1 /* $NetBSD: kern_exec.c,v 1.441 2017/01/25 17:57:14 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /*- 30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou 31 * Copyright (C) 1992 Wolfgang Solfrank. 32 * Copyright (C) 1992 TooLs GmbH. 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by TooLs GmbH. 46 * 4. The name of TooLs GmbH may not be used to endorse or promote products 47 * derived from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.441 2017/01/25 17:57:14 christos Exp $"); 63 64 #include "opt_exec.h" 65 #include "opt_execfmt.h" 66 #include "opt_ktrace.h" 67 #include "opt_modular.h" 68 #include "opt_syscall_debug.h" 69 #include "veriexec.h" 70 #include "opt_pax.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/filedesc.h> 75 #include <sys/kernel.h> 76 #include <sys/proc.h> 77 #include <sys/mount.h> 78 #include <sys/kmem.h> 79 #include <sys/namei.h> 80 #include <sys/vnode.h> 81 #include <sys/file.h> 82 #include <sys/filedesc.h> 83 #include <sys/acct.h> 84 #include <sys/atomic.h> 85 #include <sys/exec.h> 86 #include <sys/ktrace.h> 87 #include <sys/uidinfo.h> 88 #include <sys/wait.h> 89 #include <sys/mman.h> 90 #include <sys/ras.h> 91 #include <sys/signalvar.h> 92 #include <sys/stat.h> 93 #include <sys/syscall.h> 94 #include <sys/kauth.h> 95 #include <sys/lwpctl.h> 96 #include <sys/pax.h> 97 #include <sys/cpu.h> 98 #include <sys/module.h> 99 #include <sys/syscallvar.h> 100 #include <sys/syscallargs.h> 101 #if NVERIEXEC > 0 102 #include <sys/verified_exec.h> 103 #endif /* NVERIEXEC > 0 */ 104 #include <sys/sdt.h> 105 #include <sys/spawn.h> 106 #include <sys/prot.h> 107 #include <sys/cprng.h> 108 109 #include <uvm/uvm_extern.h> 110 111 #include <machine/reg.h> 112 113 #include <compat/common/compat_util.h> 114 115 #ifndef MD_TOPDOWN_INIT 116 #ifdef __USE_TOPDOWN_VM 117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM 118 #else 119 #define MD_TOPDOWN_INIT(epp) 120 #endif 121 #endif 122 123 struct execve_data; 124 125 extern int user_va0_disable; 126 127 static size_t calcargs(struct execve_data * restrict, const size_t); 128 static size_t calcstack(struct execve_data * restrict, const size_t); 129 static int copyoutargs(struct execve_data * restrict, struct lwp *, 130 char * const); 131 static int copyoutpsstrs(struct execve_data * restrict, struct proc *); 132 static int copyinargs(struct execve_data * restrict, char * const *, 133 char * const *, execve_fetch_element_t, char **); 134 static int copyinargstrs(struct execve_data * restrict, char * const *, 135 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t)); 136 static int exec_sigcode_map(struct proc *, const struct emul *); 137 138 #if defined(DEBUG) && !defined(DEBUG_EXEC) 139 #define DEBUG_EXEC 140 #endif 141 #ifdef DEBUG_EXEC 142 #define DPRINTF(a) printf a 143 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ 144 __LINE__, (s), (a), (b)) 145 static void dump_vmcmds(const struct exec_package * const, size_t, int); 146 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0) 147 #else 148 #define DPRINTF(a) 149 #define COPYPRINTF(s, a, b) 150 #define DUMPVMCMDS(p, x, e) do {} while (0) 151 #endif /* DEBUG_EXEC */ 152 153 /* 154 * DTrace SDT provider definitions 155 */ 156 SDT_PROVIDER_DECLARE(proc); 157 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *"); 158 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *"); 159 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int"); 160 161 /* 162 * Exec function switch: 163 * 164 * Note that each makecmds function is responsible for loading the 165 * exec package with the necessary functions for any exec-type-specific 166 * handling. 167 * 168 * Functions for specific exec types should be defined in their own 169 * header file. 170 */ 171 static const struct execsw **execsw = NULL; 172 static int nexecs; 173 174 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ 175 176 /* list of dynamically loaded execsw entries */ 177 static LIST_HEAD(execlist_head, exec_entry) ex_head = 178 LIST_HEAD_INITIALIZER(ex_head); 179 struct exec_entry { 180 LIST_ENTRY(exec_entry) ex_list; 181 SLIST_ENTRY(exec_entry) ex_slist; 182 const struct execsw *ex_sw; 183 }; 184 185 #ifndef __HAVE_SYSCALL_INTERN 186 void syscall(void); 187 #endif 188 189 /* NetBSD autoloadable syscalls */ 190 #ifdef MODULAR 191 #include <kern/syscalls_autoload.c> 192 #endif 193 194 /* NetBSD emul struct */ 195 struct emul emul_netbsd = { 196 .e_name = "netbsd", 197 #ifdef EMUL_NATIVEROOT 198 .e_path = EMUL_NATIVEROOT, 199 #else 200 .e_path = NULL, 201 #endif 202 #ifndef __HAVE_MINIMAL_EMUL 203 .e_flags = EMUL_HAS_SYS___syscall, 204 .e_errno = NULL, 205 .e_nosys = SYS_syscall, 206 .e_nsysent = SYS_NSYSENT, 207 #endif 208 #ifdef MODULAR 209 .e_sc_autoload = netbsd_syscalls_autoload, 210 #endif 211 .e_sysent = sysent, 212 #ifdef SYSCALL_DEBUG 213 .e_syscallnames = syscallnames, 214 #else 215 .e_syscallnames = NULL, 216 #endif 217 .e_sendsig = sendsig, 218 .e_trapsignal = trapsignal, 219 .e_tracesig = NULL, 220 .e_sigcode = NULL, 221 .e_esigcode = NULL, 222 .e_sigobject = NULL, 223 .e_setregs = setregs, 224 .e_proc_exec = NULL, 225 .e_proc_fork = NULL, 226 .e_proc_exit = NULL, 227 .e_lwp_fork = NULL, 228 .e_lwp_exit = NULL, 229 #ifdef __HAVE_SYSCALL_INTERN 230 .e_syscall_intern = syscall_intern, 231 #else 232 .e_syscall = syscall, 233 #endif 234 .e_sysctlovly = NULL, 235 .e_fault = NULL, 236 .e_vm_default_addr = uvm_default_mapaddr, 237 .e_usertrap = NULL, 238 .e_ucsize = sizeof(ucontext_t), 239 .e_startlwp = startlwp 240 }; 241 242 /* 243 * Exec lock. Used to control access to execsw[] structures. 244 * This must not be static so that netbsd32 can access it, too. 245 */ 246 krwlock_t exec_lock; 247 248 static kmutex_t sigobject_lock; 249 250 /* 251 * Data used between a loadvm and execve part of an "exec" operation 252 */ 253 struct execve_data { 254 struct exec_package ed_pack; 255 struct pathbuf *ed_pathbuf; 256 struct vattr ed_attr; 257 struct ps_strings ed_arginfo; 258 char *ed_argp; 259 const char *ed_pathstring; 260 char *ed_resolvedpathbuf; 261 size_t ed_ps_strings_sz; 262 int ed_szsigcode; 263 size_t ed_argslen; 264 long ed_argc; 265 long ed_envc; 266 }; 267 268 /* 269 * data passed from parent lwp to child during a posix_spawn() 270 */ 271 struct spawn_exec_data { 272 struct execve_data sed_exec; 273 struct posix_spawn_file_actions 274 *sed_actions; 275 struct posix_spawnattr *sed_attrs; 276 struct proc *sed_parent; 277 kcondvar_t sed_cv_child_ready; 278 kmutex_t sed_mtx_child; 279 int sed_error; 280 volatile uint32_t sed_refcnt; 281 }; 282 283 static void * 284 exec_pool_alloc(struct pool *pp, int flags) 285 { 286 287 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0, 288 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 289 } 290 291 static void 292 exec_pool_free(struct pool *pp, void *addr) 293 { 294 295 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); 296 } 297 298 static struct pool exec_pool; 299 300 static struct pool_allocator exec_palloc = { 301 .pa_alloc = exec_pool_alloc, 302 .pa_free = exec_pool_free, 303 .pa_pagesz = NCARGS 304 }; 305 306 /* 307 * check exec: 308 * given an "executable" described in the exec package's namei info, 309 * see what we can do with it. 310 * 311 * ON ENTRY: 312 * exec package with appropriate namei info 313 * lwp pointer of exec'ing lwp 314 * NO SELF-LOCKED VNODES 315 * 316 * ON EXIT: 317 * error: nothing held, etc. exec header still allocated. 318 * ok: filled exec package, executable's vnode (unlocked). 319 * 320 * EXEC SWITCH ENTRY: 321 * Locked vnode to check, exec package, proc. 322 * 323 * EXEC SWITCH EXIT: 324 * ok: return 0, filled exec package, executable's vnode (unlocked). 325 * error: destructive: 326 * everything deallocated execept exec header. 327 * non-destructive: 328 * error code, executable's vnode (unlocked), 329 * exec header unmodified. 330 */ 331 int 332 /*ARGSUSED*/ 333 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) 334 { 335 int error, i; 336 struct vnode *vp; 337 struct nameidata nd; 338 size_t resid; 339 340 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 341 342 /* first get the vnode */ 343 if ((error = namei(&nd)) != 0) 344 return error; 345 epp->ep_vp = vp = nd.ni_vp; 346 /* normally this can't fail */ 347 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL); 348 KASSERT(error == 0); 349 350 #ifdef DIAGNOSTIC 351 /* paranoia (take this out once namei stuff stabilizes) */ 352 memset(nd.ni_pnbuf, '~', PATH_MAX); 353 #endif 354 355 /* check access and type */ 356 if (vp->v_type != VREG) { 357 error = EACCES; 358 goto bad1; 359 } 360 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) 361 goto bad1; 362 363 /* get attributes */ 364 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) 365 goto bad1; 366 367 /* Check mount point */ 368 if (vp->v_mount->mnt_flag & MNT_NOEXEC) { 369 error = EACCES; 370 goto bad1; 371 } 372 if (vp->v_mount->mnt_flag & MNT_NOSUID) 373 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); 374 375 /* try to open it */ 376 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) 377 goto bad1; 378 379 /* unlock vp, since we need it unlocked from here on out. */ 380 VOP_UNLOCK(vp); 381 382 #if NVERIEXEC > 0 383 error = veriexec_verify(l, vp, epp->ep_resolvedname, 384 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, 385 NULL); 386 if (error) 387 goto bad2; 388 #endif /* NVERIEXEC > 0 */ 389 390 #ifdef PAX_SEGVGUARD 391 error = pax_segvguard(l, vp, epp->ep_resolvedname, false); 392 if (error) 393 goto bad2; 394 #endif /* PAX_SEGVGUARD */ 395 396 /* now we have the file, get the exec header */ 397 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, 398 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); 399 if (error) 400 goto bad2; 401 epp->ep_hdrvalid = epp->ep_hdrlen - resid; 402 403 /* 404 * Set up default address space limits. Can be overridden 405 * by individual exec packages. 406 */ 407 epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS); 408 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; 409 410 /* 411 * set up the vmcmds for creation of the process 412 * address space 413 */ 414 error = ENOEXEC; 415 for (i = 0; i < nexecs; i++) { 416 int newerror; 417 418 epp->ep_esch = execsw[i]; 419 newerror = (*execsw[i]->es_makecmds)(l, epp); 420 421 if (!newerror) { 422 /* Seems ok: check that entry point is not too high */ 423 if (epp->ep_entry > epp->ep_vm_maxaddr) { 424 #ifdef DIAGNOSTIC 425 printf("%s: rejecting %p due to " 426 "too high entry address (> %p)\n", 427 __func__, (void *)epp->ep_entry, 428 (void *)epp->ep_vm_maxaddr); 429 #endif 430 error = ENOEXEC; 431 break; 432 } 433 /* Seems ok: check that entry point is not too low */ 434 if (epp->ep_entry < epp->ep_vm_minaddr) { 435 #ifdef DIAGNOSTIC 436 printf("%s: rejecting %p due to " 437 "too low entry address (< %p)\n", 438 __func__, (void *)epp->ep_entry, 439 (void *)epp->ep_vm_minaddr); 440 #endif 441 error = ENOEXEC; 442 break; 443 } 444 445 /* check limits */ 446 if ((epp->ep_tsize > MAXTSIZ) || 447 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit 448 [RLIMIT_DATA].rlim_cur)) { 449 #ifdef DIAGNOSTIC 450 printf("%s: rejecting due to " 451 "limits (t=%llu > %llu || d=%llu > %llu)\n", 452 __func__, 453 (unsigned long long)epp->ep_tsize, 454 (unsigned long long)MAXTSIZ, 455 (unsigned long long)epp->ep_dsize, 456 (unsigned long long) 457 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); 458 #endif 459 error = ENOMEM; 460 break; 461 } 462 return 0; 463 } 464 465 /* 466 * Reset all the fields that may have been modified by the 467 * loader. 468 */ 469 KASSERT(epp->ep_emul_arg == NULL); 470 if (epp->ep_emul_root != NULL) { 471 vrele(epp->ep_emul_root); 472 epp->ep_emul_root = NULL; 473 } 474 if (epp->ep_interp != NULL) { 475 vrele(epp->ep_interp); 476 epp->ep_interp = NULL; 477 } 478 epp->ep_pax_flags = 0; 479 480 /* make sure the first "interesting" error code is saved. */ 481 if (error == ENOEXEC) 482 error = newerror; 483 484 if (epp->ep_flags & EXEC_DESTR) 485 /* Error from "#!" code, tidied up by recursive call */ 486 return error; 487 } 488 489 /* not found, error */ 490 491 /* 492 * free any vmspace-creation commands, 493 * and release their references 494 */ 495 kill_vmcmds(&epp->ep_vmcmds); 496 497 bad2: 498 /* 499 * close and release the vnode, restore the old one, free the 500 * pathname buf, and punt. 501 */ 502 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 503 VOP_CLOSE(vp, FREAD, l->l_cred); 504 vput(vp); 505 return error; 506 507 bad1: 508 /* 509 * free the namei pathname buffer, and put the vnode 510 * (which we don't yet have open). 511 */ 512 vput(vp); /* was still locked */ 513 return error; 514 } 515 516 #ifdef __MACHINE_STACK_GROWS_UP 517 #define STACK_PTHREADSPACE NBPG 518 #else 519 #define STACK_PTHREADSPACE 0 520 #endif 521 522 static int 523 execve_fetch_element(char * const *array, size_t index, char **value) 524 { 525 return copyin(array + index, value, sizeof(*value)); 526 } 527 528 /* 529 * exec system call 530 */ 531 int 532 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) 533 { 534 /* { 535 syscallarg(const char *) path; 536 syscallarg(char * const *) argp; 537 syscallarg(char * const *) envp; 538 } */ 539 540 return execve1(l, SCARG(uap, path), SCARG(uap, argp), 541 SCARG(uap, envp), execve_fetch_element); 542 } 543 544 int 545 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, 546 register_t *retval) 547 { 548 /* { 549 syscallarg(int) fd; 550 syscallarg(char * const *) argp; 551 syscallarg(char * const *) envp; 552 } */ 553 554 return ENOSYS; 555 } 556 557 /* 558 * Load modules to try and execute an image that we do not understand. 559 * If no execsw entries are present, we load those likely to be needed 560 * in order to run native images only. Otherwise, we autoload all 561 * possible modules that could let us run the binary. XXX lame 562 */ 563 static void 564 exec_autoload(void) 565 { 566 #ifdef MODULAR 567 static const char * const native[] = { 568 "exec_elf32", 569 "exec_elf64", 570 "exec_script", 571 NULL 572 }; 573 static const char * const compat[] = { 574 "exec_elf32", 575 "exec_elf64", 576 "exec_script", 577 "exec_aout", 578 "exec_coff", 579 "exec_ecoff", 580 "compat_aoutm68k", 581 "compat_freebsd", 582 "compat_ibcs2", 583 "compat_linux", 584 "compat_linux32", 585 "compat_netbsd32", 586 "compat_sunos", 587 "compat_sunos32", 588 "compat_svr4", 589 "compat_svr4_32", 590 "compat_ultrix", 591 NULL 592 }; 593 char const * const *list; 594 int i; 595 596 list = (nexecs == 0 ? native : compat); 597 for (i = 0; list[i] != NULL; i++) { 598 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) { 599 continue; 600 } 601 yield(); 602 } 603 #endif 604 } 605 606 static int 607 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp, 608 size_t *offs) 609 { 610 char *path, *bp; 611 size_t len, tlen; 612 int error; 613 struct cwdinfo *cwdi; 614 615 path = PNBUF_GET(); 616 error = copyinstr(upath, path, MAXPATHLEN, &len); 617 if (error) { 618 PNBUF_PUT(path); 619 DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error)); 620 return error; 621 } 622 623 if (path[0] == '/') { 624 *offs = 0; 625 goto out; 626 } 627 628 len++; 629 if (len + 1 >= MAXPATHLEN) 630 goto out; 631 bp = path + MAXPATHLEN - len; 632 memmove(bp, path, len); 633 *(--bp) = '/'; 634 635 cwdi = l->l_proc->p_cwdi; 636 rw_enter(&cwdi->cwdi_lock, RW_READER); 637 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2, 638 GETCWD_CHECK_ACCESS, l); 639 rw_exit(&cwdi->cwdi_lock); 640 641 if (error) { 642 DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path, 643 error)); 644 goto out; 645 } 646 tlen = path + MAXPATHLEN - bp; 647 648 memmove(path, bp, tlen); 649 path[tlen] = '\0'; 650 *offs = tlen - len; 651 out: 652 *pbp = pathbuf_assimilate(path); 653 return 0; 654 } 655 656 vaddr_t 657 exec_vm_minaddr(vaddr_t va_min) 658 { 659 /* 660 * Increase va_min if we don't want NULL to be mappable by the 661 * process. 662 */ 663 #define VM_MIN_GUARD PAGE_SIZE 664 if (user_va0_disable && (va_min < VM_MIN_GUARD)) 665 return VM_MIN_GUARD; 666 return va_min; 667 } 668 669 static int 670 execve_loadvm(struct lwp *l, const char *path, char * const *args, 671 char * const *envs, execve_fetch_element_t fetch_element, 672 struct execve_data * restrict data) 673 { 674 struct exec_package * const epp = &data->ed_pack; 675 int error; 676 struct proc *p; 677 char *dp; 678 u_int modgen; 679 size_t offs = 0; // XXX: GCC 680 681 KASSERT(data != NULL); 682 683 p = l->l_proc; 684 modgen = 0; 685 686 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0); 687 688 /* 689 * Check if we have exceeded our number of processes limit. 690 * This is so that we handle the case where a root daemon 691 * forked, ran setuid to become the desired user and is trying 692 * to exec. The obvious place to do the reference counting check 693 * is setuid(), but we don't do the reference counting check there 694 * like other OS's do because then all the programs that use setuid() 695 * must be modified to check the return code of setuid() and exit(). 696 * It is dangerous to make setuid() fail, because it fails open and 697 * the program will continue to run as root. If we make it succeed 698 * and return an error code, again we are not enforcing the limit. 699 * The best place to enforce the limit is here, when the process tries 700 * to execute a new image, because eventually the process will need 701 * to call exec in order to do something useful. 702 */ 703 retry: 704 if (p->p_flag & PK_SUGID) { 705 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 706 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 707 &p->p_rlimit[RLIMIT_NPROC], 708 KAUTH_ARG(RLIMIT_NPROC)) != 0 && 709 chgproccnt(kauth_cred_getuid(l->l_cred), 0) > 710 p->p_rlimit[RLIMIT_NPROC].rlim_cur) 711 return EAGAIN; 712 } 713 714 /* 715 * Drain existing references and forbid new ones. The process 716 * should be left alone until we're done here. This is necessary 717 * to avoid race conditions - e.g. in ptrace() - that might allow 718 * a local user to illicitly obtain elevated privileges. 719 */ 720 rw_enter(&p->p_reflock, RW_WRITER); 721 722 /* 723 * Init the namei data to point the file user's program name. 724 * This is done here rather than in check_exec(), so that it's 725 * possible to override this settings if any of makecmd/probe 726 * functions call check_exec() recursively - for example, 727 * see exec_script_makecmds(). 728 */ 729 if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0) 730 goto clrflg; 731 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); 732 data->ed_resolvedpathbuf = PNBUF_GET(); 733 734 /* 735 * initialize the fields of the exec package. 736 */ 737 epp->ep_kname = data->ed_pathstring + offs; 738 epp->ep_resolvedname = data->ed_resolvedpathbuf; 739 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); 740 epp->ep_hdrlen = exec_maxhdrsz; 741 epp->ep_hdrvalid = 0; 742 epp->ep_emul_arg = NULL; 743 epp->ep_emul_arg_free = NULL; 744 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds)); 745 epp->ep_vap = &data->ed_attr; 746 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0; 747 MD_TOPDOWN_INIT(epp); 748 epp->ep_emul_root = NULL; 749 epp->ep_interp = NULL; 750 epp->ep_esch = NULL; 751 epp->ep_pax_flags = 0; 752 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch)); 753 754 rw_enter(&exec_lock, RW_READER); 755 756 /* see if we can run it. */ 757 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) { 758 if (error != ENOENT && error != EACCES) { 759 DPRINTF(("%s: check exec failed %d\n", 760 __func__, error)); 761 } 762 goto freehdr; 763 } 764 765 /* allocate an argument buffer */ 766 data->ed_argp = pool_get(&exec_pool, PR_WAITOK); 767 KASSERT(data->ed_argp != NULL); 768 dp = data->ed_argp; 769 770 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) { 771 goto bad; 772 } 773 774 /* 775 * Calculate the new stack size. 776 */ 777 778 #ifdef __MACHINE_STACK_GROWS_UP 779 /* 780 * copyargs() fills argc/argv/envp from the lower address even on 781 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP 782 * so that _rtld() use it. 783 */ 784 #define RTLD_GAP 32 785 #else 786 #define RTLD_GAP 0 787 #endif 788 789 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp; 790 791 data->ed_argslen = calcargs(data, argenvstrlen); 792 793 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP); 794 795 if (len > epp->ep_ssize) { 796 /* in effect, compare to initial limit */ 797 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len)); 798 error = ENOMEM; 799 goto bad; 800 } 801 /* adjust "active stack depth" for process VSZ */ 802 epp->ep_ssize = len; 803 804 return 0; 805 806 bad: 807 /* free the vmspace-creation commands, and release their references */ 808 kill_vmcmds(&epp->ep_vmcmds); 809 /* kill any opened file descriptor, if necessary */ 810 if (epp->ep_flags & EXEC_HASFD) { 811 epp->ep_flags &= ~EXEC_HASFD; 812 fd_close(epp->ep_fd); 813 } 814 /* close and put the exec'd file */ 815 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 816 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 817 vput(epp->ep_vp); 818 pool_put(&exec_pool, data->ed_argp); 819 820 freehdr: 821 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 822 if (epp->ep_emul_root != NULL) 823 vrele(epp->ep_emul_root); 824 if (epp->ep_interp != NULL) 825 vrele(epp->ep_interp); 826 827 rw_exit(&exec_lock); 828 829 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 830 pathbuf_destroy(data->ed_pathbuf); 831 PNBUF_PUT(data->ed_resolvedpathbuf); 832 833 clrflg: 834 rw_exit(&p->p_reflock); 835 836 if (modgen != module_gen && error == ENOEXEC) { 837 modgen = module_gen; 838 exec_autoload(); 839 goto retry; 840 } 841 842 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0); 843 return error; 844 } 845 846 static int 847 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data) 848 { 849 struct exec_package * const epp = &data->ed_pack; 850 struct proc *p = l->l_proc; 851 struct exec_vmcmd *base_vcp; 852 int error = 0; 853 size_t i; 854 855 /* record proc's vnode, for use by procfs and others */ 856 if (p->p_textvp) 857 vrele(p->p_textvp); 858 vref(epp->ep_vp); 859 p->p_textvp = epp->ep_vp; 860 861 /* create the new process's VM space by running the vmcmds */ 862 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__); 863 864 #ifdef TRACE_EXEC 865 DUMPVMCMDS(epp, 0, 0); 866 #endif 867 868 base_vcp = NULL; 869 870 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) { 871 struct exec_vmcmd *vcp; 872 873 vcp = &epp->ep_vmcmds.evs_cmds[i]; 874 if (vcp->ev_flags & VMCMD_RELATIVE) { 875 KASSERTMSG(base_vcp != NULL, 876 "%s: relative vmcmd with no base", __func__); 877 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0, 878 "%s: illegal base & relative vmcmd", __func__); 879 vcp->ev_addr += base_vcp->ev_addr; 880 } 881 error = (*vcp->ev_proc)(l, vcp); 882 if (error) 883 DUMPVMCMDS(epp, i, error); 884 if (vcp->ev_flags & VMCMD_BASE) 885 base_vcp = vcp; 886 } 887 888 /* free the vmspace-creation commands, and release their references */ 889 kill_vmcmds(&epp->ep_vmcmds); 890 891 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 892 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 893 vput(epp->ep_vp); 894 895 /* if an error happened, deallocate and punt */ 896 if (error != 0) { 897 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error)); 898 } 899 return error; 900 } 901 902 static void 903 execve_free_data(struct execve_data *data) 904 { 905 struct exec_package * const epp = &data->ed_pack; 906 907 /* free the vmspace-creation commands, and release their references */ 908 kill_vmcmds(&epp->ep_vmcmds); 909 /* kill any opened file descriptor, if necessary */ 910 if (epp->ep_flags & EXEC_HASFD) { 911 epp->ep_flags &= ~EXEC_HASFD; 912 fd_close(epp->ep_fd); 913 } 914 915 /* close and put the exec'd file */ 916 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 917 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred); 918 vput(epp->ep_vp); 919 pool_put(&exec_pool, data->ed_argp); 920 921 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 922 if (epp->ep_emul_root != NULL) 923 vrele(epp->ep_emul_root); 924 if (epp->ep_interp != NULL) 925 vrele(epp->ep_interp); 926 927 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 928 pathbuf_destroy(data->ed_pathbuf); 929 PNBUF_PUT(data->ed_resolvedpathbuf); 930 } 931 932 static void 933 pathexec(struct exec_package *epp, struct lwp *l, const char *pathstring) 934 { 935 const char *commandname; 936 size_t commandlen; 937 char *path; 938 struct proc *p = l->l_proc; 939 940 /* set command name & other accounting info */ 941 commandname = strrchr(epp->ep_resolvedname, '/'); 942 if (commandname != NULL) { 943 commandname++; 944 } else { 945 commandname = epp->ep_resolvedname; 946 } 947 commandlen = min(strlen(commandname), MAXCOMLEN); 948 (void)memcpy(p->p_comm, commandname, commandlen); 949 p->p_comm[commandlen] = '\0'; 950 951 952 /* 953 * If the path starts with /, we don't need to do any work. 954 * This handles the majority of the cases. 955 * In the future perhaps we could canonicalize it? 956 */ 957 path = PNBUF_GET(); 958 if (pathstring[0] == '/') { 959 (void)strlcpy(path, pathstring, MAXPATHLEN); 960 epp->ep_path = path; 961 } 962 #ifdef notyet 963 /* 964 * Although this works most of the time [since the entry was just 965 * entered in the cache] we don't use it because it will fail for 966 * entries that are not placed in the cache because their name is 967 * longer than NCHNAMLEN and it is not the cleanest interface, 968 * because there could be races. When the namei cache is re-written, 969 * this can be changed to use the appropriate function. 970 */ 971 else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p))) 972 epp->ep_path = path; 973 #endif 974 else { 975 #ifdef notyet 976 printf("Cannot get path for pid %d [%s] (error %d)\n", 977 (int)p->p_pid, p->p_comm, error); 978 #endif 979 PNBUF_PUT(path); 980 epp->ep_path = NULL; 981 } 982 } 983 984 /* XXX elsewhere */ 985 static int 986 credexec(struct lwp *l, struct vattr *attr) 987 { 988 struct proc *p = l->l_proc; 989 int error; 990 991 /* 992 * Deal with set[ug]id. MNT_NOSUID has already been used to disable 993 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked 994 * out additional references on the process for the moment. 995 */ 996 if ((p->p_slflag & PSL_TRACED) == 0 && 997 998 (((attr->va_mode & S_ISUID) != 0 && 999 kauth_cred_geteuid(l->l_cred) != attr->va_uid) || 1000 1001 ((attr->va_mode & S_ISGID) != 0 && 1002 kauth_cred_getegid(l->l_cred) != attr->va_gid))) { 1003 /* 1004 * Mark the process as SUGID before we do 1005 * anything that might block. 1006 */ 1007 proc_crmod_enter(); 1008 proc_crmod_leave(NULL, NULL, true); 1009 1010 /* Make sure file descriptors 0..2 are in use. */ 1011 if ((error = fd_checkstd()) != 0) { 1012 DPRINTF(("%s: fdcheckstd failed %d\n", 1013 __func__, error)); 1014 return error; 1015 } 1016 1017 /* 1018 * Copy the credential so other references don't see our 1019 * changes. 1020 */ 1021 l->l_cred = kauth_cred_copy(l->l_cred); 1022 #ifdef KTRACE 1023 /* 1024 * If the persistent trace flag isn't set, turn off. 1025 */ 1026 if (p->p_tracep) { 1027 mutex_enter(&ktrace_lock); 1028 if (!(p->p_traceflag & KTRFAC_PERSISTENT)) 1029 ktrderef(p); 1030 mutex_exit(&ktrace_lock); 1031 } 1032 #endif 1033 if (attr->va_mode & S_ISUID) 1034 kauth_cred_seteuid(l->l_cred, attr->va_uid); 1035 if (attr->va_mode & S_ISGID) 1036 kauth_cred_setegid(l->l_cred, attr->va_gid); 1037 } else { 1038 if (kauth_cred_geteuid(l->l_cred) == 1039 kauth_cred_getuid(l->l_cred) && 1040 kauth_cred_getegid(l->l_cred) == 1041 kauth_cred_getgid(l->l_cred)) 1042 p->p_flag &= ~PK_SUGID; 1043 } 1044 1045 /* 1046 * Copy the credential so other references don't see our changes. 1047 * Test to see if this is necessary first, since in the common case 1048 * we won't need a private reference. 1049 */ 1050 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || 1051 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { 1052 l->l_cred = kauth_cred_copy(l->l_cred); 1053 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); 1054 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); 1055 } 1056 1057 /* Update the master credentials. */ 1058 if (l->l_cred != p->p_cred) { 1059 kauth_cred_t ocred; 1060 1061 kauth_cred_hold(l->l_cred); 1062 mutex_enter(p->p_lock); 1063 ocred = p->p_cred; 1064 p->p_cred = l->l_cred; 1065 mutex_exit(p->p_lock); 1066 kauth_cred_free(ocred); 1067 } 1068 1069 return 0; 1070 } 1071 1072 static void 1073 emulexec(struct lwp *l, struct exec_package *epp) 1074 { 1075 struct proc *p = l->l_proc; 1076 1077 /* The emulation root will usually have been found when we looked 1078 * for the elf interpreter (or similar), if not look now. */ 1079 if (epp->ep_esch->es_emul->e_path != NULL && 1080 epp->ep_emul_root == NULL) 1081 emul_find_root(l, epp); 1082 1083 /* Any old emulation root got removed by fdcloseexec */ 1084 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); 1085 p->p_cwdi->cwdi_edir = epp->ep_emul_root; 1086 rw_exit(&p->p_cwdi->cwdi_lock); 1087 epp->ep_emul_root = NULL; 1088 if (epp->ep_interp != NULL) 1089 vrele(epp->ep_interp); 1090 1091 /* 1092 * Call emulation specific exec hook. This can setup per-process 1093 * p->p_emuldata or do any other per-process stuff an emulation needs. 1094 * 1095 * If we are executing process of different emulation than the 1096 * original forked process, call e_proc_exit() of the old emulation 1097 * first, then e_proc_exec() of new emulation. If the emulation is 1098 * same, the exec hook code should deallocate any old emulation 1099 * resources held previously by this process. 1100 */ 1101 if (p->p_emul && p->p_emul->e_proc_exit 1102 && p->p_emul != epp->ep_esch->es_emul) 1103 (*p->p_emul->e_proc_exit)(p); 1104 1105 /* 1106 * This is now LWP 1. 1107 */ 1108 /* XXX elsewhere */ 1109 mutex_enter(p->p_lock); 1110 p->p_nlwpid = 1; 1111 l->l_lid = 1; 1112 mutex_exit(p->p_lock); 1113 1114 /* 1115 * Call exec hook. Emulation code may NOT store reference to anything 1116 * from &pack. 1117 */ 1118 if (epp->ep_esch->es_emul->e_proc_exec) 1119 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp); 1120 1121 /* update p_emul, the old value is no longer needed */ 1122 p->p_emul = epp->ep_esch->es_emul; 1123 1124 /* ...and the same for p_execsw */ 1125 p->p_execsw = epp->ep_esch; 1126 1127 #ifdef __HAVE_SYSCALL_INTERN 1128 (*p->p_emul->e_syscall_intern)(p); 1129 #endif 1130 ktremul(); 1131 } 1132 1133 static int 1134 execve_runproc(struct lwp *l, struct execve_data * restrict data, 1135 bool no_local_exec_lock, bool is_spawn) 1136 { 1137 struct exec_package * const epp = &data->ed_pack; 1138 int error = 0; 1139 struct proc *p; 1140 1141 /* 1142 * In case of a posix_spawn operation, the child doing the exec 1143 * might not hold the reader lock on exec_lock, but the parent 1144 * will do this instead. 1145 */ 1146 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock)); 1147 KASSERT(!no_local_exec_lock || is_spawn); 1148 KASSERT(data != NULL); 1149 1150 p = l->l_proc; 1151 1152 /* Get rid of other LWPs. */ 1153 if (p->p_nlwps > 1) { 1154 mutex_enter(p->p_lock); 1155 exit_lwps(l); 1156 mutex_exit(p->p_lock); 1157 } 1158 KDASSERT(p->p_nlwps == 1); 1159 1160 /* Destroy any lwpctl info. */ 1161 if (p->p_lwpctl != NULL) 1162 lwp_ctl_exit(); 1163 1164 /* Remove POSIX timers */ 1165 timers_free(p, TIMERS_POSIX); 1166 1167 /* Set the PaX flags. */ 1168 pax_set_flags(epp, p); 1169 1170 /* 1171 * Do whatever is necessary to prepare the address space 1172 * for remapping. Note that this might replace the current 1173 * vmspace with another! 1174 */ 1175 if (is_spawn) 1176 uvmspace_spawn(l, epp->ep_vm_minaddr, 1177 epp->ep_vm_maxaddr, 1178 epp->ep_flags & EXEC_TOPDOWN_VM); 1179 else 1180 uvmspace_exec(l, epp->ep_vm_minaddr, 1181 epp->ep_vm_maxaddr, 1182 epp->ep_flags & EXEC_TOPDOWN_VM); 1183 1184 struct vmspace *vm; 1185 vm = p->p_vmspace; 1186 vm->vm_taddr = (void *)epp->ep_taddr; 1187 vm->vm_tsize = btoc(epp->ep_tsize); 1188 vm->vm_daddr = (void*)epp->ep_daddr; 1189 vm->vm_dsize = btoc(epp->ep_dsize); 1190 vm->vm_ssize = btoc(epp->ep_ssize); 1191 vm->vm_issize = 0; 1192 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr; 1193 vm->vm_minsaddr = (void *)epp->ep_minsaddr; 1194 1195 pax_aslr_init_vm(l, vm, epp); 1196 1197 /* Now map address space. */ 1198 error = execve_dovmcmds(l, data); 1199 if (error != 0) 1200 goto exec_abort; 1201 1202 pathexec(epp, l, data->ed_pathstring); 1203 1204 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize); 1205 1206 error = copyoutargs(data, l, newstack); 1207 if (error != 0) 1208 goto exec_abort; 1209 1210 cwdexec(p); 1211 fd_closeexec(); /* handle close on exec */ 1212 1213 if (__predict_false(ktrace_on)) 1214 fd_ktrexecfd(); 1215 1216 execsigs(p); /* reset caught signals */ 1217 1218 mutex_enter(p->p_lock); 1219 l->l_ctxlink = NULL; /* reset ucontext link */ 1220 p->p_acflag &= ~AFORK; 1221 p->p_flag |= PK_EXEC; 1222 mutex_exit(p->p_lock); 1223 1224 /* 1225 * Stop profiling. 1226 */ 1227 if ((p->p_stflag & PST_PROFIL) != 0) { 1228 mutex_spin_enter(&p->p_stmutex); 1229 stopprofclock(p); 1230 mutex_spin_exit(&p->p_stmutex); 1231 } 1232 1233 /* 1234 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have 1235 * exited and exec()/exit() are the only places it will be cleared. 1236 */ 1237 if ((p->p_lflag & PL_PPWAIT) != 0) { 1238 mutex_enter(proc_lock); 1239 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1240 p->p_lflag &= ~PL_PPWAIT; 1241 cv_broadcast(&p->p_pptr->p_waitcv); 1242 mutex_exit(proc_lock); 1243 } 1244 1245 error = credexec(l, &data->ed_attr); 1246 if (error) 1247 goto exec_abort; 1248 1249 #if defined(__HAVE_RAS) 1250 /* 1251 * Remove all RASs from the address space. 1252 */ 1253 ras_purgeall(); 1254 #endif 1255 1256 doexechooks(p); 1257 1258 /* 1259 * Set initial SP at the top of the stack. 1260 * 1261 * Note that on machines where stack grows up (e.g. hppa), SP points to 1262 * the end of arg/env strings. Userland guesses the address of argc 1263 * via ps_strings::ps_argvstr. 1264 */ 1265 1266 /* Setup new registers and do misc. setup. */ 1267 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack); 1268 if (epp->ep_esch->es_setregs) 1269 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack); 1270 1271 /* Provide a consistent LWP private setting */ 1272 (void)lwp_setprivate(l, NULL); 1273 1274 /* Discard all PCU state; need to start fresh */ 1275 pcu_discard_all(l); 1276 1277 /* map the process's signal trampoline code */ 1278 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) { 1279 DPRINTF(("%s: map sigcode failed %d\n", __func__, error)); 1280 goto exec_abort; 1281 } 1282 1283 pool_put(&exec_pool, data->ed_argp); 1284 1285 /* notify others that we exec'd */ 1286 KNOTE(&p->p_klist, NOTE_EXEC); 1287 1288 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1289 1290 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0); 1291 1292 emulexec(l, epp); 1293 1294 /* Allow new references from the debugger/procfs. */ 1295 rw_exit(&p->p_reflock); 1296 if (!no_local_exec_lock) 1297 rw_exit(&exec_lock); 1298 1299 mutex_enter(proc_lock); 1300 1301 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) { 1302 ksiginfo_t ksi; 1303 1304 KSI_INIT_EMPTY(&ksi); 1305 ksi.ksi_signo = SIGTRAP; 1306 ksi.ksi_code = TRAP_EXEC; 1307 ksi.ksi_lid = l->l_lid; 1308 kpsignal(p, &ksi, NULL); 1309 } 1310 1311 if (p->p_sflag & PS_STOPEXEC) { 1312 ksiginfoq_t kq; 1313 1314 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 1315 p->p_pptr->p_nstopchild++; 1316 p->p_waited = 0; 1317 mutex_enter(p->p_lock); 1318 ksiginfo_queue_init(&kq); 1319 sigclearall(p, &contsigmask, &kq); 1320 lwp_lock(l); 1321 l->l_stat = LSSTOP; 1322 p->p_stat = SSTOP; 1323 p->p_nrlwps--; 1324 lwp_unlock(l); 1325 mutex_exit(p->p_lock); 1326 mutex_exit(proc_lock); 1327 lwp_lock(l); 1328 mi_switch(l); 1329 ksiginfo_queue_drain(&kq); 1330 KERNEL_LOCK(l->l_biglocks, l); 1331 } else { 1332 mutex_exit(proc_lock); 1333 } 1334 1335 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1336 pathbuf_destroy(data->ed_pathbuf); 1337 PNBUF_PUT(data->ed_resolvedpathbuf); 1338 #ifdef TRACE_EXEC 1339 DPRINTF(("%s finished\n", __func__)); 1340 #endif 1341 return EJUSTRETURN; 1342 1343 exec_abort: 1344 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0); 1345 rw_exit(&p->p_reflock); 1346 if (!no_local_exec_lock) 1347 rw_exit(&exec_lock); 1348 1349 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1350 pathbuf_destroy(data->ed_pathbuf); 1351 PNBUF_PUT(data->ed_resolvedpathbuf); 1352 1353 /* 1354 * the old process doesn't exist anymore. exit gracefully. 1355 * get rid of the (new) address space we have created, if any, get rid 1356 * of our namei data and vnode, and exit noting failure 1357 */ 1358 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, 1359 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); 1360 1361 exec_free_emul_arg(epp); 1362 pool_put(&exec_pool, data->ed_argp); 1363 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1364 if (epp->ep_emul_root != NULL) 1365 vrele(epp->ep_emul_root); 1366 if (epp->ep_interp != NULL) 1367 vrele(epp->ep_interp); 1368 1369 /* Acquire the sched-state mutex (exit1() will release it). */ 1370 if (!is_spawn) { 1371 mutex_enter(p->p_lock); 1372 exit1(l, error, SIGABRT); 1373 } 1374 1375 return error; 1376 } 1377 1378 int 1379 execve1(struct lwp *l, const char *path, char * const *args, 1380 char * const *envs, execve_fetch_element_t fetch_element) 1381 { 1382 struct execve_data data; 1383 int error; 1384 1385 error = execve_loadvm(l, path, args, envs, fetch_element, &data); 1386 if (error) 1387 return error; 1388 error = execve_runproc(l, &data, false, false); 1389 return error; 1390 } 1391 1392 static size_t 1393 fromptrsz(const struct exec_package *epp) 1394 { 1395 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *); 1396 } 1397 1398 static size_t 1399 ptrsz(const struct exec_package *epp) 1400 { 1401 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *); 1402 } 1403 1404 static size_t 1405 calcargs(struct execve_data * restrict data, const size_t argenvstrlen) 1406 { 1407 struct exec_package * const epp = &data->ed_pack; 1408 1409 const size_t nargenvptrs = 1410 1 + /* long argc */ 1411 data->ed_argc + /* char *argv[] */ 1412 1 + /* \0 */ 1413 data->ed_envc + /* char *env[] */ 1414 1; /* \0 */ 1415 1416 return (nargenvptrs * ptrsz(epp)) /* pointers */ 1417 + argenvstrlen /* strings */ 1418 + epp->ep_esch->es_arglen; /* auxinfo */ 1419 } 1420 1421 static size_t 1422 calcstack(struct execve_data * restrict data, const size_t gaplen) 1423 { 1424 struct exec_package * const epp = &data->ed_pack; 1425 1426 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode - 1427 epp->ep_esch->es_emul->e_sigcode; 1428 1429 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ? 1430 sizeof(struct ps_strings32) : sizeof(struct ps_strings); 1431 1432 const size_t sigcode_psstr_sz = 1433 data->ed_szsigcode + /* sigcode */ 1434 data->ed_ps_strings_sz + /* ps_strings */ 1435 STACK_PTHREADSPACE; /* pthread space */ 1436 1437 const size_t stacklen = 1438 data->ed_argslen + 1439 gaplen + 1440 sigcode_psstr_sz; 1441 1442 /* make the stack "safely" aligned */ 1443 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES); 1444 } 1445 1446 static int 1447 copyoutargs(struct execve_data * restrict data, struct lwp *l, 1448 char * const newstack) 1449 { 1450 struct exec_package * const epp = &data->ed_pack; 1451 struct proc *p = l->l_proc; 1452 int error; 1453 1454 /* remember information about the process */ 1455 data->ed_arginfo.ps_nargvstr = data->ed_argc; 1456 data->ed_arginfo.ps_nenvstr = data->ed_envc; 1457 1458 /* 1459 * Allocate the stack address passed to the newly execve()'ed process. 1460 * 1461 * The new stack address will be set to the SP (stack pointer) register 1462 * in setregs(). 1463 */ 1464 1465 char *newargs = STACK_ALLOC( 1466 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen); 1467 1468 error = (*epp->ep_esch->es_copyargs)(l, epp, 1469 &data->ed_arginfo, &newargs, data->ed_argp); 1470 1471 if (epp->ep_path) { 1472 PNBUF_PUT(epp->ep_path); 1473 epp->ep_path = NULL; 1474 } 1475 if (error) { 1476 DPRINTF(("%s: copyargs failed %d\n", __func__, error)); 1477 return error; 1478 } 1479 1480 error = copyoutpsstrs(data, p); 1481 if (error != 0) 1482 return error; 1483 1484 return 0; 1485 } 1486 1487 static int 1488 copyoutpsstrs(struct execve_data * restrict data, struct proc *p) 1489 { 1490 struct exec_package * const epp = &data->ed_pack; 1491 struct ps_strings32 arginfo32; 1492 void *aip; 1493 int error; 1494 1495 /* fill process ps_strings info */ 1496 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr, 1497 STACK_PTHREADSPACE), data->ed_ps_strings_sz); 1498 1499 if (epp->ep_flags & EXEC_32) { 1500 aip = &arginfo32; 1501 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; 1502 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; 1503 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; 1504 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; 1505 } else 1506 aip = &data->ed_arginfo; 1507 1508 /* copy out the process's ps_strings structure */ 1509 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) 1510 != 0) { 1511 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n", 1512 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); 1513 return error; 1514 } 1515 1516 return 0; 1517 } 1518 1519 static int 1520 copyinargs(struct execve_data * restrict data, char * const *args, 1521 char * const *envs, execve_fetch_element_t fetch_element, char **dpp) 1522 { 1523 struct exec_package * const epp = &data->ed_pack; 1524 char *dp; 1525 size_t i; 1526 int error; 1527 1528 dp = *dpp; 1529 1530 data->ed_argc = 0; 1531 1532 /* copy the fake args list, if there's one, freeing it as we go */ 1533 if (epp->ep_flags & EXEC_HASARGL) { 1534 struct exec_fakearg *fa = epp->ep_fa; 1535 1536 while (fa->fa_arg != NULL) { 1537 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1538 size_t len; 1539 1540 len = strlcpy(dp, fa->fa_arg, maxlen); 1541 /* Count NUL into len. */ 1542 if (len < maxlen) 1543 len++; 1544 else { 1545 while (fa->fa_arg != NULL) { 1546 kmem_free(fa->fa_arg, fa->fa_len); 1547 fa++; 1548 } 1549 kmem_free(epp->ep_fa, epp->ep_fa_len); 1550 epp->ep_flags &= ~EXEC_HASARGL; 1551 return E2BIG; 1552 } 1553 ktrexecarg(fa->fa_arg, len - 1); 1554 dp += len; 1555 1556 kmem_free(fa->fa_arg, fa->fa_len); 1557 fa++; 1558 data->ed_argc++; 1559 } 1560 kmem_free(epp->ep_fa, epp->ep_fa_len); 1561 epp->ep_flags &= ~EXEC_HASARGL; 1562 } 1563 1564 /* 1565 * Read and count argument strings from user. 1566 */ 1567 1568 if (args == NULL) { 1569 DPRINTF(("%s: null args\n", __func__)); 1570 return EINVAL; 1571 } 1572 if (epp->ep_flags & EXEC_SKIPARG) 1573 args = (const void *)((const char *)args + fromptrsz(epp)); 1574 i = 0; 1575 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg); 1576 if (error != 0) { 1577 DPRINTF(("%s: copyin arg %d\n", __func__, error)); 1578 return error; 1579 } 1580 data->ed_argc += i; 1581 1582 /* 1583 * Read and count environment strings from user. 1584 */ 1585 1586 data->ed_envc = 0; 1587 /* environment need not be there */ 1588 if (envs == NULL) 1589 goto done; 1590 i = 0; 1591 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv); 1592 if (error != 0) { 1593 DPRINTF(("%s: copyin env %d\n", __func__, error)); 1594 return error; 1595 } 1596 data->ed_envc += i; 1597 1598 done: 1599 *dpp = dp; 1600 1601 return 0; 1602 } 1603 1604 static int 1605 copyinargstrs(struct execve_data * restrict data, char * const *strs, 1606 execve_fetch_element_t fetch_element, char **dpp, size_t *ip, 1607 void (*ktr)(const void *, size_t)) 1608 { 1609 char *dp, *sp; 1610 size_t i; 1611 int error; 1612 1613 dp = *dpp; 1614 1615 i = 0; 1616 while (1) { 1617 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1618 size_t len; 1619 1620 if ((error = (*fetch_element)(strs, i, &sp)) != 0) { 1621 return error; 1622 } 1623 if (!sp) 1624 break; 1625 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) { 1626 if (error == ENAMETOOLONG) 1627 error = E2BIG; 1628 return error; 1629 } 1630 if (__predict_false(ktrace_on)) 1631 (*ktr)(dp, len - 1); 1632 dp += len; 1633 i++; 1634 } 1635 1636 *dpp = dp; 1637 *ip = i; 1638 1639 return 0; 1640 } 1641 1642 /* 1643 * Copy argv and env strings from kernel buffer (argp) to the new stack. 1644 * Those strings are located just after auxinfo. 1645 */ 1646 int 1647 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, 1648 char **stackp, void *argp) 1649 { 1650 char **cpp, *dp, *sp; 1651 size_t len; 1652 void *nullp; 1653 long argc, envc; 1654 int error; 1655 1656 cpp = (char **)*stackp; 1657 nullp = NULL; 1658 argc = arginfo->ps_nargvstr; 1659 envc = arginfo->ps_nenvstr; 1660 1661 /* argc on stack is long */ 1662 CTASSERT(sizeof(*cpp) == sizeof(argc)); 1663 1664 dp = (char *)(cpp + 1665 1 + /* long argc */ 1666 argc + /* char *argv[] */ 1667 1 + /* \0 */ 1668 envc + /* char *env[] */ 1669 1) + /* \0 */ 1670 pack->ep_esch->es_arglen; /* auxinfo */ 1671 sp = argp; 1672 1673 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { 1674 COPYPRINTF("", cpp - 1, sizeof(argc)); 1675 return error; 1676 } 1677 1678 /* XXX don't copy them out, remap them! */ 1679 arginfo->ps_argvstr = cpp; /* remember location of argv for later */ 1680 1681 for (; --argc >= 0; sp += len, dp += len) { 1682 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1683 COPYPRINTF("", cpp - 1, sizeof(dp)); 1684 return error; 1685 } 1686 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1687 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1688 return error; 1689 } 1690 } 1691 1692 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1693 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1694 return error; 1695 } 1696 1697 arginfo->ps_envstr = cpp; /* remember location of envp for later */ 1698 1699 for (; --envc >= 0; sp += len, dp += len) { 1700 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1701 COPYPRINTF("", cpp - 1, sizeof(dp)); 1702 return error; 1703 } 1704 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1705 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1706 return error; 1707 } 1708 1709 } 1710 1711 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1712 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1713 return error; 1714 } 1715 1716 *stackp = (char *)cpp; 1717 return 0; 1718 } 1719 1720 1721 /* 1722 * Add execsw[] entries. 1723 */ 1724 int 1725 exec_add(struct execsw *esp, int count) 1726 { 1727 struct exec_entry *it; 1728 int i; 1729 1730 if (count == 0) { 1731 return 0; 1732 } 1733 1734 /* Check for duplicates. */ 1735 rw_enter(&exec_lock, RW_WRITER); 1736 for (i = 0; i < count; i++) { 1737 LIST_FOREACH(it, &ex_head, ex_list) { 1738 /* assume unique (makecmds, probe_func, emulation) */ 1739 if (it->ex_sw->es_makecmds == esp[i].es_makecmds && 1740 it->ex_sw->u.elf_probe_func == 1741 esp[i].u.elf_probe_func && 1742 it->ex_sw->es_emul == esp[i].es_emul) { 1743 rw_exit(&exec_lock); 1744 return EEXIST; 1745 } 1746 } 1747 } 1748 1749 /* Allocate new entries. */ 1750 for (i = 0; i < count; i++) { 1751 it = kmem_alloc(sizeof(*it), KM_SLEEP); 1752 it->ex_sw = &esp[i]; 1753 LIST_INSERT_HEAD(&ex_head, it, ex_list); 1754 } 1755 1756 /* update execsw[] */ 1757 exec_init(0); 1758 rw_exit(&exec_lock); 1759 return 0; 1760 } 1761 1762 /* 1763 * Remove execsw[] entry. 1764 */ 1765 int 1766 exec_remove(struct execsw *esp, int count) 1767 { 1768 struct exec_entry *it, *next; 1769 int i; 1770 const struct proclist_desc *pd; 1771 proc_t *p; 1772 1773 if (count == 0) { 1774 return 0; 1775 } 1776 1777 /* Abort if any are busy. */ 1778 rw_enter(&exec_lock, RW_WRITER); 1779 for (i = 0; i < count; i++) { 1780 mutex_enter(proc_lock); 1781 for (pd = proclists; pd->pd_list != NULL; pd++) { 1782 PROCLIST_FOREACH(p, pd->pd_list) { 1783 if (p->p_execsw == &esp[i]) { 1784 mutex_exit(proc_lock); 1785 rw_exit(&exec_lock); 1786 return EBUSY; 1787 } 1788 } 1789 } 1790 mutex_exit(proc_lock); 1791 } 1792 1793 /* None are busy, so remove them all. */ 1794 for (i = 0; i < count; i++) { 1795 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { 1796 next = LIST_NEXT(it, ex_list); 1797 if (it->ex_sw == &esp[i]) { 1798 LIST_REMOVE(it, ex_list); 1799 kmem_free(it, sizeof(*it)); 1800 break; 1801 } 1802 } 1803 } 1804 1805 /* update execsw[] */ 1806 exec_init(0); 1807 rw_exit(&exec_lock); 1808 return 0; 1809 } 1810 1811 /* 1812 * Initialize exec structures. If init_boot is true, also does necessary 1813 * one-time initialization (it's called from main() that way). 1814 * Once system is multiuser, this should be called with exec_lock held, 1815 * i.e. via exec_{add|remove}(). 1816 */ 1817 int 1818 exec_init(int init_boot) 1819 { 1820 const struct execsw **sw; 1821 struct exec_entry *ex; 1822 SLIST_HEAD(,exec_entry) first; 1823 SLIST_HEAD(,exec_entry) any; 1824 SLIST_HEAD(,exec_entry) last; 1825 int i, sz; 1826 1827 if (init_boot) { 1828 /* do one-time initializations */ 1829 rw_init(&exec_lock); 1830 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); 1831 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, 1832 "execargs", &exec_palloc, IPL_NONE); 1833 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0); 1834 } else { 1835 KASSERT(rw_write_held(&exec_lock)); 1836 } 1837 1838 /* Sort each entry onto the appropriate queue. */ 1839 SLIST_INIT(&first); 1840 SLIST_INIT(&any); 1841 SLIST_INIT(&last); 1842 sz = 0; 1843 LIST_FOREACH(ex, &ex_head, ex_list) { 1844 switch(ex->ex_sw->es_prio) { 1845 case EXECSW_PRIO_FIRST: 1846 SLIST_INSERT_HEAD(&first, ex, ex_slist); 1847 break; 1848 case EXECSW_PRIO_ANY: 1849 SLIST_INSERT_HEAD(&any, ex, ex_slist); 1850 break; 1851 case EXECSW_PRIO_LAST: 1852 SLIST_INSERT_HEAD(&last, ex, ex_slist); 1853 break; 1854 default: 1855 panic("%s", __func__); 1856 break; 1857 } 1858 sz++; 1859 } 1860 1861 /* 1862 * Create new execsw[]. Ensure we do not try a zero-sized 1863 * allocation. 1864 */ 1865 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); 1866 i = 0; 1867 SLIST_FOREACH(ex, &first, ex_slist) { 1868 sw[i++] = ex->ex_sw; 1869 } 1870 SLIST_FOREACH(ex, &any, ex_slist) { 1871 sw[i++] = ex->ex_sw; 1872 } 1873 SLIST_FOREACH(ex, &last, ex_slist) { 1874 sw[i++] = ex->ex_sw; 1875 } 1876 1877 /* Replace old execsw[] and free used memory. */ 1878 if (execsw != NULL) { 1879 kmem_free(__UNCONST(execsw), 1880 nexecs * sizeof(struct execsw *) + 1); 1881 } 1882 execsw = sw; 1883 nexecs = sz; 1884 1885 /* Figure out the maximum size of an exec header. */ 1886 exec_maxhdrsz = sizeof(int); 1887 for (i = 0; i < nexecs; i++) { 1888 if (execsw[i]->es_hdrsz > exec_maxhdrsz) 1889 exec_maxhdrsz = execsw[i]->es_hdrsz; 1890 } 1891 1892 return 0; 1893 } 1894 1895 static int 1896 exec_sigcode_map(struct proc *p, const struct emul *e) 1897 { 1898 vaddr_t va; 1899 vsize_t sz; 1900 int error; 1901 struct uvm_object *uobj; 1902 1903 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; 1904 1905 if (e->e_sigobject == NULL || sz == 0) { 1906 return 0; 1907 } 1908 1909 /* 1910 * If we don't have a sigobject for this emulation, create one. 1911 * 1912 * sigobject is an anonymous memory object (just like SYSV shared 1913 * memory) that we keep a permanent reference to and that we map 1914 * in all processes that need this sigcode. The creation is simple, 1915 * we create an object, add a permanent reference to it, map it in 1916 * kernel space, copy out the sigcode to it and unmap it. 1917 * We map it with PROT_READ|PROT_EXEC into the process just 1918 * the way sys_mmap() would map it. 1919 */ 1920 1921 uobj = *e->e_sigobject; 1922 if (uobj == NULL) { 1923 mutex_enter(&sigobject_lock); 1924 if ((uobj = *e->e_sigobject) == NULL) { 1925 uobj = uao_create(sz, 0); 1926 (*uobj->pgops->pgo_reference)(uobj); 1927 va = vm_map_min(kernel_map); 1928 if ((error = uvm_map(kernel_map, &va, round_page(sz), 1929 uobj, 0, 0, 1930 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1931 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { 1932 printf("kernel mapping failed %d\n", error); 1933 (*uobj->pgops->pgo_detach)(uobj); 1934 mutex_exit(&sigobject_lock); 1935 return error; 1936 } 1937 memcpy((void *)va, e->e_sigcode, sz); 1938 #ifdef PMAP_NEED_PROCWR 1939 pmap_procwr(&proc0, va, sz); 1940 #endif 1941 uvm_unmap(kernel_map, va, va + round_page(sz)); 1942 *e->e_sigobject = uobj; 1943 } 1944 mutex_exit(&sigobject_lock); 1945 } 1946 1947 /* Just a hint to uvm_map where to put it. */ 1948 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, 1949 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1950 1951 #ifdef __alpha__ 1952 /* 1953 * Tru64 puts /sbin/loader at the end of user virtual memory, 1954 * which causes the above calculation to put the sigcode at 1955 * an invalid address. Put it just below the text instead. 1956 */ 1957 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { 1958 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); 1959 } 1960 #endif 1961 1962 (*uobj->pgops->pgo_reference)(uobj); 1963 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), 1964 uobj, 0, 0, 1965 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, 1966 UVM_ADV_RANDOM, 0)); 1967 if (error) { 1968 DPRINTF(("%s, %d: map %p " 1969 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n", 1970 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), 1971 va, error)); 1972 (*uobj->pgops->pgo_detach)(uobj); 1973 return error; 1974 } 1975 p->p_sigctx.ps_sigcode = (void *)va; 1976 return 0; 1977 } 1978 1979 /* 1980 * Release a refcount on spawn_exec_data and destroy memory, if this 1981 * was the last one. 1982 */ 1983 static void 1984 spawn_exec_data_release(struct spawn_exec_data *data) 1985 { 1986 if (atomic_dec_32_nv(&data->sed_refcnt) != 0) 1987 return; 1988 1989 cv_destroy(&data->sed_cv_child_ready); 1990 mutex_destroy(&data->sed_mtx_child); 1991 1992 if (data->sed_actions) 1993 posix_spawn_fa_free(data->sed_actions, 1994 data->sed_actions->len); 1995 if (data->sed_attrs) 1996 kmem_free(data->sed_attrs, 1997 sizeof(*data->sed_attrs)); 1998 kmem_free(data, sizeof(*data)); 1999 } 2000 2001 /* 2002 * A child lwp of a posix_spawn operation starts here and ends up in 2003 * cpu_spawn_return, dealing with all filedescriptor and scheduler 2004 * manipulations in between. 2005 * The parent waits for the child, as it is not clear whether the child 2006 * will be able to acquire its own exec_lock. If it can, the parent can 2007 * be released early and continue running in parallel. If not (or if the 2008 * magic debug flag is passed in the scheduler attribute struct), the 2009 * child rides on the parent's exec lock until it is ready to return to 2010 * to userland - and only then releases the parent. This method loses 2011 * concurrency, but improves error reporting. 2012 */ 2013 static void 2014 spawn_return(void *arg) 2015 { 2016 struct spawn_exec_data *spawn_data = arg; 2017 struct lwp *l = curlwp; 2018 int error, newfd; 2019 int ostat; 2020 size_t i; 2021 const struct posix_spawn_file_actions_entry *fae; 2022 pid_t ppid; 2023 register_t retval; 2024 bool have_reflock; 2025 bool parent_is_waiting = true; 2026 2027 /* 2028 * Check if we can release parent early. 2029 * We either need to have no sed_attrs, or sed_attrs does not 2030 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require 2031 * safe access to the parent proc (passed in sed_parent). 2032 * We then try to get the exec_lock, and only if that works, we can 2033 * release the parent here already. 2034 */ 2035 ppid = spawn_data->sed_parent->p_pid; 2036 if ((!spawn_data->sed_attrs 2037 || (spawn_data->sed_attrs->sa_flags 2038 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0) 2039 && rw_tryenter(&exec_lock, RW_READER)) { 2040 parent_is_waiting = false; 2041 mutex_enter(&spawn_data->sed_mtx_child); 2042 cv_signal(&spawn_data->sed_cv_child_ready); 2043 mutex_exit(&spawn_data->sed_mtx_child); 2044 } 2045 2046 /* don't allow debugger access yet */ 2047 rw_enter(&l->l_proc->p_reflock, RW_WRITER); 2048 have_reflock = true; 2049 2050 error = 0; 2051 /* handle posix_spawn_file_actions */ 2052 if (spawn_data->sed_actions != NULL) { 2053 for (i = 0; i < spawn_data->sed_actions->len; i++) { 2054 fae = &spawn_data->sed_actions->fae[i]; 2055 switch (fae->fae_action) { 2056 case FAE_OPEN: 2057 if (fd_getfile(fae->fae_fildes) != NULL) { 2058 error = fd_close(fae->fae_fildes); 2059 if (error) 2060 break; 2061 } 2062 error = fd_open(fae->fae_path, fae->fae_oflag, 2063 fae->fae_mode, &newfd); 2064 if (error) 2065 break; 2066 if (newfd != fae->fae_fildes) { 2067 error = dodup(l, newfd, 2068 fae->fae_fildes, 0, &retval); 2069 if (fd_getfile(newfd) != NULL) 2070 fd_close(newfd); 2071 } 2072 break; 2073 case FAE_DUP2: 2074 error = dodup(l, fae->fae_fildes, 2075 fae->fae_newfildes, 0, &retval); 2076 break; 2077 case FAE_CLOSE: 2078 if (fd_getfile(fae->fae_fildes) == NULL) { 2079 error = EBADF; 2080 break; 2081 } 2082 error = fd_close(fae->fae_fildes); 2083 break; 2084 } 2085 if (error) 2086 goto report_error; 2087 } 2088 } 2089 2090 /* handle posix_spawnattr */ 2091 if (spawn_data->sed_attrs != NULL) { 2092 struct sigaction sigact; 2093 sigact._sa_u._sa_handler = SIG_DFL; 2094 sigact.sa_flags = 0; 2095 2096 /* 2097 * set state to SSTOP so that this proc can be found by pid. 2098 * see proc_enterprp, do_sched_setparam below 2099 */ 2100 mutex_enter(proc_lock); 2101 /* 2102 * p_stat should be SACTIVE, so we need to adjust the 2103 * parent's p_nstopchild here. For safety, just make 2104 * we're on the good side of SDEAD before we adjust. 2105 */ 2106 ostat = l->l_proc->p_stat; 2107 KASSERT(ostat < SSTOP); 2108 l->l_proc->p_stat = SSTOP; 2109 l->l_proc->p_waited = 0; 2110 l->l_proc->p_pptr->p_nstopchild++; 2111 mutex_exit(proc_lock); 2112 2113 /* Set process group */ 2114 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { 2115 pid_t mypid = l->l_proc->p_pid, 2116 pgrp = spawn_data->sed_attrs->sa_pgroup; 2117 2118 if (pgrp == 0) 2119 pgrp = mypid; 2120 2121 error = proc_enterpgrp(spawn_data->sed_parent, 2122 mypid, pgrp, false); 2123 if (error) 2124 goto report_error_stopped; 2125 } 2126 2127 /* Set scheduler policy */ 2128 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) 2129 error = do_sched_setparam(l->l_proc->p_pid, 0, 2130 spawn_data->sed_attrs->sa_schedpolicy, 2131 &spawn_data->sed_attrs->sa_schedparam); 2132 else if (spawn_data->sed_attrs->sa_flags 2133 & POSIX_SPAWN_SETSCHEDPARAM) { 2134 error = do_sched_setparam(ppid, 0, 2135 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); 2136 } 2137 if (error) 2138 goto report_error_stopped; 2139 2140 /* Reset user ID's */ 2141 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { 2142 error = do_setresuid(l, -1, 2143 kauth_cred_getgid(l->l_cred), -1, 2144 ID_E_EQ_R | ID_E_EQ_S); 2145 if (error) 2146 goto report_error_stopped; 2147 error = do_setresuid(l, -1, 2148 kauth_cred_getuid(l->l_cred), -1, 2149 ID_E_EQ_R | ID_E_EQ_S); 2150 if (error) 2151 goto report_error_stopped; 2152 } 2153 2154 /* Set signal masks/defaults */ 2155 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { 2156 mutex_enter(l->l_proc->p_lock); 2157 error = sigprocmask1(l, SIG_SETMASK, 2158 &spawn_data->sed_attrs->sa_sigmask, NULL); 2159 mutex_exit(l->l_proc->p_lock); 2160 if (error) 2161 goto report_error_stopped; 2162 } 2163 2164 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { 2165 /* 2166 * The following sigaction call is using a sigaction 2167 * version 0 trampoline which is in the compatibility 2168 * code only. This is not a problem because for SIG_DFL 2169 * and SIG_IGN, the trampolines are now ignored. If they 2170 * were not, this would be a problem because we are 2171 * holding the exec_lock, and the compat code needs 2172 * to do the same in order to replace the trampoline 2173 * code of the process. 2174 */ 2175 for (i = 1; i <= NSIG; i++) { 2176 if (sigismember( 2177 &spawn_data->sed_attrs->sa_sigdefault, i)) 2178 sigaction1(l, i, &sigact, NULL, NULL, 2179 0); 2180 } 2181 } 2182 mutex_enter(proc_lock); 2183 l->l_proc->p_stat = ostat; 2184 l->l_proc->p_pptr->p_nstopchild--; 2185 mutex_exit(proc_lock); 2186 } 2187 2188 /* now do the real exec */ 2189 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting, 2190 true); 2191 have_reflock = false; 2192 if (error == EJUSTRETURN) 2193 error = 0; 2194 else if (error) 2195 goto report_error; 2196 2197 if (parent_is_waiting) { 2198 mutex_enter(&spawn_data->sed_mtx_child); 2199 cv_signal(&spawn_data->sed_cv_child_ready); 2200 mutex_exit(&spawn_data->sed_mtx_child); 2201 } 2202 2203 /* release our refcount on the data */ 2204 spawn_exec_data_release(spawn_data); 2205 2206 /* and finally: leave to userland for the first time */ 2207 cpu_spawn_return(l); 2208 2209 /* NOTREACHED */ 2210 return; 2211 2212 report_error_stopped: 2213 mutex_enter(proc_lock); 2214 l->l_proc->p_stat = ostat; 2215 l->l_proc->p_pptr->p_nstopchild--; 2216 mutex_exit(proc_lock); 2217 report_error: 2218 if (have_reflock) { 2219 /* 2220 * We have not passed through execve_runproc(), 2221 * which would have released the p_reflock and also 2222 * taken ownership of the sed_exec part of spawn_data, 2223 * so release/free both here. 2224 */ 2225 rw_exit(&l->l_proc->p_reflock); 2226 execve_free_data(&spawn_data->sed_exec); 2227 } 2228 2229 if (parent_is_waiting) { 2230 /* pass error to parent */ 2231 mutex_enter(&spawn_data->sed_mtx_child); 2232 spawn_data->sed_error = error; 2233 cv_signal(&spawn_data->sed_cv_child_ready); 2234 mutex_exit(&spawn_data->sed_mtx_child); 2235 } else { 2236 rw_exit(&exec_lock); 2237 } 2238 2239 /* release our refcount on the data */ 2240 spawn_exec_data_release(spawn_data); 2241 2242 /* done, exit */ 2243 mutex_enter(l->l_proc->p_lock); 2244 /* 2245 * Posix explicitly asks for an exit code of 127 if we report 2246 * errors from the child process - so, unfortunately, there 2247 * is no way to report a more exact error code. 2248 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as 2249 * flag bit in the attrp argument to posix_spawn(2), see above. 2250 */ 2251 exit1(l, 127, 0); 2252 } 2253 2254 void 2255 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) 2256 { 2257 2258 for (size_t i = 0; i < len; i++) { 2259 struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; 2260 if (fae->fae_action != FAE_OPEN) 2261 continue; 2262 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1); 2263 } 2264 if (fa->len > 0) 2265 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); 2266 kmem_free(fa, sizeof(*fa)); 2267 } 2268 2269 static int 2270 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, 2271 const struct posix_spawn_file_actions *ufa, rlim_t lim) 2272 { 2273 struct posix_spawn_file_actions *fa; 2274 struct posix_spawn_file_actions_entry *fae; 2275 char *pbuf = NULL; 2276 int error; 2277 size_t i = 0; 2278 2279 fa = kmem_alloc(sizeof(*fa), KM_SLEEP); 2280 error = copyin(ufa, fa, sizeof(*fa)); 2281 if (error || fa->len == 0) { 2282 kmem_free(fa, sizeof(*fa)); 2283 return error; /* 0 if not an error, and len == 0 */ 2284 } 2285 2286 if (fa->len > lim) { 2287 kmem_free(fa, sizeof(*fa)); 2288 return EINVAL; 2289 } 2290 2291 fa->size = fa->len; 2292 size_t fal = fa->len * sizeof(*fae); 2293 fae = fa->fae; 2294 fa->fae = kmem_alloc(fal, KM_SLEEP); 2295 error = copyin(fae, fa->fae, fal); 2296 if (error) 2297 goto out; 2298 2299 pbuf = PNBUF_GET(); 2300 for (; i < fa->len; i++) { 2301 fae = &fa->fae[i]; 2302 if (fae->fae_action != FAE_OPEN) 2303 continue; 2304 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); 2305 if (error) 2306 goto out; 2307 fae->fae_path = kmem_alloc(fal, KM_SLEEP); 2308 memcpy(fae->fae_path, pbuf, fal); 2309 } 2310 PNBUF_PUT(pbuf); 2311 2312 *fap = fa; 2313 return 0; 2314 out: 2315 if (pbuf) 2316 PNBUF_PUT(pbuf); 2317 posix_spawn_fa_free(fa, i); 2318 return error; 2319 } 2320 2321 int 2322 check_posix_spawn(struct lwp *l1) 2323 { 2324 int error, tnprocs, count; 2325 uid_t uid; 2326 struct proc *p1; 2327 2328 p1 = l1->l_proc; 2329 uid = kauth_cred_getuid(l1->l_cred); 2330 tnprocs = atomic_inc_uint_nv(&nprocs); 2331 2332 /* 2333 * Although process entries are dynamically created, we still keep 2334 * a global limit on the maximum number we will create. 2335 */ 2336 if (__predict_false(tnprocs >= maxproc)) 2337 error = -1; 2338 else 2339 error = kauth_authorize_process(l1->l_cred, 2340 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 2341 2342 if (error) { 2343 atomic_dec_uint(&nprocs); 2344 return EAGAIN; 2345 } 2346 2347 /* 2348 * Enforce limits. 2349 */ 2350 count = chgproccnt(uid, 1); 2351 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, 2352 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 2353 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 && 2354 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 2355 (void)chgproccnt(uid, -1); 2356 atomic_dec_uint(&nprocs); 2357 return EAGAIN; 2358 } 2359 2360 return 0; 2361 } 2362 2363 int 2364 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path, 2365 struct posix_spawn_file_actions *fa, 2366 struct posix_spawnattr *sa, 2367 char *const *argv, char *const *envp, 2368 execve_fetch_element_t fetch) 2369 { 2370 2371 struct proc *p1, *p2; 2372 struct lwp *l2; 2373 int error; 2374 struct spawn_exec_data *spawn_data; 2375 vaddr_t uaddr; 2376 pid_t pid; 2377 bool have_exec_lock = false; 2378 2379 p1 = l1->l_proc; 2380 2381 /* Allocate and init spawn_data */ 2382 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); 2383 spawn_data->sed_refcnt = 1; /* only parent so far */ 2384 cv_init(&spawn_data->sed_cv_child_ready, "pspawn"); 2385 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); 2386 mutex_enter(&spawn_data->sed_mtx_child); 2387 2388 /* 2389 * Do the first part of the exec now, collect state 2390 * in spawn_data. 2391 */ 2392 error = execve_loadvm(l1, path, argv, 2393 envp, fetch, &spawn_data->sed_exec); 2394 if (error == EJUSTRETURN) 2395 error = 0; 2396 else if (error) 2397 goto error_exit; 2398 2399 have_exec_lock = true; 2400 2401 /* 2402 * Allocate virtual address space for the U-area now, while it 2403 * is still easy to abort the fork operation if we're out of 2404 * kernel virtual address space. 2405 */ 2406 uaddr = uvm_uarea_alloc(); 2407 if (__predict_false(uaddr == 0)) { 2408 error = ENOMEM; 2409 goto error_exit; 2410 } 2411 2412 /* 2413 * Allocate new proc. Borrow proc0 vmspace for it, we will 2414 * replace it with its own before returning to userland 2415 * in the child. 2416 * This is a point of no return, we will have to go through 2417 * the child proc to properly clean it up past this point. 2418 */ 2419 p2 = proc_alloc(); 2420 pid = p2->p_pid; 2421 2422 /* 2423 * Make a proc table entry for the new process. 2424 * Start by zeroing the section of proc that is zero-initialized, 2425 * then copy the section that is copied directly from the parent. 2426 */ 2427 memset(&p2->p_startzero, 0, 2428 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 2429 memcpy(&p2->p_startcopy, &p1->p_startcopy, 2430 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 2431 p2->p_vmspace = proc0.p_vmspace; 2432 2433 TAILQ_INIT(&p2->p_sigpend.sp_info); 2434 2435 LIST_INIT(&p2->p_lwps); 2436 LIST_INIT(&p2->p_sigwaiters); 2437 2438 /* 2439 * Duplicate sub-structures as needed. 2440 * Increase reference counts on shared objects. 2441 * Inherit flags we want to keep. The flags related to SIGCHLD 2442 * handling are important in order to keep a consistent behaviour 2443 * for the child after the fork. If we are a 32-bit process, the 2444 * child will be too. 2445 */ 2446 p2->p_flag = 2447 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 2448 p2->p_emul = p1->p_emul; 2449 p2->p_execsw = p1->p_execsw; 2450 2451 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 2452 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 2453 rw_init(&p2->p_reflock); 2454 cv_init(&p2->p_waitcv, "wait"); 2455 cv_init(&p2->p_lwpcv, "lwpwait"); 2456 2457 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2458 2459 kauth_proc_fork(p1, p2); 2460 2461 p2->p_raslist = NULL; 2462 p2->p_fd = fd_copy(); 2463 2464 /* XXX racy */ 2465 p2->p_mqueue_cnt = p1->p_mqueue_cnt; 2466 2467 p2->p_cwdi = cwdinit(); 2468 2469 /* 2470 * Note: p_limit (rlimit stuff) is copy-on-write, so normally 2471 * we just need increase pl_refcnt. 2472 */ 2473 if (!p1->p_limit->pl_writeable) { 2474 lim_addref(p1->p_limit); 2475 p2->p_limit = p1->p_limit; 2476 } else { 2477 p2->p_limit = lim_copy(p1->p_limit); 2478 } 2479 2480 p2->p_lflag = 0; 2481 p2->p_sflag = 0; 2482 p2->p_slflag = 0; 2483 p2->p_pptr = p1; 2484 p2->p_ppid = p1->p_pid; 2485 LIST_INIT(&p2->p_children); 2486 2487 p2->p_aio = NULL; 2488 2489 #ifdef KTRACE 2490 /* 2491 * Copy traceflag and tracefile if enabled. 2492 * If not inherited, these were zeroed above. 2493 */ 2494 if (p1->p_traceflag & KTRFAC_INHERIT) { 2495 mutex_enter(&ktrace_lock); 2496 p2->p_traceflag = p1->p_traceflag; 2497 if ((p2->p_tracep = p1->p_tracep) != NULL) 2498 ktradref(p2); 2499 mutex_exit(&ktrace_lock); 2500 } 2501 #endif 2502 2503 /* 2504 * Create signal actions for the child process. 2505 */ 2506 p2->p_sigacts = sigactsinit(p1, 0); 2507 mutex_enter(p1->p_lock); 2508 p2->p_sflag |= 2509 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 2510 sched_proc_fork(p1, p2); 2511 mutex_exit(p1->p_lock); 2512 2513 p2->p_stflag = p1->p_stflag; 2514 2515 /* 2516 * p_stats. 2517 * Copy parts of p_stats, and zero out the rest. 2518 */ 2519 p2->p_stats = pstatscopy(p1->p_stats); 2520 2521 /* copy over machdep flags to the new proc */ 2522 cpu_proc_fork(p1, p2); 2523 2524 /* 2525 * Prepare remaining parts of spawn data 2526 */ 2527 spawn_data->sed_actions = fa; 2528 spawn_data->sed_attrs = sa; 2529 2530 spawn_data->sed_parent = p1; 2531 2532 /* create LWP */ 2533 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, 2534 &l2, l1->l_class); 2535 l2->l_ctxlink = NULL; /* reset ucontext link */ 2536 2537 /* 2538 * Copy the credential so other references don't see our changes. 2539 * Test to see if this is necessary first, since in the common case 2540 * we won't need a private reference. 2541 */ 2542 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || 2543 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { 2544 l2->l_cred = kauth_cred_copy(l2->l_cred); 2545 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); 2546 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); 2547 } 2548 2549 /* Update the master credentials. */ 2550 if (l2->l_cred != p2->p_cred) { 2551 kauth_cred_t ocred; 2552 2553 kauth_cred_hold(l2->l_cred); 2554 mutex_enter(p2->p_lock); 2555 ocred = p2->p_cred; 2556 p2->p_cred = l2->l_cred; 2557 mutex_exit(p2->p_lock); 2558 kauth_cred_free(ocred); 2559 } 2560 2561 *child_ok = true; 2562 spawn_data->sed_refcnt = 2; /* child gets it as well */ 2563 #if 0 2564 l2->l_nopreempt = 1; /* start it non-preemptable */ 2565 #endif 2566 2567 /* 2568 * It's now safe for the scheduler and other processes to see the 2569 * child process. 2570 */ 2571 mutex_enter(proc_lock); 2572 2573 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 2574 p2->p_lflag |= PL_CONTROLT; 2575 2576 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); 2577 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ 2578 2579 LIST_INSERT_AFTER(p1, p2, p_pglist); 2580 LIST_INSERT_HEAD(&allproc, p2, p_list); 2581 2582 p2->p_trace_enabled = trace_is_enabled(p2); 2583 #ifdef __HAVE_SYSCALL_INTERN 2584 (*p2->p_emul->e_syscall_intern)(p2); 2585 #endif 2586 2587 /* 2588 * Make child runnable, set start time, and add to run queue except 2589 * if the parent requested the child to start in SSTOP state. 2590 */ 2591 mutex_enter(p2->p_lock); 2592 2593 getmicrotime(&p2->p_stats->p_start); 2594 2595 lwp_lock(l2); 2596 KASSERT(p2->p_nrlwps == 1); 2597 p2->p_nrlwps = 1; 2598 p2->p_stat = SACTIVE; 2599 l2->l_stat = LSRUN; 2600 sched_enqueue(l2, false); 2601 lwp_unlock(l2); 2602 2603 mutex_exit(p2->p_lock); 2604 mutex_exit(proc_lock); 2605 2606 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); 2607 error = spawn_data->sed_error; 2608 mutex_exit(&spawn_data->sed_mtx_child); 2609 spawn_exec_data_release(spawn_data); 2610 2611 rw_exit(&p1->p_reflock); 2612 rw_exit(&exec_lock); 2613 have_exec_lock = false; 2614 2615 *pid_res = pid; 2616 return error; 2617 2618 error_exit: 2619 if (have_exec_lock) { 2620 execve_free_data(&spawn_data->sed_exec); 2621 rw_exit(&p1->p_reflock); 2622 rw_exit(&exec_lock); 2623 } 2624 mutex_exit(&spawn_data->sed_mtx_child); 2625 spawn_exec_data_release(spawn_data); 2626 2627 return error; 2628 } 2629 2630 int 2631 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, 2632 register_t *retval) 2633 { 2634 /* { 2635 syscallarg(pid_t *) pid; 2636 syscallarg(const char *) path; 2637 syscallarg(const struct posix_spawn_file_actions *) file_actions; 2638 syscallarg(const struct posix_spawnattr *) attrp; 2639 syscallarg(char *const *) argv; 2640 syscallarg(char *const *) envp; 2641 } */ 2642 2643 int error; 2644 struct posix_spawn_file_actions *fa = NULL; 2645 struct posix_spawnattr *sa = NULL; 2646 pid_t pid; 2647 bool child_ok = false; 2648 rlim_t max_fileactions; 2649 proc_t *p = l1->l_proc; 2650 2651 error = check_posix_spawn(l1); 2652 if (error) { 2653 *retval = error; 2654 return 0; 2655 } 2656 2657 /* copy in file_actions struct */ 2658 if (SCARG(uap, file_actions) != NULL) { 2659 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur, 2660 maxfiles); 2661 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions), 2662 max_fileactions); 2663 if (error) 2664 goto error_exit; 2665 } 2666 2667 /* copyin posix_spawnattr struct */ 2668 if (SCARG(uap, attrp) != NULL) { 2669 sa = kmem_alloc(sizeof(*sa), KM_SLEEP); 2670 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); 2671 if (error) 2672 goto error_exit; 2673 } 2674 2675 /* 2676 * Do the spawn 2677 */ 2678 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa, 2679 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element); 2680 if (error) 2681 goto error_exit; 2682 2683 if (error == 0 && SCARG(uap, pid) != NULL) 2684 error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); 2685 2686 *retval = error; 2687 return 0; 2688 2689 error_exit: 2690 if (!child_ok) { 2691 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1); 2692 atomic_dec_uint(&nprocs); 2693 2694 if (sa) 2695 kmem_free(sa, sizeof(*sa)); 2696 if (fa) 2697 posix_spawn_fa_free(fa, fa->len); 2698 } 2699 2700 *retval = error; 2701 return 0; 2702 } 2703 2704 void 2705 exec_free_emul_arg(struct exec_package *epp) 2706 { 2707 if (epp->ep_emul_arg_free != NULL) { 2708 KASSERT(epp->ep_emul_arg != NULL); 2709 (*epp->ep_emul_arg_free)(epp->ep_emul_arg); 2710 epp->ep_emul_arg_free = NULL; 2711 epp->ep_emul_arg = NULL; 2712 } else { 2713 KASSERT(epp->ep_emul_arg == NULL); 2714 } 2715 } 2716 2717 #ifdef DEBUG_EXEC 2718 static void 2719 dump_vmcmds(const struct exec_package * const epp, size_t x, int error) 2720 { 2721 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0]; 2722 size_t j; 2723 2724 if (error == 0) 2725 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used)); 2726 else 2727 DPRINTF(("vmcmds %zu/%u, error %d\n", x, 2728 epp->ep_vmcmds.evs_used, error)); 2729 2730 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) { 2731 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 2732 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 2733 PRIxVSIZE" prot=0%o flags=%d\n", j, 2734 vp[j].ev_proc == vmcmd_map_pagedvn ? 2735 "pagedvn" : 2736 vp[j].ev_proc == vmcmd_map_readvn ? 2737 "readvn" : 2738 vp[j].ev_proc == vmcmd_map_zero ? 2739 "zero" : "*unknown*", 2740 vp[j].ev_addr, vp[j].ev_len, 2741 vp[j].ev_offset, vp[j].ev_prot, 2742 vp[j].ev_flags)); 2743 if (error != 0 && j == x) 2744 DPRINTF((" ^--- failed\n")); 2745 } 2746 } 2747 #endif 2748