xref: /netbsd-src/sys/kern/kern_exec.c (revision d909946ca08dceb44d7d0f22ec9488679695d976)
1 /*	$NetBSD: kern_exec.c,v 1.436 2016/08/06 15:13:13 maxv Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31  * Copyright (C) 1992 Wolfgang Solfrank.
32  * Copyright (C) 1992 TooLs GmbH.
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by TooLs GmbH.
46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.436 2016/08/06 15:13:13 maxv Exp $");
63 
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108 
109 #include <uvm/uvm_extern.h>
110 
111 #include <machine/reg.h>
112 
113 #include <compat/common/compat_util.h>
114 
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USE_TOPDOWN_VM
117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define	MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122 
123 struct execve_data;
124 
125 extern int user_va0_disable;
126 
127 static size_t calcargs(struct execve_data * restrict, const size_t);
128 static size_t calcstack(struct execve_data * restrict, const size_t);
129 static int copyoutargs(struct execve_data * restrict, struct lwp *,
130     char * const);
131 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
132 static int copyinargs(struct execve_data * restrict, char * const *,
133     char * const *, execve_fetch_element_t, char **);
134 static int copyinargstrs(struct execve_data * restrict, char * const *,
135     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
136 static int exec_sigcode_map(struct proc *, const struct emul *);
137 
138 #if defined(DEBUG) && !defined(DEBUG_EXEC)
139 #define DEBUG_EXEC
140 #endif
141 #ifdef DEBUG_EXEC
142 #define DPRINTF(a) printf a
143 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
144     __LINE__, (s), (a), (b))
145 static void dump_vmcmds(const struct exec_package * const, size_t, int);
146 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
147 #else
148 #define DPRINTF(a)
149 #define COPYPRINTF(s, a, b)
150 #define DUMPVMCMDS(p, x, e) do {} while (0)
151 #endif /* DEBUG_EXEC */
152 
153 /*
154  * DTrace SDT provider definitions
155  */
156 SDT_PROVIDER_DECLARE(proc);
157 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
158 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
159 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
160 
161 /*
162  * Exec function switch:
163  *
164  * Note that each makecmds function is responsible for loading the
165  * exec package with the necessary functions for any exec-type-specific
166  * handling.
167  *
168  * Functions for specific exec types should be defined in their own
169  * header file.
170  */
171 static const struct execsw	**execsw = NULL;
172 static int			nexecs;
173 
174 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
175 
176 /* list of dynamically loaded execsw entries */
177 static LIST_HEAD(execlist_head, exec_entry) ex_head =
178     LIST_HEAD_INITIALIZER(ex_head);
179 struct exec_entry {
180 	LIST_ENTRY(exec_entry)	ex_list;
181 	SLIST_ENTRY(exec_entry)	ex_slist;
182 	const struct execsw	*ex_sw;
183 };
184 
185 #ifndef __HAVE_SYSCALL_INTERN
186 void	syscall(void);
187 #endif
188 
189 /* NetBSD autoloadable syscalls */
190 #ifdef MODULAR
191 #include <kern/syscalls_autoload.c>
192 #endif
193 
194 /* NetBSD emul struct */
195 struct emul emul_netbsd = {
196 	.e_name =		"netbsd",
197 #ifdef EMUL_NATIVEROOT
198 	.e_path =		EMUL_NATIVEROOT,
199 #else
200 	.e_path =		NULL,
201 #endif
202 #ifndef __HAVE_MINIMAL_EMUL
203 	.e_flags =		EMUL_HAS_SYS___syscall,
204 	.e_errno =		NULL,
205 	.e_nosys =		SYS_syscall,
206 	.e_nsysent =		SYS_NSYSENT,
207 #endif
208 #ifdef MODULAR
209 	.e_sc_autoload =	netbsd_syscalls_autoload,
210 #endif
211 	.e_sysent =		sysent,
212 #ifdef SYSCALL_DEBUG
213 	.e_syscallnames =	syscallnames,
214 #else
215 	.e_syscallnames =	NULL,
216 #endif
217 	.e_sendsig =		sendsig,
218 	.e_trapsignal =		trapsignal,
219 	.e_tracesig =		NULL,
220 	.e_sigcode =		NULL,
221 	.e_esigcode =		NULL,
222 	.e_sigobject =		NULL,
223 	.e_setregs =		setregs,
224 	.e_proc_exec =		NULL,
225 	.e_proc_fork =		NULL,
226 	.e_proc_exit =		NULL,
227 	.e_lwp_fork =		NULL,
228 	.e_lwp_exit =		NULL,
229 #ifdef __HAVE_SYSCALL_INTERN
230 	.e_syscall_intern =	syscall_intern,
231 #else
232 	.e_syscall =		syscall,
233 #endif
234 	.e_sysctlovly =		NULL,
235 	.e_fault =		NULL,
236 	.e_vm_default_addr =	uvm_default_mapaddr,
237 	.e_usertrap =		NULL,
238 	.e_ucsize =		sizeof(ucontext_t),
239 	.e_startlwp =		startlwp
240 };
241 
242 /*
243  * Exec lock. Used to control access to execsw[] structures.
244  * This must not be static so that netbsd32 can access it, too.
245  */
246 krwlock_t exec_lock;
247 
248 static kmutex_t sigobject_lock;
249 
250 /*
251  * Data used between a loadvm and execve part of an "exec" operation
252  */
253 struct execve_data {
254 	struct exec_package	ed_pack;
255 	struct pathbuf		*ed_pathbuf;
256 	struct vattr		ed_attr;
257 	struct ps_strings	ed_arginfo;
258 	char			*ed_argp;
259 	const char		*ed_pathstring;
260 	char			*ed_resolvedpathbuf;
261 	size_t			ed_ps_strings_sz;
262 	int			ed_szsigcode;
263 	size_t			ed_argslen;
264 	long			ed_argc;
265 	long			ed_envc;
266 };
267 
268 /*
269  * data passed from parent lwp to child during a posix_spawn()
270  */
271 struct spawn_exec_data {
272 	struct execve_data	sed_exec;
273 	struct posix_spawn_file_actions
274 				*sed_actions;
275 	struct posix_spawnattr	*sed_attrs;
276 	struct proc		*sed_parent;
277 	kcondvar_t		sed_cv_child_ready;
278 	kmutex_t		sed_mtx_child;
279 	int			sed_error;
280 	volatile uint32_t	sed_refcnt;
281 };
282 
283 static void *
284 exec_pool_alloc(struct pool *pp, int flags)
285 {
286 
287 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
288 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
289 }
290 
291 static void
292 exec_pool_free(struct pool *pp, void *addr)
293 {
294 
295 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
296 }
297 
298 static struct pool exec_pool;
299 
300 static struct pool_allocator exec_palloc = {
301 	.pa_alloc = exec_pool_alloc,
302 	.pa_free = exec_pool_free,
303 	.pa_pagesz = NCARGS
304 };
305 
306 /*
307  * check exec:
308  * given an "executable" described in the exec package's namei info,
309  * see what we can do with it.
310  *
311  * ON ENTRY:
312  *	exec package with appropriate namei info
313  *	lwp pointer of exec'ing lwp
314  *	NO SELF-LOCKED VNODES
315  *
316  * ON EXIT:
317  *	error:	nothing held, etc.  exec header still allocated.
318  *	ok:	filled exec package, executable's vnode (unlocked).
319  *
320  * EXEC SWITCH ENTRY:
321  * 	Locked vnode to check, exec package, proc.
322  *
323  * EXEC SWITCH EXIT:
324  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
325  *	error:	destructive:
326  *			everything deallocated execept exec header.
327  *		non-destructive:
328  *			error code, executable's vnode (unlocked),
329  *			exec header unmodified.
330  */
331 int
332 /*ARGSUSED*/
333 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
334 {
335 	int		error, i;
336 	struct vnode	*vp;
337 	struct nameidata nd;
338 	size_t		resid;
339 
340 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
341 
342 	/* first get the vnode */
343 	if ((error = namei(&nd)) != 0)
344 		return error;
345 	epp->ep_vp = vp = nd.ni_vp;
346 	/* normally this can't fail */
347 	error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
348 	KASSERT(error == 0);
349 
350 #ifdef DIAGNOSTIC
351 	/* paranoia (take this out once namei stuff stabilizes) */
352 	memset(nd.ni_pnbuf, '~', PATH_MAX);
353 #endif
354 
355 	/* check access and type */
356 	if (vp->v_type != VREG) {
357 		error = EACCES;
358 		goto bad1;
359 	}
360 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
361 		goto bad1;
362 
363 	/* get attributes */
364 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
365 		goto bad1;
366 
367 	/* Check mount point */
368 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
369 		error = EACCES;
370 		goto bad1;
371 	}
372 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
373 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
374 
375 	/* try to open it */
376 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
377 		goto bad1;
378 
379 	/* unlock vp, since we need it unlocked from here on out. */
380 	VOP_UNLOCK(vp);
381 
382 #if NVERIEXEC > 0
383 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
384 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
385 	    NULL);
386 	if (error)
387 		goto bad2;
388 #endif /* NVERIEXEC > 0 */
389 
390 #ifdef PAX_SEGVGUARD
391 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
392 	if (error)
393 		goto bad2;
394 #endif /* PAX_SEGVGUARD */
395 
396 	/* now we have the file, get the exec header */
397 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
398 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
399 	if (error)
400 		goto bad2;
401 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
402 
403 	/*
404 	 * Set up default address space limits.  Can be overridden
405 	 * by individual exec packages.
406 	 */
407 	epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
408 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
409 
410 	/*
411 	 * set up the vmcmds for creation of the process
412 	 * address space
413 	 */
414 	error = ENOEXEC;
415 	for (i = 0; i < nexecs; i++) {
416 		int newerror;
417 
418 		epp->ep_esch = execsw[i];
419 		newerror = (*execsw[i]->es_makecmds)(l, epp);
420 
421 		if (!newerror) {
422 			/* Seems ok: check that entry point is not too high */
423 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
424 #ifdef DIAGNOSTIC
425 				printf("%s: rejecting %p due to "
426 				    "too high entry address (> %p)\n",
427 					 __func__, (void *)epp->ep_entry,
428 					 (void *)epp->ep_vm_maxaddr);
429 #endif
430 				error = ENOEXEC;
431 				break;
432 			}
433 			/* Seems ok: check that entry point is not too low */
434 			if (epp->ep_entry < epp->ep_vm_minaddr) {
435 #ifdef DIAGNOSTIC
436 				printf("%s: rejecting %p due to "
437 				    "too low entry address (< %p)\n",
438 				     __func__, (void *)epp->ep_entry,
439 				     (void *)epp->ep_vm_minaddr);
440 #endif
441 				error = ENOEXEC;
442 				break;
443 			}
444 
445 			/* check limits */
446 			if ((epp->ep_tsize > MAXTSIZ) ||
447 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
448 						    [RLIMIT_DATA].rlim_cur)) {
449 #ifdef DIAGNOSTIC
450 				printf("%s: rejecting due to "
451 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
452 				    __func__,
453 				    (unsigned long long)epp->ep_tsize,
454 				    (unsigned long long)MAXTSIZ,
455 				    (unsigned long long)epp->ep_dsize,
456 				    (unsigned long long)
457 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
458 #endif
459 				error = ENOMEM;
460 				break;
461 			}
462 			return 0;
463 		}
464 
465 		/*
466 		 * Reset all the fields that may have been modified by the
467 		 * loader.
468 		 */
469 		KASSERT(epp->ep_emul_arg == NULL);
470 		if (epp->ep_emul_root != NULL) {
471 			vrele(epp->ep_emul_root);
472 			epp->ep_emul_root = NULL;
473 		}
474 		if (epp->ep_interp != NULL) {
475 			vrele(epp->ep_interp);
476 			epp->ep_interp = NULL;
477 		}
478 		epp->ep_pax_flags = 0;
479 
480 		/* make sure the first "interesting" error code is saved. */
481 		if (error == ENOEXEC)
482 			error = newerror;
483 
484 		if (epp->ep_flags & EXEC_DESTR)
485 			/* Error from "#!" code, tidied up by recursive call */
486 			return error;
487 	}
488 
489 	/* not found, error */
490 
491 	/*
492 	 * free any vmspace-creation commands,
493 	 * and release their references
494 	 */
495 	kill_vmcmds(&epp->ep_vmcmds);
496 
497 bad2:
498 	/*
499 	 * close and release the vnode, restore the old one, free the
500 	 * pathname buf, and punt.
501 	 */
502 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
503 	VOP_CLOSE(vp, FREAD, l->l_cred);
504 	vput(vp);
505 	return error;
506 
507 bad1:
508 	/*
509 	 * free the namei pathname buffer, and put the vnode
510 	 * (which we don't yet have open).
511 	 */
512 	vput(vp);				/* was still locked */
513 	return error;
514 }
515 
516 #ifdef __MACHINE_STACK_GROWS_UP
517 #define STACK_PTHREADSPACE NBPG
518 #else
519 #define STACK_PTHREADSPACE 0
520 #endif
521 
522 static int
523 execve_fetch_element(char * const *array, size_t index, char **value)
524 {
525 	return copyin(array + index, value, sizeof(*value));
526 }
527 
528 /*
529  * exec system call
530  */
531 int
532 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
533 {
534 	/* {
535 		syscallarg(const char *)	path;
536 		syscallarg(char * const *)	argp;
537 		syscallarg(char * const *)	envp;
538 	} */
539 
540 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
541 	    SCARG(uap, envp), execve_fetch_element);
542 }
543 
544 int
545 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
546     register_t *retval)
547 {
548 	/* {
549 		syscallarg(int)			fd;
550 		syscallarg(char * const *)	argp;
551 		syscallarg(char * const *)	envp;
552 	} */
553 
554 	return ENOSYS;
555 }
556 
557 /*
558  * Load modules to try and execute an image that we do not understand.
559  * If no execsw entries are present, we load those likely to be needed
560  * in order to run native images only.  Otherwise, we autoload all
561  * possible modules that could let us run the binary.  XXX lame
562  */
563 static void
564 exec_autoload(void)
565 {
566 #ifdef MODULAR
567 	static const char * const native[] = {
568 		"exec_elf32",
569 		"exec_elf64",
570 		"exec_script",
571 		NULL
572 	};
573 	static const char * const compat[] = {
574 		"exec_elf32",
575 		"exec_elf64",
576 		"exec_script",
577 		"exec_aout",
578 		"exec_coff",
579 		"exec_ecoff",
580 		"compat_aoutm68k",
581 		"compat_freebsd",
582 		"compat_ibcs2",
583 		"compat_linux",
584 		"compat_linux32",
585 		"compat_netbsd32",
586 		"compat_sunos",
587 		"compat_sunos32",
588 		"compat_svr4",
589 		"compat_svr4_32",
590 		"compat_ultrix",
591 		NULL
592 	};
593 	char const * const *list;
594 	int i;
595 
596 	list = (nexecs == 0 ? native : compat);
597 	for (i = 0; list[i] != NULL; i++) {
598 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
599 			continue;
600 		}
601 		yield();
602 	}
603 #endif
604 }
605 
606 static int
607 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp,
608     size_t *offs)
609 {
610 	char *path, *bp;
611 	size_t len, tlen;
612 	int error;
613 	struct cwdinfo *cwdi;
614 
615 	path = PNBUF_GET();
616 	error = copyinstr(upath, path, MAXPATHLEN, &len);
617 	if (error) {
618 		PNBUF_PUT(path);
619 		DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
620 		return error;
621 	}
622 
623 	if (path[0] == '/') {
624 		*offs = 0;
625 		goto out;
626 	}
627 
628 	len++;
629 	if (len + 1 >= MAXPATHLEN)
630 		goto out;
631 	bp = path + MAXPATHLEN - len;
632 	memmove(bp, path, len);
633 	*(--bp) = '/';
634 
635 	cwdi = l->l_proc->p_cwdi;
636 	rw_enter(&cwdi->cwdi_lock, RW_READER);
637 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
638 	    GETCWD_CHECK_ACCESS, l);
639 	rw_exit(&cwdi->cwdi_lock);
640 
641 	if (error) {
642 		DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
643 		    error));
644 		goto out;
645 	}
646 	tlen = path + MAXPATHLEN - bp;
647 
648 	memmove(path, bp, tlen);
649 	path[tlen] = '\0';
650 	*offs = tlen - len;
651 out:
652 	*pbp = pathbuf_assimilate(path);
653 	return 0;
654 }
655 
656 vaddr_t
657 exec_vm_minaddr(vaddr_t va_min)
658 {
659 	/*
660 	 * Increase va_min if we don't want NULL to be mappable by the
661 	 * process.
662 	 */
663 #define VM_MIN_GUARD	(2 * PAGE_SIZE)
664 	if (user_va0_disable && (va_min < VM_MIN_GUARD))
665 		return VM_MIN_GUARD;
666 	return va_min;
667 }
668 
669 static int
670 execve_loadvm(struct lwp *l, const char *path, char * const *args,
671 	char * const *envs, execve_fetch_element_t fetch_element,
672 	struct execve_data * restrict data)
673 {
674 	struct exec_package	* const epp = &data->ed_pack;
675 	int			error;
676 	struct proc		*p;
677 	char			*dp;
678 	u_int			modgen;
679 	size_t			offs = 0;	// XXX: GCC
680 
681 	KASSERT(data != NULL);
682 
683 	p = l->l_proc;
684 	modgen = 0;
685 
686 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
687 
688 	/*
689 	 * Check if we have exceeded our number of processes limit.
690 	 * This is so that we handle the case where a root daemon
691 	 * forked, ran setuid to become the desired user and is trying
692 	 * to exec. The obvious place to do the reference counting check
693 	 * is setuid(), but we don't do the reference counting check there
694 	 * like other OS's do because then all the programs that use setuid()
695 	 * must be modified to check the return code of setuid() and exit().
696 	 * It is dangerous to make setuid() fail, because it fails open and
697 	 * the program will continue to run as root. If we make it succeed
698 	 * and return an error code, again we are not enforcing the limit.
699 	 * The best place to enforce the limit is here, when the process tries
700 	 * to execute a new image, because eventually the process will need
701 	 * to call exec in order to do something useful.
702 	 */
703  retry:
704 	if (p->p_flag & PK_SUGID) {
705 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
706 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
707 		     &p->p_rlimit[RLIMIT_NPROC],
708 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
709 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
710 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
711 		return EAGAIN;
712 	}
713 
714 	/*
715 	 * Drain existing references and forbid new ones.  The process
716 	 * should be left alone until we're done here.  This is necessary
717 	 * to avoid race conditions - e.g. in ptrace() - that might allow
718 	 * a local user to illicitly obtain elevated privileges.
719 	 */
720 	rw_enter(&p->p_reflock, RW_WRITER);
721 
722 	/*
723 	 * Init the namei data to point the file user's program name.
724 	 * This is done here rather than in check_exec(), so that it's
725 	 * possible to override this settings if any of makecmd/probe
726 	 * functions call check_exec() recursively - for example,
727 	 * see exec_script_makecmds().
728 	 */
729 	if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0)
730 		goto clrflg;
731 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
732 	data->ed_resolvedpathbuf = PNBUF_GET();
733 
734 	/*
735 	 * initialize the fields of the exec package.
736 	 */
737 	epp->ep_kname = data->ed_pathstring + offs;
738 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
739 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
740 	epp->ep_hdrlen = exec_maxhdrsz;
741 	epp->ep_hdrvalid = 0;
742 	epp->ep_emul_arg = NULL;
743 	epp->ep_emul_arg_free = NULL;
744 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
745 	epp->ep_vap = &data->ed_attr;
746 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
747 	MD_TOPDOWN_INIT(epp);
748 	epp->ep_emul_root = NULL;
749 	epp->ep_interp = NULL;
750 	epp->ep_esch = NULL;
751 	epp->ep_pax_flags = 0;
752 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
753 
754 	rw_enter(&exec_lock, RW_READER);
755 
756 	/* see if we can run it. */
757 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
758 		if (error != ENOENT && error != EACCES) {
759 			DPRINTF(("%s: check exec failed %d\n",
760 			    __func__, error));
761 		}
762 		goto freehdr;
763 	}
764 
765 	/* allocate an argument buffer */
766 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
767 	KASSERT(data->ed_argp != NULL);
768 	dp = data->ed_argp;
769 
770 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
771 		goto bad;
772 	}
773 
774 	/*
775 	 * Calculate the new stack size.
776 	 */
777 
778 #ifdef __MACHINE_STACK_GROWS_UP
779 /*
780  * copyargs() fills argc/argv/envp from the lower address even on
781  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
782  * so that _rtld() use it.
783  */
784 #define	RTLD_GAP	32
785 #else
786 #define	RTLD_GAP	0
787 #endif
788 
789 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
790 
791 	data->ed_argslen = calcargs(data, argenvstrlen);
792 
793 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
794 
795 	if (len > epp->ep_ssize) {
796 		/* in effect, compare to initial limit */
797 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
798 		error = ENOMEM;
799 		goto bad;
800 	}
801 	/* adjust "active stack depth" for process VSZ */
802 	epp->ep_ssize = len;
803 
804 	return 0;
805 
806  bad:
807 	/* free the vmspace-creation commands, and release their references */
808 	kill_vmcmds(&epp->ep_vmcmds);
809 	/* kill any opened file descriptor, if necessary */
810 	if (epp->ep_flags & EXEC_HASFD) {
811 		epp->ep_flags &= ~EXEC_HASFD;
812 		fd_close(epp->ep_fd);
813 	}
814 	/* close and put the exec'd file */
815 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
816 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
817 	vput(epp->ep_vp);
818 	pool_put(&exec_pool, data->ed_argp);
819 
820  freehdr:
821 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
822 	if (epp->ep_emul_root != NULL)
823 		vrele(epp->ep_emul_root);
824 	if (epp->ep_interp != NULL)
825 		vrele(epp->ep_interp);
826 
827 	rw_exit(&exec_lock);
828 
829 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
830 	pathbuf_destroy(data->ed_pathbuf);
831 	PNBUF_PUT(data->ed_resolvedpathbuf);
832 
833  clrflg:
834 	rw_exit(&p->p_reflock);
835 
836 	if (modgen != module_gen && error == ENOEXEC) {
837 		modgen = module_gen;
838 		exec_autoload();
839 		goto retry;
840 	}
841 
842 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
843 	return error;
844 }
845 
846 static int
847 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
848 {
849 	struct exec_package	* const epp = &data->ed_pack;
850 	struct proc		*p = l->l_proc;
851 	struct exec_vmcmd	*base_vcp;
852 	int			error = 0;
853 	size_t			i;
854 
855 	/* record proc's vnode, for use by procfs and others */
856 	if (p->p_textvp)
857 		vrele(p->p_textvp);
858 	vref(epp->ep_vp);
859 	p->p_textvp = epp->ep_vp;
860 
861 	/* create the new process's VM space by running the vmcmds */
862 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
863 
864 #ifdef TRACE_EXEC
865 	DUMPVMCMDS(epp, 0, 0);
866 #endif
867 
868 	base_vcp = NULL;
869 
870 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
871 		struct exec_vmcmd *vcp;
872 
873 		vcp = &epp->ep_vmcmds.evs_cmds[i];
874 		if (vcp->ev_flags & VMCMD_RELATIVE) {
875 			KASSERTMSG(base_vcp != NULL,
876 			    "%s: relative vmcmd with no base", __func__);
877 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
878 			    "%s: illegal base & relative vmcmd", __func__);
879 			vcp->ev_addr += base_vcp->ev_addr;
880 		}
881 		error = (*vcp->ev_proc)(l, vcp);
882 		if (error)
883 			DUMPVMCMDS(epp, i, error);
884 		if (vcp->ev_flags & VMCMD_BASE)
885 			base_vcp = vcp;
886 	}
887 
888 	/* free the vmspace-creation commands, and release their references */
889 	kill_vmcmds(&epp->ep_vmcmds);
890 
891 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
892 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
893 	vput(epp->ep_vp);
894 
895 	/* if an error happened, deallocate and punt */
896 	if (error != 0) {
897 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
898 	}
899 	return error;
900 }
901 
902 static void
903 execve_free_data(struct execve_data *data)
904 {
905 	struct exec_package	* const epp = &data->ed_pack;
906 
907 	/* free the vmspace-creation commands, and release their references */
908 	kill_vmcmds(&epp->ep_vmcmds);
909 	/* kill any opened file descriptor, if necessary */
910 	if (epp->ep_flags & EXEC_HASFD) {
911 		epp->ep_flags &= ~EXEC_HASFD;
912 		fd_close(epp->ep_fd);
913 	}
914 
915 	/* close and put the exec'd file */
916 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
917 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
918 	vput(epp->ep_vp);
919 	pool_put(&exec_pool, data->ed_argp);
920 
921 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
922 	if (epp->ep_emul_root != NULL)
923 		vrele(epp->ep_emul_root);
924 	if (epp->ep_interp != NULL)
925 		vrele(epp->ep_interp);
926 
927 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
928 	pathbuf_destroy(data->ed_pathbuf);
929 	PNBUF_PUT(data->ed_resolvedpathbuf);
930 }
931 
932 static void
933 pathexec(struct exec_package *epp, struct lwp *l, const char *pathstring)
934 {
935 	const char		*commandname;
936 	size_t			commandlen;
937 	char			*path;
938 	struct proc 		*p = l->l_proc;
939 
940 	/* set command name & other accounting info */
941 	commandname = strrchr(epp->ep_resolvedname, '/');
942 	if (commandname != NULL) {
943 		commandname++;
944 	} else {
945 		commandname = epp->ep_resolvedname;
946 	}
947 	commandlen = min(strlen(commandname), MAXCOMLEN);
948 	(void)memcpy(p->p_comm, commandname, commandlen);
949 	p->p_comm[commandlen] = '\0';
950 
951 
952 	/*
953 	 * If the path starts with /, we don't need to do any work.
954 	 * This handles the majority of the cases.
955 	 * In the future perhaps we could canonicalize it?
956 	 */
957 	path = PNBUF_GET();
958 	if (pathstring[0] == '/') {
959 		(void)strlcpy(path, pathstring, MAXPATHLEN);
960 		epp->ep_path = path;
961 	}
962 #ifdef notyet
963 	/*
964 	 * Although this works most of the time [since the entry was just
965 	 * entered in the cache] we don't use it because it will fail for
966 	 * entries that are not placed in the cache because their name is
967 	 * longer than NCHNAMLEN and it is not the cleanest interface,
968 	 * because there could be races. When the namei cache is re-written,
969 	 * this can be changed to use the appropriate function.
970 	 */
971 	else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
972 		epp->ep_path = path;
973 #endif
974 	else {
975 #ifdef notyet
976 		printf("Cannot get path for pid %d [%s] (error %d)\n",
977 		    (int)p->p_pid, p->p_comm, error);
978 #endif
979 		PNBUF_PUT(path);
980  		epp->ep_path = NULL;
981 	}
982 }
983 
984 /* XXX elsewhere */
985 static int
986 credexec(struct lwp *l, struct vattr *attr)
987 {
988 	struct proc *p = l->l_proc;
989 	int error;
990 
991 	/*
992 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
993 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
994 	 * out additional references on the process for the moment.
995 	 */
996 	if ((p->p_slflag & PSL_TRACED) == 0 &&
997 
998 	    (((attr->va_mode & S_ISUID) != 0 &&
999 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
1000 
1001 	     ((attr->va_mode & S_ISGID) != 0 &&
1002 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
1003 		/*
1004 		 * Mark the process as SUGID before we do
1005 		 * anything that might block.
1006 		 */
1007 		proc_crmod_enter();
1008 		proc_crmod_leave(NULL, NULL, true);
1009 
1010 		/* Make sure file descriptors 0..2 are in use. */
1011 		if ((error = fd_checkstd()) != 0) {
1012 			DPRINTF(("%s: fdcheckstd failed %d\n",
1013 			    __func__, error));
1014 			return error;
1015 		}
1016 
1017 		/*
1018 		 * Copy the credential so other references don't see our
1019 		 * changes.
1020 		 */
1021 		l->l_cred = kauth_cred_copy(l->l_cred);
1022 #ifdef KTRACE
1023 		/*
1024 		 * If the persistent trace flag isn't set, turn off.
1025 		 */
1026 		if (p->p_tracep) {
1027 			mutex_enter(&ktrace_lock);
1028 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1029 				ktrderef(p);
1030 			mutex_exit(&ktrace_lock);
1031 		}
1032 #endif
1033 		if (attr->va_mode & S_ISUID)
1034 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
1035 		if (attr->va_mode & S_ISGID)
1036 			kauth_cred_setegid(l->l_cred, attr->va_gid);
1037 	} else {
1038 		if (kauth_cred_geteuid(l->l_cred) ==
1039 		    kauth_cred_getuid(l->l_cred) &&
1040 		    kauth_cred_getegid(l->l_cred) ==
1041 		    kauth_cred_getgid(l->l_cred))
1042 			p->p_flag &= ~PK_SUGID;
1043 	}
1044 
1045 	/*
1046 	 * Copy the credential so other references don't see our changes.
1047 	 * Test to see if this is necessary first, since in the common case
1048 	 * we won't need a private reference.
1049 	 */
1050 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1051 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1052 		l->l_cred = kauth_cred_copy(l->l_cred);
1053 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1054 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1055 	}
1056 
1057 	/* Update the master credentials. */
1058 	if (l->l_cred != p->p_cred) {
1059 		kauth_cred_t ocred;
1060 
1061 		kauth_cred_hold(l->l_cred);
1062 		mutex_enter(p->p_lock);
1063 		ocred = p->p_cred;
1064 		p->p_cred = l->l_cred;
1065 		mutex_exit(p->p_lock);
1066 		kauth_cred_free(ocred);
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 static void
1073 emulexec(struct lwp *l, struct exec_package *epp)
1074 {
1075 	struct proc		*p = l->l_proc;
1076 
1077 	/* The emulation root will usually have been found when we looked
1078 	 * for the elf interpreter (or similar), if not look now. */
1079 	if (epp->ep_esch->es_emul->e_path != NULL &&
1080 	    epp->ep_emul_root == NULL)
1081 		emul_find_root(l, epp);
1082 
1083 	/* Any old emulation root got removed by fdcloseexec */
1084 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1085 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1086 	rw_exit(&p->p_cwdi->cwdi_lock);
1087 	epp->ep_emul_root = NULL;
1088 	if (epp->ep_interp != NULL)
1089 		vrele(epp->ep_interp);
1090 
1091 	/*
1092 	 * Call emulation specific exec hook. This can setup per-process
1093 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1094 	 *
1095 	 * If we are executing process of different emulation than the
1096 	 * original forked process, call e_proc_exit() of the old emulation
1097 	 * first, then e_proc_exec() of new emulation. If the emulation is
1098 	 * same, the exec hook code should deallocate any old emulation
1099 	 * resources held previously by this process.
1100 	 */
1101 	if (p->p_emul && p->p_emul->e_proc_exit
1102 	    && p->p_emul != epp->ep_esch->es_emul)
1103 		(*p->p_emul->e_proc_exit)(p);
1104 
1105 	/*
1106 	 * This is now LWP 1.
1107 	 */
1108 	/* XXX elsewhere */
1109 	mutex_enter(p->p_lock);
1110 	p->p_nlwpid = 1;
1111 	l->l_lid = 1;
1112 	mutex_exit(p->p_lock);
1113 
1114 	/*
1115 	 * Call exec hook. Emulation code may NOT store reference to anything
1116 	 * from &pack.
1117 	 */
1118 	if (epp->ep_esch->es_emul->e_proc_exec)
1119 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1120 
1121 	/* update p_emul, the old value is no longer needed */
1122 	p->p_emul = epp->ep_esch->es_emul;
1123 
1124 	/* ...and the same for p_execsw */
1125 	p->p_execsw = epp->ep_esch;
1126 
1127 #ifdef __HAVE_SYSCALL_INTERN
1128 	(*p->p_emul->e_syscall_intern)(p);
1129 #endif
1130 	ktremul();
1131 }
1132 
1133 static int
1134 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1135 	bool no_local_exec_lock, bool is_spawn)
1136 {
1137 	struct exec_package	* const epp = &data->ed_pack;
1138 	int error = 0;
1139 	struct proc		*p;
1140 
1141 	/*
1142 	 * In case of a posix_spawn operation, the child doing the exec
1143 	 * might not hold the reader lock on exec_lock, but the parent
1144 	 * will do this instead.
1145 	 */
1146 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1147 	KASSERT(!no_local_exec_lock || is_spawn);
1148 	KASSERT(data != NULL);
1149 
1150 	p = l->l_proc;
1151 
1152 	/* Get rid of other LWPs. */
1153 	if (p->p_nlwps > 1) {
1154 		mutex_enter(p->p_lock);
1155 		exit_lwps(l);
1156 		mutex_exit(p->p_lock);
1157 	}
1158 	KDASSERT(p->p_nlwps == 1);
1159 
1160 	/* Destroy any lwpctl info. */
1161 	if (p->p_lwpctl != NULL)
1162 		lwp_ctl_exit();
1163 
1164 	/* Remove POSIX timers */
1165 	timers_free(p, TIMERS_POSIX);
1166 
1167 	/* Set the PaX flags. */
1168 	pax_set_flags(epp, p);
1169 
1170 	/*
1171 	 * Do whatever is necessary to prepare the address space
1172 	 * for remapping.  Note that this might replace the current
1173 	 * vmspace with another!
1174 	 */
1175 	if (is_spawn)
1176 		uvmspace_spawn(l, epp->ep_vm_minaddr,
1177 		    epp->ep_vm_maxaddr,
1178 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1179 	else
1180 		uvmspace_exec(l, epp->ep_vm_minaddr,
1181 		    epp->ep_vm_maxaddr,
1182 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1183 
1184 	struct vmspace		*vm;
1185 	vm = p->p_vmspace;
1186 	vm->vm_taddr = (void *)epp->ep_taddr;
1187 	vm->vm_tsize = btoc(epp->ep_tsize);
1188 	vm->vm_daddr = (void*)epp->ep_daddr;
1189 	vm->vm_dsize = btoc(epp->ep_dsize);
1190 	vm->vm_ssize = btoc(epp->ep_ssize);
1191 	vm->vm_issize = 0;
1192 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1193 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1194 
1195 	pax_aslr_init_vm(l, vm, epp);
1196 
1197 	/* Now map address space. */
1198 	error = execve_dovmcmds(l, data);
1199 	if (error != 0)
1200 		goto exec_abort;
1201 
1202 	pathexec(epp, l, data->ed_pathstring);
1203 
1204 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1205 
1206 	error = copyoutargs(data, l, newstack);
1207 	if (error != 0)
1208 		goto exec_abort;
1209 
1210 	cwdexec(p);
1211 	fd_closeexec();		/* handle close on exec */
1212 
1213 	if (__predict_false(ktrace_on))
1214 		fd_ktrexecfd();
1215 
1216 	execsigs(p);		/* reset catched signals */
1217 
1218 	mutex_enter(p->p_lock);
1219 	l->l_ctxlink = NULL;	/* reset ucontext link */
1220 	p->p_acflag &= ~AFORK;
1221 	p->p_flag |= PK_EXEC;
1222 	mutex_exit(p->p_lock);
1223 
1224 	/*
1225 	 * Stop profiling.
1226 	 */
1227 	if ((p->p_stflag & PST_PROFIL) != 0) {
1228 		mutex_spin_enter(&p->p_stmutex);
1229 		stopprofclock(p);
1230 		mutex_spin_exit(&p->p_stmutex);
1231 	}
1232 
1233 	/*
1234 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1235 	 * exited and exec()/exit() are the only places it will be cleared.
1236 	 */
1237 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1238 #if 0
1239 		lwp_t *lp;
1240 
1241 		mutex_enter(proc_lock);
1242 		lp = p->p_vforklwp;
1243 		p->p_vforklwp = NULL;
1244 
1245 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1246 		p->p_lflag &= ~PL_PPWAIT;
1247 
1248 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1249 		cv_broadcast(&lp->l_waitcv);
1250 		mutex_exit(proc_lock);
1251 #else
1252 		mutex_enter(proc_lock);
1253 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1254 		p->p_lflag &= ~PL_PPWAIT;
1255 		cv_broadcast(&p->p_pptr->p_waitcv);
1256 		mutex_exit(proc_lock);
1257 #endif
1258 	}
1259 
1260 	error = credexec(l, &data->ed_attr);
1261 	if (error)
1262 		goto exec_abort;
1263 
1264 #if defined(__HAVE_RAS)
1265 	/*
1266 	 * Remove all RASs from the address space.
1267 	 */
1268 	ras_purgeall();
1269 #endif
1270 
1271 	doexechooks(p);
1272 
1273 	/*
1274 	 * Set initial SP at the top of the stack.
1275 	 *
1276 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
1277 	 * the end of arg/env strings.  Userland guesses the address of argc
1278 	 * via ps_strings::ps_argvstr.
1279 	 */
1280 
1281 	/* Setup new registers and do misc. setup. */
1282 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1283 	if (epp->ep_esch->es_setregs)
1284 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1285 
1286 	/* Provide a consistent LWP private setting */
1287 	(void)lwp_setprivate(l, NULL);
1288 
1289 	/* Discard all PCU state; need to start fresh */
1290 	pcu_discard_all(l);
1291 
1292 	/* map the process's signal trampoline code */
1293 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1294 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1295 		goto exec_abort;
1296 	}
1297 
1298 	pool_put(&exec_pool, data->ed_argp);
1299 
1300 	/* notify others that we exec'd */
1301 	KNOTE(&p->p_klist, NOTE_EXEC);
1302 
1303 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1304 
1305 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1306 
1307 	emulexec(l, epp);
1308 
1309 	/* Allow new references from the debugger/procfs. */
1310 	rw_exit(&p->p_reflock);
1311 	if (!no_local_exec_lock)
1312 		rw_exit(&exec_lock);
1313 
1314 	mutex_enter(proc_lock);
1315 
1316 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1317 		ksiginfo_t ksi;
1318 
1319 		KSI_INIT_EMPTY(&ksi);
1320 		ksi.ksi_signo = SIGTRAP;
1321 		ksi.ksi_lid = l->l_lid;
1322 		kpsignal(p, &ksi, NULL);
1323 	}
1324 
1325 	if (p->p_sflag & PS_STOPEXEC) {
1326 		ksiginfoq_t kq;
1327 
1328 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1329 		p->p_pptr->p_nstopchild++;
1330 		p->p_waited = 0;
1331 		mutex_enter(p->p_lock);
1332 		ksiginfo_queue_init(&kq);
1333 		sigclearall(p, &contsigmask, &kq);
1334 		lwp_lock(l);
1335 		l->l_stat = LSSTOP;
1336 		p->p_stat = SSTOP;
1337 		p->p_nrlwps--;
1338 		lwp_unlock(l);
1339 		mutex_exit(p->p_lock);
1340 		mutex_exit(proc_lock);
1341 		lwp_lock(l);
1342 		mi_switch(l);
1343 		ksiginfo_queue_drain(&kq);
1344 		KERNEL_LOCK(l->l_biglocks, l);
1345 	} else {
1346 		mutex_exit(proc_lock);
1347 	}
1348 
1349 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1350 	pathbuf_destroy(data->ed_pathbuf);
1351 	PNBUF_PUT(data->ed_resolvedpathbuf);
1352 #ifdef TRACE_EXEC
1353 	DPRINTF(("%s finished\n", __func__));
1354 #endif
1355 	return EJUSTRETURN;
1356 
1357  exec_abort:
1358 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1359 	rw_exit(&p->p_reflock);
1360 	if (!no_local_exec_lock)
1361 		rw_exit(&exec_lock);
1362 
1363 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1364 	pathbuf_destroy(data->ed_pathbuf);
1365 	PNBUF_PUT(data->ed_resolvedpathbuf);
1366 
1367 	/*
1368 	 * the old process doesn't exist anymore.  exit gracefully.
1369 	 * get rid of the (new) address space we have created, if any, get rid
1370 	 * of our namei data and vnode, and exit noting failure
1371 	 */
1372 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1373 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1374 
1375 	exec_free_emul_arg(epp);
1376 	pool_put(&exec_pool, data->ed_argp);
1377 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1378 	if (epp->ep_emul_root != NULL)
1379 		vrele(epp->ep_emul_root);
1380 	if (epp->ep_interp != NULL)
1381 		vrele(epp->ep_interp);
1382 
1383 	/* Acquire the sched-state mutex (exit1() will release it). */
1384 	if (!is_spawn) {
1385 		mutex_enter(p->p_lock);
1386 		exit1(l, error, SIGABRT);
1387 	}
1388 
1389 	return error;
1390 }
1391 
1392 int
1393 execve1(struct lwp *l, const char *path, char * const *args,
1394     char * const *envs, execve_fetch_element_t fetch_element)
1395 {
1396 	struct execve_data data;
1397 	int error;
1398 
1399 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1400 	if (error)
1401 		return error;
1402 	error = execve_runproc(l, &data, false, false);
1403 	return error;
1404 }
1405 
1406 static size_t
1407 fromptrsz(const struct exec_package *epp)
1408 {
1409 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1410 }
1411 
1412 static size_t
1413 ptrsz(const struct exec_package *epp)
1414 {
1415 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1416 }
1417 
1418 static size_t
1419 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1420 {
1421 	struct exec_package	* const epp = &data->ed_pack;
1422 
1423 	const size_t nargenvptrs =
1424 	    1 +				/* long argc */
1425 	    data->ed_argc +		/* char *argv[] */
1426 	    1 +				/* \0 */
1427 	    data->ed_envc +		/* char *env[] */
1428 	    1 +				/* \0 */
1429 	    epp->ep_esch->es_arglen;	/* auxinfo */
1430 
1431 	return (nargenvptrs * ptrsz(epp)) + argenvstrlen;
1432 }
1433 
1434 static size_t
1435 calcstack(struct execve_data * restrict data, const size_t gaplen)
1436 {
1437 	struct exec_package	* const epp = &data->ed_pack;
1438 
1439 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1440 	    epp->ep_esch->es_emul->e_sigcode;
1441 
1442 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1443 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1444 
1445 	const size_t sigcode_psstr_sz =
1446 	    data->ed_szsigcode +	/* sigcode */
1447 	    data->ed_ps_strings_sz +	/* ps_strings */
1448 	    STACK_PTHREADSPACE;		/* pthread space */
1449 
1450 	const size_t stacklen =
1451 	    data->ed_argslen +
1452 	    gaplen +
1453 	    sigcode_psstr_sz;
1454 
1455 	/* make the stack "safely" aligned */
1456 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1457 }
1458 
1459 static int
1460 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1461     char * const newstack)
1462 {
1463 	struct exec_package	* const epp = &data->ed_pack;
1464 	struct proc		*p = l->l_proc;
1465 	int			error;
1466 
1467 	/* remember information about the process */
1468 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
1469 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
1470 
1471 	/*
1472 	 * Allocate the stack address passed to the newly execve()'ed process.
1473 	 *
1474 	 * The new stack address will be set to the SP (stack pointer) register
1475 	 * in setregs().
1476 	 */
1477 
1478 	char *newargs = STACK_ALLOC(
1479 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1480 
1481 	error = (*epp->ep_esch->es_copyargs)(l, epp,
1482 	    &data->ed_arginfo, &newargs, data->ed_argp);
1483 
1484 	if (epp->ep_path) {
1485 		PNBUF_PUT(epp->ep_path);
1486 		epp->ep_path = NULL;
1487 	}
1488 	if (error) {
1489 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1490 		return error;
1491 	}
1492 
1493 	error = copyoutpsstrs(data, p);
1494 	if (error != 0)
1495 		return error;
1496 
1497 	return 0;
1498 }
1499 
1500 static int
1501 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1502 {
1503 	struct exec_package	* const epp = &data->ed_pack;
1504 	struct ps_strings32	arginfo32;
1505 	void			*aip;
1506 	int			error;
1507 
1508 	/* fill process ps_strings info */
1509 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1510 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1511 
1512 	if (epp->ep_flags & EXEC_32) {
1513 		aip = &arginfo32;
1514 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1515 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1516 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1517 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1518 	} else
1519 		aip = &data->ed_arginfo;
1520 
1521 	/* copy out the process's ps_strings structure */
1522 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1523 	    != 0) {
1524 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1525 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1526 		return error;
1527 	}
1528 
1529 	return 0;
1530 }
1531 
1532 static int
1533 copyinargs(struct execve_data * restrict data, char * const *args,
1534     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1535 {
1536 	struct exec_package	* const epp = &data->ed_pack;
1537 	char			*dp;
1538 	size_t			i;
1539 	int			error;
1540 
1541 	dp = *dpp;
1542 
1543 	data->ed_argc = 0;
1544 
1545 	/* copy the fake args list, if there's one, freeing it as we go */
1546 	if (epp->ep_flags & EXEC_HASARGL) {
1547 		struct exec_fakearg	*fa = epp->ep_fa;
1548 
1549 		while (fa->fa_arg != NULL) {
1550 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1551 			size_t len;
1552 
1553 			len = strlcpy(dp, fa->fa_arg, maxlen);
1554 			/* Count NUL into len. */
1555 			if (len < maxlen)
1556 				len++;
1557 			else {
1558 				while (fa->fa_arg != NULL) {
1559 					kmem_free(fa->fa_arg, fa->fa_len);
1560 					fa++;
1561 				}
1562 				kmem_free(epp->ep_fa, epp->ep_fa_len);
1563 				epp->ep_flags &= ~EXEC_HASARGL;
1564 				return E2BIG;
1565 			}
1566 			ktrexecarg(fa->fa_arg, len - 1);
1567 			dp += len;
1568 
1569 			kmem_free(fa->fa_arg, fa->fa_len);
1570 			fa++;
1571 			data->ed_argc++;
1572 		}
1573 		kmem_free(epp->ep_fa, epp->ep_fa_len);
1574 		epp->ep_flags &= ~EXEC_HASARGL;
1575 	}
1576 
1577 	/*
1578 	 * Read and count argument strings from user.
1579 	 */
1580 
1581 	if (args == NULL) {
1582 		DPRINTF(("%s: null args\n", __func__));
1583 		return EINVAL;
1584 	}
1585 	if (epp->ep_flags & EXEC_SKIPARG)
1586 		args = (const void *)((const char *)args + fromptrsz(epp));
1587 	i = 0;
1588 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1589 	if (error != 0) {
1590 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
1591 		return error;
1592 	}
1593 	data->ed_argc += i;
1594 
1595 	/*
1596 	 * Read and count environment strings from user.
1597 	 */
1598 
1599 	data->ed_envc = 0;
1600 	/* environment need not be there */
1601 	if (envs == NULL)
1602 		goto done;
1603 	i = 0;
1604 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1605 	if (error != 0) {
1606 		DPRINTF(("%s: copyin env %d\n", __func__, error));
1607 		return error;
1608 	}
1609 	data->ed_envc += i;
1610 
1611 done:
1612 	*dpp = dp;
1613 
1614 	return 0;
1615 }
1616 
1617 static int
1618 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1619     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1620     void (*ktr)(const void *, size_t))
1621 {
1622 	char			*dp, *sp;
1623 	size_t			i;
1624 	int			error;
1625 
1626 	dp = *dpp;
1627 
1628 	i = 0;
1629 	while (1) {
1630 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1631 		size_t len;
1632 
1633 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1634 			return error;
1635 		}
1636 		if (!sp)
1637 			break;
1638 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1639 			if (error == ENAMETOOLONG)
1640 				error = E2BIG;
1641 			return error;
1642 		}
1643 		if (__predict_false(ktrace_on))
1644 			(*ktr)(dp, len - 1);
1645 		dp += len;
1646 		i++;
1647 	}
1648 
1649 	*dpp = dp;
1650 	*ip = i;
1651 
1652 	return 0;
1653 }
1654 
1655 /*
1656  * Copy argv and env strings from kernel buffer (argp) to the new stack.
1657  * Those strings are located just after auxinfo.
1658  */
1659 int
1660 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1661     char **stackp, void *argp)
1662 {
1663 	char	**cpp, *dp, *sp;
1664 	size_t	len;
1665 	void	*nullp;
1666 	long	argc, envc;
1667 	int	error;
1668 
1669 	cpp = (char **)*stackp;
1670 	nullp = NULL;
1671 	argc = arginfo->ps_nargvstr;
1672 	envc = arginfo->ps_nenvstr;
1673 
1674 	/* argc on stack is long */
1675 	CTASSERT(sizeof(*cpp) == sizeof(argc));
1676 
1677 	dp = (char *)(cpp +
1678 	    1 +				/* long argc */
1679 	    argc +			/* char *argv[] */
1680 	    1 +				/* \0 */
1681 	    envc +			/* char *env[] */
1682 	    1 +				/* \0 */
1683 	    /* XXX auxinfo multiplied by ptr size? */
1684 	    pack->ep_esch->es_arglen);	/* auxinfo */
1685 	sp = argp;
1686 
1687 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1688 		COPYPRINTF("", cpp - 1, sizeof(argc));
1689 		return error;
1690 	}
1691 
1692 	/* XXX don't copy them out, remap them! */
1693 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1694 
1695 	for (; --argc >= 0; sp += len, dp += len) {
1696 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1697 			COPYPRINTF("", cpp - 1, sizeof(dp));
1698 			return error;
1699 		}
1700 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1701 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1702 			return error;
1703 		}
1704 	}
1705 
1706 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1707 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1708 		return error;
1709 	}
1710 
1711 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1712 
1713 	for (; --envc >= 0; sp += len, dp += len) {
1714 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1715 			COPYPRINTF("", cpp - 1, sizeof(dp));
1716 			return error;
1717 		}
1718 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1719 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1720 			return error;
1721 		}
1722 
1723 	}
1724 
1725 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1726 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1727 		return error;
1728 	}
1729 
1730 	*stackp = (char *)cpp;
1731 	return 0;
1732 }
1733 
1734 
1735 /*
1736  * Add execsw[] entries.
1737  */
1738 int
1739 exec_add(struct execsw *esp, int count)
1740 {
1741 	struct exec_entry	*it;
1742 	int			i;
1743 
1744 	if (count == 0) {
1745 		return 0;
1746 	}
1747 
1748 	/* Check for duplicates. */
1749 	rw_enter(&exec_lock, RW_WRITER);
1750 	for (i = 0; i < count; i++) {
1751 		LIST_FOREACH(it, &ex_head, ex_list) {
1752 			/* assume unique (makecmds, probe_func, emulation) */
1753 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1754 			    it->ex_sw->u.elf_probe_func ==
1755 			    esp[i].u.elf_probe_func &&
1756 			    it->ex_sw->es_emul == esp[i].es_emul) {
1757 				rw_exit(&exec_lock);
1758 				return EEXIST;
1759 			}
1760 		}
1761 	}
1762 
1763 	/* Allocate new entries. */
1764 	for (i = 0; i < count; i++) {
1765 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1766 		it->ex_sw = &esp[i];
1767 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1768 	}
1769 
1770 	/* update execsw[] */
1771 	exec_init(0);
1772 	rw_exit(&exec_lock);
1773 	return 0;
1774 }
1775 
1776 /*
1777  * Remove execsw[] entry.
1778  */
1779 int
1780 exec_remove(struct execsw *esp, int count)
1781 {
1782 	struct exec_entry	*it, *next;
1783 	int			i;
1784 	const struct proclist_desc *pd;
1785 	proc_t			*p;
1786 
1787 	if (count == 0) {
1788 		return 0;
1789 	}
1790 
1791 	/* Abort if any are busy. */
1792 	rw_enter(&exec_lock, RW_WRITER);
1793 	for (i = 0; i < count; i++) {
1794 		mutex_enter(proc_lock);
1795 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1796 			PROCLIST_FOREACH(p, pd->pd_list) {
1797 				if (p->p_execsw == &esp[i]) {
1798 					mutex_exit(proc_lock);
1799 					rw_exit(&exec_lock);
1800 					return EBUSY;
1801 				}
1802 			}
1803 		}
1804 		mutex_exit(proc_lock);
1805 	}
1806 
1807 	/* None are busy, so remove them all. */
1808 	for (i = 0; i < count; i++) {
1809 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1810 			next = LIST_NEXT(it, ex_list);
1811 			if (it->ex_sw == &esp[i]) {
1812 				LIST_REMOVE(it, ex_list);
1813 				kmem_free(it, sizeof(*it));
1814 				break;
1815 			}
1816 		}
1817 	}
1818 
1819 	/* update execsw[] */
1820 	exec_init(0);
1821 	rw_exit(&exec_lock);
1822 	return 0;
1823 }
1824 
1825 /*
1826  * Initialize exec structures. If init_boot is true, also does necessary
1827  * one-time initialization (it's called from main() that way).
1828  * Once system is multiuser, this should be called with exec_lock held,
1829  * i.e. via exec_{add|remove}().
1830  */
1831 int
1832 exec_init(int init_boot)
1833 {
1834 	const struct execsw 	**sw;
1835 	struct exec_entry	*ex;
1836 	SLIST_HEAD(,exec_entry)	first;
1837 	SLIST_HEAD(,exec_entry)	any;
1838 	SLIST_HEAD(,exec_entry)	last;
1839 	int			i, sz;
1840 
1841 	if (init_boot) {
1842 		/* do one-time initializations */
1843 		rw_init(&exec_lock);
1844 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1845 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1846 		    "execargs", &exec_palloc, IPL_NONE);
1847 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1848 	} else {
1849 		KASSERT(rw_write_held(&exec_lock));
1850 	}
1851 
1852 	/* Sort each entry onto the appropriate queue. */
1853 	SLIST_INIT(&first);
1854 	SLIST_INIT(&any);
1855 	SLIST_INIT(&last);
1856 	sz = 0;
1857 	LIST_FOREACH(ex, &ex_head, ex_list) {
1858 		switch(ex->ex_sw->es_prio) {
1859 		case EXECSW_PRIO_FIRST:
1860 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1861 			break;
1862 		case EXECSW_PRIO_ANY:
1863 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1864 			break;
1865 		case EXECSW_PRIO_LAST:
1866 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1867 			break;
1868 		default:
1869 			panic("%s", __func__);
1870 			break;
1871 		}
1872 		sz++;
1873 	}
1874 
1875 	/*
1876 	 * Create new execsw[].  Ensure we do not try a zero-sized
1877 	 * allocation.
1878 	 */
1879 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1880 	i = 0;
1881 	SLIST_FOREACH(ex, &first, ex_slist) {
1882 		sw[i++] = ex->ex_sw;
1883 	}
1884 	SLIST_FOREACH(ex, &any, ex_slist) {
1885 		sw[i++] = ex->ex_sw;
1886 	}
1887 	SLIST_FOREACH(ex, &last, ex_slist) {
1888 		sw[i++] = ex->ex_sw;
1889 	}
1890 
1891 	/* Replace old execsw[] and free used memory. */
1892 	if (execsw != NULL) {
1893 		kmem_free(__UNCONST(execsw),
1894 		    nexecs * sizeof(struct execsw *) + 1);
1895 	}
1896 	execsw = sw;
1897 	nexecs = sz;
1898 
1899 	/* Figure out the maximum size of an exec header. */
1900 	exec_maxhdrsz = sizeof(int);
1901 	for (i = 0; i < nexecs; i++) {
1902 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1903 			exec_maxhdrsz = execsw[i]->es_hdrsz;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 static int
1910 exec_sigcode_map(struct proc *p, const struct emul *e)
1911 {
1912 	vaddr_t va;
1913 	vsize_t sz;
1914 	int error;
1915 	struct uvm_object *uobj;
1916 
1917 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1918 
1919 	if (e->e_sigobject == NULL || sz == 0) {
1920 		return 0;
1921 	}
1922 
1923 	/*
1924 	 * If we don't have a sigobject for this emulation, create one.
1925 	 *
1926 	 * sigobject is an anonymous memory object (just like SYSV shared
1927 	 * memory) that we keep a permanent reference to and that we map
1928 	 * in all processes that need this sigcode. The creation is simple,
1929 	 * we create an object, add a permanent reference to it, map it in
1930 	 * kernel space, copy out the sigcode to it and unmap it.
1931 	 * We map it with PROT_READ|PROT_EXEC into the process just
1932 	 * the way sys_mmap() would map it.
1933 	 */
1934 
1935 	uobj = *e->e_sigobject;
1936 	if (uobj == NULL) {
1937 		mutex_enter(&sigobject_lock);
1938 		if ((uobj = *e->e_sigobject) == NULL) {
1939 			uobj = uao_create(sz, 0);
1940 			(*uobj->pgops->pgo_reference)(uobj);
1941 			va = vm_map_min(kernel_map);
1942 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
1943 			    uobj, 0, 0,
1944 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1945 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1946 				printf("kernel mapping failed %d\n", error);
1947 				(*uobj->pgops->pgo_detach)(uobj);
1948 				mutex_exit(&sigobject_lock);
1949 				return error;
1950 			}
1951 			memcpy((void *)va, e->e_sigcode, sz);
1952 #ifdef PMAP_NEED_PROCWR
1953 			pmap_procwr(&proc0, va, sz);
1954 #endif
1955 			uvm_unmap(kernel_map, va, va + round_page(sz));
1956 			*e->e_sigobject = uobj;
1957 		}
1958 		mutex_exit(&sigobject_lock);
1959 	}
1960 
1961 	/* Just a hint to uvm_map where to put it. */
1962 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1963 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1964 
1965 #ifdef __alpha__
1966 	/*
1967 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
1968 	 * which causes the above calculation to put the sigcode at
1969 	 * an invalid address.  Put it just below the text instead.
1970 	 */
1971 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1972 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1973 	}
1974 #endif
1975 
1976 	(*uobj->pgops->pgo_reference)(uobj);
1977 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1978 			uobj, 0, 0,
1979 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1980 				    UVM_ADV_RANDOM, 0));
1981 	if (error) {
1982 		DPRINTF(("%s, %d: map %p "
1983 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1984 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1985 		    va, error));
1986 		(*uobj->pgops->pgo_detach)(uobj);
1987 		return error;
1988 	}
1989 	p->p_sigctx.ps_sigcode = (void *)va;
1990 	return 0;
1991 }
1992 
1993 /*
1994  * Release a refcount on spawn_exec_data and destroy memory, if this
1995  * was the last one.
1996  */
1997 static void
1998 spawn_exec_data_release(struct spawn_exec_data *data)
1999 {
2000 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
2001 		return;
2002 
2003 	cv_destroy(&data->sed_cv_child_ready);
2004 	mutex_destroy(&data->sed_mtx_child);
2005 
2006 	if (data->sed_actions)
2007 		posix_spawn_fa_free(data->sed_actions,
2008 		    data->sed_actions->len);
2009 	if (data->sed_attrs)
2010 		kmem_free(data->sed_attrs,
2011 		    sizeof(*data->sed_attrs));
2012 	kmem_free(data, sizeof(*data));
2013 }
2014 
2015 /*
2016  * A child lwp of a posix_spawn operation starts here and ends up in
2017  * cpu_spawn_return, dealing with all filedescriptor and scheduler
2018  * manipulations in between.
2019  * The parent waits for the child, as it is not clear whether the child
2020  * will be able to acquire its own exec_lock. If it can, the parent can
2021  * be released early and continue running in parallel. If not (or if the
2022  * magic debug flag is passed in the scheduler attribute struct), the
2023  * child rides on the parent's exec lock until it is ready to return to
2024  * to userland - and only then releases the parent. This method loses
2025  * concurrency, but improves error reporting.
2026  */
2027 static void
2028 spawn_return(void *arg)
2029 {
2030 	struct spawn_exec_data *spawn_data = arg;
2031 	struct lwp *l = curlwp;
2032 	int error, newfd;
2033 	int ostat;
2034 	size_t i;
2035 	const struct posix_spawn_file_actions_entry *fae;
2036 	pid_t ppid;
2037 	register_t retval;
2038 	bool have_reflock;
2039 	bool parent_is_waiting = true;
2040 
2041 	/*
2042 	 * Check if we can release parent early.
2043 	 * We either need to have no sed_attrs, or sed_attrs does not
2044 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2045 	 * safe access to the parent proc (passed in sed_parent).
2046 	 * We then try to get the exec_lock, and only if that works, we can
2047 	 * release the parent here already.
2048 	 */
2049 	ppid = spawn_data->sed_parent->p_pid;
2050 	if ((!spawn_data->sed_attrs
2051 	    || (spawn_data->sed_attrs->sa_flags
2052 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2053 	    && rw_tryenter(&exec_lock, RW_READER)) {
2054 		parent_is_waiting = false;
2055 		mutex_enter(&spawn_data->sed_mtx_child);
2056 		cv_signal(&spawn_data->sed_cv_child_ready);
2057 		mutex_exit(&spawn_data->sed_mtx_child);
2058 	}
2059 
2060 	/* don't allow debugger access yet */
2061 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
2062 	have_reflock = true;
2063 
2064 	error = 0;
2065 	/* handle posix_spawn_file_actions */
2066 	if (spawn_data->sed_actions != NULL) {
2067 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
2068 			fae = &spawn_data->sed_actions->fae[i];
2069 			switch (fae->fae_action) {
2070 			case FAE_OPEN:
2071 				if (fd_getfile(fae->fae_fildes) != NULL) {
2072 					error = fd_close(fae->fae_fildes);
2073 					if (error)
2074 						break;
2075 				}
2076 				error = fd_open(fae->fae_path, fae->fae_oflag,
2077 				    fae->fae_mode, &newfd);
2078 				if (error)
2079 					break;
2080 				if (newfd != fae->fae_fildes) {
2081 					error = dodup(l, newfd,
2082 					    fae->fae_fildes, 0, &retval);
2083 					if (fd_getfile(newfd) != NULL)
2084 						fd_close(newfd);
2085 				}
2086 				break;
2087 			case FAE_DUP2:
2088 				error = dodup(l, fae->fae_fildes,
2089 				    fae->fae_newfildes, 0, &retval);
2090 				break;
2091 			case FAE_CLOSE:
2092 				if (fd_getfile(fae->fae_fildes) == NULL) {
2093 					error = EBADF;
2094 					break;
2095 				}
2096 				error = fd_close(fae->fae_fildes);
2097 				break;
2098 			}
2099 			if (error)
2100 				goto report_error;
2101 		}
2102 	}
2103 
2104 	/* handle posix_spawnattr */
2105 	if (spawn_data->sed_attrs != NULL) {
2106 		struct sigaction sigact;
2107 		sigact._sa_u._sa_handler = SIG_DFL;
2108 		sigact.sa_flags = 0;
2109 
2110 		/*
2111 		 * set state to SSTOP so that this proc can be found by pid.
2112 		 * see proc_enterprp, do_sched_setparam below
2113 		 */
2114 		mutex_enter(proc_lock);
2115 		/*
2116 		 * p_stat should be SACTIVE, so we need to adjust the
2117 		 * parent's p_nstopchild here.  For safety, just make
2118 		 * we're on the good side of SDEAD before we adjust.
2119 		 */
2120 		ostat = l->l_proc->p_stat;
2121 		KASSERT(ostat < SSTOP);
2122 		l->l_proc->p_stat = SSTOP;
2123 		l->l_proc->p_waited = 0;
2124 		l->l_proc->p_pptr->p_nstopchild++;
2125 		mutex_exit(proc_lock);
2126 
2127 		/* Set process group */
2128 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2129 			pid_t mypid = l->l_proc->p_pid,
2130 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
2131 
2132 			if (pgrp == 0)
2133 				pgrp = mypid;
2134 
2135 			error = proc_enterpgrp(spawn_data->sed_parent,
2136 			    mypid, pgrp, false);
2137 			if (error)
2138 				goto report_error_stopped;
2139 		}
2140 
2141 		/* Set scheduler policy */
2142 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2143 			error = do_sched_setparam(l->l_proc->p_pid, 0,
2144 			    spawn_data->sed_attrs->sa_schedpolicy,
2145 			    &spawn_data->sed_attrs->sa_schedparam);
2146 		else if (spawn_data->sed_attrs->sa_flags
2147 		    & POSIX_SPAWN_SETSCHEDPARAM) {
2148 			error = do_sched_setparam(ppid, 0,
2149 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2150 		}
2151 		if (error)
2152 			goto report_error_stopped;
2153 
2154 		/* Reset user ID's */
2155 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2156 			error = do_setresuid(l, -1,
2157 			     kauth_cred_getgid(l->l_cred), -1,
2158 			     ID_E_EQ_R | ID_E_EQ_S);
2159 			if (error)
2160 				goto report_error_stopped;
2161 			error = do_setresuid(l, -1,
2162 			    kauth_cred_getuid(l->l_cred), -1,
2163 			    ID_E_EQ_R | ID_E_EQ_S);
2164 			if (error)
2165 				goto report_error_stopped;
2166 		}
2167 
2168 		/* Set signal masks/defaults */
2169 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2170 			mutex_enter(l->l_proc->p_lock);
2171 			error = sigprocmask1(l, SIG_SETMASK,
2172 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
2173 			mutex_exit(l->l_proc->p_lock);
2174 			if (error)
2175 				goto report_error_stopped;
2176 		}
2177 
2178 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2179 			/*
2180 			 * The following sigaction call is using a sigaction
2181 			 * version 0 trampoline which is in the compatibility
2182 			 * code only. This is not a problem because for SIG_DFL
2183 			 * and SIG_IGN, the trampolines are now ignored. If they
2184 			 * were not, this would be a problem because we are
2185 			 * holding the exec_lock, and the compat code needs
2186 			 * to do the same in order to replace the trampoline
2187 			 * code of the process.
2188 			 */
2189 			for (i = 1; i <= NSIG; i++) {
2190 				if (sigismember(
2191 				    &spawn_data->sed_attrs->sa_sigdefault, i))
2192 					sigaction1(l, i, &sigact, NULL, NULL,
2193 					    0);
2194 			}
2195 		}
2196 		mutex_enter(proc_lock);
2197 		l->l_proc->p_stat = ostat;
2198 		l->l_proc->p_pptr->p_nstopchild--;
2199 		mutex_exit(proc_lock);
2200 	}
2201 
2202 	/* now do the real exec */
2203 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2204 	    true);
2205 	have_reflock = false;
2206 	if (error == EJUSTRETURN)
2207 		error = 0;
2208 	else if (error)
2209 		goto report_error;
2210 
2211 	if (parent_is_waiting) {
2212 		mutex_enter(&spawn_data->sed_mtx_child);
2213 		cv_signal(&spawn_data->sed_cv_child_ready);
2214 		mutex_exit(&spawn_data->sed_mtx_child);
2215 	}
2216 
2217 	/* release our refcount on the data */
2218 	spawn_exec_data_release(spawn_data);
2219 
2220 	/* and finally: leave to userland for the first time */
2221 	cpu_spawn_return(l);
2222 
2223 	/* NOTREACHED */
2224 	return;
2225 
2226  report_error_stopped:
2227 	mutex_enter(proc_lock);
2228 	l->l_proc->p_stat = ostat;
2229 	l->l_proc->p_pptr->p_nstopchild--;
2230 	mutex_exit(proc_lock);
2231  report_error:
2232 	if (have_reflock) {
2233 		/*
2234 		 * We have not passed through execve_runproc(),
2235 		 * which would have released the p_reflock and also
2236 		 * taken ownership of the sed_exec part of spawn_data,
2237 		 * so release/free both here.
2238 		 */
2239 		rw_exit(&l->l_proc->p_reflock);
2240 		execve_free_data(&spawn_data->sed_exec);
2241 	}
2242 
2243 	if (parent_is_waiting) {
2244 		/* pass error to parent */
2245 		mutex_enter(&spawn_data->sed_mtx_child);
2246 		spawn_data->sed_error = error;
2247 		cv_signal(&spawn_data->sed_cv_child_ready);
2248 		mutex_exit(&spawn_data->sed_mtx_child);
2249 	} else {
2250 		rw_exit(&exec_lock);
2251 	}
2252 
2253 	/* release our refcount on the data */
2254 	spawn_exec_data_release(spawn_data);
2255 
2256 	/* done, exit */
2257 	mutex_enter(l->l_proc->p_lock);
2258 	/*
2259 	 * Posix explicitly asks for an exit code of 127 if we report
2260 	 * errors from the child process - so, unfortunately, there
2261 	 * is no way to report a more exact error code.
2262 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2263 	 * flag bit in the attrp argument to posix_spawn(2), see above.
2264 	 */
2265 	exit1(l, 127, 0);
2266 }
2267 
2268 void
2269 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2270 {
2271 
2272 	for (size_t i = 0; i < len; i++) {
2273 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2274 		if (fae->fae_action != FAE_OPEN)
2275 			continue;
2276 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2277 	}
2278 	if (fa->len > 0)
2279 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2280 	kmem_free(fa, sizeof(*fa));
2281 }
2282 
2283 static int
2284 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2285     const struct posix_spawn_file_actions *ufa, rlim_t lim)
2286 {
2287 	struct posix_spawn_file_actions *fa;
2288 	struct posix_spawn_file_actions_entry *fae;
2289 	char *pbuf = NULL;
2290 	int error;
2291 	size_t i = 0;
2292 
2293 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2294 	error = copyin(ufa, fa, sizeof(*fa));
2295 	if (error || fa->len == 0) {
2296 		kmem_free(fa, sizeof(*fa));
2297 		return error;	/* 0 if not an error, and len == 0 */
2298 	}
2299 
2300 	if (fa->len > lim) {
2301 		kmem_free(fa, sizeof(*fa));
2302 		return EINVAL;
2303 	}
2304 
2305 	fa->size = fa->len;
2306 	size_t fal = fa->len * sizeof(*fae);
2307 	fae = fa->fae;
2308 	fa->fae = kmem_alloc(fal, KM_SLEEP);
2309 	error = copyin(fae, fa->fae, fal);
2310 	if (error)
2311 		goto out;
2312 
2313 	pbuf = PNBUF_GET();
2314 	for (; i < fa->len; i++) {
2315 		fae = &fa->fae[i];
2316 		if (fae->fae_action != FAE_OPEN)
2317 			continue;
2318 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2319 		if (error)
2320 			goto out;
2321 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2322 		memcpy(fae->fae_path, pbuf, fal);
2323 	}
2324 	PNBUF_PUT(pbuf);
2325 
2326 	*fap = fa;
2327 	return 0;
2328 out:
2329 	if (pbuf)
2330 		PNBUF_PUT(pbuf);
2331 	posix_spawn_fa_free(fa, i);
2332 	return error;
2333 }
2334 
2335 int
2336 check_posix_spawn(struct lwp *l1)
2337 {
2338 	int error, tnprocs, count;
2339 	uid_t uid;
2340 	struct proc *p1;
2341 
2342 	p1 = l1->l_proc;
2343 	uid = kauth_cred_getuid(l1->l_cred);
2344 	tnprocs = atomic_inc_uint_nv(&nprocs);
2345 
2346 	/*
2347 	 * Although process entries are dynamically created, we still keep
2348 	 * a global limit on the maximum number we will create.
2349 	 */
2350 	if (__predict_false(tnprocs >= maxproc))
2351 		error = -1;
2352 	else
2353 		error = kauth_authorize_process(l1->l_cred,
2354 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2355 
2356 	if (error) {
2357 		atomic_dec_uint(&nprocs);
2358 		return EAGAIN;
2359 	}
2360 
2361 	/*
2362 	 * Enforce limits.
2363 	 */
2364 	count = chgproccnt(uid, 1);
2365 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2366 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2367 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2368 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2369 		(void)chgproccnt(uid, -1);
2370 		atomic_dec_uint(&nprocs);
2371 		return EAGAIN;
2372 	}
2373 
2374 	return 0;
2375 }
2376 
2377 int
2378 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2379 	struct posix_spawn_file_actions *fa,
2380 	struct posix_spawnattr *sa,
2381 	char *const *argv, char *const *envp,
2382 	execve_fetch_element_t fetch)
2383 {
2384 
2385 	struct proc *p1, *p2;
2386 	struct lwp *l2;
2387 	int error;
2388 	struct spawn_exec_data *spawn_data;
2389 	vaddr_t uaddr;
2390 	pid_t pid;
2391 	bool have_exec_lock = false;
2392 
2393 	p1 = l1->l_proc;
2394 
2395 	/* Allocate and init spawn_data */
2396 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2397 	spawn_data->sed_refcnt = 1; /* only parent so far */
2398 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2399 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2400 	mutex_enter(&spawn_data->sed_mtx_child);
2401 
2402 	/*
2403 	 * Do the first part of the exec now, collect state
2404 	 * in spawn_data.
2405 	 */
2406 	error = execve_loadvm(l1, path, argv,
2407 	    envp, fetch, &spawn_data->sed_exec);
2408 	if (error == EJUSTRETURN)
2409 		error = 0;
2410 	else if (error)
2411 		goto error_exit;
2412 
2413 	have_exec_lock = true;
2414 
2415 	/*
2416 	 * Allocate virtual address space for the U-area now, while it
2417 	 * is still easy to abort the fork operation if we're out of
2418 	 * kernel virtual address space.
2419 	 */
2420 	uaddr = uvm_uarea_alloc();
2421 	if (__predict_false(uaddr == 0)) {
2422 		error = ENOMEM;
2423 		goto error_exit;
2424 	}
2425 
2426 	/*
2427 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
2428 	 * replace it with its own before returning to userland
2429 	 * in the child.
2430 	 * This is a point of no return, we will have to go through
2431 	 * the child proc to properly clean it up past this point.
2432 	 */
2433 	p2 = proc_alloc();
2434 	pid = p2->p_pid;
2435 
2436 	/*
2437 	 * Make a proc table entry for the new process.
2438 	 * Start by zeroing the section of proc that is zero-initialized,
2439 	 * then copy the section that is copied directly from the parent.
2440 	 */
2441 	memset(&p2->p_startzero, 0,
2442 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2443 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
2444 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2445 	p2->p_vmspace = proc0.p_vmspace;
2446 
2447 	TAILQ_INIT(&p2->p_sigpend.sp_info);
2448 
2449 	LIST_INIT(&p2->p_lwps);
2450 	LIST_INIT(&p2->p_sigwaiters);
2451 
2452 	/*
2453 	 * Duplicate sub-structures as needed.
2454 	 * Increase reference counts on shared objects.
2455 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
2456 	 * handling are important in order to keep a consistent behaviour
2457 	 * for the child after the fork.  If we are a 32-bit process, the
2458 	 * child will be too.
2459 	 */
2460 	p2->p_flag =
2461 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2462 	p2->p_emul = p1->p_emul;
2463 	p2->p_execsw = p1->p_execsw;
2464 
2465 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2466 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2467 	rw_init(&p2->p_reflock);
2468 	cv_init(&p2->p_waitcv, "wait");
2469 	cv_init(&p2->p_lwpcv, "lwpwait");
2470 
2471 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2472 
2473 	kauth_proc_fork(p1, p2);
2474 
2475 	p2->p_raslist = NULL;
2476 	p2->p_fd = fd_copy();
2477 
2478 	/* XXX racy */
2479 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2480 
2481 	p2->p_cwdi = cwdinit();
2482 
2483 	/*
2484 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2485 	 * we just need increase pl_refcnt.
2486 	 */
2487 	if (!p1->p_limit->pl_writeable) {
2488 		lim_addref(p1->p_limit);
2489 		p2->p_limit = p1->p_limit;
2490 	} else {
2491 		p2->p_limit = lim_copy(p1->p_limit);
2492 	}
2493 
2494 	p2->p_lflag = 0;
2495 	p2->p_sflag = 0;
2496 	p2->p_slflag = 0;
2497 	p2->p_pptr = p1;
2498 	p2->p_ppid = p1->p_pid;
2499 	LIST_INIT(&p2->p_children);
2500 
2501 	p2->p_aio = NULL;
2502 
2503 #ifdef KTRACE
2504 	/*
2505 	 * Copy traceflag and tracefile if enabled.
2506 	 * If not inherited, these were zeroed above.
2507 	 */
2508 	if (p1->p_traceflag & KTRFAC_INHERIT) {
2509 		mutex_enter(&ktrace_lock);
2510 		p2->p_traceflag = p1->p_traceflag;
2511 		if ((p2->p_tracep = p1->p_tracep) != NULL)
2512 			ktradref(p2);
2513 		mutex_exit(&ktrace_lock);
2514 	}
2515 #endif
2516 
2517 	/*
2518 	 * Create signal actions for the child process.
2519 	 */
2520 	p2->p_sigacts = sigactsinit(p1, 0);
2521 	mutex_enter(p1->p_lock);
2522 	p2->p_sflag |=
2523 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2524 	sched_proc_fork(p1, p2);
2525 	mutex_exit(p1->p_lock);
2526 
2527 	p2->p_stflag = p1->p_stflag;
2528 
2529 	/*
2530 	 * p_stats.
2531 	 * Copy parts of p_stats, and zero out the rest.
2532 	 */
2533 	p2->p_stats = pstatscopy(p1->p_stats);
2534 
2535 	/* copy over machdep flags to the new proc */
2536 	cpu_proc_fork(p1, p2);
2537 
2538 	/*
2539 	 * Prepare remaining parts of spawn data
2540 	 */
2541 	spawn_data->sed_actions = fa;
2542 	spawn_data->sed_attrs = sa;
2543 
2544 	spawn_data->sed_parent = p1;
2545 
2546 	/* create LWP */
2547 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2548 	    &l2, l1->l_class);
2549 	l2->l_ctxlink = NULL;	/* reset ucontext link */
2550 
2551 	/*
2552 	 * Copy the credential so other references don't see our changes.
2553 	 * Test to see if this is necessary first, since in the common case
2554 	 * we won't need a private reference.
2555 	 */
2556 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2557 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2558 		l2->l_cred = kauth_cred_copy(l2->l_cred);
2559 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2560 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2561 	}
2562 
2563 	/* Update the master credentials. */
2564 	if (l2->l_cred != p2->p_cred) {
2565 		kauth_cred_t ocred;
2566 
2567 		kauth_cred_hold(l2->l_cred);
2568 		mutex_enter(p2->p_lock);
2569 		ocred = p2->p_cred;
2570 		p2->p_cred = l2->l_cred;
2571 		mutex_exit(p2->p_lock);
2572 		kauth_cred_free(ocred);
2573 	}
2574 
2575 	*child_ok = true;
2576 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
2577 #if 0
2578 	l2->l_nopreempt = 1; /* start it non-preemptable */
2579 #endif
2580 
2581 	/*
2582 	 * It's now safe for the scheduler and other processes to see the
2583 	 * child process.
2584 	 */
2585 	mutex_enter(proc_lock);
2586 
2587 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2588 		p2->p_lflag |= PL_CONTROLT;
2589 
2590 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2591 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
2592 
2593 	LIST_INSERT_AFTER(p1, p2, p_pglist);
2594 	LIST_INSERT_HEAD(&allproc, p2, p_list);
2595 
2596 	p2->p_trace_enabled = trace_is_enabled(p2);
2597 #ifdef __HAVE_SYSCALL_INTERN
2598 	(*p2->p_emul->e_syscall_intern)(p2);
2599 #endif
2600 
2601 	/*
2602 	 * Make child runnable, set start time, and add to run queue except
2603 	 * if the parent requested the child to start in SSTOP state.
2604 	 */
2605 	mutex_enter(p2->p_lock);
2606 
2607 	getmicrotime(&p2->p_stats->p_start);
2608 
2609 	lwp_lock(l2);
2610 	KASSERT(p2->p_nrlwps == 1);
2611 	p2->p_nrlwps = 1;
2612 	p2->p_stat = SACTIVE;
2613 	l2->l_stat = LSRUN;
2614 	sched_enqueue(l2, false);
2615 	lwp_unlock(l2);
2616 
2617 	mutex_exit(p2->p_lock);
2618 	mutex_exit(proc_lock);
2619 
2620 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2621 	error = spawn_data->sed_error;
2622 	mutex_exit(&spawn_data->sed_mtx_child);
2623 	spawn_exec_data_release(spawn_data);
2624 
2625 	rw_exit(&p1->p_reflock);
2626 	rw_exit(&exec_lock);
2627 	have_exec_lock = false;
2628 
2629 	*pid_res = pid;
2630 	return error;
2631 
2632  error_exit:
2633 	if (have_exec_lock) {
2634 		execve_free_data(&spawn_data->sed_exec);
2635 		rw_exit(&p1->p_reflock);
2636 		rw_exit(&exec_lock);
2637 	}
2638 	mutex_exit(&spawn_data->sed_mtx_child);
2639 	spawn_exec_data_release(spawn_data);
2640 
2641 	return error;
2642 }
2643 
2644 int
2645 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2646     register_t *retval)
2647 {
2648 	/* {
2649 		syscallarg(pid_t *) pid;
2650 		syscallarg(const char *) path;
2651 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
2652 		syscallarg(const struct posix_spawnattr *) attrp;
2653 		syscallarg(char *const *) argv;
2654 		syscallarg(char *const *) envp;
2655 	} */
2656 
2657 	int error;
2658 	struct posix_spawn_file_actions *fa = NULL;
2659 	struct posix_spawnattr *sa = NULL;
2660 	pid_t pid;
2661 	bool child_ok = false;
2662 	rlim_t max_fileactions;
2663 	proc_t *p = l1->l_proc;
2664 
2665 	error = check_posix_spawn(l1);
2666 	if (error) {
2667 		*retval = error;
2668 		return 0;
2669 	}
2670 
2671 	/* copy in file_actions struct */
2672 	if (SCARG(uap, file_actions) != NULL) {
2673 		max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2674 		    maxfiles);
2675 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2676 		    max_fileactions);
2677 		if (error)
2678 			goto error_exit;
2679 	}
2680 
2681 	/* copyin posix_spawnattr struct */
2682 	if (SCARG(uap, attrp) != NULL) {
2683 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2684 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2685 		if (error)
2686 			goto error_exit;
2687 	}
2688 
2689 	/*
2690 	 * Do the spawn
2691 	 */
2692 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2693 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2694 	if (error)
2695 		goto error_exit;
2696 
2697 	if (error == 0 && SCARG(uap, pid) != NULL)
2698 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2699 
2700 	*retval = error;
2701 	return 0;
2702 
2703  error_exit:
2704 	if (!child_ok) {
2705 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2706 		atomic_dec_uint(&nprocs);
2707 
2708 		if (sa)
2709 			kmem_free(sa, sizeof(*sa));
2710 		if (fa)
2711 			posix_spawn_fa_free(fa, fa->len);
2712 	}
2713 
2714 	*retval = error;
2715 	return 0;
2716 }
2717 
2718 void
2719 exec_free_emul_arg(struct exec_package *epp)
2720 {
2721 	if (epp->ep_emul_arg_free != NULL) {
2722 		KASSERT(epp->ep_emul_arg != NULL);
2723 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2724 		epp->ep_emul_arg_free = NULL;
2725 		epp->ep_emul_arg = NULL;
2726 	} else {
2727 		KASSERT(epp->ep_emul_arg == NULL);
2728 	}
2729 }
2730 
2731 #ifdef DEBUG_EXEC
2732 static void
2733 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2734 {
2735 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2736 	size_t j;
2737 
2738 	if (error == 0)
2739 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2740 	else
2741 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2742 		    epp->ep_vmcmds.evs_used, error));
2743 
2744 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2745 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2746 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2747 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
2748 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
2749 		    "pagedvn" :
2750 		    vp[j].ev_proc == vmcmd_map_readvn ?
2751 		    "readvn" :
2752 		    vp[j].ev_proc == vmcmd_map_zero ?
2753 		    "zero" : "*unknown*",
2754 		    vp[j].ev_addr, vp[j].ev_len,
2755 		    vp[j].ev_offset, vp[j].ev_prot,
2756 		    vp[j].ev_flags));
2757 		if (error != 0 && j == x)
2758 			DPRINTF(("     ^--- failed\n"));
2759 	}
2760 }
2761 #endif
2762