xref: /netbsd-src/sys/kern/kern_exec.c (revision e39ef1d61eee3ccba837ee281f1e098c864487aa)
1 /*	$NetBSD: kern_exec.c,v 1.333 2011/12/04 15:12:07 dholland Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31  * Copyright (C) 1992 Wolfgang Solfrank.
32  * Copyright (C) 1992 TooLs GmbH.
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by TooLs GmbH.
46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.333 2011/12/04 15:12:07 dholland Exp $");
63 
64 #include "opt_exec.h"
65 #include "opt_ktrace.h"
66 #include "opt_modular.h"
67 #include "opt_syscall_debug.h"
68 #include "veriexec.h"
69 #include "opt_pax.h"
70 #include "opt_sa.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/acct.h>
84 #include <sys/exec.h>
85 #include <sys/ktrace.h>
86 #include <sys/uidinfo.h>
87 #include <sys/wait.h>
88 #include <sys/mman.h>
89 #include <sys/ras.h>
90 #include <sys/signalvar.h>
91 #include <sys/stat.h>
92 #include <sys/syscall.h>
93 #include <sys/kauth.h>
94 #include <sys/lwpctl.h>
95 #include <sys/pax.h>
96 #include <sys/cpu.h>
97 #include <sys/module.h>
98 #include <sys/sa.h>
99 #include <sys/savar.h>
100 #include <sys/syscallvar.h>
101 #include <sys/syscallargs.h>
102 #if NVERIEXEC > 0
103 #include <sys/verified_exec.h>
104 #endif /* NVERIEXEC > 0 */
105 #include <sys/sdt.h>
106 #include <sys/cprng.h>
107 
108 #include <uvm/uvm_extern.h>
109 
110 #include <machine/reg.h>
111 
112 #include <compat/common/compat_util.h>
113 
114 static int exec_sigcode_map(struct proc *, const struct emul *);
115 
116 #ifdef DEBUG_EXEC
117 #define DPRINTF(a) printf a
118 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
119     __LINE__, (s), (a), (b))
120 #else
121 #define DPRINTF(a)
122 #define COPYPRINTF(s, a, b)
123 #endif /* DEBUG_EXEC */
124 
125 /*
126  * DTrace SDT provider definitions
127  */
128 SDT_PROBE_DEFINE(proc,,,exec,
129 	    "char *", NULL,
130 	    NULL, NULL, NULL, NULL,
131 	    NULL, NULL, NULL, NULL);
132 SDT_PROBE_DEFINE(proc,,,exec_success,
133 	    "char *", NULL,
134 	    NULL, NULL, NULL, NULL,
135 	    NULL, NULL, NULL, NULL);
136 SDT_PROBE_DEFINE(proc,,,exec_failure,
137 	    "int", NULL,
138 	    NULL, NULL, NULL, NULL,
139 	    NULL, NULL, NULL, NULL);
140 
141 /*
142  * Exec function switch:
143  *
144  * Note that each makecmds function is responsible for loading the
145  * exec package with the necessary functions for any exec-type-specific
146  * handling.
147  *
148  * Functions for specific exec types should be defined in their own
149  * header file.
150  */
151 static const struct execsw	**execsw = NULL;
152 static int			nexecs;
153 
154 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
155 
156 /* list of dynamically loaded execsw entries */
157 static LIST_HEAD(execlist_head, exec_entry) ex_head =
158     LIST_HEAD_INITIALIZER(ex_head);
159 struct exec_entry {
160 	LIST_ENTRY(exec_entry)	ex_list;
161 	SLIST_ENTRY(exec_entry)	ex_slist;
162 	const struct execsw	*ex_sw;
163 };
164 
165 #ifndef __HAVE_SYSCALL_INTERN
166 void	syscall(void);
167 #endif
168 
169 #ifdef KERN_SA
170 static struct sa_emul saemul_netbsd = {
171 	sizeof(ucontext_t),
172 	sizeof(struct sa_t),
173 	sizeof(struct sa_t *),
174 	NULL,
175 	NULL,
176 	cpu_upcall,
177 	(void (*)(struct lwp *, void *))getucontext_sa,
178 	sa_ucsp
179 };
180 #endif /* KERN_SA */
181 
182 /* NetBSD emul struct */
183 struct emul emul_netbsd = {
184 	.e_name =		"netbsd",
185 	.e_path =		NULL,
186 #ifndef __HAVE_MINIMAL_EMUL
187 	.e_flags =		EMUL_HAS_SYS___syscall,
188 	.e_errno =		NULL,
189 	.e_nosys =		SYS_syscall,
190 	.e_nsysent =		SYS_NSYSENT,
191 #endif
192 	.e_sysent =		sysent,
193 #ifdef SYSCALL_DEBUG
194 	.e_syscallnames =	syscallnames,
195 #else
196 	.e_syscallnames =	NULL,
197 #endif
198 	.e_sendsig =		sendsig,
199 	.e_trapsignal =		trapsignal,
200 	.e_tracesig =		NULL,
201 	.e_sigcode =		NULL,
202 	.e_esigcode =		NULL,
203 	.e_sigobject =		NULL,
204 	.e_setregs =		setregs,
205 	.e_proc_exec =		NULL,
206 	.e_proc_fork =		NULL,
207 	.e_proc_exit =		NULL,
208 	.e_lwp_fork =		NULL,
209 	.e_lwp_exit =		NULL,
210 #ifdef __HAVE_SYSCALL_INTERN
211 	.e_syscall_intern =	syscall_intern,
212 #else
213 	.e_syscall =		syscall,
214 #endif
215 	.e_sysctlovly =		NULL,
216 	.e_fault =		NULL,
217 	.e_vm_default_addr =	uvm_default_mapaddr,
218 	.e_usertrap =		NULL,
219 #ifdef KERN_SA
220 	.e_sa =			&saemul_netbsd,
221 #else
222 	.e_sa =			NULL,
223 #endif
224 	.e_ucsize =		sizeof(ucontext_t),
225 	.e_startlwp =		startlwp
226 };
227 
228 /*
229  * Exec lock. Used to control access to execsw[] structures.
230  * This must not be static so that netbsd32 can access it, too.
231  */
232 krwlock_t exec_lock;
233 
234 static kmutex_t sigobject_lock;
235 
236 static void *
237 exec_pool_alloc(struct pool *pp, int flags)
238 {
239 
240 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
241 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
242 }
243 
244 static void
245 exec_pool_free(struct pool *pp, void *addr)
246 {
247 
248 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
249 }
250 
251 static struct pool exec_pool;
252 
253 static struct pool_allocator exec_palloc = {
254 	.pa_alloc = exec_pool_alloc,
255 	.pa_free = exec_pool_free,
256 	.pa_pagesz = NCARGS
257 };
258 
259 /*
260  * check exec:
261  * given an "executable" described in the exec package's namei info,
262  * see what we can do with it.
263  *
264  * ON ENTRY:
265  *	exec package with appropriate namei info
266  *	lwp pointer of exec'ing lwp
267  *	NO SELF-LOCKED VNODES
268  *
269  * ON EXIT:
270  *	error:	nothing held, etc.  exec header still allocated.
271  *	ok:	filled exec package, executable's vnode (unlocked).
272  *
273  * EXEC SWITCH ENTRY:
274  * 	Locked vnode to check, exec package, proc.
275  *
276  * EXEC SWITCH EXIT:
277  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
278  *	error:	destructive:
279  *			everything deallocated execept exec header.
280  *		non-destructive:
281  *			error code, executable's vnode (unlocked),
282  *			exec header unmodified.
283  */
284 int
285 /*ARGSUSED*/
286 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
287 {
288 	int		error, i;
289 	struct vnode	*vp;
290 	struct nameidata nd;
291 	size_t		resid;
292 
293 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
294 
295 	/* first get the vnode */
296 	if ((error = namei(&nd)) != 0)
297 		return error;
298 	epp->ep_vp = vp = nd.ni_vp;
299 	/* this cannot overflow as both are size PATH_MAX */
300 	strcpy(epp->ep_resolvedname, nd.ni_pnbuf);
301 
302 #ifdef DIAGNOSTIC
303 	/* paranoia (take this out once namei stuff stabilizes) */
304 	memset(nd.ni_pnbuf, '~', PATH_MAX);
305 #endif
306 
307 	/* check access and type */
308 	if (vp->v_type != VREG) {
309 		error = EACCES;
310 		goto bad1;
311 	}
312 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
313 		goto bad1;
314 
315 	/* get attributes */
316 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
317 		goto bad1;
318 
319 	/* Check mount point */
320 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
321 		error = EACCES;
322 		goto bad1;
323 	}
324 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
325 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
326 
327 	/* try to open it */
328 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
329 		goto bad1;
330 
331 	/* unlock vp, since we need it unlocked from here on out. */
332 	VOP_UNLOCK(vp);
333 
334 #if NVERIEXEC > 0
335 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
336 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
337 	    NULL);
338 	if (error)
339 		goto bad2;
340 #endif /* NVERIEXEC > 0 */
341 
342 #ifdef PAX_SEGVGUARD
343 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
344 	if (error)
345 		goto bad2;
346 #endif /* PAX_SEGVGUARD */
347 
348 	/* now we have the file, get the exec header */
349 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
350 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
351 	if (error)
352 		goto bad2;
353 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
354 
355 	/*
356 	 * Set up default address space limits.  Can be overridden
357 	 * by individual exec packages.
358 	 *
359 	 * XXX probably should be all done in the exec packages.
360 	 */
361 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
362 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
363 	/*
364 	 * set up the vmcmds for creation of the process
365 	 * address space
366 	 */
367 	error = ENOEXEC;
368 	for (i = 0; i < nexecs; i++) {
369 		int newerror;
370 
371 		epp->ep_esch = execsw[i];
372 		newerror = (*execsw[i]->es_makecmds)(l, epp);
373 
374 		if (!newerror) {
375 			/* Seems ok: check that entry point is not too high */
376 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
377 #ifdef DIAGNOSTIC
378 				printf("%s: rejecting %p due to "
379 				    "too high entry address (> %p)\n",
380 					 __func__, (void *)epp->ep_entry,
381 					 (void *)epp->ep_vm_maxaddr);
382 #endif
383 				error = ENOEXEC;
384 				break;
385 			}
386 			/* Seems ok: check that entry point is not too low */
387 			if (epp->ep_entry < epp->ep_vm_minaddr) {
388 #ifdef DIAGNOSTIC
389 				printf("%s: rejecting %p due to "
390 				    "too low entry address (< %p)\n",
391 				     __func__, (void *)epp->ep_entry,
392 				     (void *)epp->ep_vm_minaddr);
393 #endif
394 				error = ENOEXEC;
395 				break;
396 			}
397 
398 			/* check limits */
399 			if ((epp->ep_tsize > MAXTSIZ) ||
400 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
401 						    [RLIMIT_DATA].rlim_cur)) {
402 #ifdef DIAGNOSTIC
403 				printf("%s: rejecting due to "
404 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
405 				    __func__,
406 				    (unsigned long long)epp->ep_tsize,
407 				    (unsigned long long)MAXTSIZ,
408 				    (unsigned long long)epp->ep_dsize,
409 				    (unsigned long long)
410 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
411 #endif
412 				error = ENOMEM;
413 				break;
414 			}
415 			return 0;
416 		}
417 
418 		if (epp->ep_emul_root != NULL) {
419 			vrele(epp->ep_emul_root);
420 			epp->ep_emul_root = NULL;
421 		}
422 		if (epp->ep_interp != NULL) {
423 			vrele(epp->ep_interp);
424 			epp->ep_interp = NULL;
425 		}
426 
427 		/* make sure the first "interesting" error code is saved. */
428 		if (error == ENOEXEC)
429 			error = newerror;
430 
431 		if (epp->ep_flags & EXEC_DESTR)
432 			/* Error from "#!" code, tidied up by recursive call */
433 			return error;
434 	}
435 
436 	/* not found, error */
437 
438 	/*
439 	 * free any vmspace-creation commands,
440 	 * and release their references
441 	 */
442 	kill_vmcmds(&epp->ep_vmcmds);
443 
444 bad2:
445 	/*
446 	 * close and release the vnode, restore the old one, free the
447 	 * pathname buf, and punt.
448 	 */
449 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
450 	VOP_CLOSE(vp, FREAD, l->l_cred);
451 	vput(vp);
452 	return error;
453 
454 bad1:
455 	/*
456 	 * free the namei pathname buffer, and put the vnode
457 	 * (which we don't yet have open).
458 	 */
459 	vput(vp);				/* was still locked */
460 	return error;
461 }
462 
463 #ifdef __MACHINE_STACK_GROWS_UP
464 #define STACK_PTHREADSPACE NBPG
465 #else
466 #define STACK_PTHREADSPACE 0
467 #endif
468 
469 static int
470 execve_fetch_element(char * const *array, size_t index, char **value)
471 {
472 	return copyin(array + index, value, sizeof(*value));
473 }
474 
475 /*
476  * exec system call
477  */
478 /* ARGSUSED */
479 int
480 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
481 {
482 	/* {
483 		syscallarg(const char *)	path;
484 		syscallarg(char * const *)	argp;
485 		syscallarg(char * const *)	envp;
486 	} */
487 
488 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
489 	    SCARG(uap, envp), execve_fetch_element);
490 }
491 
492 int
493 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
494     register_t *retval)
495 {
496 	/* {
497 		syscallarg(int)			fd;
498 		syscallarg(char * const *)	argp;
499 		syscallarg(char * const *)	envp;
500 	} */
501 
502 	return ENOSYS;
503 }
504 
505 /*
506  * Load modules to try and execute an image that we do not understand.
507  * If no execsw entries are present, we load those likely to be needed
508  * in order to run native images only.  Otherwise, we autoload all
509  * possible modules that could let us run the binary.  XXX lame
510  */
511 static void
512 exec_autoload(void)
513 {
514 #ifdef MODULAR
515 	static const char * const native[] = {
516 		"exec_elf32",
517 		"exec_elf64",
518 		"exec_script",
519 		NULL
520 	};
521 	static const char * const compat[] = {
522 		"exec_elf32",
523 		"exec_elf64",
524 		"exec_script",
525 		"exec_aout",
526 		"exec_coff",
527 		"exec_ecoff",
528 		"compat_aoutm68k",
529 		"compat_freebsd",
530 		"compat_ibcs2",
531 		"compat_linux",
532 		"compat_linux32",
533 		"compat_netbsd32",
534 		"compat_sunos",
535 		"compat_sunos32",
536 		"compat_svr4",
537 		"compat_svr4_32",
538 		"compat_ultrix",
539 		NULL
540 	};
541 	char const * const *list;
542 	int i;
543 
544 	list = (nexecs == 0 ? native : compat);
545 	for (i = 0; list[i] != NULL; i++) {
546 		if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) {
547 		    	continue;
548 		}
549 	   	yield();
550 	}
551 #endif
552 }
553 
554 int
555 execve1(struct lwp *l, const char *path, char * const *args,
556     char * const *envs, execve_fetch_element_t fetch_element)
557 {
558 	int			error;
559 	struct exec_package	pack;
560 	struct pathbuf		*pb;
561 	struct vattr		attr;
562 	struct proc		*p;
563 	char			*argp;
564 	char			*dp, *sp;
565 	long			argc, envc;
566 	size_t			i, len;
567 	char			*stack;
568 	struct ps_strings	arginfo;
569 	struct ps_strings32	arginfo32;
570 	void			*aip;
571 	struct vmspace		*vm;
572 	struct exec_fakearg	*tmpfap;
573 	int			szsigcode;
574 	struct exec_vmcmd	*base_vcp;
575 	int			oldlwpflags;
576 	ksiginfo_t		ksi;
577 	ksiginfoq_t		kq;
578 	const char		*pathstring;
579 	char			*resolvedpathbuf;
580 	const char		*commandname;
581 	u_int			modgen;
582 	size_t			ps_strings_sz;
583 
584 	p = l->l_proc;
585  	modgen = 0;
586 
587 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
588 
589 	/*
590 	 * Check if we have exceeded our number of processes limit.
591 	 * This is so that we handle the case where a root daemon
592 	 * forked, ran setuid to become the desired user and is trying
593 	 * to exec. The obvious place to do the reference counting check
594 	 * is setuid(), but we don't do the reference counting check there
595 	 * like other OS's do because then all the programs that use setuid()
596 	 * must be modified to check the return code of setuid() and exit().
597 	 * It is dangerous to make setuid() fail, because it fails open and
598 	 * the program will continue to run as root. If we make it succeed
599 	 * and return an error code, again we are not enforcing the limit.
600 	 * The best place to enforce the limit is here, when the process tries
601 	 * to execute a new image, because eventually the process will need
602 	 * to call exec in order to do something useful.
603 	 */
604  retry:
605 	if ((p->p_flag & PK_SUGID) && kauth_authorize_generic(l->l_cred,
606 	    KAUTH_GENERIC_ISSUSER, NULL) != 0 && chgproccnt(kauth_cred_getuid(
607 	    l->l_cred), 0) > p->p_rlimit[RLIMIT_NPROC].rlim_cur)
608 		return EAGAIN;
609 
610 	oldlwpflags = l->l_flag & (LW_SA | LW_SA_UPCALL);
611 	if (l->l_flag & LW_SA) {
612 		lwp_lock(l);
613 		l->l_flag &= ~(LW_SA | LW_SA_UPCALL);
614 		lwp_unlock(l);
615 	}
616 
617 	/*
618 	 * Drain existing references and forbid new ones.  The process
619 	 * should be left alone until we're done here.  This is necessary
620 	 * to avoid race conditions - e.g. in ptrace() - that might allow
621 	 * a local user to illicitly obtain elevated privileges.
622 	 */
623 	rw_enter(&p->p_reflock, RW_WRITER);
624 
625 	base_vcp = NULL;
626 	/*
627 	 * Init the namei data to point the file user's program name.
628 	 * This is done here rather than in check_exec(), so that it's
629 	 * possible to override this settings if any of makecmd/probe
630 	 * functions call check_exec() recursively - for example,
631 	 * see exec_script_makecmds().
632 	 */
633 	error = pathbuf_copyin(path, &pb);
634 	if (error) {
635 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
636 		    path, error));
637 		goto clrflg;
638 	}
639 	pathstring = pathbuf_stringcopy_get(pb);
640 	resolvedpathbuf = PNBUF_GET();
641 #ifdef DIAGNOSTIC
642 	strcpy(resolvedpathbuf, "/wrong");
643 #endif
644 
645 	/*
646 	 * initialize the fields of the exec package.
647 	 */
648 	pack.ep_name = path;
649 	pack.ep_kname = pathstring;
650 	pack.ep_resolvedname = resolvedpathbuf;
651 	pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
652 	pack.ep_hdrlen = exec_maxhdrsz;
653 	pack.ep_hdrvalid = 0;
654 	pack.ep_emul_arg = NULL;
655 	pack.ep_vmcmds.evs_cnt = 0;
656 	pack.ep_vmcmds.evs_used = 0;
657 	pack.ep_vap = &attr;
658 	pack.ep_flags = 0;
659 	pack.ep_emul_root = NULL;
660 	pack.ep_interp = NULL;
661 	pack.ep_esch = NULL;
662 	pack.ep_pax_flags = 0;
663 
664 	rw_enter(&exec_lock, RW_READER);
665 
666 	/* see if we can run it. */
667 	if ((error = check_exec(l, &pack, pb)) != 0) {
668 		if (error != ENOENT) {
669 			DPRINTF(("%s: check exec failed %d\n",
670 			    __func__, error));
671 		}
672 		goto freehdr;
673 	}
674 
675 	/* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
676 
677 	/* allocate an argument buffer */
678 	argp = pool_get(&exec_pool, PR_WAITOK);
679 	KASSERT(argp != NULL);
680 	dp = argp;
681 	argc = 0;
682 
683 	/* copy the fake args list, if there's one, freeing it as we go */
684 	if (pack.ep_flags & EXEC_HASARGL) {
685 		tmpfap = pack.ep_fa;
686 		while (tmpfap->fa_arg != NULL) {
687 			const char *cp;
688 
689 			cp = tmpfap->fa_arg;
690 			while (*cp)
691 				*dp++ = *cp++;
692 			*dp++ = '\0';
693 			ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
694 
695 			kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
696 			tmpfap++; argc++;
697 		}
698 		kmem_free(pack.ep_fa, pack.ep_fa_len);
699 		pack.ep_flags &= ~EXEC_HASARGL;
700 	}
701 
702 	/* Now get argv & environment */
703 	if (args == NULL) {
704 		DPRINTF(("%s: null args\n", __func__));
705 		error = EINVAL;
706 		goto bad;
707 	}
708 	/* 'i' will index the argp/envp element to be retrieved */
709 	i = 0;
710 	if (pack.ep_flags & EXEC_SKIPARG)
711 		i++;
712 
713 	while (1) {
714 		len = argp + ARG_MAX - dp;
715 		if ((error = (*fetch_element)(args, i, &sp)) != 0) {
716 			DPRINTF(("%s: fetch_element args %d\n",
717 			    __func__, error));
718 			goto bad;
719 		}
720 		if (!sp)
721 			break;
722 		if ((error = copyinstr(sp, dp, len, &len)) != 0) {
723 			DPRINTF(("%s: copyinstr args %d\n", __func__, error));
724 			if (error == ENAMETOOLONG)
725 				error = E2BIG;
726 			goto bad;
727 		}
728 		ktrexecarg(dp, len - 1);
729 		dp += len;
730 		i++;
731 		argc++;
732 	}
733 
734 	envc = 0;
735 	/* environment need not be there */
736 	if (envs != NULL) {
737 		i = 0;
738 		while (1) {
739 			len = argp + ARG_MAX - dp;
740 			if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
741 				DPRINTF(("%s: fetch_element env %d\n",
742 				    __func__, error));
743 				goto bad;
744 			}
745 			if (!sp)
746 				break;
747 			if ((error = copyinstr(sp, dp, len, &len)) != 0) {
748 				DPRINTF(("%s: copyinstr env %d\n",
749 				    __func__, error));
750 				if (error == ENAMETOOLONG)
751 					error = E2BIG;
752 				goto bad;
753 			}
754 			ktrexecenv(dp, len - 1);
755 			dp += len;
756 			i++;
757 			envc++;
758 		}
759 	}
760 
761 	dp = (char *) ALIGN(dp);
762 
763 	szsigcode = pack.ep_esch->es_emul->e_esigcode -
764 	    pack.ep_esch->es_emul->e_sigcode;
765 
766 #ifdef __MACHINE_STACK_GROWS_UP
767 /* See big comment lower down */
768 #define	RTLD_GAP	32
769 #else
770 #define	RTLD_GAP	0
771 #endif
772 
773 	/* Now check if args & environ fit into new stack */
774 	if (pack.ep_flags & EXEC_32) {
775 		aip = &arginfo32;
776 		ps_strings_sz = sizeof(struct ps_strings32);
777 		len = ((argc + envc + 2 + pack.ep_esch->es_arglen) *
778 		    sizeof(int) + sizeof(int) + dp + RTLD_GAP +
779 		    szsigcode + ps_strings_sz + STACK_PTHREADSPACE)
780 		    - argp;
781 	} else {
782 		aip = &arginfo;
783 		ps_strings_sz = sizeof(struct ps_strings);
784 		len = ((argc + envc + 2 + pack.ep_esch->es_arglen) *
785 		    sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
786 		    szsigcode + ps_strings_sz + STACK_PTHREADSPACE)
787 		    - argp;
788 	}
789 
790 #ifdef PAX_ASLR
791 	if (pax_aslr_active(l))
792 		len += (cprng_fast32() % PAGE_SIZE);
793 #endif /* PAX_ASLR */
794 
795 #ifdef STACKALIGN	/* arm, etc. */
796 	len = STACKALIGN(len);	/* make the stack "safely" aligned */
797 #else
798 	len = ALIGN(len);	/* make the stack "safely" aligned */
799 #endif
800 
801 	if (len > pack.ep_ssize) { /* in effect, compare to initial limit */
802 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
803 		error = ENOMEM;
804 		goto bad;
805 	}
806 
807 	/* Get rid of other LWPs. */
808 	if (p->p_sa || p->p_nlwps > 1) {
809 		mutex_enter(p->p_lock);
810 		exit_lwps(l);
811 		mutex_exit(p->p_lock);
812 	}
813 	KDASSERT(p->p_nlwps == 1);
814 
815 	/* Destroy any lwpctl info. */
816 	if (p->p_lwpctl != NULL)
817 		lwp_ctl_exit();
818 
819 #ifdef KERN_SA
820 	/* Release any SA state. */
821 	if (p->p_sa)
822 		sa_release(p);
823 #endif /* KERN_SA */
824 
825 	/* Remove POSIX timers */
826 	timers_free(p, TIMERS_POSIX);
827 
828 	/* adjust "active stack depth" for process VSZ */
829 	pack.ep_ssize = len;	/* maybe should go elsewhere, but... */
830 
831 	/*
832 	 * Do whatever is necessary to prepare the address space
833 	 * for remapping.  Note that this might replace the current
834 	 * vmspace with another!
835 	 */
836 	uvmspace_exec(l, pack.ep_vm_minaddr, pack.ep_vm_maxaddr);
837 
838 	/* record proc's vnode, for use by procfs and others */
839         if (p->p_textvp)
840                 vrele(p->p_textvp);
841 	vref(pack.ep_vp);
842 	p->p_textvp = pack.ep_vp;
843 
844 	/* Now map address space */
845 	vm = p->p_vmspace;
846 	vm->vm_taddr = (void *)pack.ep_taddr;
847 	vm->vm_tsize = btoc(pack.ep_tsize);
848 	vm->vm_daddr = (void*)pack.ep_daddr;
849 	vm->vm_dsize = btoc(pack.ep_dsize);
850 	vm->vm_ssize = btoc(pack.ep_ssize);
851 	vm->vm_issize = 0;
852 	vm->vm_maxsaddr = (void *)pack.ep_maxsaddr;
853 	vm->vm_minsaddr = (void *)pack.ep_minsaddr;
854 
855 #ifdef PAX_ASLR
856 	pax_aslr_init(l, vm);
857 #endif /* PAX_ASLR */
858 
859 	/* create the new process's VM space by running the vmcmds */
860 #ifdef DIAGNOSTIC
861 	if (pack.ep_vmcmds.evs_used == 0)
862 		panic("%s: no vmcmds", __func__);
863 #endif
864 
865 #ifdef DEBUG_EXEC
866 	{
867 		size_t j;
868 		struct exec_vmcmd *vp = &pack.ep_vmcmds.evs_cmds[0];
869 		DPRINTF(("vmcmds %u\n", pack.ep_vmcmds.evs_used));
870 		for (j = 0; j < pack.ep_vmcmds.evs_used; j++) {
871 			DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
872 			    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
873 			    PRIxVSIZE" prot=0%o flags=%d\n", j,
874 			    vp[j].ev_proc == vmcmd_map_pagedvn ?
875 			    "pagedvn" :
876 			    vp[j].ev_proc == vmcmd_map_readvn ?
877 			    "readvn" :
878 			    vp[j].ev_proc == vmcmd_map_zero ?
879 			    "zero" : "*unknown*",
880 			    vp[j].ev_addr, vp[j].ev_len,
881 			    vp[j].ev_offset, vp[j].ev_prot,
882 			    vp[j].ev_flags));
883 		}
884 	}
885 #endif	/* DEBUG_EXEC */
886 
887 	for (i = 0; i < pack.ep_vmcmds.evs_used && !error; i++) {
888 		struct exec_vmcmd *vcp;
889 
890 		vcp = &pack.ep_vmcmds.evs_cmds[i];
891 		if (vcp->ev_flags & VMCMD_RELATIVE) {
892 #ifdef DIAGNOSTIC
893 			if (base_vcp == NULL)
894 				panic("%s: relative vmcmd with no base",
895 				    __func__);
896 			if (vcp->ev_flags & VMCMD_BASE)
897 				panic("%s: illegal base & relative vmcmd",
898 				    __func__);
899 #endif
900 			vcp->ev_addr += base_vcp->ev_addr;
901 		}
902 		error = (*vcp->ev_proc)(l, vcp);
903 #ifdef DEBUG_EXEC
904 		if (error) {
905 			size_t j;
906 			struct exec_vmcmd *vp = &pack.ep_vmcmds.evs_cmds[0];
907 			DPRINTF(("vmcmds %zu/%u, error %d\n", i,
908 			    pack.ep_vmcmds.evs_used, error));
909 			for (j = 0; j < pack.ep_vmcmds.evs_used; j++) {
910 				DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
911 				    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
912 				    PRIxVSIZE" prot=0%o flags=%d\n", j,
913 				    vp[j].ev_proc == vmcmd_map_pagedvn ?
914 				    "pagedvn" :
915 				    vp[j].ev_proc == vmcmd_map_readvn ?
916 				    "readvn" :
917 				    vp[j].ev_proc == vmcmd_map_zero ?
918 				    "zero" : "*unknown*",
919 				    vp[j].ev_addr, vp[j].ev_len,
920 				    vp[j].ev_offset, vp[j].ev_prot,
921 				    vp[j].ev_flags));
922 				if (j == i)
923 					DPRINTF(("     ^--- failed\n"));
924 			}
925 		}
926 #endif /* DEBUG_EXEC */
927 		if (vcp->ev_flags & VMCMD_BASE)
928 			base_vcp = vcp;
929 	}
930 
931 	/* free the vmspace-creation commands, and release their references */
932 	kill_vmcmds(&pack.ep_vmcmds);
933 
934 	vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
935 	VOP_CLOSE(pack.ep_vp, FREAD, l->l_cred);
936 	vput(pack.ep_vp);
937 
938 	/* if an error happened, deallocate and punt */
939 	if (error) {
940 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
941 		goto exec_abort;
942 	}
943 
944 	/* remember information about the process */
945 	arginfo.ps_nargvstr = argc;
946 	arginfo.ps_nenvstr = envc;
947 
948 	/* set command name & other accounting info */
949 	commandname = strrchr(pack.ep_resolvedname, '/');
950 	if (commandname != NULL) {
951 		commandname++;
952 	} else {
953 		commandname = pack.ep_resolvedname;
954 	}
955 	i = min(strlen(commandname), MAXCOMLEN);
956 	(void)memcpy(p->p_comm, commandname, i);
957 	p->p_comm[i] = '\0';
958 
959 	dp = PNBUF_GET();
960 	/*
961 	 * If the path starts with /, we don't need to do any work.
962 	 * This handles the majority of the cases.
963 	 * In the future perhaps we could canonicalize it?
964 	 */
965 	if (pathstring[0] == '/')
966 		(void)strlcpy(pack.ep_path = dp, pathstring, MAXPATHLEN);
967 #ifdef notyet
968 	/*
969 	 * Although this works most of the time [since the entry was just
970 	 * entered in the cache] we don't use it because it theoretically
971 	 * can fail and it is not the cleanest interface, because there
972 	 * could be races. When the namei cache is re-written, this can
973 	 * be changed to use the appropriate function.
974 	 */
975 	else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
976 		pack.ep_path = dp;
977 #endif
978 	else {
979 #ifdef notyet
980 		printf("Cannot get path for pid %d [%s] (error %d)",
981 		    (int)p->p_pid, p->p_comm, error);
982 #endif
983 		pack.ep_path = NULL;
984 		PNBUF_PUT(dp);
985 	}
986 
987 	stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
988 		STACK_PTHREADSPACE + ps_strings_sz + szsigcode),
989 		len - (ps_strings_sz + szsigcode));
990 
991 #ifdef __MACHINE_STACK_GROWS_UP
992 	/*
993 	 * The copyargs call always copies into lower addresses
994 	 * first, moving towards higher addresses, starting with
995 	 * the stack pointer that we give.  When the stack grows
996 	 * down, this puts argc/argv/envp very shallow on the
997 	 * stack, right at the first user stack pointer.
998 	 * When the stack grows up, the situation is reversed.
999 	 *
1000 	 * Normally, this is no big deal.  But the ld_elf.so _rtld()
1001 	 * function expects to be called with a single pointer to
1002 	 * a region that has a few words it can stash values into,
1003 	 * followed by argc/argv/envp.  When the stack grows down,
1004 	 * it's easy to decrement the stack pointer a little bit to
1005 	 * allocate the space for these few words and pass the new
1006 	 * stack pointer to _rtld.  When the stack grows up, however,
1007 	 * a few words before argc is part of the signal trampoline, XXX
1008 	 * so we have a problem.
1009 	 *
1010 	 * Instead of changing how _rtld works, we take the easy way
1011 	 * out and steal 32 bytes before we call copyargs.
1012 	 * This extra space was allowed for when 'len' was calculated.
1013 	 */
1014 	stack += RTLD_GAP;
1015 #endif /* __MACHINE_STACK_GROWS_UP */
1016 
1017 	/* Now copy argc, args & environ to new stack */
1018 	error = (*pack.ep_esch->es_copyargs)(l, &pack, &arginfo, &stack, argp);
1019 	if (pack.ep_path) {
1020 		PNBUF_PUT(pack.ep_path);
1021 		pack.ep_path = NULL;
1022 	}
1023 	if (error) {
1024 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1025 		goto exec_abort;
1026 	}
1027 	/* Move the stack back to original point */
1028 	stack = (char *)STACK_GROW(vm->vm_minsaddr, len);
1029 
1030 	/* fill process ps_strings info */
1031 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1032 	    STACK_PTHREADSPACE), ps_strings_sz);
1033 
1034 	if (pack.ep_flags & EXEC_32) {
1035 		arginfo32.ps_argvstr = (vaddr_t)arginfo.ps_argvstr;
1036 		arginfo32.ps_nargvstr = arginfo.ps_nargvstr;
1037 		arginfo32.ps_envstr = (vaddr_t)arginfo.ps_envstr;
1038 		arginfo32.ps_nenvstr = arginfo.ps_nenvstr;
1039 	}
1040 
1041 	/* copy out the process's ps_strings structure */
1042 	if ((error = copyout(aip, (void *)p->p_psstrp, ps_strings_sz)) != 0) {
1043 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1044 		    __func__, aip, (void *)p->p_psstrp, ps_strings_sz));
1045 		goto exec_abort;
1046 	}
1047 
1048 	cwdexec(p);
1049 	fd_closeexec();		/* handle close on exec */
1050 
1051 	if (__predict_false(ktrace_on))
1052 		fd_ktrexecfd();
1053 
1054 	execsigs(p);		/* reset catched signals */
1055 
1056 	l->l_ctxlink = NULL;	/* reset ucontext link */
1057 
1058 
1059 	p->p_acflag &= ~AFORK;
1060 	mutex_enter(p->p_lock);
1061 	p->p_flag |= PK_EXEC;
1062 	mutex_exit(p->p_lock);
1063 
1064 	/*
1065 	 * Stop profiling.
1066 	 */
1067 	if ((p->p_stflag & PST_PROFIL) != 0) {
1068 		mutex_spin_enter(&p->p_stmutex);
1069 		stopprofclock(p);
1070 		mutex_spin_exit(&p->p_stmutex);
1071 	}
1072 
1073 	/*
1074 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1075 	 * exited and exec()/exit() are the only places it will be cleared.
1076 	 */
1077 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1078 		mutex_enter(proc_lock);
1079 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1080 		p->p_lflag &= ~PL_PPWAIT;
1081 		cv_broadcast(&p->p_pptr->p_waitcv);
1082 		mutex_exit(proc_lock);
1083 	}
1084 
1085 	/*
1086 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
1087 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
1088 	 * out additional references on the process for the moment.
1089 	 */
1090 	if ((p->p_slflag & PSL_TRACED) == 0 &&
1091 
1092 	    (((attr.va_mode & S_ISUID) != 0 &&
1093 	      kauth_cred_geteuid(l->l_cred) != attr.va_uid) ||
1094 
1095 	     ((attr.va_mode & S_ISGID) != 0 &&
1096 	      kauth_cred_getegid(l->l_cred) != attr.va_gid))) {
1097 		/*
1098 		 * Mark the process as SUGID before we do
1099 		 * anything that might block.
1100 		 */
1101 		proc_crmod_enter();
1102 		proc_crmod_leave(NULL, NULL, true);
1103 
1104 		/* Make sure file descriptors 0..2 are in use. */
1105 		if ((error = fd_checkstd()) != 0) {
1106 			DPRINTF(("%s: fdcheckstd failed %d\n",
1107 			    __func__, error));
1108 			goto exec_abort;
1109 		}
1110 
1111 		/*
1112 		 * Copy the credential so other references don't see our
1113 		 * changes.
1114 		 */
1115 		l->l_cred = kauth_cred_copy(l->l_cred);
1116 #ifdef KTRACE
1117 		/*
1118 		 * If the persistent trace flag isn't set, turn off.
1119 		 */
1120 		if (p->p_tracep) {
1121 			mutex_enter(&ktrace_lock);
1122 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1123 				ktrderef(p);
1124 			mutex_exit(&ktrace_lock);
1125 		}
1126 #endif
1127 		if (attr.va_mode & S_ISUID)
1128 			kauth_cred_seteuid(l->l_cred, attr.va_uid);
1129 		if (attr.va_mode & S_ISGID)
1130 			kauth_cred_setegid(l->l_cred, attr.va_gid);
1131 	} else {
1132 		if (kauth_cred_geteuid(l->l_cred) ==
1133 		    kauth_cred_getuid(l->l_cred) &&
1134 		    kauth_cred_getegid(l->l_cred) ==
1135 		    kauth_cred_getgid(l->l_cred))
1136 			p->p_flag &= ~PK_SUGID;
1137 	}
1138 
1139 	/*
1140 	 * Copy the credential so other references don't see our changes.
1141 	 * Test to see if this is necessary first, since in the common case
1142 	 * we won't need a private reference.
1143 	 */
1144 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1145 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1146 		l->l_cred = kauth_cred_copy(l->l_cred);
1147 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1148 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1149 	}
1150 
1151 	/* Update the master credentials. */
1152 	if (l->l_cred != p->p_cred) {
1153 		kauth_cred_t ocred;
1154 
1155 		kauth_cred_hold(l->l_cred);
1156 		mutex_enter(p->p_lock);
1157 		ocred = p->p_cred;
1158 		p->p_cred = l->l_cred;
1159 		mutex_exit(p->p_lock);
1160 		kauth_cred_free(ocred);
1161 	}
1162 
1163 #if defined(__HAVE_RAS)
1164 	/*
1165 	 * Remove all RASs from the address space.
1166 	 */
1167 	ras_purgeall();
1168 #endif
1169 
1170 	doexechooks(p);
1171 
1172 	/* setup new registers and do misc. setup. */
1173 	(*pack.ep_esch->es_emul->e_setregs)(l, &pack, (vaddr_t)stack);
1174 	if (pack.ep_esch->es_setregs)
1175 		(*pack.ep_esch->es_setregs)(l, &pack, (vaddr_t)stack);
1176 
1177 	/* Provide a consistent LWP private setting */
1178 	(void)lwp_setprivate(l, NULL);
1179 
1180 	/* Discard all PCU state; need to start fresh */
1181 	pcu_discard_all(l);
1182 
1183 	/* map the process's signal trampoline code */
1184 	if ((error = exec_sigcode_map(p, pack.ep_esch->es_emul)) != 0) {
1185 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1186 		goto exec_abort;
1187 	}
1188 
1189 	pool_put(&exec_pool, argp);
1190 
1191 	/* notify others that we exec'd */
1192 	KNOTE(&p->p_klist, NOTE_EXEC);
1193 
1194 	kmem_free(pack.ep_hdr, pack.ep_hdrlen);
1195 
1196 	SDT_PROBE(proc,,,exec_success, path, 0, 0, 0, 0);
1197 
1198 	/* The emulation root will usually have been found when we looked
1199 	 * for the elf interpreter (or similar), if not look now. */
1200 	if (pack.ep_esch->es_emul->e_path != NULL && pack.ep_emul_root == NULL)
1201 		emul_find_root(l, &pack);
1202 
1203 	/* Any old emulation root got removed by fdcloseexec */
1204 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1205 	p->p_cwdi->cwdi_edir = pack.ep_emul_root;
1206 	rw_exit(&p->p_cwdi->cwdi_lock);
1207 	pack.ep_emul_root = NULL;
1208 	if (pack.ep_interp != NULL)
1209 		vrele(pack.ep_interp);
1210 
1211 	/*
1212 	 * Call emulation specific exec hook. This can setup per-process
1213 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1214 	 *
1215 	 * If we are executing process of different emulation than the
1216 	 * original forked process, call e_proc_exit() of the old emulation
1217 	 * first, then e_proc_exec() of new emulation. If the emulation is
1218 	 * same, the exec hook code should deallocate any old emulation
1219 	 * resources held previously by this process.
1220 	 */
1221 	if (p->p_emul && p->p_emul->e_proc_exit
1222 	    && p->p_emul != pack.ep_esch->es_emul)
1223 		(*p->p_emul->e_proc_exit)(p);
1224 
1225 	/*
1226 	 * This is now LWP 1.
1227 	 */
1228 	mutex_enter(p->p_lock);
1229 	p->p_nlwpid = 1;
1230 	l->l_lid = 1;
1231 	mutex_exit(p->p_lock);
1232 
1233 	/*
1234 	 * Call exec hook. Emulation code may NOT store reference to anything
1235 	 * from &pack.
1236 	 */
1237         if (pack.ep_esch->es_emul->e_proc_exec)
1238                 (*pack.ep_esch->es_emul->e_proc_exec)(p, &pack);
1239 
1240 	/* update p_emul, the old value is no longer needed */
1241 	p->p_emul = pack.ep_esch->es_emul;
1242 
1243 	/* ...and the same for p_execsw */
1244 	p->p_execsw = pack.ep_esch;
1245 
1246 #ifdef __HAVE_SYSCALL_INTERN
1247 	(*p->p_emul->e_syscall_intern)(p);
1248 #endif
1249 	ktremul();
1250 
1251 	/* Allow new references from the debugger/procfs. */
1252 	rw_exit(&p->p_reflock);
1253 	rw_exit(&exec_lock);
1254 
1255 	mutex_enter(proc_lock);
1256 
1257 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1258 		KSI_INIT_EMPTY(&ksi);
1259 		ksi.ksi_signo = SIGTRAP;
1260 		ksi.ksi_lid = l->l_lid;
1261 		kpsignal(p, &ksi, NULL);
1262 	}
1263 
1264 	if (p->p_sflag & PS_STOPEXEC) {
1265 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1266 		p->p_pptr->p_nstopchild++;
1267 		p->p_pptr->p_waited = 0;
1268 		mutex_enter(p->p_lock);
1269 		ksiginfo_queue_init(&kq);
1270 		sigclearall(p, &contsigmask, &kq);
1271 		lwp_lock(l);
1272 		l->l_stat = LSSTOP;
1273 		p->p_stat = SSTOP;
1274 		p->p_nrlwps--;
1275 		lwp_unlock(l);
1276 		mutex_exit(p->p_lock);
1277 		mutex_exit(proc_lock);
1278 		lwp_lock(l);
1279 		mi_switch(l);
1280 		ksiginfo_queue_drain(&kq);
1281 		KERNEL_LOCK(l->l_biglocks, l);
1282 	} else {
1283 		mutex_exit(proc_lock);
1284 	}
1285 
1286 	pathbuf_stringcopy_put(pb, pathstring);
1287 	pathbuf_destroy(pb);
1288 	PNBUF_PUT(resolvedpathbuf);
1289 	DPRINTF(("%s finished\n", __func__));
1290 	return (EJUSTRETURN);
1291 
1292  bad:
1293 	/* free the vmspace-creation commands, and release their references */
1294 	kill_vmcmds(&pack.ep_vmcmds);
1295 	/* kill any opened file descriptor, if necessary */
1296 	if (pack.ep_flags & EXEC_HASFD) {
1297 		pack.ep_flags &= ~EXEC_HASFD;
1298 		fd_close(pack.ep_fd);
1299 	}
1300 	/* close and put the exec'd file */
1301 	vn_lock(pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
1302 	VOP_CLOSE(pack.ep_vp, FREAD, l->l_cred);
1303 	vput(pack.ep_vp);
1304 	pool_put(&exec_pool, argp);
1305 
1306  freehdr:
1307 	kmem_free(pack.ep_hdr, pack.ep_hdrlen);
1308 	if (pack.ep_emul_root != NULL)
1309 		vrele(pack.ep_emul_root);
1310 	if (pack.ep_interp != NULL)
1311 		vrele(pack.ep_interp);
1312 
1313 	rw_exit(&exec_lock);
1314 
1315 	pathbuf_stringcopy_put(pb, pathstring);
1316 	pathbuf_destroy(pb);
1317 	PNBUF_PUT(resolvedpathbuf);
1318 
1319  clrflg:
1320 	lwp_lock(l);
1321 	l->l_flag |= oldlwpflags;
1322 	lwp_unlock(l);
1323 	rw_exit(&p->p_reflock);
1324 
1325 	if (modgen != module_gen && error == ENOEXEC) {
1326 		modgen = module_gen;
1327 		exec_autoload();
1328 		goto retry;
1329 	}
1330 
1331 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1332 	return error;
1333 
1334  exec_abort:
1335 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1336 	rw_exit(&p->p_reflock);
1337 	rw_exit(&exec_lock);
1338 
1339 	pathbuf_stringcopy_put(pb, pathstring);
1340 	pathbuf_destroy(pb);
1341 	PNBUF_PUT(resolvedpathbuf);
1342 
1343 	/*
1344 	 * the old process doesn't exist anymore.  exit gracefully.
1345 	 * get rid of the (new) address space we have created, if any, get rid
1346 	 * of our namei data and vnode, and exit noting failure
1347 	 */
1348 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1349 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1350 	if (pack.ep_emul_arg)
1351 		free(pack.ep_emul_arg, M_TEMP);
1352 	pool_put(&exec_pool, argp);
1353 	kmem_free(pack.ep_hdr, pack.ep_hdrlen);
1354 	if (pack.ep_emul_root != NULL)
1355 		vrele(pack.ep_emul_root);
1356 	if (pack.ep_interp != NULL)
1357 		vrele(pack.ep_interp);
1358 
1359 	/* Acquire the sched-state mutex (exit1() will release it). */
1360 	mutex_enter(p->p_lock);
1361 	exit1(l, W_EXITCODE(error, SIGABRT));
1362 
1363 	/* NOTREACHED */
1364 	return 0;
1365 }
1366 
1367 int
1368 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1369     char **stackp, void *argp)
1370 {
1371 	char	**cpp, *dp, *sp;
1372 	size_t	len;
1373 	void	*nullp;
1374 	long	argc, envc;
1375 	int	error;
1376 
1377 	cpp = (char **)*stackp;
1378 	nullp = NULL;
1379 	argc = arginfo->ps_nargvstr;
1380 	envc = arginfo->ps_nenvstr;
1381 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1382 		COPYPRINTF("", cpp - 1, sizeof(argc));
1383 		return error;
1384 	}
1385 
1386 	dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1387 	sp = argp;
1388 
1389 	/* XXX don't copy them out, remap them! */
1390 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1391 
1392 	for (; --argc >= 0; sp += len, dp += len) {
1393 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1394 			COPYPRINTF("", cpp - 1, sizeof(dp));
1395 			return error;
1396 		}
1397 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1398 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1399 			return error;
1400 		}
1401 	}
1402 
1403 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1404 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1405 		return error;
1406 	}
1407 
1408 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1409 
1410 	for (; --envc >= 0; sp += len, dp += len) {
1411 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1412 			COPYPRINTF("", cpp - 1, sizeof(dp));
1413 			return error;
1414 		}
1415 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1416 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1417 			return error;
1418 		}
1419 	}
1420 
1421 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1422 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1423 		return error;
1424 	}
1425 
1426 	*stackp = (char *)cpp;
1427 	return 0;
1428 }
1429 
1430 
1431 /*
1432  * Add execsw[] entries.
1433  */
1434 int
1435 exec_add(struct execsw *esp, int count)
1436 {
1437 	struct exec_entry	*it;
1438 	int			i;
1439 
1440 	if (count == 0) {
1441 		return 0;
1442 	}
1443 
1444 	/* Check for duplicates. */
1445 	rw_enter(&exec_lock, RW_WRITER);
1446 	for (i = 0; i < count; i++) {
1447 		LIST_FOREACH(it, &ex_head, ex_list) {
1448 			/* assume unique (makecmds, probe_func, emulation) */
1449 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1450 			    it->ex_sw->u.elf_probe_func ==
1451 			    esp[i].u.elf_probe_func &&
1452 			    it->ex_sw->es_emul == esp[i].es_emul) {
1453 				rw_exit(&exec_lock);
1454 				return EEXIST;
1455 			}
1456 		}
1457 	}
1458 
1459 	/* Allocate new entries. */
1460 	for (i = 0; i < count; i++) {
1461 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1462 		it->ex_sw = &esp[i];
1463 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1464 	}
1465 
1466 	/* update execsw[] */
1467 	exec_init(0);
1468 	rw_exit(&exec_lock);
1469 	return 0;
1470 }
1471 
1472 /*
1473  * Remove execsw[] entry.
1474  */
1475 int
1476 exec_remove(struct execsw *esp, int count)
1477 {
1478 	struct exec_entry	*it, *next;
1479 	int			i;
1480 	const struct proclist_desc *pd;
1481 	proc_t			*p;
1482 
1483 	if (count == 0) {
1484 		return 0;
1485 	}
1486 
1487 	/* Abort if any are busy. */
1488 	rw_enter(&exec_lock, RW_WRITER);
1489 	for (i = 0; i < count; i++) {
1490 		mutex_enter(proc_lock);
1491 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1492 			PROCLIST_FOREACH(p, pd->pd_list) {
1493 				if (p->p_execsw == &esp[i]) {
1494 					mutex_exit(proc_lock);
1495 					rw_exit(&exec_lock);
1496 					return EBUSY;
1497 				}
1498 			}
1499 		}
1500 		mutex_exit(proc_lock);
1501 	}
1502 
1503 	/* None are busy, so remove them all. */
1504 	for (i = 0; i < count; i++) {
1505 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1506 			next = LIST_NEXT(it, ex_list);
1507 			if (it->ex_sw == &esp[i]) {
1508 				LIST_REMOVE(it, ex_list);
1509 				kmem_free(it, sizeof(*it));
1510 				break;
1511 			}
1512 		}
1513 	}
1514 
1515 	/* update execsw[] */
1516 	exec_init(0);
1517 	rw_exit(&exec_lock);
1518 	return 0;
1519 }
1520 
1521 /*
1522  * Initialize exec structures. If init_boot is true, also does necessary
1523  * one-time initialization (it's called from main() that way).
1524  * Once system is multiuser, this should be called with exec_lock held,
1525  * i.e. via exec_{add|remove}().
1526  */
1527 int
1528 exec_init(int init_boot)
1529 {
1530 	const struct execsw 	**sw;
1531 	struct exec_entry	*ex;
1532 	SLIST_HEAD(,exec_entry)	first;
1533 	SLIST_HEAD(,exec_entry)	any;
1534 	SLIST_HEAD(,exec_entry)	last;
1535 	int			i, sz;
1536 
1537 	if (init_boot) {
1538 		/* do one-time initializations */
1539 		rw_init(&exec_lock);
1540 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1541 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1542 		    "execargs", &exec_palloc, IPL_NONE);
1543 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1544 	} else {
1545 		KASSERT(rw_write_held(&exec_lock));
1546 	}
1547 
1548 	/* Sort each entry onto the appropriate queue. */
1549 	SLIST_INIT(&first);
1550 	SLIST_INIT(&any);
1551 	SLIST_INIT(&last);
1552 	sz = 0;
1553 	LIST_FOREACH(ex, &ex_head, ex_list) {
1554 		switch(ex->ex_sw->es_prio) {
1555 		case EXECSW_PRIO_FIRST:
1556 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1557 			break;
1558 		case EXECSW_PRIO_ANY:
1559 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1560 			break;
1561 		case EXECSW_PRIO_LAST:
1562 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1563 			break;
1564 		default:
1565 			panic("%s", __func__);
1566 			break;
1567 		}
1568 		sz++;
1569 	}
1570 
1571 	/*
1572 	 * Create new execsw[].  Ensure we do not try a zero-sized
1573 	 * allocation.
1574 	 */
1575 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1576 	i = 0;
1577 	SLIST_FOREACH(ex, &first, ex_slist) {
1578 		sw[i++] = ex->ex_sw;
1579 	}
1580 	SLIST_FOREACH(ex, &any, ex_slist) {
1581 		sw[i++] = ex->ex_sw;
1582 	}
1583 	SLIST_FOREACH(ex, &last, ex_slist) {
1584 		sw[i++] = ex->ex_sw;
1585 	}
1586 
1587 	/* Replace old execsw[] and free used memory. */
1588 	if (execsw != NULL) {
1589 		kmem_free(__UNCONST(execsw),
1590 		    nexecs * sizeof(struct execsw *) + 1);
1591 	}
1592 	execsw = sw;
1593 	nexecs = sz;
1594 
1595 	/* Figure out the maximum size of an exec header. */
1596 	exec_maxhdrsz = sizeof(int);
1597 	for (i = 0; i < nexecs; i++) {
1598 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1599 			exec_maxhdrsz = execsw[i]->es_hdrsz;
1600 	}
1601 
1602 	return 0;
1603 }
1604 
1605 static int
1606 exec_sigcode_map(struct proc *p, const struct emul *e)
1607 {
1608 	vaddr_t va;
1609 	vsize_t sz;
1610 	int error;
1611 	struct uvm_object *uobj;
1612 
1613 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1614 
1615 	if (e->e_sigobject == NULL || sz == 0) {
1616 		return 0;
1617 	}
1618 
1619 	/*
1620 	 * If we don't have a sigobject for this emulation, create one.
1621 	 *
1622 	 * sigobject is an anonymous memory object (just like SYSV shared
1623 	 * memory) that we keep a permanent reference to and that we map
1624 	 * in all processes that need this sigcode. The creation is simple,
1625 	 * we create an object, add a permanent reference to it, map it in
1626 	 * kernel space, copy out the sigcode to it and unmap it.
1627 	 * We map it with PROT_READ|PROT_EXEC into the process just
1628 	 * the way sys_mmap() would map it.
1629 	 */
1630 
1631 	uobj = *e->e_sigobject;
1632 	if (uobj == NULL) {
1633 		mutex_enter(&sigobject_lock);
1634 		if ((uobj = *e->e_sigobject) == NULL) {
1635 			uobj = uao_create(sz, 0);
1636 			(*uobj->pgops->pgo_reference)(uobj);
1637 			va = vm_map_min(kernel_map);
1638 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
1639 			    uobj, 0, 0,
1640 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1641 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1642 				printf("kernel mapping failed %d\n", error);
1643 				(*uobj->pgops->pgo_detach)(uobj);
1644 				mutex_exit(&sigobject_lock);
1645 				return (error);
1646 			}
1647 			memcpy((void *)va, e->e_sigcode, sz);
1648 #ifdef PMAP_NEED_PROCWR
1649 			pmap_procwr(&proc0, va, sz);
1650 #endif
1651 			uvm_unmap(kernel_map, va, va + round_page(sz));
1652 			*e->e_sigobject = uobj;
1653 		}
1654 		mutex_exit(&sigobject_lock);
1655 	}
1656 
1657 	/* Just a hint to uvm_map where to put it. */
1658 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1659 	    round_page(sz));
1660 
1661 #ifdef __alpha__
1662 	/*
1663 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
1664 	 * which causes the above calculation to put the sigcode at
1665 	 * an invalid address.  Put it just below the text instead.
1666 	 */
1667 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1668 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1669 	}
1670 #endif
1671 
1672 	(*uobj->pgops->pgo_reference)(uobj);
1673 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1674 			uobj, 0, 0,
1675 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1676 				    UVM_ADV_RANDOM, 0));
1677 	if (error) {
1678 		DPRINTF(("%s, %d: map %p "
1679 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1680 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1681 		    va, error));
1682 		(*uobj->pgops->pgo_detach)(uobj);
1683 		return (error);
1684 	}
1685 	p->p_sigctx.ps_sigcode = (void *)va;
1686 	return (0);
1687 }
1688