xref: /netbsd-src/sys/kern/kern_exec.c (revision ead2c0eee3abe6bcf08c63bfc78eb8a93a579b2b)
1 /*	$NetBSD: kern_exec.c,v 1.344 2012/02/21 04:13:22 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31  * Copyright (C) 1992 Wolfgang Solfrank.
32  * Copyright (C) 1992 TooLs GmbH.
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by TooLs GmbH.
46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.344 2012/02/21 04:13:22 christos Exp $");
63 
64 #include "opt_exec.h"
65 #include "opt_ktrace.h"
66 #include "opt_modular.h"
67 #include "opt_syscall_debug.h"
68 #include "veriexec.h"
69 #include "opt_pax.h"
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/filedesc.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/mount.h>
77 #include <sys/malloc.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/acct.h>
83 #include <sys/atomic.h>
84 #include <sys/exec.h>
85 #include <sys/ktrace.h>
86 #include <sys/uidinfo.h>
87 #include <sys/wait.h>
88 #include <sys/mman.h>
89 #include <sys/ras.h>
90 #include <sys/signalvar.h>
91 #include <sys/stat.h>
92 #include <sys/syscall.h>
93 #include <sys/kauth.h>
94 #include <sys/lwpctl.h>
95 #include <sys/pax.h>
96 #include <sys/cpu.h>
97 #include <sys/module.h>
98 #include <sys/syscallvar.h>
99 #include <sys/syscallargs.h>
100 #if NVERIEXEC > 0
101 #include <sys/verified_exec.h>
102 #endif /* NVERIEXEC > 0 */
103 #include <sys/sdt.h>
104 #include <sys/spawn.h>
105 #include <sys/prot.h>
106 #include <sys/cprng.h>
107 
108 #include <uvm/uvm_extern.h>
109 
110 #include <machine/reg.h>
111 
112 #include <compat/common/compat_util.h>
113 
114 static int exec_sigcode_map(struct proc *, const struct emul *);
115 
116 #ifdef DEBUG_EXEC
117 #define DPRINTF(a) printf a
118 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
119     __LINE__, (s), (a), (b))
120 #else
121 #define DPRINTF(a)
122 #define COPYPRINTF(s, a, b)
123 #endif /* DEBUG_EXEC */
124 
125 /*
126  * DTrace SDT provider definitions
127  */
128 SDT_PROBE_DEFINE(proc,,,exec,
129 	    "char *", NULL,
130 	    NULL, NULL, NULL, NULL,
131 	    NULL, NULL, NULL, NULL);
132 SDT_PROBE_DEFINE(proc,,,exec_success,
133 	    "char *", NULL,
134 	    NULL, NULL, NULL, NULL,
135 	    NULL, NULL, NULL, NULL);
136 SDT_PROBE_DEFINE(proc,,,exec_failure,
137 	    "int", NULL,
138 	    NULL, NULL, NULL, NULL,
139 	    NULL, NULL, NULL, NULL);
140 
141 /*
142  * Exec function switch:
143  *
144  * Note that each makecmds function is responsible for loading the
145  * exec package with the necessary functions for any exec-type-specific
146  * handling.
147  *
148  * Functions for specific exec types should be defined in their own
149  * header file.
150  */
151 static const struct execsw	**execsw = NULL;
152 static int			nexecs;
153 
154 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
155 
156 /* list of dynamically loaded execsw entries */
157 static LIST_HEAD(execlist_head, exec_entry) ex_head =
158     LIST_HEAD_INITIALIZER(ex_head);
159 struct exec_entry {
160 	LIST_ENTRY(exec_entry)	ex_list;
161 	SLIST_ENTRY(exec_entry)	ex_slist;
162 	const struct execsw	*ex_sw;
163 };
164 
165 #ifndef __HAVE_SYSCALL_INTERN
166 void	syscall(void);
167 #endif
168 
169 /* NetBSD emul struct */
170 struct emul emul_netbsd = {
171 	.e_name =		"netbsd",
172 	.e_path =		NULL,
173 #ifndef __HAVE_MINIMAL_EMUL
174 	.e_flags =		EMUL_HAS_SYS___syscall,
175 	.e_errno =		NULL,
176 	.e_nosys =		SYS_syscall,
177 	.e_nsysent =		SYS_NSYSENT,
178 #endif
179 	.e_sysent =		sysent,
180 #ifdef SYSCALL_DEBUG
181 	.e_syscallnames =	syscallnames,
182 #else
183 	.e_syscallnames =	NULL,
184 #endif
185 	.e_sendsig =		sendsig,
186 	.e_trapsignal =		trapsignal,
187 	.e_tracesig =		NULL,
188 	.e_sigcode =		NULL,
189 	.e_esigcode =		NULL,
190 	.e_sigobject =		NULL,
191 	.e_setregs =		setregs,
192 	.e_proc_exec =		NULL,
193 	.e_proc_fork =		NULL,
194 	.e_proc_exit =		NULL,
195 	.e_lwp_fork =		NULL,
196 	.e_lwp_exit =		NULL,
197 #ifdef __HAVE_SYSCALL_INTERN
198 	.e_syscall_intern =	syscall_intern,
199 #else
200 	.e_syscall =		syscall,
201 #endif
202 	.e_sysctlovly =		NULL,
203 	.e_fault =		NULL,
204 	.e_vm_default_addr =	uvm_default_mapaddr,
205 	.e_usertrap =		NULL,
206 	.e_ucsize =		sizeof(ucontext_t),
207 	.e_startlwp =		startlwp
208 };
209 
210 /*
211  * Exec lock. Used to control access to execsw[] structures.
212  * This must not be static so that netbsd32 can access it, too.
213  */
214 krwlock_t exec_lock;
215 
216 static kmutex_t sigobject_lock;
217 
218 /*
219  * Data used between a loadvm and execve part of an "exec" operation
220  */
221 struct execve_data {
222 	struct exec_package	ed_pack;
223 	struct pathbuf		*ed_pathbuf;
224 	struct vattr		ed_attr;
225 	struct ps_strings	ed_arginfo;
226 	char			*ed_argp;
227 	const char		*ed_pathstring;
228 	char			*ed_resolvedpathbuf;
229 	size_t			ed_ps_strings_sz;
230 	int			ed_szsigcode;
231 	long			ed_argc;
232 	long			ed_envc;
233 };
234 
235 /*
236  * data passed from parent lwp to child during a posix_spawn()
237  */
238 struct spawn_exec_data {
239 	struct execve_data	sed_exec;
240 	size_t 			sed_actions_len;
241 	struct posix_spawn_file_actions_entry
242 				*sed_actions;
243 	struct posix_spawnattr	*sed_attrs;
244 	struct proc		*sed_parent;
245 	kcondvar_t		sed_cv_child_ready;
246 	kmutex_t		sed_mtx_child;
247 	int			sed_error;
248 };
249 
250 static void *
251 exec_pool_alloc(struct pool *pp, int flags)
252 {
253 
254 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
255 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
256 }
257 
258 static void
259 exec_pool_free(struct pool *pp, void *addr)
260 {
261 
262 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
263 }
264 
265 static struct pool exec_pool;
266 
267 static struct pool_allocator exec_palloc = {
268 	.pa_alloc = exec_pool_alloc,
269 	.pa_free = exec_pool_free,
270 	.pa_pagesz = NCARGS
271 };
272 
273 /*
274  * check exec:
275  * given an "executable" described in the exec package's namei info,
276  * see what we can do with it.
277  *
278  * ON ENTRY:
279  *	exec package with appropriate namei info
280  *	lwp pointer of exec'ing lwp
281  *	NO SELF-LOCKED VNODES
282  *
283  * ON EXIT:
284  *	error:	nothing held, etc.  exec header still allocated.
285  *	ok:	filled exec package, executable's vnode (unlocked).
286  *
287  * EXEC SWITCH ENTRY:
288  * 	Locked vnode to check, exec package, proc.
289  *
290  * EXEC SWITCH EXIT:
291  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
292  *	error:	destructive:
293  *			everything deallocated execept exec header.
294  *		non-destructive:
295  *			error code, executable's vnode (unlocked),
296  *			exec header unmodified.
297  */
298 int
299 /*ARGSUSED*/
300 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
301 {
302 	int		error, i;
303 	struct vnode	*vp;
304 	struct nameidata nd;
305 	size_t		resid;
306 
307 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
308 
309 	/* first get the vnode */
310 	if ((error = namei(&nd)) != 0)
311 		return error;
312 	epp->ep_vp = vp = nd.ni_vp;
313 	/* this cannot overflow as both are size PATH_MAX */
314 	strcpy(epp->ep_resolvedname, nd.ni_pnbuf);
315 
316 #ifdef DIAGNOSTIC
317 	/* paranoia (take this out once namei stuff stabilizes) */
318 	memset(nd.ni_pnbuf, '~', PATH_MAX);
319 #endif
320 
321 	/* check access and type */
322 	if (vp->v_type != VREG) {
323 		error = EACCES;
324 		goto bad1;
325 	}
326 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
327 		goto bad1;
328 
329 	/* get attributes */
330 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
331 		goto bad1;
332 
333 	/* Check mount point */
334 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
335 		error = EACCES;
336 		goto bad1;
337 	}
338 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
339 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
340 
341 	/* try to open it */
342 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
343 		goto bad1;
344 
345 	/* unlock vp, since we need it unlocked from here on out. */
346 	VOP_UNLOCK(vp);
347 
348 #if NVERIEXEC > 0
349 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
350 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
351 	    NULL);
352 	if (error)
353 		goto bad2;
354 #endif /* NVERIEXEC > 0 */
355 
356 #ifdef PAX_SEGVGUARD
357 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
358 	if (error)
359 		goto bad2;
360 #endif /* PAX_SEGVGUARD */
361 
362 	/* now we have the file, get the exec header */
363 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
364 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
365 	if (error)
366 		goto bad2;
367 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
368 
369 	/*
370 	 * Set up default address space limits.  Can be overridden
371 	 * by individual exec packages.
372 	 *
373 	 * XXX probably should be all done in the exec packages.
374 	 */
375 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
376 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
377 	/*
378 	 * set up the vmcmds for creation of the process
379 	 * address space
380 	 */
381 	error = ENOEXEC;
382 	for (i = 0; i < nexecs; i++) {
383 		int newerror;
384 
385 		epp->ep_esch = execsw[i];
386 		newerror = (*execsw[i]->es_makecmds)(l, epp);
387 
388 		if (!newerror) {
389 			/* Seems ok: check that entry point is not too high */
390 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
391 #ifdef DIAGNOSTIC
392 				printf("%s: rejecting %p due to "
393 				    "too high entry address (> %p)\n",
394 					 __func__, (void *)epp->ep_entry,
395 					 (void *)epp->ep_vm_maxaddr);
396 #endif
397 				error = ENOEXEC;
398 				break;
399 			}
400 			/* Seems ok: check that entry point is not too low */
401 			if (epp->ep_entry < epp->ep_vm_minaddr) {
402 #ifdef DIAGNOSTIC
403 				printf("%s: rejecting %p due to "
404 				    "too low entry address (< %p)\n",
405 				     __func__, (void *)epp->ep_entry,
406 				     (void *)epp->ep_vm_minaddr);
407 #endif
408 				error = ENOEXEC;
409 				break;
410 			}
411 
412 			/* check limits */
413 			if ((epp->ep_tsize > MAXTSIZ) ||
414 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
415 						    [RLIMIT_DATA].rlim_cur)) {
416 #ifdef DIAGNOSTIC
417 				printf("%s: rejecting due to "
418 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
419 				    __func__,
420 				    (unsigned long long)epp->ep_tsize,
421 				    (unsigned long long)MAXTSIZ,
422 				    (unsigned long long)epp->ep_dsize,
423 				    (unsigned long long)
424 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
425 #endif
426 				error = ENOMEM;
427 				break;
428 			}
429 			return 0;
430 		}
431 
432 		if (epp->ep_emul_root != NULL) {
433 			vrele(epp->ep_emul_root);
434 			epp->ep_emul_root = NULL;
435 		}
436 		if (epp->ep_interp != NULL) {
437 			vrele(epp->ep_interp);
438 			epp->ep_interp = NULL;
439 		}
440 
441 		/* make sure the first "interesting" error code is saved. */
442 		if (error == ENOEXEC)
443 			error = newerror;
444 
445 		if (epp->ep_flags & EXEC_DESTR)
446 			/* Error from "#!" code, tidied up by recursive call */
447 			return error;
448 	}
449 
450 	/* not found, error */
451 
452 	/*
453 	 * free any vmspace-creation commands,
454 	 * and release their references
455 	 */
456 	kill_vmcmds(&epp->ep_vmcmds);
457 
458 bad2:
459 	/*
460 	 * close and release the vnode, restore the old one, free the
461 	 * pathname buf, and punt.
462 	 */
463 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
464 	VOP_CLOSE(vp, FREAD, l->l_cred);
465 	vput(vp);
466 	return error;
467 
468 bad1:
469 	/*
470 	 * free the namei pathname buffer, and put the vnode
471 	 * (which we don't yet have open).
472 	 */
473 	vput(vp);				/* was still locked */
474 	return error;
475 }
476 
477 #ifdef __MACHINE_STACK_GROWS_UP
478 #define STACK_PTHREADSPACE NBPG
479 #else
480 #define STACK_PTHREADSPACE 0
481 #endif
482 
483 static int
484 execve_fetch_element(char * const *array, size_t index, char **value)
485 {
486 	return copyin(array + index, value, sizeof(*value));
487 }
488 
489 /*
490  * exec system call
491  */
492 int
493 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
494 {
495 	/* {
496 		syscallarg(const char *)	path;
497 		syscallarg(char * const *)	argp;
498 		syscallarg(char * const *)	envp;
499 	} */
500 
501 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
502 	    SCARG(uap, envp), execve_fetch_element);
503 }
504 
505 int
506 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
507     register_t *retval)
508 {
509 	/* {
510 		syscallarg(int)			fd;
511 		syscallarg(char * const *)	argp;
512 		syscallarg(char * const *)	envp;
513 	} */
514 
515 	return ENOSYS;
516 }
517 
518 /*
519  * Load modules to try and execute an image that we do not understand.
520  * If no execsw entries are present, we load those likely to be needed
521  * in order to run native images only.  Otherwise, we autoload all
522  * possible modules that could let us run the binary.  XXX lame
523  */
524 static void
525 exec_autoload(void)
526 {
527 #ifdef MODULAR
528 	static const char * const native[] = {
529 		"exec_elf32",
530 		"exec_elf64",
531 		"exec_script",
532 		NULL
533 	};
534 	static const char * const compat[] = {
535 		"exec_elf32",
536 		"exec_elf64",
537 		"exec_script",
538 		"exec_aout",
539 		"exec_coff",
540 		"exec_ecoff",
541 		"compat_aoutm68k",
542 		"compat_freebsd",
543 		"compat_ibcs2",
544 		"compat_linux",
545 		"compat_linux32",
546 		"compat_netbsd32",
547 		"compat_sunos",
548 		"compat_sunos32",
549 		"compat_svr4",
550 		"compat_svr4_32",
551 		"compat_ultrix",
552 		NULL
553 	};
554 	char const * const *list;
555 	int i;
556 
557 	list = (nexecs == 0 ? native : compat);
558 	for (i = 0; list[i] != NULL; i++) {
559 		if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) {
560 		    	continue;
561 		}
562 	   	yield();
563 	}
564 #endif
565 }
566 
567 static int
568 execve_loadvm(struct lwp *l, const char *path, char * const *args,
569 	char * const *envs, execve_fetch_element_t fetch_element,
570 	struct execve_data * restrict data)
571 {
572 	int			error;
573 	struct proc		*p;
574 	char			*dp, *sp;
575 	size_t			i, len;
576 	struct exec_fakearg	*tmpfap;
577 	u_int			modgen;
578 
579 	KASSERT(data != NULL);
580 
581 	p = l->l_proc;
582  	modgen = 0;
583 
584 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
585 
586 	/*
587 	 * Check if we have exceeded our number of processes limit.
588 	 * This is so that we handle the case where a root daemon
589 	 * forked, ran setuid to become the desired user and is trying
590 	 * to exec. The obvious place to do the reference counting check
591 	 * is setuid(), but we don't do the reference counting check there
592 	 * like other OS's do because then all the programs that use setuid()
593 	 * must be modified to check the return code of setuid() and exit().
594 	 * It is dangerous to make setuid() fail, because it fails open and
595 	 * the program will continue to run as root. If we make it succeed
596 	 * and return an error code, again we are not enforcing the limit.
597 	 * The best place to enforce the limit is here, when the process tries
598 	 * to execute a new image, because eventually the process will need
599 	 * to call exec in order to do something useful.
600 	 */
601  retry:
602 	if ((p->p_flag & PK_SUGID) && kauth_authorize_generic(l->l_cred,
603 	    KAUTH_GENERIC_ISSUSER, NULL) != 0 && chgproccnt(kauth_cred_getuid(
604 	    l->l_cred), 0) > p->p_rlimit[RLIMIT_NPROC].rlim_cur)
605 		return EAGAIN;
606 
607 	/*
608 	 * Drain existing references and forbid new ones.  The process
609 	 * should be left alone until we're done here.  This is necessary
610 	 * to avoid race conditions - e.g. in ptrace() - that might allow
611 	 * a local user to illicitly obtain elevated privileges.
612 	 */
613 	rw_enter(&p->p_reflock, RW_WRITER);
614 
615 	/*
616 	 * Init the namei data to point the file user's program name.
617 	 * This is done here rather than in check_exec(), so that it's
618 	 * possible to override this settings if any of makecmd/probe
619 	 * functions call check_exec() recursively - for example,
620 	 * see exec_script_makecmds().
621 	 */
622 	error = pathbuf_copyin(path, &data->ed_pathbuf);
623 	if (error) {
624 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
625 		    path, error));
626 		goto clrflg;
627 	}
628 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
629 
630 	data->ed_resolvedpathbuf = PNBUF_GET();
631 #ifdef DIAGNOSTIC
632 	strcpy(data->ed_resolvedpathbuf, "/wrong");
633 #endif
634 
635 	/*
636 	 * initialize the fields of the exec package.
637 	 */
638 	data->ed_pack.ep_name = path;
639 	data->ed_pack.ep_kname = data->ed_pathstring;
640 	data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf;
641 	data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
642 	data->ed_pack.ep_hdrlen = exec_maxhdrsz;
643 	data->ed_pack.ep_hdrvalid = 0;
644 	data->ed_pack.ep_emul_arg = NULL;
645 	data->ed_pack.ep_emul_arg_free = NULL;
646 	data->ed_pack.ep_vmcmds.evs_cnt = 0;
647 	data->ed_pack.ep_vmcmds.evs_used = 0;
648 	data->ed_pack.ep_vap = &data->ed_attr;
649 	data->ed_pack.ep_flags = 0;
650 	data->ed_pack.ep_emul_root = NULL;
651 	data->ed_pack.ep_interp = NULL;
652 	data->ed_pack.ep_esch = NULL;
653 	data->ed_pack.ep_pax_flags = 0;
654 
655 	rw_enter(&exec_lock, RW_READER);
656 
657 	/* see if we can run it. */
658 	if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) {
659 		if (error != ENOENT) {
660 			DPRINTF(("%s: check exec failed %d\n",
661 			    __func__, error));
662 		}
663 		goto freehdr;
664 	}
665 
666 	/* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
667 
668 	/* allocate an argument buffer */
669 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
670 	KASSERT(data->ed_argp != NULL);
671 	dp = data->ed_argp;
672 	data->ed_argc = 0;
673 
674 	/* copy the fake args list, if there's one, freeing it as we go */
675 	if (data->ed_pack.ep_flags & EXEC_HASARGL) {
676 		tmpfap = data->ed_pack.ep_fa;
677 		while (tmpfap->fa_arg != NULL) {
678 			const char *cp;
679 
680 			cp = tmpfap->fa_arg;
681 			while (*cp)
682 				*dp++ = *cp++;
683 			*dp++ = '\0';
684 			ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
685 
686 			kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
687 			tmpfap++; data->ed_argc++;
688 		}
689 		kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len);
690 		data->ed_pack.ep_flags &= ~EXEC_HASARGL;
691 	}
692 
693 	/* Now get argv & environment */
694 	if (args == NULL) {
695 		DPRINTF(("%s: null args\n", __func__));
696 		error = EINVAL;
697 		goto bad;
698 	}
699 	/* 'i' will index the argp/envp element to be retrieved */
700 	i = 0;
701 	if (data->ed_pack.ep_flags & EXEC_SKIPARG)
702 		i++;
703 
704 	while (1) {
705 		len = data->ed_argp + ARG_MAX - dp;
706 		if ((error = (*fetch_element)(args, i, &sp)) != 0) {
707 			DPRINTF(("%s: fetch_element args %d\n",
708 			    __func__, error));
709 			goto bad;
710 		}
711 		if (!sp)
712 			break;
713 		if ((error = copyinstr(sp, dp, len, &len)) != 0) {
714 			DPRINTF(("%s: copyinstr args %d\n", __func__, error));
715 			if (error == ENAMETOOLONG)
716 				error = E2BIG;
717 			goto bad;
718 		}
719 		ktrexecarg(dp, len - 1);
720 		dp += len;
721 		i++;
722 		data->ed_argc++;
723 	}
724 
725 	data->ed_envc = 0;
726 	/* environment need not be there */
727 	if (envs != NULL) {
728 		i = 0;
729 		while (1) {
730 			len = data->ed_argp + ARG_MAX - dp;
731 			if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
732 				DPRINTF(("%s: fetch_element env %d\n",
733 				    __func__, error));
734 				goto bad;
735 			}
736 			if (!sp)
737 				break;
738 			if ((error = copyinstr(sp, dp, len, &len)) != 0) {
739 				DPRINTF(("%s: copyinstr env %d\n",
740 				    __func__, error));
741 				if (error == ENAMETOOLONG)
742 					error = E2BIG;
743 				goto bad;
744 			}
745 
746 			ktrexecenv(dp, len - 1);
747 			dp += len;
748 			i++;
749 			data->ed_envc++;
750 		}
751 	}
752 
753 	dp = (char *) ALIGN(dp);
754 
755 	data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode -
756 	    data->ed_pack.ep_esch->es_emul->e_sigcode;
757 
758 #ifdef __MACHINE_STACK_GROWS_UP
759 /* See big comment lower down */
760 #define	RTLD_GAP	32
761 #else
762 #define	RTLD_GAP	0
763 #endif
764 
765 	/* Now check if args & environ fit into new stack */
766 	if (data->ed_pack.ep_flags & EXEC_32) {
767 		data->ed_ps_strings_sz = sizeof(struct ps_strings32);
768 		len = ((data->ed_argc + data->ed_envc + 2 +
769 		    data->ed_pack.ep_esch->es_arglen) *
770 		    sizeof(int) + sizeof(int) + dp + RTLD_GAP +
771 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
772 		    - data->ed_argp;
773 	} else {
774 		data->ed_ps_strings_sz = sizeof(struct ps_strings);
775 		len = ((data->ed_argc + data->ed_envc + 2 +
776 		    data->ed_pack.ep_esch->es_arglen) *
777 		    sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
778 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
779 		    - data->ed_argp;
780 	}
781 
782 #ifdef PAX_ASLR
783 	if (pax_aslr_active(l))
784 		len += (cprng_fast32() % PAGE_SIZE);
785 #endif /* PAX_ASLR */
786 
787 	/* make the stack "safely" aligned */
788 	len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES);
789 
790 	if (len > data->ed_pack.ep_ssize) {
791 		/* in effect, compare to initial limit */
792 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
793 		goto bad;
794 	}
795 	/* adjust "active stack depth" for process VSZ */
796 	data->ed_pack.ep_ssize = len;
797 
798 	return 0;
799 
800  bad:
801 	/* free the vmspace-creation commands, and release their references */
802 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
803 	/* kill any opened file descriptor, if necessary */
804 	if (data->ed_pack.ep_flags & EXEC_HASFD) {
805 		data->ed_pack.ep_flags &= ~EXEC_HASFD;
806 		fd_close(data->ed_pack.ep_fd);
807 	}
808 	/* close and put the exec'd file */
809 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
810 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
811 	vput(data->ed_pack.ep_vp);
812 	pool_put(&exec_pool, data->ed_argp);
813 
814  freehdr:
815 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
816 	if (data->ed_pack.ep_emul_root != NULL)
817 		vrele(data->ed_pack.ep_emul_root);
818 	if (data->ed_pack.ep_interp != NULL)
819 		vrele(data->ed_pack.ep_interp);
820 
821 	rw_exit(&exec_lock);
822 
823 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
824 	pathbuf_destroy(data->ed_pathbuf);
825 	PNBUF_PUT(data->ed_resolvedpathbuf);
826 
827  clrflg:
828 	rw_exit(&p->p_reflock);
829 
830 	if (modgen != module_gen && error == ENOEXEC) {
831 		modgen = module_gen;
832 		exec_autoload();
833 		goto retry;
834 	}
835 
836 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
837 	return error;
838 }
839 
840 static int
841 execve_runproc(struct lwp *l, struct execve_data * restrict data)
842 {
843 	int error = 0;
844 	struct proc		*p;
845 	size_t			i;
846 	char			*stack, *dp;
847 	const char		*commandname;
848 	struct ps_strings32	arginfo32;
849 	struct exec_vmcmd	*base_vcp;
850 	void			*aip;
851 	struct vmspace		*vm;
852 	ksiginfo_t		ksi;
853 	ksiginfoq_t		kq;
854 	bool			proc_is_new;
855 
856 	KASSERT(rw_lock_held(&exec_lock));
857 	KASSERT(data != NULL);
858 	if (data == NULL)
859 		return (EINVAL);
860 
861 	p = l->l_proc;
862 	proc_is_new = p->p_vmspace == NULL;
863 
864 	base_vcp = NULL;
865 
866 	if (data->ed_pack.ep_flags & EXEC_32)
867 		aip = &arginfo32;
868 	else
869 		aip = &data->ed_arginfo;
870 
871 	/* Get rid of other LWPs. */
872 	if (p->p_nlwps > 1) {
873 		mutex_enter(p->p_lock);
874 		exit_lwps(l);
875 		mutex_exit(p->p_lock);
876 	}
877 	KDASSERT(p->p_nlwps == 1);
878 
879 	/* Destroy any lwpctl info. */
880 	if (p->p_lwpctl != NULL)
881 		lwp_ctl_exit();
882 
883 	/* Remove POSIX timers */
884 	timers_free(p, TIMERS_POSIX);
885 
886 	/*
887 	 * Do whatever is necessary to prepare the address space
888 	 * for remapping.  Note that this might replace the current
889 	 * vmspace with another!
890 	 */
891 	uvmspace_exec(l, data->ed_pack.ep_vm_minaddr, data->ed_pack.ep_vm_maxaddr);
892 
893 	/* record proc's vnode, for use by procfs and others */
894         if (p->p_textvp)
895                 vrele(p->p_textvp);
896 	vref(data->ed_pack.ep_vp);
897 	p->p_textvp = data->ed_pack.ep_vp;
898 
899 	/* Now map address space */
900 	vm = p->p_vmspace;
901 	vm->vm_taddr = (void *)data->ed_pack.ep_taddr;
902 	vm->vm_tsize = btoc(data->ed_pack.ep_tsize);
903 	vm->vm_daddr = (void*)data->ed_pack.ep_daddr;
904 	vm->vm_dsize = btoc(data->ed_pack.ep_dsize);
905 	vm->vm_ssize = btoc(data->ed_pack.ep_ssize);
906 	vm->vm_issize = 0;
907 	vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr;
908 	vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr;
909 
910 #ifdef PAX_ASLR
911 	pax_aslr_init(l, vm);
912 #endif /* PAX_ASLR */
913 
914 	/* create the new process's VM space by running the vmcmds */
915 #ifdef DIAGNOSTIC
916 	if (data->ed_pack.ep_vmcmds.evs_used == 0)
917 		panic("%s: no vmcmds", __func__);
918 #endif
919 
920 #ifdef DEBUG_EXEC
921 	{
922 		size_t j;
923 		struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0];
924 		DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used));
925 		for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
926 			DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
927 			    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
928 			    PRIxVSIZE" prot=0%o flags=%d\n", j,
929 			    vp[j].ev_proc == vmcmd_map_pagedvn ?
930 			    "pagedvn" :
931 			    vp[j].ev_proc == vmcmd_map_readvn ?
932 			    "readvn" :
933 			    vp[j].ev_proc == vmcmd_map_zero ?
934 			    "zero" : "*unknown*",
935 			    vp[j].ev_addr, vp[j].ev_len,
936 			    vp[j].ev_offset, vp[j].ev_prot,
937 			    vp[j].ev_flags));
938 		}
939 	}
940 #endif	/* DEBUG_EXEC */
941 
942 	for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) {
943 		struct exec_vmcmd *vcp;
944 
945 		vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i];
946 		if (vcp->ev_flags & VMCMD_RELATIVE) {
947 #ifdef DIAGNOSTIC
948 			if (base_vcp == NULL)
949 				panic("%s: relative vmcmd with no base",
950 				    __func__);
951 			if (vcp->ev_flags & VMCMD_BASE)
952 				panic("%s: illegal base & relative vmcmd",
953 				    __func__);
954 #endif
955 			vcp->ev_addr += base_vcp->ev_addr;
956 		}
957 		error = (*vcp->ev_proc)(l, vcp);
958 #ifdef DEBUG_EXEC
959 		if (error) {
960 			size_t j;
961 			struct exec_vmcmd *vp =
962 			    &data->ed_pack.ep_vmcmds.evs_cmds[0];
963 			DPRINTF(("vmcmds %zu/%u, error %d\n", i,
964 			    data->ed_pack.ep_vmcmds.evs_used, error));
965 			for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
966 				DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
967 				    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
968 				    PRIxVSIZE" prot=0%o flags=%d\n", j,
969 				    vp[j].ev_proc == vmcmd_map_pagedvn ?
970 				    "pagedvn" :
971 				    vp[j].ev_proc == vmcmd_map_readvn ?
972 				    "readvn" :
973 				    vp[j].ev_proc == vmcmd_map_zero ?
974 				    "zero" : "*unknown*",
975 				    vp[j].ev_addr, vp[j].ev_len,
976 				    vp[j].ev_offset, vp[j].ev_prot,
977 				    vp[j].ev_flags));
978 				if (j == i)
979 					DPRINTF(("     ^--- failed\n"));
980 			}
981 		}
982 #endif /* DEBUG_EXEC */
983 		if (vcp->ev_flags & VMCMD_BASE)
984 			base_vcp = vcp;
985 	}
986 
987 	/* free the vmspace-creation commands, and release their references */
988 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
989 
990 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
991 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
992 	vput(data->ed_pack.ep_vp);
993 
994 	/* if an error happened, deallocate and punt */
995 	if (error) {
996 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
997 		goto exec_abort;
998 	}
999 
1000 	/* remember information about the process */
1001 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
1002 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
1003 
1004 	/* set command name & other accounting info */
1005 	commandname = strrchr(data->ed_pack.ep_resolvedname, '/');
1006 	if (commandname != NULL) {
1007 		commandname++;
1008 	} else {
1009 		commandname = data->ed_pack.ep_resolvedname;
1010 	}
1011 	i = min(strlen(commandname), MAXCOMLEN);
1012 	(void)memcpy(p->p_comm, commandname, i);
1013 	p->p_comm[i] = '\0';
1014 
1015 	dp = PNBUF_GET();
1016 	/*
1017 	 * If the path starts with /, we don't need to do any work.
1018 	 * This handles the majority of the cases.
1019 	 * In the future perhaps we could canonicalize it?
1020 	 */
1021 	if (data->ed_pathstring[0] == '/')
1022 		(void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring,
1023 		    MAXPATHLEN);
1024 #ifdef notyet
1025 	/*
1026 	 * Although this works most of the time [since the entry was just
1027 	 * entered in the cache] we don't use it because it theoretically
1028 	 * can fail and it is not the cleanest interface, because there
1029 	 * could be races. When the namei cache is re-written, this can
1030 	 * be changed to use the appropriate function.
1031 	 */
1032 	else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
1033 		data->ed_pack.ep_path = dp;
1034 #endif
1035 	else {
1036 #ifdef notyet
1037 		printf("Cannot get path for pid %d [%s] (error %d)",
1038 		    (int)p->p_pid, p->p_comm, error);
1039 #endif
1040 		data->ed_pack.ep_path = NULL;
1041 		PNBUF_PUT(dp);
1042 	}
1043 
1044 	stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1045 		STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
1046 		data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
1047 
1048 #ifdef __MACHINE_STACK_GROWS_UP
1049 	/*
1050 	 * The copyargs call always copies into lower addresses
1051 	 * first, moving towards higher addresses, starting with
1052 	 * the stack pointer that we give.  When the stack grows
1053 	 * down, this puts argc/argv/envp very shallow on the
1054 	 * stack, right at the first user stack pointer.
1055 	 * When the stack grows up, the situation is reversed.
1056 	 *
1057 	 * Normally, this is no big deal.  But the ld_elf.so _rtld()
1058 	 * function expects to be called with a single pointer to
1059 	 * a region that has a few words it can stash values into,
1060 	 * followed by argc/argv/envp.  When the stack grows down,
1061 	 * it's easy to decrement the stack pointer a little bit to
1062 	 * allocate the space for these few words and pass the new
1063 	 * stack pointer to _rtld.  When the stack grows up, however,
1064 	 * a few words before argc is part of the signal trampoline, XXX
1065 	 * so we have a problem.
1066 	 *
1067 	 * Instead of changing how _rtld works, we take the easy way
1068 	 * out and steal 32 bytes before we call copyargs.
1069 	 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
1070 	 */
1071 	stack += RTLD_GAP;
1072 #endif /* __MACHINE_STACK_GROWS_UP */
1073 
1074 	/* Now copy argc, args & environ to new stack */
1075 	error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack,
1076 	    &data->ed_arginfo, &stack, data->ed_argp);
1077 
1078 	if (data->ed_pack.ep_path) {
1079 		PNBUF_PUT(data->ed_pack.ep_path);
1080 		data->ed_pack.ep_path = NULL;
1081 	}
1082 	if (error) {
1083 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1084 		goto exec_abort;
1085 	}
1086 	/* Move the stack back to original point */
1087 	stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize);
1088 
1089 	/* fill process ps_strings info */
1090 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1091 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1092 
1093 	if (data->ed_pack.ep_flags & EXEC_32) {
1094 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1095 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1096 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1097 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1098 	}
1099 
1100 	/* copy out the process's ps_strings structure */
1101 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1102 	    != 0) {
1103 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1104 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1105 		goto exec_abort;
1106 	}
1107 
1108 	cwdexec(p);
1109 	fd_closeexec();		/* handle close on exec */
1110 
1111 	if (__predict_false(ktrace_on))
1112 		fd_ktrexecfd();
1113 
1114 	execsigs(p);		/* reset catched signals */
1115 
1116 	l->l_ctxlink = NULL;	/* reset ucontext link */
1117 
1118 
1119 	p->p_acflag &= ~AFORK;
1120 	mutex_enter(p->p_lock);
1121 	p->p_flag |= PK_EXEC;
1122 	mutex_exit(p->p_lock);
1123 
1124 	/*
1125 	 * Stop profiling.
1126 	 */
1127 	if ((p->p_stflag & PST_PROFIL) != 0) {
1128 		mutex_spin_enter(&p->p_stmutex);
1129 		stopprofclock(p);
1130 		mutex_spin_exit(&p->p_stmutex);
1131 	}
1132 
1133 	/*
1134 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1135 	 * exited and exec()/exit() are the only places it will be cleared.
1136 	 */
1137 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1138 		mutex_enter(proc_lock);
1139 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1140 		p->p_lflag &= ~PL_PPWAIT;
1141 		cv_broadcast(&p->p_pptr->p_waitcv);
1142 		mutex_exit(proc_lock);
1143 	}
1144 
1145 	/*
1146 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
1147 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
1148 	 * out additional references on the process for the moment.
1149 	 */
1150 	if ((p->p_slflag & PSL_TRACED) == 0 &&
1151 
1152 	    (((data->ed_attr.va_mode & S_ISUID) != 0 &&
1153 	      kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
1154 
1155 	     ((data->ed_attr.va_mode & S_ISGID) != 0 &&
1156 	      kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
1157 		/*
1158 		 * Mark the process as SUGID before we do
1159 		 * anything that might block.
1160 		 */
1161 		proc_crmod_enter();
1162 		proc_crmod_leave(NULL, NULL, true);
1163 
1164 		/* Make sure file descriptors 0..2 are in use. */
1165 		if ((error = fd_checkstd()) != 0) {
1166 			DPRINTF(("%s: fdcheckstd failed %d\n",
1167 			    __func__, error));
1168 			goto exec_abort;
1169 		}
1170 
1171 		/*
1172 		 * Copy the credential so other references don't see our
1173 		 * changes.
1174 		 */
1175 		l->l_cred = kauth_cred_copy(l->l_cred);
1176 #ifdef KTRACE
1177 		/*
1178 		 * If the persistent trace flag isn't set, turn off.
1179 		 */
1180 		if (p->p_tracep) {
1181 			mutex_enter(&ktrace_lock);
1182 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1183 				ktrderef(p);
1184 			mutex_exit(&ktrace_lock);
1185 		}
1186 #endif
1187 		if (data->ed_attr.va_mode & S_ISUID)
1188 			kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
1189 		if (data->ed_attr.va_mode & S_ISGID)
1190 			kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
1191 	} else {
1192 		if (kauth_cred_geteuid(l->l_cred) ==
1193 		    kauth_cred_getuid(l->l_cred) &&
1194 		    kauth_cred_getegid(l->l_cred) ==
1195 		    kauth_cred_getgid(l->l_cred))
1196 			p->p_flag &= ~PK_SUGID;
1197 	}
1198 
1199 	/*
1200 	 * Copy the credential so other references don't see our changes.
1201 	 * Test to see if this is necessary first, since in the common case
1202 	 * we won't need a private reference.
1203 	 */
1204 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1205 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1206 		l->l_cred = kauth_cred_copy(l->l_cred);
1207 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1208 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1209 	}
1210 
1211 	/* Update the master credentials. */
1212 	if (l->l_cred != p->p_cred) {
1213 		kauth_cred_t ocred;
1214 
1215 		kauth_cred_hold(l->l_cred);
1216 		mutex_enter(p->p_lock);
1217 		ocred = p->p_cred;
1218 		p->p_cred = l->l_cred;
1219 		mutex_exit(p->p_lock);
1220 		kauth_cred_free(ocred);
1221 	}
1222 
1223 #if defined(__HAVE_RAS)
1224 	/*
1225 	 * Remove all RASs from the address space.
1226 	 */
1227 	ras_purgeall();
1228 #endif
1229 
1230 	doexechooks(p);
1231 
1232 	/* setup new registers and do misc. setup. */
1233 	(*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack,
1234 	     (vaddr_t)stack);
1235 	if (data->ed_pack.ep_esch->es_setregs)
1236 		(*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack,
1237 		    (vaddr_t)stack);
1238 
1239 	/* Provide a consistent LWP private setting */
1240 	(void)lwp_setprivate(l, NULL);
1241 
1242 	/* Discard all PCU state; need to start fresh */
1243 	pcu_discard_all(l);
1244 
1245 	/* map the process's signal trampoline code */
1246 	if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) {
1247 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1248 		goto exec_abort;
1249 	}
1250 
1251 	pool_put(&exec_pool, data->ed_argp);
1252 
1253 	/* notify others that we exec'd */
1254 	KNOTE(&p->p_klist, NOTE_EXEC);
1255 
1256 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1257 
1258 	SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0);
1259 
1260 	/* The emulation root will usually have been found when we looked
1261 	 * for the elf interpreter (or similar), if not look now. */
1262 	if (data->ed_pack.ep_esch->es_emul->e_path != NULL &&
1263 	    data->ed_pack.ep_emul_root == NULL)
1264 		emul_find_root(l, &data->ed_pack);
1265 
1266 	/* Any old emulation root got removed by fdcloseexec */
1267 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1268 	p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root;
1269 	rw_exit(&p->p_cwdi->cwdi_lock);
1270 	data->ed_pack.ep_emul_root = NULL;
1271 	if (data->ed_pack.ep_interp != NULL)
1272 		vrele(data->ed_pack.ep_interp);
1273 
1274 	/*
1275 	 * Call emulation specific exec hook. This can setup per-process
1276 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1277 	 *
1278 	 * If we are executing process of different emulation than the
1279 	 * original forked process, call e_proc_exit() of the old emulation
1280 	 * first, then e_proc_exec() of new emulation. If the emulation is
1281 	 * same, the exec hook code should deallocate any old emulation
1282 	 * resources held previously by this process.
1283 	 */
1284 	if (p->p_emul && p->p_emul->e_proc_exit
1285 	    && p->p_emul != data->ed_pack.ep_esch->es_emul)
1286 		(*p->p_emul->e_proc_exit)(p);
1287 
1288 	/*
1289 	 * This is now LWP 1.
1290 	 */
1291 	mutex_enter(p->p_lock);
1292 	p->p_nlwpid = 1;
1293 	l->l_lid = 1;
1294 	mutex_exit(p->p_lock);
1295 
1296 	/*
1297 	 * Call exec hook. Emulation code may NOT store reference to anything
1298 	 * from &pack.
1299 	 */
1300 	if (data->ed_pack.ep_esch->es_emul->e_proc_exec)
1301 		(*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack);
1302 
1303 	/* update p_emul, the old value is no longer needed */
1304 	p->p_emul = data->ed_pack.ep_esch->es_emul;
1305 
1306 	/* ...and the same for p_execsw */
1307 	p->p_execsw = data->ed_pack.ep_esch;
1308 
1309 #ifdef __HAVE_SYSCALL_INTERN
1310 	(*p->p_emul->e_syscall_intern)(p);
1311 #endif
1312 	ktremul();
1313 
1314 	/* Allow new references from the debugger/procfs. */
1315 	rw_exit(&p->p_reflock);
1316 	rw_exit(&exec_lock);
1317 
1318 	mutex_enter(proc_lock);
1319 
1320 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1321 		KSI_INIT_EMPTY(&ksi);
1322 		ksi.ksi_signo = SIGTRAP;
1323 		ksi.ksi_lid = l->l_lid;
1324 		kpsignal(p, &ksi, NULL);
1325 	}
1326 
1327 	if (p->p_sflag & PS_STOPEXEC) {
1328 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1329 		p->p_pptr->p_nstopchild++;
1330 		p->p_pptr->p_waited = 0;
1331 		mutex_enter(p->p_lock);
1332 		ksiginfo_queue_init(&kq);
1333 		sigclearall(p, &contsigmask, &kq);
1334 		lwp_lock(l);
1335 		l->l_stat = LSSTOP;
1336 		p->p_stat = SSTOP;
1337 		p->p_nrlwps--;
1338 		lwp_unlock(l);
1339 		mutex_exit(p->p_lock);
1340 		mutex_exit(proc_lock);
1341 		lwp_lock(l);
1342 		mi_switch(l);
1343 		ksiginfo_queue_drain(&kq);
1344 		KERNEL_LOCK(l->l_biglocks, l);
1345 	} else {
1346 		mutex_exit(proc_lock);
1347 	}
1348 
1349 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1350 	pathbuf_destroy(data->ed_pathbuf);
1351 	PNBUF_PUT(data->ed_resolvedpathbuf);
1352 	DPRINTF(("%s finished\n", __func__));
1353 	return (EJUSTRETURN);
1354 
1355  exec_abort:
1356 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1357 	rw_exit(&p->p_reflock);
1358 	rw_exit(&exec_lock);
1359 
1360 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1361 	pathbuf_destroy(data->ed_pathbuf);
1362 	PNBUF_PUT(data->ed_resolvedpathbuf);
1363 
1364 	/*
1365 	 * the old process doesn't exist anymore.  exit gracefully.
1366 	 * get rid of the (new) address space we have created, if any, get rid
1367 	 * of our namei data and vnode, and exit noting failure
1368 	 */
1369 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1370 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1371 	exec_free_emul_arg(&data->ed_pack);
1372 	pool_put(&exec_pool, data->ed_argp);
1373 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1374 	if (data->ed_pack.ep_emul_root != NULL)
1375 		vrele(data->ed_pack.ep_emul_root);
1376 	if (data->ed_pack.ep_interp != NULL)
1377 		vrele(data->ed_pack.ep_interp);
1378 
1379 	/* Acquire the sched-state mutex (exit1() will release it). */
1380 	if (!proc_is_new) {
1381 		mutex_enter(p->p_lock);
1382 		exit1(l, W_EXITCODE(error, SIGABRT));
1383 	}
1384 
1385 	/* NOTREACHED */
1386 	return 0;
1387 }
1388 
1389 int
1390 execve1(struct lwp *l, const char *path, char * const *args,
1391     char * const *envs, execve_fetch_element_t fetch_element)
1392 {
1393 	struct execve_data data;
1394 	int error;
1395 
1396 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1397 	if (error)
1398 		return error;
1399 	error = execve_runproc(l, &data);
1400 	return error;
1401 }
1402 
1403 int
1404 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1405     char **stackp, void *argp)
1406 {
1407 	char	**cpp, *dp, *sp;
1408 	size_t	len;
1409 	void	*nullp;
1410 	long	argc, envc;
1411 	int	error;
1412 
1413 	cpp = (char **)*stackp;
1414 	nullp = NULL;
1415 	argc = arginfo->ps_nargvstr;
1416 	envc = arginfo->ps_nenvstr;
1417 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1418 		COPYPRINTF("", cpp - 1, sizeof(argc));
1419 		return error;
1420 	}
1421 
1422 	dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1423 	sp = argp;
1424 
1425 	/* XXX don't copy them out, remap them! */
1426 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1427 
1428 	for (; --argc >= 0; sp += len, dp += len) {
1429 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1430 			COPYPRINTF("", cpp - 1, sizeof(dp));
1431 			return error;
1432 		}
1433 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1434 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1435 			return error;
1436 		}
1437 	}
1438 
1439 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1440 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1441 		return error;
1442 	}
1443 
1444 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1445 
1446 	for (; --envc >= 0; sp += len, dp += len) {
1447 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1448 			COPYPRINTF("", cpp - 1, sizeof(dp));
1449 			return error;
1450 		}
1451 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1452 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1453 			return error;
1454 		}
1455 
1456 	}
1457 
1458 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1459 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1460 		return error;
1461 	}
1462 
1463 	*stackp = (char *)cpp;
1464 	return 0;
1465 }
1466 
1467 
1468 /*
1469  * Add execsw[] entries.
1470  */
1471 int
1472 exec_add(struct execsw *esp, int count)
1473 {
1474 	struct exec_entry	*it;
1475 	int			i;
1476 
1477 	if (count == 0) {
1478 		return 0;
1479 	}
1480 
1481 	/* Check for duplicates. */
1482 	rw_enter(&exec_lock, RW_WRITER);
1483 	for (i = 0; i < count; i++) {
1484 		LIST_FOREACH(it, &ex_head, ex_list) {
1485 			/* assume unique (makecmds, probe_func, emulation) */
1486 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1487 			    it->ex_sw->u.elf_probe_func ==
1488 			    esp[i].u.elf_probe_func &&
1489 			    it->ex_sw->es_emul == esp[i].es_emul) {
1490 				rw_exit(&exec_lock);
1491 				return EEXIST;
1492 			}
1493 		}
1494 	}
1495 
1496 	/* Allocate new entries. */
1497 	for (i = 0; i < count; i++) {
1498 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1499 		it->ex_sw = &esp[i];
1500 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1501 	}
1502 
1503 	/* update execsw[] */
1504 	exec_init(0);
1505 	rw_exit(&exec_lock);
1506 	return 0;
1507 }
1508 
1509 /*
1510  * Remove execsw[] entry.
1511  */
1512 int
1513 exec_remove(struct execsw *esp, int count)
1514 {
1515 	struct exec_entry	*it, *next;
1516 	int			i;
1517 	const struct proclist_desc *pd;
1518 	proc_t			*p;
1519 
1520 	if (count == 0) {
1521 		return 0;
1522 	}
1523 
1524 	/* Abort if any are busy. */
1525 	rw_enter(&exec_lock, RW_WRITER);
1526 	for (i = 0; i < count; i++) {
1527 		mutex_enter(proc_lock);
1528 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1529 			PROCLIST_FOREACH(p, pd->pd_list) {
1530 				if (p->p_execsw == &esp[i]) {
1531 					mutex_exit(proc_lock);
1532 					rw_exit(&exec_lock);
1533 					return EBUSY;
1534 				}
1535 			}
1536 		}
1537 		mutex_exit(proc_lock);
1538 	}
1539 
1540 	/* None are busy, so remove them all. */
1541 	for (i = 0; i < count; i++) {
1542 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1543 			next = LIST_NEXT(it, ex_list);
1544 			if (it->ex_sw == &esp[i]) {
1545 				LIST_REMOVE(it, ex_list);
1546 				kmem_free(it, sizeof(*it));
1547 				break;
1548 			}
1549 		}
1550 	}
1551 
1552 	/* update execsw[] */
1553 	exec_init(0);
1554 	rw_exit(&exec_lock);
1555 	return 0;
1556 }
1557 
1558 /*
1559  * Initialize exec structures. If init_boot is true, also does necessary
1560  * one-time initialization (it's called from main() that way).
1561  * Once system is multiuser, this should be called with exec_lock held,
1562  * i.e. via exec_{add|remove}().
1563  */
1564 int
1565 exec_init(int init_boot)
1566 {
1567 	const struct execsw 	**sw;
1568 	struct exec_entry	*ex;
1569 	SLIST_HEAD(,exec_entry)	first;
1570 	SLIST_HEAD(,exec_entry)	any;
1571 	SLIST_HEAD(,exec_entry)	last;
1572 	int			i, sz;
1573 
1574 	if (init_boot) {
1575 		/* do one-time initializations */
1576 		rw_init(&exec_lock);
1577 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1578 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1579 		    "execargs", &exec_palloc, IPL_NONE);
1580 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1581 	} else {
1582 		KASSERT(rw_write_held(&exec_lock));
1583 	}
1584 
1585 	/* Sort each entry onto the appropriate queue. */
1586 	SLIST_INIT(&first);
1587 	SLIST_INIT(&any);
1588 	SLIST_INIT(&last);
1589 	sz = 0;
1590 	LIST_FOREACH(ex, &ex_head, ex_list) {
1591 		switch(ex->ex_sw->es_prio) {
1592 		case EXECSW_PRIO_FIRST:
1593 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1594 			break;
1595 		case EXECSW_PRIO_ANY:
1596 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1597 			break;
1598 		case EXECSW_PRIO_LAST:
1599 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1600 			break;
1601 		default:
1602 			panic("%s", __func__);
1603 			break;
1604 		}
1605 		sz++;
1606 	}
1607 
1608 	/*
1609 	 * Create new execsw[].  Ensure we do not try a zero-sized
1610 	 * allocation.
1611 	 */
1612 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1613 	i = 0;
1614 	SLIST_FOREACH(ex, &first, ex_slist) {
1615 		sw[i++] = ex->ex_sw;
1616 	}
1617 	SLIST_FOREACH(ex, &any, ex_slist) {
1618 		sw[i++] = ex->ex_sw;
1619 	}
1620 	SLIST_FOREACH(ex, &last, ex_slist) {
1621 		sw[i++] = ex->ex_sw;
1622 	}
1623 
1624 	/* Replace old execsw[] and free used memory. */
1625 	if (execsw != NULL) {
1626 		kmem_free(__UNCONST(execsw),
1627 		    nexecs * sizeof(struct execsw *) + 1);
1628 	}
1629 	execsw = sw;
1630 	nexecs = sz;
1631 
1632 	/* Figure out the maximum size of an exec header. */
1633 	exec_maxhdrsz = sizeof(int);
1634 	for (i = 0; i < nexecs; i++) {
1635 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1636 			exec_maxhdrsz = execsw[i]->es_hdrsz;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 static int
1643 exec_sigcode_map(struct proc *p, const struct emul *e)
1644 {
1645 	vaddr_t va;
1646 	vsize_t sz;
1647 	int error;
1648 	struct uvm_object *uobj;
1649 
1650 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1651 
1652 	if (e->e_sigobject == NULL || sz == 0) {
1653 		return 0;
1654 	}
1655 
1656 	/*
1657 	 * If we don't have a sigobject for this emulation, create one.
1658 	 *
1659 	 * sigobject is an anonymous memory object (just like SYSV shared
1660 	 * memory) that we keep a permanent reference to and that we map
1661 	 * in all processes that need this sigcode. The creation is simple,
1662 	 * we create an object, add a permanent reference to it, map it in
1663 	 * kernel space, copy out the sigcode to it and unmap it.
1664 	 * We map it with PROT_READ|PROT_EXEC into the process just
1665 	 * the way sys_mmap() would map it.
1666 	 */
1667 
1668 	uobj = *e->e_sigobject;
1669 	if (uobj == NULL) {
1670 		mutex_enter(&sigobject_lock);
1671 		if ((uobj = *e->e_sigobject) == NULL) {
1672 			uobj = uao_create(sz, 0);
1673 			(*uobj->pgops->pgo_reference)(uobj);
1674 			va = vm_map_min(kernel_map);
1675 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
1676 			    uobj, 0, 0,
1677 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1678 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1679 				printf("kernel mapping failed %d\n", error);
1680 				(*uobj->pgops->pgo_detach)(uobj);
1681 				mutex_exit(&sigobject_lock);
1682 				return (error);
1683 			}
1684 			memcpy((void *)va, e->e_sigcode, sz);
1685 #ifdef PMAP_NEED_PROCWR
1686 			pmap_procwr(&proc0, va, sz);
1687 #endif
1688 			uvm_unmap(kernel_map, va, va + round_page(sz));
1689 			*e->e_sigobject = uobj;
1690 		}
1691 		mutex_exit(&sigobject_lock);
1692 	}
1693 
1694 	/* Just a hint to uvm_map where to put it. */
1695 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1696 	    round_page(sz));
1697 
1698 #ifdef __alpha__
1699 	/*
1700 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
1701 	 * which causes the above calculation to put the sigcode at
1702 	 * an invalid address.  Put it just below the text instead.
1703 	 */
1704 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1705 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1706 	}
1707 #endif
1708 
1709 	(*uobj->pgops->pgo_reference)(uobj);
1710 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1711 			uobj, 0, 0,
1712 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1713 				    UVM_ADV_RANDOM, 0));
1714 	if (error) {
1715 		DPRINTF(("%s, %d: map %p "
1716 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1717 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1718 		    va, error));
1719 		(*uobj->pgops->pgo_detach)(uobj);
1720 		return (error);
1721 	}
1722 	p->p_sigctx.ps_sigcode = (void *)va;
1723 	return (0);
1724 }
1725 
1726 /*
1727  * A child lwp of a posix_spawn operation starts here and ends up in
1728  * cpu_spawn_return, dealing with all filedescriptor and scheduler
1729  * manipulations in between.
1730  */
1731 static void
1732 spawn_return(void *arg)
1733 {
1734 	struct spawn_exec_data *spawn_data = arg;
1735 	struct lwp *l = curlwp;
1736 	int error, newfd;
1737 	size_t i;
1738 	const struct posix_spawn_file_actions_entry *fae;
1739 	register_t retval;
1740 	bool have_reflock;
1741 
1742 	/*
1743 	 * The following actions may block, so we need a temporary
1744 	 * vmspace - borrow the kernel one
1745 	 */
1746 	KPREEMPT_DISABLE(l);
1747 	l->l_proc->p_vmspace = proc0.p_vmspace;
1748 	pmap_activate(l);
1749 	KPREEMPT_ENABLE(l);
1750 
1751 	/* don't allow debugger access yet */
1752 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1753 	have_reflock = true;
1754 
1755 	error = 0;
1756 	/* handle posix_spawn_file_actions */
1757 	if (spawn_data->sed_actions != NULL) {
1758 		for (i = 0; i < spawn_data->sed_actions_len; i++) {
1759 			fae = &spawn_data->sed_actions[i];
1760 			switch (fae->fae_action) {
1761 			case FAE_OPEN:
1762 				if (fd_getfile(fae->fae_fildes) != NULL) {
1763 					error = fd_close(fae->fae_fildes);
1764 					if (error)
1765 						break;
1766 				}
1767 				error = fd_open(fae->fae_path, fae->fae_oflag,
1768 				    fae->fae_mode, &newfd);
1769  				if (error)
1770  					break;
1771 				if (newfd != fae->fae_fildes) {
1772 					error = dodup(l, newfd,
1773 					    fae->fae_fildes, 0, &retval);
1774 					if (fd_getfile(newfd) != NULL)
1775 						fd_close(newfd);
1776 				}
1777 				break;
1778 			case FAE_DUP2:
1779 				error = dodup(l, fae->fae_fildes,
1780 				    fae->fae_newfildes, 0, &retval);
1781 				break;
1782 			case FAE_CLOSE:
1783 				if (fd_getfile(fae->fae_fildes) == NULL) {
1784 					error = EBADF;
1785 					break;
1786 				}
1787 				error = fd_close(fae->fae_fildes);
1788 				break;
1789 			}
1790 			if (error)
1791 				goto report_error;
1792 		}
1793 	}
1794 
1795 	/* handle posix_spawnattr */
1796 	if (spawn_data->sed_attrs != NULL) {
1797 		struct sigaction sigact;
1798 		sigact._sa_u._sa_handler = SIG_DFL;
1799 		sigact.sa_flags = 0;
1800 
1801 		/*
1802 		 * set state to SSTOP so that this proc can be found by pid.
1803 		 * see proc_enterprp, do_sched_setparam below
1804 		 */
1805 		l->l_proc->p_stat = SSTOP;
1806 
1807 		/* Set process group */
1808 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1809 			pid_t mypid = l->l_proc->p_pid,
1810 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
1811 
1812 			if (pgrp == 0)
1813 				pgrp = mypid;
1814 
1815 			error = proc_enterpgrp(spawn_data->sed_parent,
1816 			    mypid, pgrp, false);
1817 			if (error)
1818 				goto report_error;
1819 		}
1820 
1821 		/* Set scheduler policy */
1822 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1823 			error = do_sched_setparam(l->l_proc->p_pid, 0,
1824 			    spawn_data->sed_attrs->sa_schedpolicy,
1825 			    &spawn_data->sed_attrs->sa_schedparam);
1826 		else if (spawn_data->sed_attrs->sa_flags
1827 		    & POSIX_SPAWN_SETSCHEDPARAM) {
1828 			error = do_sched_setparam(spawn_data->sed_parent->p_pid, 0,
1829 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
1830 		}
1831 		if (error)
1832 			goto report_error;
1833 
1834 		/* Reset user ID's */
1835 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
1836 			error = do_setresuid(l, -1,
1837 			     kauth_cred_getgid(l->l_cred), -1,
1838 			     ID_E_EQ_R | ID_E_EQ_S);
1839 			if (error)
1840 				goto report_error;
1841 			error = do_setresuid(l, -1,
1842 			    kauth_cred_getuid(l->l_cred), -1,
1843 			    ID_E_EQ_R | ID_E_EQ_S);
1844 			if (error)
1845 				goto report_error;
1846 		}
1847 
1848 		/* Set signal masks/defaults */
1849 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
1850 			mutex_enter(l->l_proc->p_lock);
1851 			error = sigprocmask1(l, SIG_SETMASK,
1852 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
1853 			mutex_exit(l->l_proc->p_lock);
1854 			if (error)
1855 				goto report_error;
1856 		}
1857 
1858 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
1859 			for (i = 1; i <= NSIG; i++) {
1860 				if (sigismember(
1861 				    &spawn_data->sed_attrs->sa_sigdefault, i))
1862 					sigaction1(l, i, &sigact, NULL, NULL,
1863 					    0);
1864 			}
1865 		}
1866 	}
1867 
1868 	/* stop using kernel vmspace */
1869 	KPREEMPT_DISABLE(l);
1870 	pmap_deactivate(l);
1871 	l->l_proc->p_vmspace = NULL;
1872 	KPREEMPT_ENABLE(l);
1873 
1874 
1875 	/* now do the real exec */
1876 	rw_enter(&exec_lock, RW_READER);
1877 	error = execve_runproc(l, &spawn_data->sed_exec);
1878 	have_reflock = false;
1879 	if (error == EJUSTRETURN)
1880 		error = 0;
1881 	else if (error)
1882 		goto report_error;
1883 
1884 	/* done, signal parent */
1885 	mutex_enter(&spawn_data->sed_mtx_child);
1886 	cv_signal(&spawn_data->sed_cv_child_ready);
1887 	mutex_exit(&spawn_data->sed_mtx_child);
1888 
1889 	/* and finaly: leave to userland for the first time */
1890 	cpu_spawn_return(l);
1891 
1892 	/* NOTREACHED */
1893 	return;
1894 
1895  report_error:
1896 	if (have_reflock)
1897 		rw_exit(&l->l_proc->p_reflock);
1898 
1899 	/* stop using kernel vmspace (if we haven't already) */
1900 	if (l->l_proc->p_vmspace) {
1901 		KPREEMPT_DISABLE(l);
1902 		pmap_deactivate(l);
1903 		l->l_proc->p_vmspace = NULL;
1904 		KPREEMPT_ENABLE(l);
1905 	}
1906 
1907  	/*
1908  	 * Set error value for parent to pick up (and take over ownership
1909  	 * of spawn_data again), signal parent and exit this process.
1910  	 */
1911 	mutex_enter(&spawn_data->sed_mtx_child);
1912 	spawn_data->sed_error = error;
1913 	cv_signal(&spawn_data->sed_cv_child_ready);
1914 	mutex_exit(&spawn_data->sed_mtx_child);
1915 	mutex_enter(l->l_proc->p_lock);
1916 	exit1(l, W_EXITCODE(error, SIGABRT));
1917 }
1918 
1919 static void
1920 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
1921 {
1922 
1923 	for (size_t i = 0; i < len; i++) {
1924 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
1925 		if (fae->fae_action != FAE_OPEN)
1926 			continue;
1927 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
1928 	}
1929 	if (fa->len)
1930 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
1931 	kmem_free(fa, sizeof(*fa));
1932 }
1933 
1934 static int
1935 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
1936     const struct posix_spawn_file_actions *ufa)
1937 {
1938 	struct posix_spawn_file_actions *fa;
1939 	struct posix_spawn_file_actions_entry *fae;
1940 	char *pbuf = NULL;
1941 	int error;
1942 	size_t i = 0;
1943 
1944 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
1945 	error = copyin(ufa, fa, sizeof(*fa));
1946 	if (error) {
1947 		fa->fae = NULL;
1948 		fa->len = 0;
1949 		goto out;
1950 	}
1951 
1952 	if (fa->len == 0)
1953 		return 0;
1954 
1955 	size_t fal = fa->len * sizeof(*fae);
1956 	fae = fa->fae;
1957 	fa->fae = kmem_alloc(fal, KM_SLEEP);
1958 	error = copyin(fae, fa->fae, fal);
1959 	if (error)
1960 		goto out;
1961 
1962 	pbuf = PNBUF_GET();
1963 	for (; i < fa->len; i++) {
1964 		fae = &fa->fae[i];
1965 		if (fae->fae_action != FAE_OPEN)
1966 			continue;
1967 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
1968 		if (error)
1969 			goto out;
1970 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
1971 		memcpy(fae->fae_path, pbuf, fal);
1972 	}
1973 	PNBUF_PUT(pbuf);
1974 	*fap = fa;
1975 	return 0;
1976 out:
1977 	if (pbuf)
1978 		PNBUF_PUT(pbuf);
1979 	posix_spawn_fa_free(fa, i);
1980 	return error;
1981 }
1982 
1983 int
1984 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
1985     register_t *retval)
1986 {
1987 	/* {
1988 		syscallarg(pid_t *) pid;
1989 		syscallarg(const char *) path;
1990 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
1991 		syscallarg(const struct posix_spawnattr *) attrp;
1992 		syscallarg(char *const *) argv;
1993 		syscallarg(char *const *) envp;
1994 	} */
1995 
1996 	struct proc *p1, *p2;
1997 	struct plimit *p1_lim;
1998 	struct lwp *l2;
1999 	int error = 0, tnprocs, count;
2000 	struct posix_spawn_file_actions *fa = NULL;
2001 	struct posix_spawnattr *sa = NULL;
2002 	struct spawn_exec_data *spawn_data;
2003 	uid_t uid;
2004 	vaddr_t uaddr;
2005 	pid_t pid;
2006 	bool have_exec_lock = false;
2007 
2008 	p1 = l1->l_proc;
2009 	uid = kauth_cred_getuid(l1->l_cred);
2010 	tnprocs = atomic_inc_uint_nv(&nprocs);
2011 
2012 	/*
2013 	 * Although process entries are dynamically created, we still keep
2014 	 * a global limit on the maximum number we will create.
2015 	 */
2016 	if (__predict_false(tnprocs >= maxproc))
2017 		error = -1;
2018 	else
2019 		error = kauth_authorize_process(l1->l_cred,
2020 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2021 
2022 	if (error) {
2023 		atomic_dec_uint(&nprocs);
2024 		*retval = EAGAIN;
2025 		return 0;
2026 	}
2027 
2028 	/*
2029 	 * Enforce limits.
2030 	 */
2031 	count = chgproccnt(uid, 1);
2032 	if (kauth_authorize_generic(l1->l_cred, KAUTH_GENERIC_ISSUSER, NULL) !=
2033 	    0 && __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2034 		error = EAGAIN;
2035 		goto error_exit;
2036 	}
2037 
2038 	/* copy in file_actions struct */
2039 	if (SCARG(uap, file_actions) != NULL) {
2040 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions));
2041 		if (error)
2042 			goto error_exit;
2043 	}
2044 
2045 	/* copyin posix_spawnattr struct */
2046 	if (SCARG(uap, attrp) != NULL) {
2047 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2048 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2049 		if (error)
2050 			goto error_exit;
2051 	}
2052 
2053 	/*
2054 	 * Do the first part of the exec now, collect state
2055 	 * in spawn_data.
2056 	 */
2057 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2058 	error = execve_loadvm(l1, SCARG(uap, path), SCARG(uap, argv),
2059 	    SCARG(uap, envp), execve_fetch_element, &spawn_data->sed_exec);
2060 	if (error == EJUSTRETURN)
2061 		error = 0;
2062 	else if (error)
2063 		goto error_exit;
2064 
2065 	have_exec_lock = true;
2066 
2067 	/*
2068 	 * Allocate virtual address space for the U-area now, while it
2069 	 * is still easy to abort the fork operation if we're out of
2070 	 * kernel virtual address space.
2071 	 */
2072 	uaddr = uvm_uarea_alloc();
2073 	if (__predict_false(uaddr == 0)) {
2074 		error = ENOMEM;
2075 		goto error_exit;
2076 	}
2077 
2078 	/*
2079 	 * Allocate new proc. Leave it's p_vmspace NULL for now.
2080 	 * This is a point of no return, we will have to go through
2081 	 * the child proc to properly clean it up past this point.
2082 	 */
2083 	p2 = proc_alloc();
2084 	pid = p2->p_pid;
2085 
2086 	/*
2087 	 * Make a proc table entry for the new process.
2088 	 * Start by zeroing the section of proc that is zero-initialized,
2089 	 * then copy the section that is copied directly from the parent.
2090 	 */
2091 	memset(&p2->p_startzero, 0,
2092 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2093 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
2094 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2095 	p2->p_vmspace = NULL;
2096 
2097 	CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
2098 
2099 	LIST_INIT(&p2->p_lwps);
2100 	LIST_INIT(&p2->p_sigwaiters);
2101 
2102 	/*
2103 	 * Duplicate sub-structures as needed.
2104 	 * Increase reference counts on shared objects.
2105 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
2106 	 * handling are important in order to keep a consistent behaviour
2107 	 * for the child after the fork.  If we are a 32-bit process, the
2108 	 * child will be too.
2109 	 */
2110 	p2->p_flag =
2111 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2112 	p2->p_emul = p1->p_emul;
2113 	p2->p_execsw = p1->p_execsw;
2114 
2115 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2116 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2117 	rw_init(&p2->p_reflock);
2118 	cv_init(&p2->p_waitcv, "wait");
2119 	cv_init(&p2->p_lwpcv, "lwpwait");
2120 
2121 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2122 
2123 	kauth_proc_fork(p1, p2);
2124 
2125 	p2->p_raslist = NULL;
2126 	p2->p_fd = fd_copy();
2127 
2128 	/* XXX racy */
2129 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2130 
2131 	p2->p_cwdi = cwdinit();
2132 
2133 	/*
2134 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2135 	 * we just need increase pl_refcnt.
2136 	 */
2137 	p1_lim = p1->p_limit;
2138 	if (!p1_lim->pl_writeable) {
2139 		lim_addref(p1_lim);
2140 		p2->p_limit = p1_lim;
2141 	} else {
2142 		p2->p_limit = lim_copy(p1->p_limit);
2143 	}
2144 
2145 	p2->p_lflag = 0;
2146 	p2->p_sflag = 0;
2147 	p2->p_slflag = 0;
2148 	p2->p_pptr = p1;
2149 	p2->p_ppid = p1->p_pid;
2150 	LIST_INIT(&p2->p_children);
2151 
2152 	p2->p_aio = NULL;
2153 
2154 #ifdef KTRACE
2155 	/*
2156 	 * Copy traceflag and tracefile if enabled.
2157 	 * If not inherited, these were zeroed above.
2158 	 */
2159 	if (p1->p_traceflag & KTRFAC_INHERIT) {
2160 		mutex_enter(&ktrace_lock);
2161 		p2->p_traceflag = p1->p_traceflag;
2162 		if ((p2->p_tracep = p1->p_tracep) != NULL)
2163 			ktradref(p2);
2164 		mutex_exit(&ktrace_lock);
2165 	}
2166 #endif
2167 
2168 	/*
2169 	 * Create signal actions for the child process.
2170 	 */
2171 	p2->p_sigacts = sigactsinit(p1, 0);
2172 	mutex_enter(p1->p_lock);
2173 	p2->p_sflag |=
2174 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2175 	sched_proc_fork(p1, p2);
2176 	mutex_exit(p1->p_lock);
2177 
2178 	p2->p_stflag = p1->p_stflag;
2179 
2180 	/*
2181 	 * p_stats.
2182 	 * Copy parts of p_stats, and zero out the rest.
2183 	 */
2184 	p2->p_stats = pstatscopy(p1->p_stats);
2185 
2186 	/* copy over machdep flags to the new proc */
2187 	cpu_proc_fork(p1, p2);
2188 
2189 	/*
2190 	 * Prepare remaining parts of spawn data
2191 	 */
2192 	if (fa && fa->len) {
2193 		spawn_data->sed_actions_len = fa->len;
2194 		spawn_data->sed_actions = fa->fae;
2195 	}
2196 	if (sa)
2197 		spawn_data->sed_attrs = sa;
2198 
2199 	spawn_data->sed_parent = p1;
2200 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2201 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2202 	mutex_enter(&spawn_data->sed_mtx_child);
2203 
2204 	/* create LWP */
2205 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2206 	    &l2, l1->l_class);
2207 	l2->l_ctxlink = NULL;	/* reset ucontext link */
2208 
2209 	/*
2210 	 * Copy the credential so other references don't see our changes.
2211 	 * Test to see if this is necessary first, since in the common case
2212 	 * we won't need a private reference.
2213 	 */
2214 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2215 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2216 		l2->l_cred = kauth_cred_copy(l2->l_cred);
2217 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2218 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2219 	}
2220 
2221 	/* Update the master credentials. */
2222 	if (l2->l_cred != p2->p_cred) {
2223 		kauth_cred_t ocred;
2224 
2225 		kauth_cred_hold(l2->l_cred);
2226 		mutex_enter(p2->p_lock);
2227 		ocred = p2->p_cred;
2228 		p2->p_cred = l2->l_cred;
2229 		mutex_exit(p2->p_lock);
2230 		kauth_cred_free(ocred);
2231 	}
2232 
2233 	/*
2234 	 * It's now safe for the scheduler and other processes to see the
2235 	 * child process.
2236 	 */
2237 	mutex_enter(proc_lock);
2238 
2239 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2240 		p2->p_lflag |= PL_CONTROLT;
2241 
2242 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2243 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
2244 
2245 	LIST_INSERT_AFTER(p1, p2, p_pglist);
2246 	LIST_INSERT_HEAD(&allproc, p2, p_list);
2247 
2248 	p2->p_trace_enabled = trace_is_enabled(p2);
2249 #ifdef __HAVE_SYSCALL_INTERN
2250 	(*p2->p_emul->e_syscall_intern)(p2);
2251 #endif
2252 
2253 	/*
2254 	 * Make child runnable, set start time, and add to run queue except
2255 	 * if the parent requested the child to start in SSTOP state.
2256 	 */
2257 	mutex_enter(p2->p_lock);
2258 
2259 	getmicrotime(&p2->p_stats->p_start);
2260 
2261 	lwp_lock(l2);
2262 	KASSERT(p2->p_nrlwps == 1);
2263 	p2->p_nrlwps = 1;
2264 	p2->p_stat = SACTIVE;
2265 	l2->l_stat = LSRUN;
2266 	sched_enqueue(l2, false);
2267 	lwp_unlock(l2);
2268 
2269 	mutex_exit(p2->p_lock);
2270 	mutex_exit(proc_lock);
2271 
2272 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2273 	mutex_exit(&spawn_data->sed_mtx_child);
2274 	error = spawn_data->sed_error;
2275 
2276 	rw_exit(&p1->p_reflock);
2277 	rw_exit(&exec_lock);
2278 	have_exec_lock = false;
2279 
2280 	if (fa)
2281 		posix_spawn_fa_free(fa, fa->len);
2282 
2283 	if (sa)
2284 		kmem_free(sa, sizeof(*sa));
2285 
2286 	cv_destroy(&spawn_data->sed_cv_child_ready);
2287 	mutex_destroy(&spawn_data->sed_mtx_child);
2288 
2289 	kmem_free(spawn_data, sizeof(*spawn_data));
2290 
2291 	if (error == 0 && SCARG(uap, pid) != NULL)
2292 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2293 
2294 	*retval = error;
2295 	return 0;
2296 
2297  error_exit:
2298  	if (have_exec_lock)
2299  		rw_exit(&exec_lock);
2300 
2301 	if (fa)
2302 		posix_spawn_fa_free(fa, fa->len);
2303 
2304 	if (sa)
2305 		kmem_free(sa, sizeof(*sa));
2306 
2307 	(void)chgproccnt(uid, -1);
2308 	atomic_dec_uint(&nprocs);
2309 
2310 	*retval = error;
2311 	return 0;
2312 }
2313 
2314 void
2315 exec_free_emul_arg(struct exec_package *epp)
2316 {
2317 	if (epp->ep_emul_arg_free != NULL) {
2318 		KASSERT(epp->ep_emul_arg != NULL);
2319 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2320 		epp->ep_emul_arg_free = NULL;
2321 		epp->ep_emul_arg = NULL;
2322 	} else {
2323 		KASSERT(epp->ep_emul_arg == NULL);
2324 	}
2325 }
2326