RAS) 1197 /* 1198 * Remove all RASs from the address space. 1199 */ 1200 ras_purgeall(); 1201 #endif 1202 1203 doexechooks(p); 1204 1205 /* 1206 * Set initial SP at the top of the stack. 1207 * 1208 * Note that on machines where stack grows up (e.g. hppa), SP points to 1209 * the end of arg/env strings. Userland guesses the address of argc 1210 * via ps_strings::ps_argvstr. 1211 */ 1212 1213 /* Setup new registers and do misc. setup. */ 1214 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack); 1215 if (epp->ep_esch->es_setregs) 1216 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack); 1217 1218 /* Provide a consistent LWP private setting */ 1219 (void)lwp_setprivate(l, NULL); 1220 1221 /* Discard all PCU state; need to start fresh */ 1222 pcu_discard_all(l); 1223 1224 /* map the process's signal trampoline code */ 1225 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) { 1226 DPRINTF(("%s: map sigcode failed %d\n", __func__, error)); 1227 goto exec_abort; 1228 } 1229 1230 pool_put(&exec_pool, data->ed_argp); 1231 1232 /* notify others that we exec'd */ 1233 KNOTE(&p->p_klist, NOTE_EXEC); 1234 1235 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1236 1237 SDT_PROBE(proc,,,exec_success, epp->ep_kname, 0, 0, 0, 0); 1238 1239 emulexec(l, epp); 1240 1241 /* Allow new references from the debugger/procfs. */ 1242 rw_exit(&p->p_reflock); 1243 if (!no_local_exec_lock) 1244 rw_exit(&exec_lock); 1245 1246 mutex_enter(proc_lock); 1247 1248 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) { 1249 ksiginfo_t ksi; 1250 1251 KSI_INIT_EMPTY(&ksi); 1252 ksi.ksi_signo = SIGTRAP; 1253 ksi.ksi_lid = l->l_lid; 1254 kpsignal(p, &ksi, NULL); 1255 } 1256 1257 if (p->p_sflag & PS_STOPEXEC) { 1258 ksiginfoq_t kq; 1259 1260 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 1261 p->p_pptr->p_nstopchild++; 1262 p->p_pptr->p_waited = 0; 1263 mutex_enter(p->p_lock); 1264 ksiginfo_queue_init(&kq); 1265 sigclearall(p, &contsigmask, &kq); 1266 lwp_lock(l); 1267 l->l_stat = LSSTOP; 1268 p->p_stat = SSTOP; 1269 p->p_nrlwps--; 1270 lwp_unlock(l); 1271 mutex_exit(p->p_lock); 1272 mutex_exit(proc_lock); 1273 lwp_lock(l); 1274 mi_switch(l); 1275 ksiginfo_queue_drain(&kq); 1276 KERNEL_LOCK(l->l_biglocks, l); 1277 } else { 1278 mutex_exit(proc_lock); 1279 } 1280 1281 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1282 pathbuf_destroy(data->ed_pathbuf); 1283 PNBUF_PUT(data->ed_resolvedpathbuf); 1284 DPRINTF(("%s finished\n", __func__)); 1285 return EJUSTRETURN; 1286 1287 exec_abort: 1288 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 1289 rw_exit(&p->p_reflock); 1290 if (!no_local_exec_lock) 1291 rw_exit(&exec_lock); 1292 1293 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1294 pathbuf_destroy(data->ed_pathbuf); 1295 PNBUF_PUT(data->ed_resolvedpathbuf); 1296 1297 /* 1298 * the old process doesn't exist anymore. exit gracefully. 1299 * get rid of the (new) address space we have created, if any, get rid 1300 * of our namei data and vnode, and exit noting failure 1301 */ 1302 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, 1303 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); 1304 1305 exec_free_emul_arg(epp); 1306 pool_put(&exec_pool, data->ed_argp); 1307 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1308 if (epp->ep_emul_root != NULL) 1309 vrele(epp->ep_emul_root); 1310 if (epp->ep_interp != NULL) 1311 vrele(epp->ep_interp); 1312 1313 /* Acquire the sched-state mutex (exit1() will release it). */ 1314 if (!is_spawn) { 1315 mutex_enter(p->p_lock); 1316 exit1(l, W_EXITCODE(error, SIGABRT)); 1317 } 1318 1319 return error; 1320 } 1321 1322 int 1323 execve1(struct lwp *l, const char *path, char * const *args, 1324 char * const *envs, execve_fetch_element_t fetch_element) 1325 { 1326 struct execve_data data; 1327 int error; 1328 1329 error = execve_loadvm(l, path, args, envs, fetch_element, &data); 1330 if (error) 1331 return error; 1332 error = execve_runproc(l, &data, false, false); 1333 return error; 1334 } 1335 1336 static size_t 1337 fromptrsz(const struct exec_package *epp) 1338 { 1339 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *); 1340 } 1341 1342 static size_t 1343 ptrsz(const struct exec_package *epp) 1344 { 1345 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *); 1346 } 1347 1348 static size_t 1349 calcargs(struct execve_data * restrict data, const size_t argenvstrlen) 1350 { 1351 struct exec_package * const epp = &data->ed_pack; 1352 1353 const size_t nargenvptrs = 1354 1 + /* long argc */ 1355 data->ed_argc + /* char *argv[] */ 1356 1 + /* \0 */ 1357 data->ed_envc + /* char *env[] */ 1358 1 + /* \0 */ 1359 epp->ep_esch->es_arglen; /* auxinfo */ 1360 1361 return (nargenvptrs * ptrsz(epp)) + argenvstrlen; 1362 } 1363 1364 static size_t 1365 calcstack(struct execve_data * restrict data, const size_t gaplen) 1366 { 1367 struct exec_package * const epp = &data->ed_pack; 1368 1369 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode - 1370 epp->ep_esch->es_emul->e_sigcode; 1371 1372 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ? 1373 sizeof(struct ps_strings32) : sizeof(struct ps_strings); 1374 1375 const size_t sigcode_psstr_sz = 1376 data->ed_szsigcode + /* sigcode */ 1377 data->ed_ps_strings_sz + /* ps_strings */ 1378 STACK_PTHREADSPACE; /* pthread space */ 1379 1380 const size_t stacklen = 1381 data->ed_argslen + 1382 gaplen + 1383 sigcode_psstr_sz; 1384 1385 /* make the stack "safely" aligned */ 1386 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES); 1387 } 1388 1389 static int 1390 copyoutargs(struct execve_data * restrict data, struct lwp *l, 1391 char * const newstack) 1392 { 1393 struct exec_package * const epp = &data->ed_pack; 1394 struct proc *p = l->l_proc; 1395 int error; 1396 1397 /* remember information about the process */ 1398 data->ed_arginfo.ps_nargvstr = data->ed_argc; 1399 data->ed_arginfo.ps_nenvstr = data->ed_envc; 1400 1401 /* 1402 * Allocate the stack address passed to the newly execve()'ed process. 1403 * 1404 * The new stack address will be set to the SP (stack pointer) register 1405 * in setregs(). 1406 */ 1407 1408 char *newargs = STACK_ALLOC( 1409 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen); 1410 1411 error = (*epp->ep_esch->es_copyargs)(l, epp, 1412 &data->ed_arginfo, &newargs, data->ed_argp); 1413 1414 if (epp->ep_path) { 1415 PNBUF_PUT(epp->ep_path); 1416 epp->ep_path = NULL; 1417 } 1418 if (error) { 1419 DPRINTF(("%s: copyargs failed %d\n", __func__, error)); 1420 return error; 1421 } 1422 1423 error = copyoutpsstrs(data, p); 1424 if (error != 0) 1425 return error; 1426 1427 return 0; 1428 } 1429 1430 static int 1431 copyoutpsstrs(struct execve_data * restrict data, struct proc *p) 1432 { 1433 struct exec_package * const epp = &data->ed_pack; 1434 struct ps_strings32 arginfo32; 1435 void *aip; 1436 int error; 1437 1438 /* fill process ps_strings info */ 1439 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr, 1440 STACK_PTHREADSPACE), data->ed_ps_strings_sz); 1441 1442 if (epp->ep_flags & EXEC_32) { 1443 aip = &arginfo32; 1444 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; 1445 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; 1446 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; 1447 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; 1448 } else 1449 aip = &data->ed_arginfo; 1450 1451 /* copy out the process's ps_strings structure */ 1452 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) 1453 != 0) { 1454 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n", 1455 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); 1456 return error; 1457 } 1458 1459 return 0; 1460 } 1461 1462 static int 1463 copyinargs(struct execve_data * restrict data, char * const *args, 1464 char * const *envs, execve_fetch_element_t fetch_element, char **dpp) 1465 { 1466 struct exec_package * const epp = &data->ed_pack; 1467 char *dp; 1468 size_t i; 1469 int error; 1470 1471 dp = *dpp; 1472 1473 data->ed_argc = 0; 1474 1475 /* copy the fake args list, if there's one, freeing it as we go */ 1476 if (epp->ep_flags & EXEC_HASARGL) { 1477 struct exec_fakearg *fa = epp->ep_fa; 1478 1479 while (fa->fa_arg != NULL) { 1480 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1481 size_t len; 1482 1483 len = strlcpy(dp, fa->fa_arg, maxlen); 1484 /* Count NUL into len. */ 1485 if (len < maxlen) 1486 len++; 1487 else { 1488 while (fa->fa_arg != NULL) { 1489 kmem_free(fa->fa_arg, fa->fa_len); 1490 fa++; 1491 } 1492 kmem_free(epp->ep_fa, epp->ep_fa_len); 1493 epp->ep_flags &= ~EXEC_HASARGL; 1494 return E2BIG; 1495 } 1496 ktrexecarg(fa->fa_arg, len - 1); 1497 dp += len; 1498 1499 kmem_free(fa->fa_arg, fa->fa_len); 1500 fa++; 1501 data->ed_argc++; 1502 } 1503 kmem_free(epp->ep_fa, epp->ep_fa_len); 1504 epp->ep_flags &= ~EXEC_HASARGL; 1505 } 1506 1507 /* 1508 * Read and count argument strings from user. 1509 */ 1510 1511 if (args == NULL) { 1512 DPRINTF(("%s: null args\n", __func__)); 1513 return EINVAL; 1514 } 1515 if (epp->ep_flags & EXEC_SKIPARG) 1516 args = (const void *)((const char *)args + fromptrsz(epp)); 1517 i = 0; 1518 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg); 1519 if (error != 0) { 1520 DPRINTF(("%s: copyin arg %d\n", __func__, error)); 1521 return error; 1522 } 1523 data->ed_argc += i; 1524 1525 /* 1526 * Read and count environment strings from user. 1527 */ 1528 1529 data->ed_envc = 0; 1530 /* environment need not be there */ 1531 if (envs == NULL) 1532 goto done; 1533 i = 0; 1534 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv); 1535 if (error != 0) { 1536 DPRINTF(("%s: copyin env %d\n", __func__, error)); 1537 return error; 1538 } 1539 data->ed_envc += i; 1540 1541 done: 1542 *dpp = dp; 1543 1544 return 0; 1545 } 1546 1547 static int 1548 copyinargstrs(struct execve_data * restrict data, char * const *strs, 1549 execve_fetch_element_t fetch_element, char **dpp, size_t *ip, 1550 void (*ktr)(const void *, size_t)) 1551 { 1552 char *dp, *sp; 1553 size_t i; 1554 int error; 1555 1556 dp = *dpp; 1557 1558 i = 0; 1559 while (1) { 1560 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1561 size_t len; 1562 1563 if ((error = (*fetch_element)(strs, i, &sp)) != 0) { 1564 return error; 1565 } 1566 if (!sp) 1567 break; 1568 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) { 1569 if (error == ENAMETOOLONG) 1570 error = E2BIG; 1571 return error; 1572 } 1573 if (__predict_false(ktrace_on)) 1574 (*ktr)(dp, len - 1); 1575 dp += len; 1576 i++; 1577 } 1578 1579 *dpp = dp; 1580 *ip = i; 1581 1582 return 0; 1583 } 1584 1585 /* 1586 * Copy argv and env strings from kernel buffer (argp) to the new stack. 1587 * Those strings are located just after auxinfo. 1588 */ 1589 int 1590 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, 1591 char **stackp, void *argp) 1592 { 1593 char **cpp, *dp, *sp; 1594 size_t len; 1595 void *nullp; 1596 long argc, envc; 1597 int error; 1598 1599 cpp = (char **)*stackp; 1600 nullp = NULL; 1601 argc = arginfo->ps_nargvstr; 1602 envc = arginfo->ps_nenvstr; 1603 1604 /* argc on stack is long */ 1605 CTASSERT(sizeof(*cpp) == sizeof(argc)); 1606 1607 dp = (char *)(cpp + 1608 1 + /* long argc */ 1609 argc + /* char *argv[] */ 1610 1 + /* \0 */ 1611 envc + /* char *env[] */ 1612 1 + /* \0 */ 1613 /* XXX auxinfo multiplied by ptr size? */ 1614 pack->ep_esch->es_arglen); /* auxinfo */ 1615 sp = argp; 1616 1617 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { 1618 COPYPRINTF("", cpp - 1, sizeof(argc)); 1619 return error; 1620 } 1621 1622 /* XXX don't copy them out, remap them! */ 1623 arginfo->ps_argvstr = cpp; /* remember location of argv for later */ 1624 1625 for (; --argc >= 0; sp += len, dp += len) { 1626 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1627 COPYPRINTF("", cpp - 1, sizeof(dp)); 1628 return error; 1629 } 1630 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1631 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1632 return error; 1633 } 1634 } 1635 1636 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1637 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1638 return error; 1639 } 1640 1641 arginfo->ps_envstr = cpp; /* remember location of envp for later */ 1642 1643 for (; --envc >= 0; sp += len, dp += len) { 1644 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1645 COPYPRINTF("", cpp - 1, sizeof(dp)); 1646 return error; 1647 } 1648 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1649 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1650 return error; 1651 } 1652 1653 } 1654 1655 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1656 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1657 return error; 1658 } 1659 1660 *stackp = (char *)cpp; 1661 return 0; 1662 } 1663 1664 1665 /* 1666 * Add execsw[] entries. 1667 */ 1668 int 1669 exec_add(struct execsw *esp, int count) 1670 { 1671 struct exec_entry *it; 1672 int i; 1673 1674 if (count == 0) { 1675 return 0; 1676 } 1677 1678 /* Check for duplicates. */ 1679 rw_enter(&exec_lock, RW_WRITER); 1680 for (i = 0; i < count; i++) { 1681 LIST_FOREACH(it, &ex_head, ex_list) { 1682 /* assume unique (makecmds, probe_func, emulation) */ 1683 if (it->ex_sw->es_makecmds == esp[i].es_makecmds && 1684 it->ex_sw->u.elf_probe_func == 1685 esp[i].u.elf_probe_func && 1686 it->ex_sw->es_emul == esp[i].es_emul) { 1687 rw_exit(&exec_lock); 1688 return EEXIST; 1689 } 1690 } 1691 } 1692 1693 /* Allocate new entries. */ 1694 for (i = 0; i < count; i++) { 1695 it = kmem_alloc(sizeof(*it), KM_SLEEP); 1696 it->ex_sw = &esp[i]; 1697 LIST_INSERT_HEAD(&ex_head, it, ex_list); 1698 } 1699 1700 /* update execsw[] */ 1701 exec_init(0); 1702 rw_exit(&exec_lock); 1703 return 0; 1704 } 1705 1706 /* 1707 * Remove execsw[] entry. 1708 */ 1709 int 1710 exec_remove(struct execsw *esp, int count) 1711 { 1712 struct exec_entry *it, *next; 1713 int i; 1714 const struct proclist_desc *pd; 1715 proc_t *p; 1716 1717 if (count == 0) { 1718 return 0; 1719 } 1720 1721 /* Abort if any are busy. */ 1722 rw_enter(&exec_lock, RW_WRITER); 1723 for (i = 0; i < count; i++) { 1724 mutex_enter(proc_lock); 1725 for (pd = proclists; pd->pd_list != NULL; pd++) { 1726 PROCLIST_FOREACH(p, pd->pd_list) { 1727 if (p->p_execsw == &esp[i]) { 1728 mutex_exit(proc_lock); 1729 rw_exit(&exec_lock); 1730 return EBUSY; 1731 } 1732 } 1733 } 1734 mutex_exit(proc_lock); 1735 } 1736 1737 /* None are busy, so remove them all. */ 1738 for (i = 0; i < count; i++) { 1739 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { 1740 next = LIST_NEXT(it, ex_list); 1741 if (it->ex_sw == &esp[i]) { 1742 LIST_REMOVE(it, ex_list); 1743 kmem_free(it, sizeof(*it)); 1744 break; 1745 } 1746 } 1747 } 1748 1749 /* update execsw[] */ 1750 exec_init(0); 1751 rw_exit(&exec_lock); 1752 return 0; 1753 } 1754 1755 /* 1756 * Initialize exec structures. If init_boot is true, also does necessary 1757 * one-time initialization (it's called from main() that way). 1758 * Once system is multiuser, this should be called with exec_lock held, 1759 * i.e. via exec_{add|remove}(). 1760 */ 1761 int 1762 exec_init(int init_boot) 1763 { 1764 const struct execsw **sw; 1765 struct exec_entry *ex; 1766 SLIST_HEAD(,exec_entry) first; 1767 SLIST_HEAD(,exec_entry) any; 1768 SLIST_HEAD(,exec_entry) last; 1769 int i, sz; 1770 1771 if (init_boot) { 1772 /* do one-time initializations */ 1773 rw_init(&exec_lock); 1774 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); 1775 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, 1776 "execargs", &exec_palloc, IPL_NONE); 1777 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0); 1778 } else { 1779 KASSERT(rw_write_held(&exec_lock)); 1780 } 1781 1782 /* Sort each entry onto the appropriate queue. */ 1783 SLIST_INIT(&first); 1784 SLIST_INIT(&any); 1785 SLIST_INIT(&last); 1786 sz = 0; 1787 LIST_FOREACH(ex, &ex_head, ex_list) { 1788 switch(ex->ex_sw->es_prio) { 1789 case EXECSW_PRIO_FIRST: 1790 SLIST_INSERT_HEAD(&first, ex, ex_slist); 1791 break; 1792 case EXECSW_PRIO_ANY: 1793 SLIST_INSERT_HEAD(&any, ex, ex_slist); 1794 break; 1795 case EXECSW_PRIO_LAST: 1796 SLIST_INSERT_HEAD(&last, ex, ex_slist); 1797 break; 1798 default: 1799 panic("%s", __func__); 1800 break; 1801 } 1802 sz++; 1803 } 1804 1805 /* 1806 * Create new execsw[]. Ensure we do not try a zero-sized 1807 * allocation. 1808 */ 1809 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); 1810 i = 0; 1811 SLIST_FOREACH(ex, &first, ex_slist) { 1812 sw[i++] = ex->ex_sw; 1813 } 1814 SLIST_FOREACH(ex, &any, ex_slist) { 1815 sw[i++] = ex->ex_sw; 1816 } 1817 SLIST_FOREACH(ex, &last, ex_slist) { 1818 sw[i++] = ex->ex_sw; 1819 } 1820 1821 /* Replace old execsw[] and free used memory. */ 1822 if (execsw != NULL) { 1823 kmem_free(__UNCONST(execsw), 1824 nexecs * sizeof(struct execsw *) + 1); 1825 } 1826 execsw = sw; 1827 nexecs = sz; 1828 1829 /* Figure out the maximum size of an exec header. */ 1830 exec_maxhdrsz = sizeof(int); 1831 for (i = 0; i < nexecs; i++) { 1832 if (execsw[i]->es_hdrsz > exec_maxhdrsz) 1833 exec_maxhdrsz = execsw[i]->es_hdrsz; 1834 } 1835 1836 return 0; 1837 } 1838 1839 static int 1840 exec_sigcode_map(struct proc *p, const struct emul *e) 1841 { 1842 vaddr_t va; 1843 vsize_t sz; 1844 int error; 1845 struct uvm_object *uobj; 1846 1847 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; 1848 1849 if (e->e_sigobject == NULL || sz == 0) { 1850 return 0; 1851 } 1852 1853 /* 1854 * If we don't have a sigobject for this emulation, create one. 1855 * 1856 * sigobject is an anonymous memory object (just like SYSV shared 1857 * memory) that we keep a permanent reference to and that we map 1858 * in all processes that need this sigcode. The creation is simple, 1859 * we create an object, add a permanent reference to it, map it in 1860 * kernel space, copy out the sigcode to it and unmap it. 1861 * We map it with PROT_READ|PROT_EXEC into the process just 1862 * the way sys_mmap() would map it. 1863 */ 1864 1865 uobj = *e->e_sigobject; 1866 if (uobj == NULL) { 1867 mutex_enter(&sigobject_lock); 1868 if ((uobj = *e->e_sigobject) == NULL) { 1869 uobj = uao_create(sz, 0); 1870 (*uobj->pgops->pgo_reference)(uobj); 1871 va = vm_map_min(kernel_map); 1872 if ((error = uvm_map(kernel_map, &va, round_page(sz), 1873 uobj, 0, 0, 1874 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1875 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { 1876 printf("kernel mapping failed %d\n", error); 1877 (*uobj->pgops->pgo_detach)(uobj); 1878 mutex_exit(&sigobject_lock); 1879 return error; 1880 } 1881 memcpy((void *)va, e->e_sigcode, sz); 1882 #ifdef PMAP_NEED_PROCWR 1883 pmap_procwr(&proc0, va, sz); 1884 #endif 1885 uvm_unmap(kernel_map, va, va + round_page(sz)); 1886 *e->e_sigobject = uobj; 1887 } 1888 mutex_exit(&sigobject_lock); 1889 } 1890 1891 /* Just a hint to uvm_map where to put it. */ 1892 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, 1893 round_page(sz)); 1894 1895 #ifdef __alpha__ 1896 /* 1897 * Tru64 puts /sbin/loader at the end of user virtual memory, 1898 * which causes the above calculation to put the sigcode at 1899 * an invalid address. Put it just below the text instead. 1900 */ 1901 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { 1902 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); 1903 } 1904 #endif 1905 1906 (*uobj->pgops->pgo_reference)(uobj); 1907 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), 1908 uobj, 0, 0, 1909 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, 1910 UVM_ADV_RANDOM, 0)); 1911 if (error) { 1912 DPRINTF(("%s, %d: map %p " 1913 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n", 1914 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), 1915 va, error)); 1916 (*uobj->pgops->pgo_detach)(uobj); 1917 return error; 1918 } 1919 p->p_sigctx.ps_sigcode = (void *)va; 1920 return 0; 1921 } 1922 1923 /* 1924 * Release a refcount on spawn_exec_data and destroy memory, if this 1925 * was the last one. 1926 */ 1927 static void 1928 spawn_exec_data_release(struct spawn_exec_data *data) 1929 { 1930 if (atomic_dec_32_nv(&data->sed_refcnt) != 0) 1931 return; 1932 1933 cv_destroy(&data->sed_cv_child_ready); 1934 mutex_destroy(&data->sed_mtx_child); 1935 1936 if (data->sed_actions) 1937 posix_spawn_fa_free(data->sed_actions, 1938 data->sed_actions->len); 1939 if (data->sed_attrs) 1940 kmem_free(data->sed_attrs, 1941 sizeof(*data->sed_attrs)); 1942 kmem_free(data, sizeof(*data)); 1943 } 1944 1945 /* 1946 * A child lwp of a posix_spawn operation starts here and ends up in 1947 * cpu_spawn_return, dealing with all filedescriptor and scheduler 1948 * manipulations in between. 1949 * The parent waits for the child, as it is not clear whether the child 1950 * will be able to acquire its own exec_lock. If it can, the parent can 1951 * be released early and continue running in parallel. If not (or if the 1952 * magic debug flag is passed in the scheduler attribute struct), the 1953 * child rides on the parent's exec lock until it is ready to return to 1954 * to userland - and only then releases the parent. This method loses 1955 * concurrency, but improves error reporting. 1956 */ 1957 static void 1958 spawn_return(void *arg) 1959 { 1960 struct spawn_exec_data *spawn_data = arg; 1961 struct lwp *l = curlwp; 1962 int error, newfd; 1963 size_t i; 1964 const struct posix_spawn_file_actions_entry *fae; 1965 pid_t ppid; 1966 register_t retval; 1967 bool have_reflock; 1968 bool parent_is_waiting = true; 1969 1970 /* 1971 * Check if we can release parent early. 1972 * We either need to have no sed_attrs, or sed_attrs does not 1973 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require 1974 * safe access to the parent proc (passed in sed_parent). 1975 * We then try to get the exec_lock, and only if that works, we can 1976 * release the parent here already. 1977 */ 1978 ppid = spawn_data->sed_parent->p_pid; 1979 if ((!spawn_data->sed_attrs 1980 || (spawn_data->sed_attrs->sa_flags 1981 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0) 1982 && rw_tryenter(&exec_lock, RW_READER)) { 1983 parent_is_waiting = false; 1984 mutex_enter(&spawn_data->sed_mtx_child); 1985 cv_signal(&spawn_data->sed_cv_child_ready); 1986 mutex_exit(&spawn_data->sed_mtx_child); 1987 } 1988 1989 /* don't allow debugger access yet */ 1990 rw_enter(&l->l_proc->p_reflock, RW_WRITER); 1991 have_reflock = true; 1992 1993 error = 0; 1994 /* handle posix_spawn_file_actions */ 1995 if (spawn_data->sed_actions != NULL) { 1996 for (i = 0; i < spawn_data->sed_actions->len; i++) { 1997 fae = &spawn_data->sed_actions->fae[i]; 1998 switch (fae->fae_action) { 1999 case FAE_OPEN: 2000 if (fd_getfile(fae->fae_fildes) != NULL) { 2001 error = fd_close(fae->fae_fildes); 2002 if (error) 2003 break; 2004 } 2005 error = fd_open(fae->fae_path, fae->fae_oflag, 2006 fae->fae_mode, &newfd); 2007 if (error) 2008 break; 2009 if (newfd != fae->fae_fildes) { 2010 error = dodup(l, newfd, 2011 fae->fae_fildes, 0, &retval); 2012 if (fd_getfile(newfd) != NULL) 2013 fd_close(newfd); 2014 } 2015 break; 2016 case FAE_DUP2: 2017 error = dodup(l, fae->fae_fildes, 2018 fae->fae_newfildes, 0, &retval); 2019 break; 2020 case FAE_CLOSE: 2021 if (fd_getfile(fae->fae_fildes) == NULL) { 2022 error = EBADF; 2023 break; 2024 } 2025 error = fd_close(fae->fae_fildes); 2026 break; 2027 } 2028 if (error) 2029 goto report_error; 2030 } 2031 } 2032 2033 /* handle posix_spawnattr */ 2034 if (spawn_data->sed_attrs != NULL) { 2035 int ostat; 2036 struct sigaction sigact; 2037 sigact._sa_u._sa_handler = SIG_DFL; 2038 sigact.sa_flags = 0; 2039 2040 /* 2041 * set state to SSTOP so that this proc can be found by pid. 2042 * see proc_enterprp, do_sched_setparam below 2043 */ 2044 ostat = l->l_proc->p_stat; 2045 l->l_proc->p_stat = SSTOP; 2046 2047 /* Set process group */ 2048 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { 2049 pid_t mypid = l->l_proc->p_pid, 2050 pgrp = spawn_data->sed_attrs->sa_pgroup; 2051 2052 if (pgrp == 0) 2053 pgrp = mypid; 2054 2055 error = proc_enterpgrp(spawn_data->sed_parent, 2056 mypid, pgrp, false); 2057 if (error) 2058 goto report_error; 2059 } 2060 2061 /* Set scheduler policy */ 2062 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) 2063 error = do_sched_setparam(l->l_proc->p_pid, 0, 2064 spawn_data->sed_attrs->sa_schedpolicy, 2065 &spawn_data->sed_attrs->sa_schedparam); 2066 else if (spawn_data->sed_attrs->sa_flags 2067 & POSIX_SPAWN_SETSCHEDPARAM) { 2068 error = do_sched_setparam(ppid, 0, 2069 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); 2070 } 2071 if (error) 2072 goto report_error; 2073 2074 /* Reset user ID's */ 2075 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { 2076 error = do_setresuid(l, -1, 2077 kauth_cred_getgid(l->l_cred), -1, 2078 ID_E_EQ_R | ID_E_EQ_S); 2079 if (error) 2080 goto report_error; 2081 error = do_setresuid(l, -1, 2082 kauth_cred_getuid(l->l_cred), -1, 2083 ID_E_EQ_R | ID_E_EQ_S); 2084 if (error) 2085 goto report_error; 2086 } 2087 2088 /* Set signal masks/defaults */ 2089 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { 2090 mutex_enter(l->l_proc->p_lock); 2091 error = sigprocmask1(l, SIG_SETMASK, 2092 &spawn_data->sed_attrs->sa_sigmask, NULL); 2093 mutex_exit(l->l_proc->p_lock); 2094 if (error) 2095 goto report_error; 2096 } 2097 2098 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { 2099 /* 2100 * The following sigaction call is using a sigaction 2101 * version 0 trampoline which is in the compatibility 2102 * code only. This is not a problem because for SIG_DFL 2103 * and SIG_IGN, the trampolines are now ignored. If they 2104 * were not, this would be a problem because we are 2105 * holding the exec_lock, and the compat code needs 2106 * to do the same in order to replace the trampoline 2107 * code of the process. 2108 */ 2109 for (i = 1; i <= NSIG; i++) { 2110 if (sigismember( 2111 &spawn_data->sed_attrs->sa_sigdefault, i)) 2112 sigaction1(l, i, &sigact, NULL, NULL, 2113 0); 2114 } 2115 } 2116 l->l_proc->p_stat = ostat; 2117 } 2118 2119 /* now do the real exec */ 2120 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting, 2121 true); 2122 have_reflock = false; 2123 if (error == EJUSTRETURN) 2124 error = 0; 2125 else if (error) 2126 goto report_error; 2127 2128 if (parent_is_waiting) { 2129 mutex_enter(&spawn_data->sed_mtx_child); 2130 cv_signal(&spawn_data->sed_cv_child_ready); 2131 mutex_exit(&spawn_data->sed_mtx_child); 2132 } 2133 2134 /* release our refcount on the data */ 2135 spawn_exec_data_release(spawn_data); 2136 2137 /* and finally: leave to userland for the first time */ 2138 cpu_spawn_return(l); 2139 2140 /* NOTREACHED */ 2141 return; 2142 2143 report_error: 2144 if (have_reflock) { 2145 /* 2146 * We have not passed through execve_runproc(), 2147 * which would have released the p_reflock and also 2148 * taken ownership of the sed_exec part of spawn_data, 2149 * so release/free both here. 2150 */ 2151 rw_exit(&l->l_proc->p_reflock); 2152 execve_free_data(&spawn_data->sed_exec); 2153 } 2154 2155 if (parent_is_waiting) { 2156 /* pass error to parent */ 2157 mutex_enter(&spawn_data->sed_mtx_child); 2158 spawn_data->sed_error = error; 2159 cv_signal(&spawn_data->sed_cv_child_ready); 2160 mutex_exit(&spawn_data->sed_mtx_child); 2161 } else { 2162 rw_exit(&exec_lock); 2163 } 2164 2165 /* release our refcount on the data */ 2166 spawn_exec_data_release(spawn_data); 2167 2168 /* done, exit */ 2169 mutex_enter(l->l_proc->p_lock); 2170 /* 2171 * Posix explicitly asks for an exit code of 127 if we report 2172 * errors from the child process - so, unfortunately, there 2173 * is no way to report a more exact error code. 2174 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as 2175 * flag bit in the attrp argument to posix_spawn(2), see above. 2176 */ 2177 exit1(l, W_EXITCODE(127, 0)); 2178 } 2179 2180 void 2181 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) 2182 { 2183 2184 for (size_t i = 0; i < len; i++) { 2185 struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; 2186 if (fae->fae_action != FAE_OPEN) 2187 continue; 2188 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1); 2189 } 2190 if (fa->len > 0) 2191 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); 2192 kmem_free(fa, sizeof(*fa)); 2193 } 2194 2195 static int 2196 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, 2197 const struct posix_spawn_file_actions *ufa, rlim_t lim) 2198 { 2199 struct posix_spawn_file_actions *fa; 2200 struct posix_spawn_file_actions_entry *fae; 2201 char *pbuf = NULL; 2202 int error; 2203 size_t i = 0; 2204 2205 fa = kmem_alloc(sizeof(*fa), KM_SLEEP); 2206 error = copyin(ufa, fa, sizeof(*fa)); 2207 if (error || fa->len == 0) { 2208 kmem_free(fa, sizeof(*fa)); 2209 return error; /* 0 if not an error, and len == 0 */ 2210 } 2211 2212 if (fa->len > lim) { 2213 kmem_free(fa, sizeof(*fa)); 2214 return EINVAL; 2215 } 2216 2217 fa->size = fa->len; 2218 size_t fal = fa->len * sizeof(*fae); 2219 fae = fa->fae; 2220 fa->fae = kmem_alloc(fal, KM_SLEEP); 2221 error = copyin(fae, fa->fae, fal); 2222 if (error) 2223 goto out; 2224 2225 pbuf = PNBUF_GET(); 2226 for (; i < fa->len; i++) { 2227 fae = &fa->fae[i]; 2228 if (fae->fae_action != FAE_OPEN) 2229 continue; 2230 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); 2231 if (error) 2232 goto out; 2233 fae->fae_path = kmem_alloc(fal, KM_SLEEP); 2234 memcpy(fae->fae_path, pbuf, fal); 2235 } 2236 PNBUF_PUT(pbuf); 2237 2238 *fap = fa; 2239 return 0; 2240 out: 2241 if (pbuf) 2242 PNBUF_PUT(pbuf); 2243 posix_spawn_fa_free(fa, i); 2244 return error; 2245 } 2246 2247 int 2248 check_posix_spawn(struct lwp *l1) 2249 { 2250 int error, tnprocs, count; 2251 uid_t uid; 2252 struct proc *p1; 2253 2254 p1 = l1->l_proc; 2255 uid = kauth_cred_getuid(l1->l_cred); 2256 tnprocs = atomic_inc_uint_nv(&nprocs); 2257 2258 /* 2259 * Although process entries are dynamically created, we still keep 2260 * a global limit on the maximum number we will create. 2261 */ 2262 if (__predict_false(tnprocs >= maxproc)) 2263 error = -1; 2264 else 2265 error = kauth_authorize_process(l1->l_cred, 2266 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 2267 2268 if (error) { 2269 atomic_dec_uint(&nprocs); 2270 return EAGAIN; 2271 } 2272 2273 /* 2274 * Enforce limits. 2275 */ 2276 count = chgproccnt(uid, 1); 2277 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, 2278 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 2279 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 && 2280 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 2281 (void)chgproccnt(uid, -1); 2282 atomic_dec_uint(&nprocs); 2283 return EAGAIN; 2284 } 2285 2286 return 0; 2287 } 2288 2289 int 2290 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path, 2291 struct posix_spawn_file_actions *fa, 2292 struct posix_spawnattr *sa, 2293 char *const *argv, char *const *envp, 2294 execve_fetch_element_t fetch) 2295 { 2296 2297 struct proc *p1, *p2; 2298 struct lwp *l2; 2299 int error; 2300 struct spawn_exec_data *spawn_data; 2301 vaddr_t uaddr; 2302 pid_t pid; 2303 bool have_exec_lock = false; 2304 2305 p1 = l1->l_proc; 2306 2307 /* Allocate and init spawn_data */ 2308 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); 2309 spawn_data->sed_refcnt = 1; /* only parent so far */ 2310 cv_init(&spawn_data->sed_cv_child_ready, "pspawn"); 2311 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); 2312 mutex_enter(&spawn_data->sed_mtx_child); 2313 2314 /* 2315 * Do the first part of the exec now, collect state 2316 * in spawn_data. 2317 */ 2318 error = execve_loadvm(l1, path, argv, 2319 envp, fetch, &spawn_data->sed_exec); 2320 if (error == EJUSTRETURN) 2321 error = 0; 2322 else if (error) 2323 goto error_exit; 2324 2325 have_exec_lock = true; 2326 2327 /* 2328 * Allocate virtual address space for the U-area now, while it 2329 * is still easy to abort the fork operation if we're out of 2330 * kernel virtual address space. 2331 */ 2332 uaddr = uvm_uarea_alloc(); 2333 if (__predict_false(uaddr == 0)) { 2334 error = ENOMEM; 2335 goto error_exit; 2336 } 2337 2338 /* 2339 * Allocate new proc. Borrow proc0 vmspace for it, we will 2340 * replace it with its own before returning to userland 2341 * in the child. 2342 * This is a point of no return, we will have to go through 2343 * the child proc to properly clean it up past this point. 2344 */ 2345 p2 = proc_alloc(); 2346 pid = p2->p_pid; 2347 2348 /* 2349 * Make a proc table entry for the new process. 2350 * Start by zeroing the section of proc that is zero-initialized, 2351 * then copy the section that is copied directly from the parent. 2352 */ 2353 memset(&p2->p_startzero, 0, 2354 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 2355 memcpy(&p2->p_startcopy, &p1->p_startcopy, 2356 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 2357 p2->p_vmspace = proc0.p_vmspace; 2358 2359 TAILQ_INIT(&p2->p_sigpend.sp_info); 2360 2361 LIST_INIT(&p2->p_lwps); 2362 LIST_INIT(&p2->p_sigwaiters); 2363 2364 /* 2365 * Duplicate sub-structures as needed. 2366 * Increase reference counts on shared objects. 2367 * Inherit flags we want to keep. The flags related to SIGCHLD 2368 * handling are important in order to keep a consistent behaviour 2369 * for the child after the fork. If we are a 32-bit process, the 2370 * child will be too. 2371 */ 2372 p2->p_flag = 2373 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 2374 p2->p_emul = p1->p_emul; 2375 p2->p_execsw = p1->p_execsw; 2376 2377 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 2378 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 2379 rw_init(&p2->p_reflock); 2380 cv_init(&p2->p_waitcv, "wait"); 2381 cv_init(&p2->p_lwpcv, "lwpwait"); 2382 2383 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2384 2385 kauth_proc_fork(p1, p2); 2386 2387 p2->p_raslist = NULL; 2388 p2->p_fd = fd_copy(); 2389 2390 /* XXX racy */ 2391 p2->p_mqueue_cnt = p1->p_mqueue_cnt; 2392 2393 p2->p_cwdi = cwdinit(); 2394 2395 /* 2396 * Note: p_limit (rlimit stuff) is copy-on-write, so normally 2397 * we just need increase pl_refcnt. 2398 */ 2399 if (!p1->p_limit->pl_writeable) { 2400 lim_addref(p1->p_limit); 2401 p2->p_limit = p1->p_limit; 2402 } else { 2403 p2->p_limit = lim_copy(p1->p_limit); 2404 } 2405 2406 p2->p_lflag = 0; 2407 p2->p_sflag = 0; 2408 p2->p_slflag = 0; 2409 p2->p_pptr = p1; 2410 p2->p_ppid = p1->p_pid; 2411 LIST_INIT(&p2->p_children); 2412 2413 p2->p_aio = NULL; 2414 2415 #ifdef KTRACE 2416 /* 2417 * Copy traceflag and tracefile if enabled. 2418 * If not inherited, these were zeroed above. 2419 */ 2420 if (p1->p_traceflag & KTRFAC_INHERIT) { 2421 mutex_enter(&ktrace_lock); 2422 p2->p_traceflag = p1->p_traceflag; 2423 if ((p2->p_tracep = p1->p_tracep) != NULL) 2424 ktradref(p2); 2425 mutex_exit(&ktrace_lock); 2426 } 2427 #endif 2428 2429 /* 2430 * Create signal actions for the child process. 2431 */ 2432 p2->p_sigacts = sigactsinit(p1, 0); 2433 mutex_enter(p1->p_lock); 2434 p2->p_sflag |= 2435 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 2436 sched_proc_fork(p1, p2); 2437 mutex_exit(p1->p_lock); 2438 2439 p2->p_stflag = p1->p_stflag; 2440 2441 /* 2442 * p_stats. 2443 * Copy parts of p_stats, and zero out the rest. 2444 */ 2445 p2->p_stats = pstatscopy(p1->p_stats); 2446 2447 /* copy over machdep flags to the new proc */ 2448 cpu_proc_fork(p1, p2); 2449 2450 /* 2451 * Prepare remaining parts of spawn data 2452 */ 2453 spawn_data->sed_actions = fa; 2454 spawn_data->sed_attrs = sa; 2455 2456 spawn_data->sed_parent = p1; 2457 2458 /* create LWP */ 2459 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, 2460 &l2, l1->l_class); 2461 l2->l_ctxlink = NULL; /* reset ucontext link */ 2462 2463 /* 2464 * Copy the credential so other references don't see our changes. 2465 * Test to see if this is necessary first, since in the common case 2466 * we won't need a private reference. 2467 */ 2468 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || 2469 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { 2470 l2->l_cred = kauth_cred_copy(l2->l_cred); 2471 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); 2472 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); 2473 } 2474 2475 /* Update the master credentials. */ 2476 if (l2->l_cred != p2->p_cred) { 2477 kauth_cred_t ocred; 2478 2479 kauth_cred_hold(l2->l_cred); 2480 mutex_enter(p2->p_lock); 2481 ocred = p2->p_cred; 2482 p2->p_cred = l2->l_cred; 2483 mutex_exit(p2->p_lock); 2484 kauth_cred_free(ocred); 2485 } 2486 2487 *child_ok = true; 2488 spawn_data->sed_refcnt = 2; /* child gets it as well */ 2489 #if 0 2490 l2->l_nopreempt = 1; /* start it non-preemptable */ 2491 #endif 2492 2493 /* 2494 * It's now safe for the scheduler and other processes to see the 2495 * child process. 2496 */ 2497 mutex_enter(proc_lock); 2498 2499 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 2500 p2->p_lflag |= PL_CONTROLT; 2501 2502 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); 2503 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ 2504 2505 LIST_INSERT_AFTER(p1, p2, p_pglist); 2506 LIST_INSERT_HEAD(&allproc, p2, p_list); 2507 2508 p2->p_trace_enabled = trace_is_enabled(p2); 2509 #ifdef __HAVE_SYSCALL_INTERN 2510 (*p2->p_emul->e_syscall_intern)(p2); 2511 #endif 2512 2513 /* 2514 * Make child runnable, set start time, and add to run queue except 2515 * if the parent requested the child to start in SSTOP state. 2516 */ 2517 mutex_enter(p2->p_lock); 2518 2519 getmicrotime(&p2->p_stats->p_start); 2520 2521 lwp_lock(l2); 2522 KASSERT(p2->p_nrlwps == 1); 2523 p2->p_nrlwps = 1; 2524 p2->p_stat = SACTIVE; 2525 l2->l_stat = LSRUN; 2526 sched_enqueue(l2, false); 2527 lwp_unlock(l2); 2528 2529 mutex_exit(p2->p_lock); 2530 mutex_exit(proc_lock); 2531 2532 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); 2533 error = spawn_data->sed_error; 2534 mutex_exit(&spawn_data->sed_mtx_child); 2535 spawn_exec_data_release(spawn_data); 2536 2537 rw_exit(&p1->p_reflock); 2538 rw_exit(&exec_lock); 2539 have_exec_lock = false; 2540 2541 *pid_res = pid; 2542 return error; 2543 2544 error_exit: 2545 if (have_exec_lock) { 2546 execve_free_data(&spawn_data->sed_exec); 2547 rw_exit(&p1->p_reflock); 2548 rw_exit(&exec_lock); 2549 } 2550 mutex_exit(&spawn_data->sed_mtx_child); 2551 spawn_exec_data_release(spawn_data); 2552 2553 return error; 2554 } 2555 2556 int 2557 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, 2558 register_t *retval) 2559 { 2560 /* { 2561 syscallarg(pid_t *) pid; 2562 syscallarg(const char *) path; 2563 syscallarg(const struct posix_spawn_file_actions *) file_actions; 2564 syscallarg(const struct posix_spawnattr *) attrp; 2565 syscallarg(char *const *) argv; 2566 syscallarg(char *const *) envp; 2567 } */ 2568 2569 int error; 2570 struct posix_spawn_file_actions *fa = NULL; 2571 struct posix_spawnattr *sa = NULL; 2572 pid_t pid; 2573 bool child_ok = false; 2574 rlim_t max_fileactions; 2575 proc_t *p = l1->l_proc; 2576 2577 error = check_posix_spawn(l1); 2578 if (error) { 2579 *retval = error; 2580 return 0; 2581 } 2582 2583 /* copy in file_actions struct */ 2584 if (SCARG(uap, file_actions) != NULL) { 2585 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur, 2586 maxfiles); 2587 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions), 2588 max_fileactions); 2589 if (error) 2590 goto error_exit; 2591 } 2592 2593 /* copyin posix_spawnattr struct */ 2594 if (SCARG(uap, attrp) != NULL) { 2595 sa = kmem_alloc(sizeof(*sa), KM_SLEEP); 2596 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); 2597 if (error) 2598 goto error_exit; 2599 } 2600 2601 /* 2602 * Do the spawn 2603 */ 2604 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa, 2605 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element); 2606 if (error) 2607 goto error_exit; 2608 2609 if (error == 0 && SCARG(uap, pid) != NULL) 2610 error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); 2611 2612 *retval = error; 2613 return 0; 2614 2615 error_exit: 2616 if (!child_ok) { 2617 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1); 2618 atomic_dec_uint(&nprocs); 2619 2620 if (sa) 2621 kmem_free(sa, sizeof(*sa)); 2622 if (fa) 2623 posix_spawn_fa_free(fa, fa->len); 2624 } 2625 2626 *retval = error; 2627 return 0; 2628 } 2629 2630 void 2631 exec_free_emul_arg(struct exec_package *epp) 2632 { 2633 if (epp->ep_emul_arg_free != NULL) { 2634 KASSERT(epp->ep_emul_arg != NULL); 2635 (*epp->ep_emul_arg_free)(epp->ep_emul_arg); 2636 epp->ep_emul_arg_free = NULL; 2637 epp->ep_emul_arg = NULL; 2638 } else { 2639 KASSERT(epp->ep_emul_arg == NULL); 2640 } 2641 } 2642 2643 #ifdef DEBUG_EXEC 2644 static void 2645 dump_vmcmds(const struct exec_package * const epp, size_t x, int error) 2646 { 2647 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0]; 2648 size_t j; 2649 2650 if (error == 0) 2651 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used)); 2652 else 2653 DPRINTF(("vmcmds %zu/%u, error %d\n", x, 2654 epp->ep_vmcmds.evs_used, error)); 2655 2656 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) { 2657 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 2658 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 2659 PRIxVSIZE" prot=0%o flags=%d\n", j, 2660 vp[j].ev_proc == vmcmd_map_pagedvn ? 2661 "pagedvn" : 2662 vp[j].ev_proc == vmcmd_map_readvn ? 2663 "readvn" : 2664 vp[j].ev_proc == vmcmd_map_zero ? 2665 "zero" : "*unknown*", 2666 vp[j].ev_addr, vp[j].ev_len, 2667 vp[j].ev_offset, vp[j].ev_prot, 2668 vp[j].ev_flags)); 2669 if (error != 0 && j == x) 2670 DPRINTF((" ^--- failed\n")); 2671 } 2672 } 2673 #endif 2674