1 /* $NetBSD: kern_exec.c,v 1.344 2012/02/21 04:13:22 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /*- 30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou 31 * Copyright (C) 1992 Wolfgang Solfrank. 32 * Copyright (C) 1992 TooLs GmbH. 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by TooLs GmbH. 46 * 4. The name of TooLs GmbH may not be used to endorse or promote products 47 * derived from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.344 2012/02/21 04:13:22 christos Exp $"); 63 64 #include "opt_exec.h" 65 #include "opt_ktrace.h" 66 #include "opt_modular.h" 67 #include "opt_syscall_debug.h" 68 #include "veriexec.h" 69 #include "opt_pax.h" 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/filedesc.h> 74 #include <sys/kernel.h> 75 #include <sys/proc.h> 76 #include <sys/mount.h> 77 #include <sys/malloc.h> 78 #include <sys/kmem.h> 79 #include <sys/namei.h> 80 #include <sys/vnode.h> 81 #include <sys/file.h> 82 #include <sys/acct.h> 83 #include <sys/atomic.h> 84 #include <sys/exec.h> 85 #include <sys/ktrace.h> 86 #include <sys/uidinfo.h> 87 #include <sys/wait.h> 88 #include <sys/mman.h> 89 #include <sys/ras.h> 90 #include <sys/signalvar.h> 91 #include <sys/stat.h> 92 #include <sys/syscall.h> 93 #include <sys/kauth.h> 94 #include <sys/lwpctl.h> 95 #include <sys/pax.h> 96 #include <sys/cpu.h> 97 #include <sys/module.h> 98 #include <sys/syscallvar.h> 99 #include <sys/syscallargs.h> 100 #if NVERIEXEC > 0 101 #include <sys/verified_exec.h> 102 #endif /* NVERIEXEC > 0 */ 103 #include <sys/sdt.h> 104 #include <sys/spawn.h> 105 #include <sys/prot.h> 106 #include <sys/cprng.h> 107 108 #include <uvm/uvm_extern.h> 109 110 #include <machine/reg.h> 111 112 #include <compat/common/compat_util.h> 113 114 static int exec_sigcode_map(struct proc *, const struct emul *); 115 116 #ifdef DEBUG_EXEC 117 #define DPRINTF(a) printf a 118 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ 119 __LINE__, (s), (a), (b)) 120 #else 121 #define DPRINTF(a) 122 #define COPYPRINTF(s, a, b) 123 #endif /* DEBUG_EXEC */ 124 125 /* 126 * DTrace SDT provider definitions 127 */ 128 SDT_PROBE_DEFINE(proc,,,exec, 129 "char *", NULL, 130 NULL, NULL, NULL, NULL, 131 NULL, NULL, NULL, NULL); 132 SDT_PROBE_DEFINE(proc,,,exec_success, 133 "char *", NULL, 134 NULL, NULL, NULL, NULL, 135 NULL, NULL, NULL, NULL); 136 SDT_PROBE_DEFINE(proc,,,exec_failure, 137 "int", NULL, 138 NULL, NULL, NULL, NULL, 139 NULL, NULL, NULL, NULL); 140 141 /* 142 * Exec function switch: 143 * 144 * Note that each makecmds function is responsible for loading the 145 * exec package with the necessary functions for any exec-type-specific 146 * handling. 147 * 148 * Functions for specific exec types should be defined in their own 149 * header file. 150 */ 151 static const struct execsw **execsw = NULL; 152 static int nexecs; 153 154 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ 155 156 /* list of dynamically loaded execsw entries */ 157 static LIST_HEAD(execlist_head, exec_entry) ex_head = 158 LIST_HEAD_INITIALIZER(ex_head); 159 struct exec_entry { 160 LIST_ENTRY(exec_entry) ex_list; 161 SLIST_ENTRY(exec_entry) ex_slist; 162 const struct execsw *ex_sw; 163 }; 164 165 #ifndef __HAVE_SYSCALL_INTERN 166 void syscall(void); 167 #endif 168 169 /* NetBSD emul struct */ 170 struct emul emul_netbsd = { 171 .e_name = "netbsd", 172 .e_path = NULL, 173 #ifndef __HAVE_MINIMAL_EMUL 174 .e_flags = EMUL_HAS_SYS___syscall, 175 .e_errno = NULL, 176 .e_nosys = SYS_syscall, 177 .e_nsysent = SYS_NSYSENT, 178 #endif 179 .e_sysent = sysent, 180 #ifdef SYSCALL_DEBUG 181 .e_syscallnames = syscallnames, 182 #else 183 .e_syscallnames = NULL, 184 #endif 185 .e_sendsig = sendsig, 186 .e_trapsignal = trapsignal, 187 .e_tracesig = NULL, 188 .e_sigcode = NULL, 189 .e_esigcode = NULL, 190 .e_sigobject = NULL, 191 .e_setregs = setregs, 192 .e_proc_exec = NULL, 193 .e_proc_fork = NULL, 194 .e_proc_exit = NULL, 195 .e_lwp_fork = NULL, 196 .e_lwp_exit = NULL, 197 #ifdef __HAVE_SYSCALL_INTERN 198 .e_syscall_intern = syscall_intern, 199 #else 200 .e_syscall = syscall, 201 #endif 202 .e_sysctlovly = NULL, 203 .e_fault = NULL, 204 .e_vm_default_addr = uvm_default_mapaddr, 205 .e_usertrap = NULL, 206 .e_ucsize = sizeof(ucontext_t), 207 .e_startlwp = startlwp 208 }; 209 210 /* 211 * Exec lock. Used to control access to execsw[] structures. 212 * This must not be static so that netbsd32 can access it, too. 213 */ 214 krwlock_t exec_lock; 215 216 static kmutex_t sigobject_lock; 217 218 /* 219 * Data used between a loadvm and execve part of an "exec" operation 220 */ 221 struct execve_data { 222 struct exec_package ed_pack; 223 struct pathbuf *ed_pathbuf; 224 struct vattr ed_attr; 225 struct ps_strings ed_arginfo; 226 char *ed_argp; 227 const char *ed_pathstring; 228 char *ed_resolvedpathbuf; 229 size_t ed_ps_strings_sz; 230 int ed_szsigcode; 231 long ed_argc; 232 long ed_envc; 233 }; 234 235 /* 236 * data passed from parent lwp to child during a posix_spawn() 237 */ 238 struct spawn_exec_data { 239 struct execve_data sed_exec; 240 size_t sed_actions_len; 241 struct posix_spawn_file_actions_entry 242 *sed_actions; 243 struct posix_spawnattr *sed_attrs; 244 struct proc *sed_parent; 245 kcondvar_t sed_cv_child_ready; 246 kmutex_t sed_mtx_child; 247 int sed_error; 248 }; 249 250 static void * 251 exec_pool_alloc(struct pool *pp, int flags) 252 { 253 254 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0, 255 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 256 } 257 258 static void 259 exec_pool_free(struct pool *pp, void *addr) 260 { 261 262 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); 263 } 264 265 static struct pool exec_pool; 266 267 static struct pool_allocator exec_palloc = { 268 .pa_alloc = exec_pool_alloc, 269 .pa_free = exec_pool_free, 270 .pa_pagesz = NCARGS 271 }; 272 273 /* 274 * check exec: 275 * given an "executable" described in the exec package's namei info, 276 * see what we can do with it. 277 * 278 * ON ENTRY: 279 * exec package with appropriate namei info 280 * lwp pointer of exec'ing lwp 281 * NO SELF-LOCKED VNODES 282 * 283 * ON EXIT: 284 * error: nothing held, etc. exec header still allocated. 285 * ok: filled exec package, executable's vnode (unlocked). 286 * 287 * EXEC SWITCH ENTRY: 288 * Locked vnode to check, exec package, proc. 289 * 290 * EXEC SWITCH EXIT: 291 * ok: return 0, filled exec package, executable's vnode (unlocked). 292 * error: destructive: 293 * everything deallocated execept exec header. 294 * non-destructive: 295 * error code, executable's vnode (unlocked), 296 * exec header unmodified. 297 */ 298 int 299 /*ARGSUSED*/ 300 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) 301 { 302 int error, i; 303 struct vnode *vp; 304 struct nameidata nd; 305 size_t resid; 306 307 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 308 309 /* first get the vnode */ 310 if ((error = namei(&nd)) != 0) 311 return error; 312 epp->ep_vp = vp = nd.ni_vp; 313 /* this cannot overflow as both are size PATH_MAX */ 314 strcpy(epp->ep_resolvedname, nd.ni_pnbuf); 315 316 #ifdef DIAGNOSTIC 317 /* paranoia (take this out once namei stuff stabilizes) */ 318 memset(nd.ni_pnbuf, '~', PATH_MAX); 319 #endif 320 321 /* check access and type */ 322 if (vp->v_type != VREG) { 323 error = EACCES; 324 goto bad1; 325 } 326 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) 327 goto bad1; 328 329 /* get attributes */ 330 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) 331 goto bad1; 332 333 /* Check mount point */ 334 if (vp->v_mount->mnt_flag & MNT_NOEXEC) { 335 error = EACCES; 336 goto bad1; 337 } 338 if (vp->v_mount->mnt_flag & MNT_NOSUID) 339 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); 340 341 /* try to open it */ 342 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) 343 goto bad1; 344 345 /* unlock vp, since we need it unlocked from here on out. */ 346 VOP_UNLOCK(vp); 347 348 #if NVERIEXEC > 0 349 error = veriexec_verify(l, vp, epp->ep_resolvedname, 350 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, 351 NULL); 352 if (error) 353 goto bad2; 354 #endif /* NVERIEXEC > 0 */ 355 356 #ifdef PAX_SEGVGUARD 357 error = pax_segvguard(l, vp, epp->ep_resolvedname, false); 358 if (error) 359 goto bad2; 360 #endif /* PAX_SEGVGUARD */ 361 362 /* now we have the file, get the exec header */ 363 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, 364 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); 365 if (error) 366 goto bad2; 367 epp->ep_hdrvalid = epp->ep_hdrlen - resid; 368 369 /* 370 * Set up default address space limits. Can be overridden 371 * by individual exec packages. 372 * 373 * XXX probably should be all done in the exec packages. 374 */ 375 epp->ep_vm_minaddr = VM_MIN_ADDRESS; 376 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; 377 /* 378 * set up the vmcmds for creation of the process 379 * address space 380 */ 381 error = ENOEXEC; 382 for (i = 0; i < nexecs; i++) { 383 int newerror; 384 385 epp->ep_esch = execsw[i]; 386 newerror = (*execsw[i]->es_makecmds)(l, epp); 387 388 if (!newerror) { 389 /* Seems ok: check that entry point is not too high */ 390 if (epp->ep_entry > epp->ep_vm_maxaddr) { 391 #ifdef DIAGNOSTIC 392 printf("%s: rejecting %p due to " 393 "too high entry address (> %p)\n", 394 __func__, (void *)epp->ep_entry, 395 (void *)epp->ep_vm_maxaddr); 396 #endif 397 error = ENOEXEC; 398 break; 399 } 400 /* Seems ok: check that entry point is not too low */ 401 if (epp->ep_entry < epp->ep_vm_minaddr) { 402 #ifdef DIAGNOSTIC 403 printf("%s: rejecting %p due to " 404 "too low entry address (< %p)\n", 405 __func__, (void *)epp->ep_entry, 406 (void *)epp->ep_vm_minaddr); 407 #endif 408 error = ENOEXEC; 409 break; 410 } 411 412 /* check limits */ 413 if ((epp->ep_tsize > MAXTSIZ) || 414 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit 415 [RLIMIT_DATA].rlim_cur)) { 416 #ifdef DIAGNOSTIC 417 printf("%s: rejecting due to " 418 "limits (t=%llu > %llu || d=%llu > %llu)\n", 419 __func__, 420 (unsigned long long)epp->ep_tsize, 421 (unsigned long long)MAXTSIZ, 422 (unsigned long long)epp->ep_dsize, 423 (unsigned long long) 424 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); 425 #endif 426 error = ENOMEM; 427 break; 428 } 429 return 0; 430 } 431 432 if (epp->ep_emul_root != NULL) { 433 vrele(epp->ep_emul_root); 434 epp->ep_emul_root = NULL; 435 } 436 if (epp->ep_interp != NULL) { 437 vrele(epp->ep_interp); 438 epp->ep_interp = NULL; 439 } 440 441 /* make sure the first "interesting" error code is saved. */ 442 if (error == ENOEXEC) 443 error = newerror; 444 445 if (epp->ep_flags & EXEC_DESTR) 446 /* Error from "#!" code, tidied up by recursive call */ 447 return error; 448 } 449 450 /* not found, error */ 451 452 /* 453 * free any vmspace-creation commands, 454 * and release their references 455 */ 456 kill_vmcmds(&epp->ep_vmcmds); 457 458 bad2: 459 /* 460 * close and release the vnode, restore the old one, free the 461 * pathname buf, and punt. 462 */ 463 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 464 VOP_CLOSE(vp, FREAD, l->l_cred); 465 vput(vp); 466 return error; 467 468 bad1: 469 /* 470 * free the namei pathname buffer, and put the vnode 471 * (which we don't yet have open). 472 */ 473 vput(vp); /* was still locked */ 474 return error; 475 } 476 477 #ifdef __MACHINE_STACK_GROWS_UP 478 #define STACK_PTHREADSPACE NBPG 479 #else 480 #define STACK_PTHREADSPACE 0 481 #endif 482 483 static int 484 execve_fetch_element(char * const *array, size_t index, char **value) 485 { 486 return copyin(array + index, value, sizeof(*value)); 487 } 488 489 /* 490 * exec system call 491 */ 492 int 493 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) 494 { 495 /* { 496 syscallarg(const char *) path; 497 syscallarg(char * const *) argp; 498 syscallarg(char * const *) envp; 499 } */ 500 501 return execve1(l, SCARG(uap, path), SCARG(uap, argp), 502 SCARG(uap, envp), execve_fetch_element); 503 } 504 505 int 506 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, 507 register_t *retval) 508 { 509 /* { 510 syscallarg(int) fd; 511 syscallarg(char * const *) argp; 512 syscallarg(char * const *) envp; 513 } */ 514 515 return ENOSYS; 516 } 517 518 /* 519 * Load modules to try and execute an image that we do not understand. 520 * If no execsw entries are present, we load those likely to be needed 521 * in order to run native images only. Otherwise, we autoload all 522 * possible modules that could let us run the binary. XXX lame 523 */ 524 static void 525 exec_autoload(void) 526 { 527 #ifdef MODULAR 528 static const char * const native[] = { 529 "exec_elf32", 530 "exec_elf64", 531 "exec_script", 532 NULL 533 }; 534 static const char * const compat[] = { 535 "exec_elf32", 536 "exec_elf64", 537 "exec_script", 538 "exec_aout", 539 "exec_coff", 540 "exec_ecoff", 541 "compat_aoutm68k", 542 "compat_freebsd", 543 "compat_ibcs2", 544 "compat_linux", 545 "compat_linux32", 546 "compat_netbsd32", 547 "compat_sunos", 548 "compat_sunos32", 549 "compat_svr4", 550 "compat_svr4_32", 551 "compat_ultrix", 552 NULL 553 }; 554 char const * const *list; 555 int i; 556 557 list = (nexecs == 0 ? native : compat); 558 for (i = 0; list[i] != NULL; i++) { 559 if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) { 560 continue; 561 } 562 yield(); 563 } 564 #endif 565 } 566 567 static int 568 execve_loadvm(struct lwp *l, const char *path, char * const *args, 569 char * const *envs, execve_fetch_element_t fetch_element, 570 struct execve_data * restrict data) 571 { 572 int error; 573 struct proc *p; 574 char *dp, *sp; 575 size_t i, len; 576 struct exec_fakearg *tmpfap; 577 u_int modgen; 578 579 KASSERT(data != NULL); 580 581 p = l->l_proc; 582 modgen = 0; 583 584 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0); 585 586 /* 587 * Check if we have exceeded our number of processes limit. 588 * This is so that we handle the case where a root daemon 589 * forked, ran setuid to become the desired user and is trying 590 * to exec. The obvious place to do the reference counting check 591 * is setuid(), but we don't do the reference counting check there 592 * like other OS's do because then all the programs that use setuid() 593 * must be modified to check the return code of setuid() and exit(). 594 * It is dangerous to make setuid() fail, because it fails open and 595 * the program will continue to run as root. If we make it succeed 596 * and return an error code, again we are not enforcing the limit. 597 * The best place to enforce the limit is here, when the process tries 598 * to execute a new image, because eventually the process will need 599 * to call exec in order to do something useful. 600 */ 601 retry: 602 if ((p->p_flag & PK_SUGID) && kauth_authorize_generic(l->l_cred, 603 KAUTH_GENERIC_ISSUSER, NULL) != 0 && chgproccnt(kauth_cred_getuid( 604 l->l_cred), 0) > p->p_rlimit[RLIMIT_NPROC].rlim_cur) 605 return EAGAIN; 606 607 /* 608 * Drain existing references and forbid new ones. The process 609 * should be left alone until we're done here. This is necessary 610 * to avoid race conditions - e.g. in ptrace() - that might allow 611 * a local user to illicitly obtain elevated privileges. 612 */ 613 rw_enter(&p->p_reflock, RW_WRITER); 614 615 /* 616 * Init the namei data to point the file user's program name. 617 * This is done here rather than in check_exec(), so that it's 618 * possible to override this settings if any of makecmd/probe 619 * functions call check_exec() recursively - for example, 620 * see exec_script_makecmds(). 621 */ 622 error = pathbuf_copyin(path, &data->ed_pathbuf); 623 if (error) { 624 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__, 625 path, error)); 626 goto clrflg; 627 } 628 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); 629 630 data->ed_resolvedpathbuf = PNBUF_GET(); 631 #ifdef DIAGNOSTIC 632 strcpy(data->ed_resolvedpathbuf, "/wrong"); 633 #endif 634 635 /* 636 * initialize the fields of the exec package. 637 */ 638 data->ed_pack.ep_name = path; 639 data->ed_pack.ep_kname = data->ed_pathstring; 640 data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf; 641 data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); 642 data->ed_pack.ep_hdrlen = exec_maxhdrsz; 643 data->ed_pack.ep_hdrvalid = 0; 644 data->ed_pack.ep_emul_arg = NULL; 645 data->ed_pack.ep_emul_arg_free = NULL; 646 data->ed_pack.ep_vmcmds.evs_cnt = 0; 647 data->ed_pack.ep_vmcmds.evs_used = 0; 648 data->ed_pack.ep_vap = &data->ed_attr; 649 data->ed_pack.ep_flags = 0; 650 data->ed_pack.ep_emul_root = NULL; 651 data->ed_pack.ep_interp = NULL; 652 data->ed_pack.ep_esch = NULL; 653 data->ed_pack.ep_pax_flags = 0; 654 655 rw_enter(&exec_lock, RW_READER); 656 657 /* see if we can run it. */ 658 if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) { 659 if (error != ENOENT) { 660 DPRINTF(("%s: check exec failed %d\n", 661 __func__, error)); 662 } 663 goto freehdr; 664 } 665 666 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */ 667 668 /* allocate an argument buffer */ 669 data->ed_argp = pool_get(&exec_pool, PR_WAITOK); 670 KASSERT(data->ed_argp != NULL); 671 dp = data->ed_argp; 672 data->ed_argc = 0; 673 674 /* copy the fake args list, if there's one, freeing it as we go */ 675 if (data->ed_pack.ep_flags & EXEC_HASARGL) { 676 tmpfap = data->ed_pack.ep_fa; 677 while (tmpfap->fa_arg != NULL) { 678 const char *cp; 679 680 cp = tmpfap->fa_arg; 681 while (*cp) 682 *dp++ = *cp++; 683 *dp++ = '\0'; 684 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg); 685 686 kmem_free(tmpfap->fa_arg, tmpfap->fa_len); 687 tmpfap++; data->ed_argc++; 688 } 689 kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len); 690 data->ed_pack.ep_flags &= ~EXEC_HASARGL; 691 } 692 693 /* Now get argv & environment */ 694 if (args == NULL) { 695 DPRINTF(("%s: null args\n", __func__)); 696 error = EINVAL; 697 goto bad; 698 } 699 /* 'i' will index the argp/envp element to be retrieved */ 700 i = 0; 701 if (data->ed_pack.ep_flags & EXEC_SKIPARG) 702 i++; 703 704 while (1) { 705 len = data->ed_argp + ARG_MAX - dp; 706 if ((error = (*fetch_element)(args, i, &sp)) != 0) { 707 DPRINTF(("%s: fetch_element args %d\n", 708 __func__, error)); 709 goto bad; 710 } 711 if (!sp) 712 break; 713 if ((error = copyinstr(sp, dp, len, &len)) != 0) { 714 DPRINTF(("%s: copyinstr args %d\n", __func__, error)); 715 if (error == ENAMETOOLONG) 716 error = E2BIG; 717 goto bad; 718 } 719 ktrexecarg(dp, len - 1); 720 dp += len; 721 i++; 722 data->ed_argc++; 723 } 724 725 data->ed_envc = 0; 726 /* environment need not be there */ 727 if (envs != NULL) { 728 i = 0; 729 while (1) { 730 len = data->ed_argp + ARG_MAX - dp; 731 if ((error = (*fetch_element)(envs, i, &sp)) != 0) { 732 DPRINTF(("%s: fetch_element env %d\n", 733 __func__, error)); 734 goto bad; 735 } 736 if (!sp) 737 break; 738 if ((error = copyinstr(sp, dp, len, &len)) != 0) { 739 DPRINTF(("%s: copyinstr env %d\n", 740 __func__, error)); 741 if (error == ENAMETOOLONG) 742 error = E2BIG; 743 goto bad; 744 } 745 746 ktrexecenv(dp, len - 1); 747 dp += len; 748 i++; 749 data->ed_envc++; 750 } 751 } 752 753 dp = (char *) ALIGN(dp); 754 755 data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode - 756 data->ed_pack.ep_esch->es_emul->e_sigcode; 757 758 #ifdef __MACHINE_STACK_GROWS_UP 759 /* See big comment lower down */ 760 #define RTLD_GAP 32 761 #else 762 #define RTLD_GAP 0 763 #endif 764 765 /* Now check if args & environ fit into new stack */ 766 if (data->ed_pack.ep_flags & EXEC_32) { 767 data->ed_ps_strings_sz = sizeof(struct ps_strings32); 768 len = ((data->ed_argc + data->ed_envc + 2 + 769 data->ed_pack.ep_esch->es_arglen) * 770 sizeof(int) + sizeof(int) + dp + RTLD_GAP + 771 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE) 772 - data->ed_argp; 773 } else { 774 data->ed_ps_strings_sz = sizeof(struct ps_strings); 775 len = ((data->ed_argc + data->ed_envc + 2 + 776 data->ed_pack.ep_esch->es_arglen) * 777 sizeof(char *) + sizeof(int) + dp + RTLD_GAP + 778 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE) 779 - data->ed_argp; 780 } 781 782 #ifdef PAX_ASLR 783 if (pax_aslr_active(l)) 784 len += (cprng_fast32() % PAGE_SIZE); 785 #endif /* PAX_ASLR */ 786 787 /* make the stack "safely" aligned */ 788 len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES); 789 790 if (len > data->ed_pack.ep_ssize) { 791 /* in effect, compare to initial limit */ 792 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len)); 793 goto bad; 794 } 795 /* adjust "active stack depth" for process VSZ */ 796 data->ed_pack.ep_ssize = len; 797 798 return 0; 799 800 bad: 801 /* free the vmspace-creation commands, and release their references */ 802 kill_vmcmds(&data->ed_pack.ep_vmcmds); 803 /* kill any opened file descriptor, if necessary */ 804 if (data->ed_pack.ep_flags & EXEC_HASFD) { 805 data->ed_pack.ep_flags &= ~EXEC_HASFD; 806 fd_close(data->ed_pack.ep_fd); 807 } 808 /* close and put the exec'd file */ 809 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY); 810 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred); 811 vput(data->ed_pack.ep_vp); 812 pool_put(&exec_pool, data->ed_argp); 813 814 freehdr: 815 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 816 if (data->ed_pack.ep_emul_root != NULL) 817 vrele(data->ed_pack.ep_emul_root); 818 if (data->ed_pack.ep_interp != NULL) 819 vrele(data->ed_pack.ep_interp); 820 821 rw_exit(&exec_lock); 822 823 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 824 pathbuf_destroy(data->ed_pathbuf); 825 PNBUF_PUT(data->ed_resolvedpathbuf); 826 827 clrflg: 828 rw_exit(&p->p_reflock); 829 830 if (modgen != module_gen && error == ENOEXEC) { 831 modgen = module_gen; 832 exec_autoload(); 833 goto retry; 834 } 835 836 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 837 return error; 838 } 839 840 static int 841 execve_runproc(struct lwp *l, struct execve_data * restrict data) 842 { 843 int error = 0; 844 struct proc *p; 845 size_t i; 846 char *stack, *dp; 847 const char *commandname; 848 struct ps_strings32 arginfo32; 849 struct exec_vmcmd *base_vcp; 850 void *aip; 851 struct vmspace *vm; 852 ksiginfo_t ksi; 853 ksiginfoq_t kq; 854 bool proc_is_new; 855 856 KASSERT(rw_lock_held(&exec_lock)); 857 KASSERT(data != NULL); 858 if (data == NULL) 859 return (EINVAL); 860 861 p = l->l_proc; 862 proc_is_new = p->p_vmspace == NULL; 863 864 base_vcp = NULL; 865 866 if (data->ed_pack.ep_flags & EXEC_32) 867 aip = &arginfo32; 868 else 869 aip = &data->ed_arginfo; 870 871 /* Get rid of other LWPs. */ 872 if (p->p_nlwps > 1) { 873 mutex_enter(p->p_lock); 874 exit_lwps(l); 875 mutex_exit(p->p_lock); 876 } 877 KDASSERT(p->p_nlwps == 1); 878 879 /* Destroy any lwpctl info. */ 880 if (p->p_lwpctl != NULL) 881 lwp_ctl_exit(); 882 883 /* Remove POSIX timers */ 884 timers_free(p, TIMERS_POSIX); 885 886 /* 887 * Do whatever is necessary to prepare the address space 888 * for remapping. Note that this might replace the current 889 * vmspace with another! 890 */ 891 uvmspace_exec(l, data->ed_pack.ep_vm_minaddr, data->ed_pack.ep_vm_maxaddr); 892 893 /* record proc's vnode, for use by procfs and others */ 894 if (p->p_textvp) 895 vrele(p->p_textvp); 896 vref(data->ed_pack.ep_vp); 897 p->p_textvp = data->ed_pack.ep_vp; 898 899 /* Now map address space */ 900 vm = p->p_vmspace; 901 vm->vm_taddr = (void *)data->ed_pack.ep_taddr; 902 vm->vm_tsize = btoc(data->ed_pack.ep_tsize); 903 vm->vm_daddr = (void*)data->ed_pack.ep_daddr; 904 vm->vm_dsize = btoc(data->ed_pack.ep_dsize); 905 vm->vm_ssize = btoc(data->ed_pack.ep_ssize); 906 vm->vm_issize = 0; 907 vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr; 908 vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr; 909 910 #ifdef PAX_ASLR 911 pax_aslr_init(l, vm); 912 #endif /* PAX_ASLR */ 913 914 /* create the new process's VM space by running the vmcmds */ 915 #ifdef DIAGNOSTIC 916 if (data->ed_pack.ep_vmcmds.evs_used == 0) 917 panic("%s: no vmcmds", __func__); 918 #endif 919 920 #ifdef DEBUG_EXEC 921 { 922 size_t j; 923 struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0]; 924 DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used)); 925 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) { 926 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 927 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 928 PRIxVSIZE" prot=0%o flags=%d\n", j, 929 vp[j].ev_proc == vmcmd_map_pagedvn ? 930 "pagedvn" : 931 vp[j].ev_proc == vmcmd_map_readvn ? 932 "readvn" : 933 vp[j].ev_proc == vmcmd_map_zero ? 934 "zero" : "*unknown*", 935 vp[j].ev_addr, vp[j].ev_len, 936 vp[j].ev_offset, vp[j].ev_prot, 937 vp[j].ev_flags)); 938 } 939 } 940 #endif /* DEBUG_EXEC */ 941 942 for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) { 943 struct exec_vmcmd *vcp; 944 945 vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i]; 946 if (vcp->ev_flags & VMCMD_RELATIVE) { 947 #ifdef DIAGNOSTIC 948 if (base_vcp == NULL) 949 panic("%s: relative vmcmd with no base", 950 __func__); 951 if (vcp->ev_flags & VMCMD_BASE) 952 panic("%s: illegal base & relative vmcmd", 953 __func__); 954 #endif 955 vcp->ev_addr += base_vcp->ev_addr; 956 } 957 error = (*vcp->ev_proc)(l, vcp); 958 #ifdef DEBUG_EXEC 959 if (error) { 960 size_t j; 961 struct exec_vmcmd *vp = 962 &data->ed_pack.ep_vmcmds.evs_cmds[0]; 963 DPRINTF(("vmcmds %zu/%u, error %d\n", i, 964 data->ed_pack.ep_vmcmds.evs_used, error)); 965 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) { 966 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 967 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 968 PRIxVSIZE" prot=0%o flags=%d\n", j, 969 vp[j].ev_proc == vmcmd_map_pagedvn ? 970 "pagedvn" : 971 vp[j].ev_proc == vmcmd_map_readvn ? 972 "readvn" : 973 vp[j].ev_proc == vmcmd_map_zero ? 974 "zero" : "*unknown*", 975 vp[j].ev_addr, vp[j].ev_len, 976 vp[j].ev_offset, vp[j].ev_prot, 977 vp[j].ev_flags)); 978 if (j == i) 979 DPRINTF((" ^--- failed\n")); 980 } 981 } 982 #endif /* DEBUG_EXEC */ 983 if (vcp->ev_flags & VMCMD_BASE) 984 base_vcp = vcp; 985 } 986 987 /* free the vmspace-creation commands, and release their references */ 988 kill_vmcmds(&data->ed_pack.ep_vmcmds); 989 990 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY); 991 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred); 992 vput(data->ed_pack.ep_vp); 993 994 /* if an error happened, deallocate and punt */ 995 if (error) { 996 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error)); 997 goto exec_abort; 998 } 999 1000 /* remember information about the process */ 1001 data->ed_arginfo.ps_nargvstr = data->ed_argc; 1002 data->ed_arginfo.ps_nenvstr = data->ed_envc; 1003 1004 /* set command name & other accounting info */ 1005 commandname = strrchr(data->ed_pack.ep_resolvedname, '/'); 1006 if (commandname != NULL) { 1007 commandname++; 1008 } else { 1009 commandname = data->ed_pack.ep_resolvedname; 1010 } 1011 i = min(strlen(commandname), MAXCOMLEN); 1012 (void)memcpy(p->p_comm, commandname, i); 1013 p->p_comm[i] = '\0'; 1014 1015 dp = PNBUF_GET(); 1016 /* 1017 * If the path starts with /, we don't need to do any work. 1018 * This handles the majority of the cases. 1019 * In the future perhaps we could canonicalize it? 1020 */ 1021 if (data->ed_pathstring[0] == '/') 1022 (void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring, 1023 MAXPATHLEN); 1024 #ifdef notyet 1025 /* 1026 * Although this works most of the time [since the entry was just 1027 * entered in the cache] we don't use it because it theoretically 1028 * can fail and it is not the cleanest interface, because there 1029 * could be races. When the namei cache is re-written, this can 1030 * be changed to use the appropriate function. 1031 */ 1032 else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p))) 1033 data->ed_pack.ep_path = dp; 1034 #endif 1035 else { 1036 #ifdef notyet 1037 printf("Cannot get path for pid %d [%s] (error %d)", 1038 (int)p->p_pid, p->p_comm, error); 1039 #endif 1040 data->ed_pack.ep_path = NULL; 1041 PNBUF_PUT(dp); 1042 } 1043 1044 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr, 1045 STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode), 1046 data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode)); 1047 1048 #ifdef __MACHINE_STACK_GROWS_UP 1049 /* 1050 * The copyargs call always copies into lower addresses 1051 * first, moving towards higher addresses, starting with 1052 * the stack pointer that we give. When the stack grows 1053 * down, this puts argc/argv/envp very shallow on the 1054 * stack, right at the first user stack pointer. 1055 * When the stack grows up, the situation is reversed. 1056 * 1057 * Normally, this is no big deal. But the ld_elf.so _rtld() 1058 * function expects to be called with a single pointer to 1059 * a region that has a few words it can stash values into, 1060 * followed by argc/argv/envp. When the stack grows down, 1061 * it's easy to decrement the stack pointer a little bit to 1062 * allocate the space for these few words and pass the new 1063 * stack pointer to _rtld. When the stack grows up, however, 1064 * a few words before argc is part of the signal trampoline, XXX 1065 * so we have a problem. 1066 * 1067 * Instead of changing how _rtld works, we take the easy way 1068 * out and steal 32 bytes before we call copyargs. 1069 * This extra space was allowed for when 'pack.ep_ssize' was calculated. 1070 */ 1071 stack += RTLD_GAP; 1072 #endif /* __MACHINE_STACK_GROWS_UP */ 1073 1074 /* Now copy argc, args & environ to new stack */ 1075 error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack, 1076 &data->ed_arginfo, &stack, data->ed_argp); 1077 1078 if (data->ed_pack.ep_path) { 1079 PNBUF_PUT(data->ed_pack.ep_path); 1080 data->ed_pack.ep_path = NULL; 1081 } 1082 if (error) { 1083 DPRINTF(("%s: copyargs failed %d\n", __func__, error)); 1084 goto exec_abort; 1085 } 1086 /* Move the stack back to original point */ 1087 stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize); 1088 1089 /* fill process ps_strings info */ 1090 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr, 1091 STACK_PTHREADSPACE), data->ed_ps_strings_sz); 1092 1093 if (data->ed_pack.ep_flags & EXEC_32) { 1094 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; 1095 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; 1096 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; 1097 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; 1098 } 1099 1100 /* copy out the process's ps_strings structure */ 1101 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) 1102 != 0) { 1103 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n", 1104 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); 1105 goto exec_abort; 1106 } 1107 1108 cwdexec(p); 1109 fd_closeexec(); /* handle close on exec */ 1110 1111 if (__predict_false(ktrace_on)) 1112 fd_ktrexecfd(); 1113 1114 execsigs(p); /* reset catched signals */ 1115 1116 l->l_ctxlink = NULL; /* reset ucontext link */ 1117 1118 1119 p->p_acflag &= ~AFORK; 1120 mutex_enter(p->p_lock); 1121 p->p_flag |= PK_EXEC; 1122 mutex_exit(p->p_lock); 1123 1124 /* 1125 * Stop profiling. 1126 */ 1127 if ((p->p_stflag & PST_PROFIL) != 0) { 1128 mutex_spin_enter(&p->p_stmutex); 1129 stopprofclock(p); 1130 mutex_spin_exit(&p->p_stmutex); 1131 } 1132 1133 /* 1134 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have 1135 * exited and exec()/exit() are the only places it will be cleared. 1136 */ 1137 if ((p->p_lflag & PL_PPWAIT) != 0) { 1138 mutex_enter(proc_lock); 1139 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1140 p->p_lflag &= ~PL_PPWAIT; 1141 cv_broadcast(&p->p_pptr->p_waitcv); 1142 mutex_exit(proc_lock); 1143 } 1144 1145 /* 1146 * Deal with set[ug]id. MNT_NOSUID has already been used to disable 1147 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked 1148 * out additional references on the process for the moment. 1149 */ 1150 if ((p->p_slflag & PSL_TRACED) == 0 && 1151 1152 (((data->ed_attr.va_mode & S_ISUID) != 0 && 1153 kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) || 1154 1155 ((data->ed_attr.va_mode & S_ISGID) != 0 && 1156 kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) { 1157 /* 1158 * Mark the process as SUGID before we do 1159 * anything that might block. 1160 */ 1161 proc_crmod_enter(); 1162 proc_crmod_leave(NULL, NULL, true); 1163 1164 /* Make sure file descriptors 0..2 are in use. */ 1165 if ((error = fd_checkstd()) != 0) { 1166 DPRINTF(("%s: fdcheckstd failed %d\n", 1167 __func__, error)); 1168 goto exec_abort; 1169 } 1170 1171 /* 1172 * Copy the credential so other references don't see our 1173 * changes. 1174 */ 1175 l->l_cred = kauth_cred_copy(l->l_cred); 1176 #ifdef KTRACE 1177 /* 1178 * If the persistent trace flag isn't set, turn off. 1179 */ 1180 if (p->p_tracep) { 1181 mutex_enter(&ktrace_lock); 1182 if (!(p->p_traceflag & KTRFAC_PERSISTENT)) 1183 ktrderef(p); 1184 mutex_exit(&ktrace_lock); 1185 } 1186 #endif 1187 if (data->ed_attr.va_mode & S_ISUID) 1188 kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid); 1189 if (data->ed_attr.va_mode & S_ISGID) 1190 kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid); 1191 } else { 1192 if (kauth_cred_geteuid(l->l_cred) == 1193 kauth_cred_getuid(l->l_cred) && 1194 kauth_cred_getegid(l->l_cred) == 1195 kauth_cred_getgid(l->l_cred)) 1196 p->p_flag &= ~PK_SUGID; 1197 } 1198 1199 /* 1200 * Copy the credential so other references don't see our changes. 1201 * Test to see if this is necessary first, since in the common case 1202 * we won't need a private reference. 1203 */ 1204 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || 1205 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { 1206 l->l_cred = kauth_cred_copy(l->l_cred); 1207 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); 1208 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); 1209 } 1210 1211 /* Update the master credentials. */ 1212 if (l->l_cred != p->p_cred) { 1213 kauth_cred_t ocred; 1214 1215 kauth_cred_hold(l->l_cred); 1216 mutex_enter(p->p_lock); 1217 ocred = p->p_cred; 1218 p->p_cred = l->l_cred; 1219 mutex_exit(p->p_lock); 1220 kauth_cred_free(ocred); 1221 } 1222 1223 #if defined(__HAVE_RAS) 1224 /* 1225 * Remove all RASs from the address space. 1226 */ 1227 ras_purgeall(); 1228 #endif 1229 1230 doexechooks(p); 1231 1232 /* setup new registers and do misc. setup. */ 1233 (*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack, 1234 (vaddr_t)stack); 1235 if (data->ed_pack.ep_esch->es_setregs) 1236 (*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack, 1237 (vaddr_t)stack); 1238 1239 /* Provide a consistent LWP private setting */ 1240 (void)lwp_setprivate(l, NULL); 1241 1242 /* Discard all PCU state; need to start fresh */ 1243 pcu_discard_all(l); 1244 1245 /* map the process's signal trampoline code */ 1246 if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) { 1247 DPRINTF(("%s: map sigcode failed %d\n", __func__, error)); 1248 goto exec_abort; 1249 } 1250 1251 pool_put(&exec_pool, data->ed_argp); 1252 1253 /* notify others that we exec'd */ 1254 KNOTE(&p->p_klist, NOTE_EXEC); 1255 1256 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 1257 1258 SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0); 1259 1260 /* The emulation root will usually have been found when we looked 1261 * for the elf interpreter (or similar), if not look now. */ 1262 if (data->ed_pack.ep_esch->es_emul->e_path != NULL && 1263 data->ed_pack.ep_emul_root == NULL) 1264 emul_find_root(l, &data->ed_pack); 1265 1266 /* Any old emulation root got removed by fdcloseexec */ 1267 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); 1268 p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root; 1269 rw_exit(&p->p_cwdi->cwdi_lock); 1270 data->ed_pack.ep_emul_root = NULL; 1271 if (data->ed_pack.ep_interp != NULL) 1272 vrele(data->ed_pack.ep_interp); 1273 1274 /* 1275 * Call emulation specific exec hook. This can setup per-process 1276 * p->p_emuldata or do any other per-process stuff an emulation needs. 1277 * 1278 * If we are executing process of different emulation than the 1279 * original forked process, call e_proc_exit() of the old emulation 1280 * first, then e_proc_exec() of new emulation. If the emulation is 1281 * same, the exec hook code should deallocate any old emulation 1282 * resources held previously by this process. 1283 */ 1284 if (p->p_emul && p->p_emul->e_proc_exit 1285 && p->p_emul != data->ed_pack.ep_esch->es_emul) 1286 (*p->p_emul->e_proc_exit)(p); 1287 1288 /* 1289 * This is now LWP 1. 1290 */ 1291 mutex_enter(p->p_lock); 1292 p->p_nlwpid = 1; 1293 l->l_lid = 1; 1294 mutex_exit(p->p_lock); 1295 1296 /* 1297 * Call exec hook. Emulation code may NOT store reference to anything 1298 * from &pack. 1299 */ 1300 if (data->ed_pack.ep_esch->es_emul->e_proc_exec) 1301 (*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack); 1302 1303 /* update p_emul, the old value is no longer needed */ 1304 p->p_emul = data->ed_pack.ep_esch->es_emul; 1305 1306 /* ...and the same for p_execsw */ 1307 p->p_execsw = data->ed_pack.ep_esch; 1308 1309 #ifdef __HAVE_SYSCALL_INTERN 1310 (*p->p_emul->e_syscall_intern)(p); 1311 #endif 1312 ktremul(); 1313 1314 /* Allow new references from the debugger/procfs. */ 1315 rw_exit(&p->p_reflock); 1316 rw_exit(&exec_lock); 1317 1318 mutex_enter(proc_lock); 1319 1320 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) { 1321 KSI_INIT_EMPTY(&ksi); 1322 ksi.ksi_signo = SIGTRAP; 1323 ksi.ksi_lid = l->l_lid; 1324 kpsignal(p, &ksi, NULL); 1325 } 1326 1327 if (p->p_sflag & PS_STOPEXEC) { 1328 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 1329 p->p_pptr->p_nstopchild++; 1330 p->p_pptr->p_waited = 0; 1331 mutex_enter(p->p_lock); 1332 ksiginfo_queue_init(&kq); 1333 sigclearall(p, &contsigmask, &kq); 1334 lwp_lock(l); 1335 l->l_stat = LSSTOP; 1336 p->p_stat = SSTOP; 1337 p->p_nrlwps--; 1338 lwp_unlock(l); 1339 mutex_exit(p->p_lock); 1340 mutex_exit(proc_lock); 1341 lwp_lock(l); 1342 mi_switch(l); 1343 ksiginfo_queue_drain(&kq); 1344 KERNEL_LOCK(l->l_biglocks, l); 1345 } else { 1346 mutex_exit(proc_lock); 1347 } 1348 1349 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1350 pathbuf_destroy(data->ed_pathbuf); 1351 PNBUF_PUT(data->ed_resolvedpathbuf); 1352 DPRINTF(("%s finished\n", __func__)); 1353 return (EJUSTRETURN); 1354 1355 exec_abort: 1356 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 1357 rw_exit(&p->p_reflock); 1358 rw_exit(&exec_lock); 1359 1360 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1361 pathbuf_destroy(data->ed_pathbuf); 1362 PNBUF_PUT(data->ed_resolvedpathbuf); 1363 1364 /* 1365 * the old process doesn't exist anymore. exit gracefully. 1366 * get rid of the (new) address space we have created, if any, get rid 1367 * of our namei data and vnode, and exit noting failure 1368 */ 1369 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, 1370 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); 1371 exec_free_emul_arg(&data->ed_pack); 1372 pool_put(&exec_pool, data->ed_argp); 1373 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 1374 if (data->ed_pack.ep_emul_root != NULL) 1375 vrele(data->ed_pack.ep_emul_root); 1376 if (data->ed_pack.ep_interp != NULL) 1377 vrele(data->ed_pack.ep_interp); 1378 1379 /* Acquire the sched-state mutex (exit1() will release it). */ 1380 if (!proc_is_new) { 1381 mutex_enter(p->p_lock); 1382 exit1(l, W_EXITCODE(error, SIGABRT)); 1383 } 1384 1385 /* NOTREACHED */ 1386 return 0; 1387 } 1388 1389 int 1390 execve1(struct lwp *l, const char *path, char * const *args, 1391 char * const *envs, execve_fetch_element_t fetch_element) 1392 { 1393 struct execve_data data; 1394 int error; 1395 1396 error = execve_loadvm(l, path, args, envs, fetch_element, &data); 1397 if (error) 1398 return error; 1399 error = execve_runproc(l, &data); 1400 return error; 1401 } 1402 1403 int 1404 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, 1405 char **stackp, void *argp) 1406 { 1407 char **cpp, *dp, *sp; 1408 size_t len; 1409 void *nullp; 1410 long argc, envc; 1411 int error; 1412 1413 cpp = (char **)*stackp; 1414 nullp = NULL; 1415 argc = arginfo->ps_nargvstr; 1416 envc = arginfo->ps_nenvstr; 1417 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { 1418 COPYPRINTF("", cpp - 1, sizeof(argc)); 1419 return error; 1420 } 1421 1422 dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen); 1423 sp = argp; 1424 1425 /* XXX don't copy them out, remap them! */ 1426 arginfo->ps_argvstr = cpp; /* remember location of argv for later */ 1427 1428 for (; --argc >= 0; sp += len, dp += len) { 1429 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1430 COPYPRINTF("", cpp - 1, sizeof(dp)); 1431 return error; 1432 } 1433 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1434 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1435 return error; 1436 } 1437 } 1438 1439 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1440 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1441 return error; 1442 } 1443 1444 arginfo->ps_envstr = cpp; /* remember location of envp for later */ 1445 1446 for (; --envc >= 0; sp += len, dp += len) { 1447 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1448 COPYPRINTF("", cpp - 1, sizeof(dp)); 1449 return error; 1450 } 1451 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1452 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1453 return error; 1454 } 1455 1456 } 1457 1458 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1459 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1460 return error; 1461 } 1462 1463 *stackp = (char *)cpp; 1464 return 0; 1465 } 1466 1467 1468 /* 1469 * Add execsw[] entries. 1470 */ 1471 int 1472 exec_add(struct execsw *esp, int count) 1473 { 1474 struct exec_entry *it; 1475 int i; 1476 1477 if (count == 0) { 1478 return 0; 1479 } 1480 1481 /* Check for duplicates. */ 1482 rw_enter(&exec_lock, RW_WRITER); 1483 for (i = 0; i < count; i++) { 1484 LIST_FOREACH(it, &ex_head, ex_list) { 1485 /* assume unique (makecmds, probe_func, emulation) */ 1486 if (it->ex_sw->es_makecmds == esp[i].es_makecmds && 1487 it->ex_sw->u.elf_probe_func == 1488 esp[i].u.elf_probe_func && 1489 it->ex_sw->es_emul == esp[i].es_emul) { 1490 rw_exit(&exec_lock); 1491 return EEXIST; 1492 } 1493 } 1494 } 1495 1496 /* Allocate new entries. */ 1497 for (i = 0; i < count; i++) { 1498 it = kmem_alloc(sizeof(*it), KM_SLEEP); 1499 it->ex_sw = &esp[i]; 1500 LIST_INSERT_HEAD(&ex_head, it, ex_list); 1501 } 1502 1503 /* update execsw[] */ 1504 exec_init(0); 1505 rw_exit(&exec_lock); 1506 return 0; 1507 } 1508 1509 /* 1510 * Remove execsw[] entry. 1511 */ 1512 int 1513 exec_remove(struct execsw *esp, int count) 1514 { 1515 struct exec_entry *it, *next; 1516 int i; 1517 const struct proclist_desc *pd; 1518 proc_t *p; 1519 1520 if (count == 0) { 1521 return 0; 1522 } 1523 1524 /* Abort if any are busy. */ 1525 rw_enter(&exec_lock, RW_WRITER); 1526 for (i = 0; i < count; i++) { 1527 mutex_enter(proc_lock); 1528 for (pd = proclists; pd->pd_list != NULL; pd++) { 1529 PROCLIST_FOREACH(p, pd->pd_list) { 1530 if (p->p_execsw == &esp[i]) { 1531 mutex_exit(proc_lock); 1532 rw_exit(&exec_lock); 1533 return EBUSY; 1534 } 1535 } 1536 } 1537 mutex_exit(proc_lock); 1538 } 1539 1540 /* None are busy, so remove them all. */ 1541 for (i = 0; i < count; i++) { 1542 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { 1543 next = LIST_NEXT(it, ex_list); 1544 if (it->ex_sw == &esp[i]) { 1545 LIST_REMOVE(it, ex_list); 1546 kmem_free(it, sizeof(*it)); 1547 break; 1548 } 1549 } 1550 } 1551 1552 /* update execsw[] */ 1553 exec_init(0); 1554 rw_exit(&exec_lock); 1555 return 0; 1556 } 1557 1558 /* 1559 * Initialize exec structures. If init_boot is true, also does necessary 1560 * one-time initialization (it's called from main() that way). 1561 * Once system is multiuser, this should be called with exec_lock held, 1562 * i.e. via exec_{add|remove}(). 1563 */ 1564 int 1565 exec_init(int init_boot) 1566 { 1567 const struct execsw **sw; 1568 struct exec_entry *ex; 1569 SLIST_HEAD(,exec_entry) first; 1570 SLIST_HEAD(,exec_entry) any; 1571 SLIST_HEAD(,exec_entry) last; 1572 int i, sz; 1573 1574 if (init_boot) { 1575 /* do one-time initializations */ 1576 rw_init(&exec_lock); 1577 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); 1578 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, 1579 "execargs", &exec_palloc, IPL_NONE); 1580 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0); 1581 } else { 1582 KASSERT(rw_write_held(&exec_lock)); 1583 } 1584 1585 /* Sort each entry onto the appropriate queue. */ 1586 SLIST_INIT(&first); 1587 SLIST_INIT(&any); 1588 SLIST_INIT(&last); 1589 sz = 0; 1590 LIST_FOREACH(ex, &ex_head, ex_list) { 1591 switch(ex->ex_sw->es_prio) { 1592 case EXECSW_PRIO_FIRST: 1593 SLIST_INSERT_HEAD(&first, ex, ex_slist); 1594 break; 1595 case EXECSW_PRIO_ANY: 1596 SLIST_INSERT_HEAD(&any, ex, ex_slist); 1597 break; 1598 case EXECSW_PRIO_LAST: 1599 SLIST_INSERT_HEAD(&last, ex, ex_slist); 1600 break; 1601 default: 1602 panic("%s", __func__); 1603 break; 1604 } 1605 sz++; 1606 } 1607 1608 /* 1609 * Create new execsw[]. Ensure we do not try a zero-sized 1610 * allocation. 1611 */ 1612 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); 1613 i = 0; 1614 SLIST_FOREACH(ex, &first, ex_slist) { 1615 sw[i++] = ex->ex_sw; 1616 } 1617 SLIST_FOREACH(ex, &any, ex_slist) { 1618 sw[i++] = ex->ex_sw; 1619 } 1620 SLIST_FOREACH(ex, &last, ex_slist) { 1621 sw[i++] = ex->ex_sw; 1622 } 1623 1624 /* Replace old execsw[] and free used memory. */ 1625 if (execsw != NULL) { 1626 kmem_free(__UNCONST(execsw), 1627 nexecs * sizeof(struct execsw *) + 1); 1628 } 1629 execsw = sw; 1630 nexecs = sz; 1631 1632 /* Figure out the maximum size of an exec header. */ 1633 exec_maxhdrsz = sizeof(int); 1634 for (i = 0; i < nexecs; i++) { 1635 if (execsw[i]->es_hdrsz > exec_maxhdrsz) 1636 exec_maxhdrsz = execsw[i]->es_hdrsz; 1637 } 1638 1639 return 0; 1640 } 1641 1642 static int 1643 exec_sigcode_map(struct proc *p, const struct emul *e) 1644 { 1645 vaddr_t va; 1646 vsize_t sz; 1647 int error; 1648 struct uvm_object *uobj; 1649 1650 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; 1651 1652 if (e->e_sigobject == NULL || sz == 0) { 1653 return 0; 1654 } 1655 1656 /* 1657 * If we don't have a sigobject for this emulation, create one. 1658 * 1659 * sigobject is an anonymous memory object (just like SYSV shared 1660 * memory) that we keep a permanent reference to and that we map 1661 * in all processes that need this sigcode. The creation is simple, 1662 * we create an object, add a permanent reference to it, map it in 1663 * kernel space, copy out the sigcode to it and unmap it. 1664 * We map it with PROT_READ|PROT_EXEC into the process just 1665 * the way sys_mmap() would map it. 1666 */ 1667 1668 uobj = *e->e_sigobject; 1669 if (uobj == NULL) { 1670 mutex_enter(&sigobject_lock); 1671 if ((uobj = *e->e_sigobject) == NULL) { 1672 uobj = uao_create(sz, 0); 1673 (*uobj->pgops->pgo_reference)(uobj); 1674 va = vm_map_min(kernel_map); 1675 if ((error = uvm_map(kernel_map, &va, round_page(sz), 1676 uobj, 0, 0, 1677 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1678 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { 1679 printf("kernel mapping failed %d\n", error); 1680 (*uobj->pgops->pgo_detach)(uobj); 1681 mutex_exit(&sigobject_lock); 1682 return (error); 1683 } 1684 memcpy((void *)va, e->e_sigcode, sz); 1685 #ifdef PMAP_NEED_PROCWR 1686 pmap_procwr(&proc0, va, sz); 1687 #endif 1688 uvm_unmap(kernel_map, va, va + round_page(sz)); 1689 *e->e_sigobject = uobj; 1690 } 1691 mutex_exit(&sigobject_lock); 1692 } 1693 1694 /* Just a hint to uvm_map where to put it. */ 1695 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, 1696 round_page(sz)); 1697 1698 #ifdef __alpha__ 1699 /* 1700 * Tru64 puts /sbin/loader at the end of user virtual memory, 1701 * which causes the above calculation to put the sigcode at 1702 * an invalid address. Put it just below the text instead. 1703 */ 1704 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { 1705 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); 1706 } 1707 #endif 1708 1709 (*uobj->pgops->pgo_reference)(uobj); 1710 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), 1711 uobj, 0, 0, 1712 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, 1713 UVM_ADV_RANDOM, 0)); 1714 if (error) { 1715 DPRINTF(("%s, %d: map %p " 1716 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n", 1717 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), 1718 va, error)); 1719 (*uobj->pgops->pgo_detach)(uobj); 1720 return (error); 1721 } 1722 p->p_sigctx.ps_sigcode = (void *)va; 1723 return (0); 1724 } 1725 1726 /* 1727 * A child lwp of a posix_spawn operation starts here and ends up in 1728 * cpu_spawn_return, dealing with all filedescriptor and scheduler 1729 * manipulations in between. 1730 */ 1731 static void 1732 spawn_return(void *arg) 1733 { 1734 struct spawn_exec_data *spawn_data = arg; 1735 struct lwp *l = curlwp; 1736 int error, newfd; 1737 size_t i; 1738 const struct posix_spawn_file_actions_entry *fae; 1739 register_t retval; 1740 bool have_reflock; 1741 1742 /* 1743 * The following actions may block, so we need a temporary 1744 * vmspace - borrow the kernel one 1745 */ 1746 KPREEMPT_DISABLE(l); 1747 l->l_proc->p_vmspace = proc0.p_vmspace; 1748 pmap_activate(l); 1749 KPREEMPT_ENABLE(l); 1750 1751 /* don't allow debugger access yet */ 1752 rw_enter(&l->l_proc->p_reflock, RW_WRITER); 1753 have_reflock = true; 1754 1755 error = 0; 1756 /* handle posix_spawn_file_actions */ 1757 if (spawn_data->sed_actions != NULL) { 1758 for (i = 0; i < spawn_data->sed_actions_len; i++) { 1759 fae = &spawn_data->sed_actions[i]; 1760 switch (fae->fae_action) { 1761 case FAE_OPEN: 1762 if (fd_getfile(fae->fae_fildes) != NULL) { 1763 error = fd_close(fae->fae_fildes); 1764 if (error) 1765 break; 1766 } 1767 error = fd_open(fae->fae_path, fae->fae_oflag, 1768 fae->fae_mode, &newfd); 1769 if (error) 1770 break; 1771 if (newfd != fae->fae_fildes) { 1772 error = dodup(l, newfd, 1773 fae->fae_fildes, 0, &retval); 1774 if (fd_getfile(newfd) != NULL) 1775 fd_close(newfd); 1776 } 1777 break; 1778 case FAE_DUP2: 1779 error = dodup(l, fae->fae_fildes, 1780 fae->fae_newfildes, 0, &retval); 1781 break; 1782 case FAE_CLOSE: 1783 if (fd_getfile(fae->fae_fildes) == NULL) { 1784 error = EBADF; 1785 break; 1786 } 1787 error = fd_close(fae->fae_fildes); 1788 break; 1789 } 1790 if (error) 1791 goto report_error; 1792 } 1793 } 1794 1795 /* handle posix_spawnattr */ 1796 if (spawn_data->sed_attrs != NULL) { 1797 struct sigaction sigact; 1798 sigact._sa_u._sa_handler = SIG_DFL; 1799 sigact.sa_flags = 0; 1800 1801 /* 1802 * set state to SSTOP so that this proc can be found by pid. 1803 * see proc_enterprp, do_sched_setparam below 1804 */ 1805 l->l_proc->p_stat = SSTOP; 1806 1807 /* Set process group */ 1808 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { 1809 pid_t mypid = l->l_proc->p_pid, 1810 pgrp = spawn_data->sed_attrs->sa_pgroup; 1811 1812 if (pgrp == 0) 1813 pgrp = mypid; 1814 1815 error = proc_enterpgrp(spawn_data->sed_parent, 1816 mypid, pgrp, false); 1817 if (error) 1818 goto report_error; 1819 } 1820 1821 /* Set scheduler policy */ 1822 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) 1823 error = do_sched_setparam(l->l_proc->p_pid, 0, 1824 spawn_data->sed_attrs->sa_schedpolicy, 1825 &spawn_data->sed_attrs->sa_schedparam); 1826 else if (spawn_data->sed_attrs->sa_flags 1827 & POSIX_SPAWN_SETSCHEDPARAM) { 1828 error = do_sched_setparam(spawn_data->sed_parent->p_pid, 0, 1829 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); 1830 } 1831 if (error) 1832 goto report_error; 1833 1834 /* Reset user ID's */ 1835 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { 1836 error = do_setresuid(l, -1, 1837 kauth_cred_getgid(l->l_cred), -1, 1838 ID_E_EQ_R | ID_E_EQ_S); 1839 if (error) 1840 goto report_error; 1841 error = do_setresuid(l, -1, 1842 kauth_cred_getuid(l->l_cred), -1, 1843 ID_E_EQ_R | ID_E_EQ_S); 1844 if (error) 1845 goto report_error; 1846 } 1847 1848 /* Set signal masks/defaults */ 1849 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { 1850 mutex_enter(l->l_proc->p_lock); 1851 error = sigprocmask1(l, SIG_SETMASK, 1852 &spawn_data->sed_attrs->sa_sigmask, NULL); 1853 mutex_exit(l->l_proc->p_lock); 1854 if (error) 1855 goto report_error; 1856 } 1857 1858 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { 1859 for (i = 1; i <= NSIG; i++) { 1860 if (sigismember( 1861 &spawn_data->sed_attrs->sa_sigdefault, i)) 1862 sigaction1(l, i, &sigact, NULL, NULL, 1863 0); 1864 } 1865 } 1866 } 1867 1868 /* stop using kernel vmspace */ 1869 KPREEMPT_DISABLE(l); 1870 pmap_deactivate(l); 1871 l->l_proc->p_vmspace = NULL; 1872 KPREEMPT_ENABLE(l); 1873 1874 1875 /* now do the real exec */ 1876 rw_enter(&exec_lock, RW_READER); 1877 error = execve_runproc(l, &spawn_data->sed_exec); 1878 have_reflock = false; 1879 if (error == EJUSTRETURN) 1880 error = 0; 1881 else if (error) 1882 goto report_error; 1883 1884 /* done, signal parent */ 1885 mutex_enter(&spawn_data->sed_mtx_child); 1886 cv_signal(&spawn_data->sed_cv_child_ready); 1887 mutex_exit(&spawn_data->sed_mtx_child); 1888 1889 /* and finaly: leave to userland for the first time */ 1890 cpu_spawn_return(l); 1891 1892 /* NOTREACHED */ 1893 return; 1894 1895 report_error: 1896 if (have_reflock) 1897 rw_exit(&l->l_proc->p_reflock); 1898 1899 /* stop using kernel vmspace (if we haven't already) */ 1900 if (l->l_proc->p_vmspace) { 1901 KPREEMPT_DISABLE(l); 1902 pmap_deactivate(l); 1903 l->l_proc->p_vmspace = NULL; 1904 KPREEMPT_ENABLE(l); 1905 } 1906 1907 /* 1908 * Set error value for parent to pick up (and take over ownership 1909 * of spawn_data again), signal parent and exit this process. 1910 */ 1911 mutex_enter(&spawn_data->sed_mtx_child); 1912 spawn_data->sed_error = error; 1913 cv_signal(&spawn_data->sed_cv_child_ready); 1914 mutex_exit(&spawn_data->sed_mtx_child); 1915 mutex_enter(l->l_proc->p_lock); 1916 exit1(l, W_EXITCODE(error, SIGABRT)); 1917 } 1918 1919 static void 1920 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) 1921 { 1922 1923 for (size_t i = 0; i < len; i++) { 1924 struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; 1925 if (fae->fae_action != FAE_OPEN) 1926 continue; 1927 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1); 1928 } 1929 if (fa->len) 1930 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); 1931 kmem_free(fa, sizeof(*fa)); 1932 } 1933 1934 static int 1935 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, 1936 const struct posix_spawn_file_actions *ufa) 1937 { 1938 struct posix_spawn_file_actions *fa; 1939 struct posix_spawn_file_actions_entry *fae; 1940 char *pbuf = NULL; 1941 int error; 1942 size_t i = 0; 1943 1944 fa = kmem_alloc(sizeof(*fa), KM_SLEEP); 1945 error = copyin(ufa, fa, sizeof(*fa)); 1946 if (error) { 1947 fa->fae = NULL; 1948 fa->len = 0; 1949 goto out; 1950 } 1951 1952 if (fa->len == 0) 1953 return 0; 1954 1955 size_t fal = fa->len * sizeof(*fae); 1956 fae = fa->fae; 1957 fa->fae = kmem_alloc(fal, KM_SLEEP); 1958 error = copyin(fae, fa->fae, fal); 1959 if (error) 1960 goto out; 1961 1962 pbuf = PNBUF_GET(); 1963 for (; i < fa->len; i++) { 1964 fae = &fa->fae[i]; 1965 if (fae->fae_action != FAE_OPEN) 1966 continue; 1967 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); 1968 if (error) 1969 goto out; 1970 fae->fae_path = kmem_alloc(fal, KM_SLEEP); 1971 memcpy(fae->fae_path, pbuf, fal); 1972 } 1973 PNBUF_PUT(pbuf); 1974 *fap = fa; 1975 return 0; 1976 out: 1977 if (pbuf) 1978 PNBUF_PUT(pbuf); 1979 posix_spawn_fa_free(fa, i); 1980 return error; 1981 } 1982 1983 int 1984 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, 1985 register_t *retval) 1986 { 1987 /* { 1988 syscallarg(pid_t *) pid; 1989 syscallarg(const char *) path; 1990 syscallarg(const struct posix_spawn_file_actions *) file_actions; 1991 syscallarg(const struct posix_spawnattr *) attrp; 1992 syscallarg(char *const *) argv; 1993 syscallarg(char *const *) envp; 1994 } */ 1995 1996 struct proc *p1, *p2; 1997 struct plimit *p1_lim; 1998 struct lwp *l2; 1999 int error = 0, tnprocs, count; 2000 struct posix_spawn_file_actions *fa = NULL; 2001 struct posix_spawnattr *sa = NULL; 2002 struct spawn_exec_data *spawn_data; 2003 uid_t uid; 2004 vaddr_t uaddr; 2005 pid_t pid; 2006 bool have_exec_lock = false; 2007 2008 p1 = l1->l_proc; 2009 uid = kauth_cred_getuid(l1->l_cred); 2010 tnprocs = atomic_inc_uint_nv(&nprocs); 2011 2012 /* 2013 * Although process entries are dynamically created, we still keep 2014 * a global limit on the maximum number we will create. 2015 */ 2016 if (__predict_false(tnprocs >= maxproc)) 2017 error = -1; 2018 else 2019 error = kauth_authorize_process(l1->l_cred, 2020 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 2021 2022 if (error) { 2023 atomic_dec_uint(&nprocs); 2024 *retval = EAGAIN; 2025 return 0; 2026 } 2027 2028 /* 2029 * Enforce limits. 2030 */ 2031 count = chgproccnt(uid, 1); 2032 if (kauth_authorize_generic(l1->l_cred, KAUTH_GENERIC_ISSUSER, NULL) != 2033 0 && __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 2034 error = EAGAIN; 2035 goto error_exit; 2036 } 2037 2038 /* copy in file_actions struct */ 2039 if (SCARG(uap, file_actions) != NULL) { 2040 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions)); 2041 if (error) 2042 goto error_exit; 2043 } 2044 2045 /* copyin posix_spawnattr struct */ 2046 if (SCARG(uap, attrp) != NULL) { 2047 sa = kmem_alloc(sizeof(*sa), KM_SLEEP); 2048 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); 2049 if (error) 2050 goto error_exit; 2051 } 2052 2053 /* 2054 * Do the first part of the exec now, collect state 2055 * in spawn_data. 2056 */ 2057 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); 2058 error = execve_loadvm(l1, SCARG(uap, path), SCARG(uap, argv), 2059 SCARG(uap, envp), execve_fetch_element, &spawn_data->sed_exec); 2060 if (error == EJUSTRETURN) 2061 error = 0; 2062 else if (error) 2063 goto error_exit; 2064 2065 have_exec_lock = true; 2066 2067 /* 2068 * Allocate virtual address space for the U-area now, while it 2069 * is still easy to abort the fork operation if we're out of 2070 * kernel virtual address space. 2071 */ 2072 uaddr = uvm_uarea_alloc(); 2073 if (__predict_false(uaddr == 0)) { 2074 error = ENOMEM; 2075 goto error_exit; 2076 } 2077 2078 /* 2079 * Allocate new proc. Leave it's p_vmspace NULL for now. 2080 * This is a point of no return, we will have to go through 2081 * the child proc to properly clean it up past this point. 2082 */ 2083 p2 = proc_alloc(); 2084 pid = p2->p_pid; 2085 2086 /* 2087 * Make a proc table entry for the new process. 2088 * Start by zeroing the section of proc that is zero-initialized, 2089 * then copy the section that is copied directly from the parent. 2090 */ 2091 memset(&p2->p_startzero, 0, 2092 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 2093 memcpy(&p2->p_startcopy, &p1->p_startcopy, 2094 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 2095 p2->p_vmspace = NULL; 2096 2097 CIRCLEQ_INIT(&p2->p_sigpend.sp_info); 2098 2099 LIST_INIT(&p2->p_lwps); 2100 LIST_INIT(&p2->p_sigwaiters); 2101 2102 /* 2103 * Duplicate sub-structures as needed. 2104 * Increase reference counts on shared objects. 2105 * Inherit flags we want to keep. The flags related to SIGCHLD 2106 * handling are important in order to keep a consistent behaviour 2107 * for the child after the fork. If we are a 32-bit process, the 2108 * child will be too. 2109 */ 2110 p2->p_flag = 2111 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 2112 p2->p_emul = p1->p_emul; 2113 p2->p_execsw = p1->p_execsw; 2114 2115 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 2116 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 2117 rw_init(&p2->p_reflock); 2118 cv_init(&p2->p_waitcv, "wait"); 2119 cv_init(&p2->p_lwpcv, "lwpwait"); 2120 2121 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2122 2123 kauth_proc_fork(p1, p2); 2124 2125 p2->p_raslist = NULL; 2126 p2->p_fd = fd_copy(); 2127 2128 /* XXX racy */ 2129 p2->p_mqueue_cnt = p1->p_mqueue_cnt; 2130 2131 p2->p_cwdi = cwdinit(); 2132 2133 /* 2134 * Note: p_limit (rlimit stuff) is copy-on-write, so normally 2135 * we just need increase pl_refcnt. 2136 */ 2137 p1_lim = p1->p_limit; 2138 if (!p1_lim->pl_writeable) { 2139 lim_addref(p1_lim); 2140 p2->p_limit = p1_lim; 2141 } else { 2142 p2->p_limit = lim_copy(p1->p_limit); 2143 } 2144 2145 p2->p_lflag = 0; 2146 p2->p_sflag = 0; 2147 p2->p_slflag = 0; 2148 p2->p_pptr = p1; 2149 p2->p_ppid = p1->p_pid; 2150 LIST_INIT(&p2->p_children); 2151 2152 p2->p_aio = NULL; 2153 2154 #ifdef KTRACE 2155 /* 2156 * Copy traceflag and tracefile if enabled. 2157 * If not inherited, these were zeroed above. 2158 */ 2159 if (p1->p_traceflag & KTRFAC_INHERIT) { 2160 mutex_enter(&ktrace_lock); 2161 p2->p_traceflag = p1->p_traceflag; 2162 if ((p2->p_tracep = p1->p_tracep) != NULL) 2163 ktradref(p2); 2164 mutex_exit(&ktrace_lock); 2165 } 2166 #endif 2167 2168 /* 2169 * Create signal actions for the child process. 2170 */ 2171 p2->p_sigacts = sigactsinit(p1, 0); 2172 mutex_enter(p1->p_lock); 2173 p2->p_sflag |= 2174 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 2175 sched_proc_fork(p1, p2); 2176 mutex_exit(p1->p_lock); 2177 2178 p2->p_stflag = p1->p_stflag; 2179 2180 /* 2181 * p_stats. 2182 * Copy parts of p_stats, and zero out the rest. 2183 */ 2184 p2->p_stats = pstatscopy(p1->p_stats); 2185 2186 /* copy over machdep flags to the new proc */ 2187 cpu_proc_fork(p1, p2); 2188 2189 /* 2190 * Prepare remaining parts of spawn data 2191 */ 2192 if (fa && fa->len) { 2193 spawn_data->sed_actions_len = fa->len; 2194 spawn_data->sed_actions = fa->fae; 2195 } 2196 if (sa) 2197 spawn_data->sed_attrs = sa; 2198 2199 spawn_data->sed_parent = p1; 2200 cv_init(&spawn_data->sed_cv_child_ready, "pspawn"); 2201 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); 2202 mutex_enter(&spawn_data->sed_mtx_child); 2203 2204 /* create LWP */ 2205 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, 2206 &l2, l1->l_class); 2207 l2->l_ctxlink = NULL; /* reset ucontext link */ 2208 2209 /* 2210 * Copy the credential so other references don't see our changes. 2211 * Test to see if this is necessary first, since in the common case 2212 * we won't need a private reference. 2213 */ 2214 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || 2215 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { 2216 l2->l_cred = kauth_cred_copy(l2->l_cred); 2217 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); 2218 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); 2219 } 2220 2221 /* Update the master credentials. */ 2222 if (l2->l_cred != p2->p_cred) { 2223 kauth_cred_t ocred; 2224 2225 kauth_cred_hold(l2->l_cred); 2226 mutex_enter(p2->p_lock); 2227 ocred = p2->p_cred; 2228 p2->p_cred = l2->l_cred; 2229 mutex_exit(p2->p_lock); 2230 kauth_cred_free(ocred); 2231 } 2232 2233 /* 2234 * It's now safe for the scheduler and other processes to see the 2235 * child process. 2236 */ 2237 mutex_enter(proc_lock); 2238 2239 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 2240 p2->p_lflag |= PL_CONTROLT; 2241 2242 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); 2243 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ 2244 2245 LIST_INSERT_AFTER(p1, p2, p_pglist); 2246 LIST_INSERT_HEAD(&allproc, p2, p_list); 2247 2248 p2->p_trace_enabled = trace_is_enabled(p2); 2249 #ifdef __HAVE_SYSCALL_INTERN 2250 (*p2->p_emul->e_syscall_intern)(p2); 2251 #endif 2252 2253 /* 2254 * Make child runnable, set start time, and add to run queue except 2255 * if the parent requested the child to start in SSTOP state. 2256 */ 2257 mutex_enter(p2->p_lock); 2258 2259 getmicrotime(&p2->p_stats->p_start); 2260 2261 lwp_lock(l2); 2262 KASSERT(p2->p_nrlwps == 1); 2263 p2->p_nrlwps = 1; 2264 p2->p_stat = SACTIVE; 2265 l2->l_stat = LSRUN; 2266 sched_enqueue(l2, false); 2267 lwp_unlock(l2); 2268 2269 mutex_exit(p2->p_lock); 2270 mutex_exit(proc_lock); 2271 2272 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); 2273 mutex_exit(&spawn_data->sed_mtx_child); 2274 error = spawn_data->sed_error; 2275 2276 rw_exit(&p1->p_reflock); 2277 rw_exit(&exec_lock); 2278 have_exec_lock = false; 2279 2280 if (fa) 2281 posix_spawn_fa_free(fa, fa->len); 2282 2283 if (sa) 2284 kmem_free(sa, sizeof(*sa)); 2285 2286 cv_destroy(&spawn_data->sed_cv_child_ready); 2287 mutex_destroy(&spawn_data->sed_mtx_child); 2288 2289 kmem_free(spawn_data, sizeof(*spawn_data)); 2290 2291 if (error == 0 && SCARG(uap, pid) != NULL) 2292 error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); 2293 2294 *retval = error; 2295 return 0; 2296 2297 error_exit: 2298 if (have_exec_lock) 2299 rw_exit(&exec_lock); 2300 2301 if (fa) 2302 posix_spawn_fa_free(fa, fa->len); 2303 2304 if (sa) 2305 kmem_free(sa, sizeof(*sa)); 2306 2307 (void)chgproccnt(uid, -1); 2308 atomic_dec_uint(&nprocs); 2309 2310 *retval = error; 2311 return 0; 2312 } 2313 2314 void 2315 exec_free_emul_arg(struct exec_package *epp) 2316 { 2317 if (epp->ep_emul_arg_free != NULL) { 2318 KASSERT(epp->ep_emul_arg != NULL); 2319 (*epp->ep_emul_arg_free)(epp->ep_emul_arg); 2320 epp->ep_emul_arg_free = NULL; 2321 epp->ep_emul_arg = NULL; 2322 } else { 2323 KASSERT(epp->ep_emul_arg == NULL); 2324 } 2325 } 2326