xref: /netbsd-src/sys/kern/kern_exec.c (revision c7c727fae85036860d5bb848f2730ff419e2b060)
1 /*	$NetBSD: kern_exec.c,v 1.360 2013/04/20 22:28:58 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31  * Copyright (C) 1992 Wolfgang Solfrank.
32  * Copyright (C) 1992 TooLs GmbH.
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by TooLs GmbH.
46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.360 2013/04/20 22:28:58 christos Exp $");
63 
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108 
109 #include <uvm/uvm_extern.h>
110 
111 #include <machine/reg.h>
112 
113 #include <compat/common/compat_util.h>
114 
115 static int exec_sigcode_map(struct proc *, const struct emul *);
116 
117 #ifdef DEBUG_EXEC
118 #define DPRINTF(a) printf a
119 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
120     __LINE__, (s), (a), (b))
121 #else
122 #define DPRINTF(a)
123 #define COPYPRINTF(s, a, b)
124 #endif /* DEBUG_EXEC */
125 
126 /*
127  * DTrace SDT provider definitions
128  */
129 SDT_PROBE_DEFINE(proc,,,exec,
130 	    "char *", NULL,
131 	    NULL, NULL, NULL, NULL,
132 	    NULL, NULL, NULL, NULL);
133 SDT_PROBE_DEFINE(proc,,,exec_success,
134 	    "char *", NULL,
135 	    NULL, NULL, NULL, NULL,
136 	    NULL, NULL, NULL, NULL);
137 SDT_PROBE_DEFINE(proc,,,exec_failure,
138 	    "int", NULL,
139 	    NULL, NULL, NULL, NULL,
140 	    NULL, NULL, NULL, NULL);
141 
142 /*
143  * Exec function switch:
144  *
145  * Note that each makecmds function is responsible for loading the
146  * exec package with the necessary functions for any exec-type-specific
147  * handling.
148  *
149  * Functions for specific exec types should be defined in their own
150  * header file.
151  */
152 static const struct execsw	**execsw = NULL;
153 static int			nexecs;
154 
155 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
156 
157 /* list of dynamically loaded execsw entries */
158 static LIST_HEAD(execlist_head, exec_entry) ex_head =
159     LIST_HEAD_INITIALIZER(ex_head);
160 struct exec_entry {
161 	LIST_ENTRY(exec_entry)	ex_list;
162 	SLIST_ENTRY(exec_entry)	ex_slist;
163 	const struct execsw	*ex_sw;
164 };
165 
166 #ifndef __HAVE_SYSCALL_INTERN
167 void	syscall(void);
168 #endif
169 
170 /* NetBSD emul struct */
171 struct emul emul_netbsd = {
172 	.e_name =		"netbsd",
173 	.e_path =		NULL,
174 #ifndef __HAVE_MINIMAL_EMUL
175 	.e_flags =		EMUL_HAS_SYS___syscall,
176 	.e_errno =		NULL,
177 	.e_nosys =		SYS_syscall,
178 	.e_nsysent =		SYS_NSYSENT,
179 #endif
180 	.e_sysent =		sysent,
181 #ifdef SYSCALL_DEBUG
182 	.e_syscallnames =	syscallnames,
183 #else
184 	.e_syscallnames =	NULL,
185 #endif
186 	.e_sendsig =		sendsig,
187 	.e_trapsignal =		trapsignal,
188 	.e_tracesig =		NULL,
189 	.e_sigcode =		NULL,
190 	.e_esigcode =		NULL,
191 	.e_sigobject =		NULL,
192 	.e_setregs =		setregs,
193 	.e_proc_exec =		NULL,
194 	.e_proc_fork =		NULL,
195 	.e_proc_exit =		NULL,
196 	.e_lwp_fork =		NULL,
197 	.e_lwp_exit =		NULL,
198 #ifdef __HAVE_SYSCALL_INTERN
199 	.e_syscall_intern =	syscall_intern,
200 #else
201 	.e_syscall =		syscall,
202 #endif
203 	.e_sysctlovly =		NULL,
204 	.e_fault =		NULL,
205 	.e_vm_default_addr =	uvm_default_mapaddr,
206 	.e_usertrap =		NULL,
207 	.e_ucsize =		sizeof(ucontext_t),
208 	.e_startlwp =		startlwp
209 };
210 
211 /*
212  * Exec lock. Used to control access to execsw[] structures.
213  * This must not be static so that netbsd32 can access it, too.
214  */
215 krwlock_t exec_lock;
216 
217 static kmutex_t sigobject_lock;
218 
219 /*
220  * Data used between a loadvm and execve part of an "exec" operation
221  */
222 struct execve_data {
223 	struct exec_package	ed_pack;
224 	struct pathbuf		*ed_pathbuf;
225 	struct vattr		ed_attr;
226 	struct ps_strings	ed_arginfo;
227 	char			*ed_argp;
228 	const char		*ed_pathstring;
229 	char			*ed_resolvedpathbuf;
230 	size_t			ed_ps_strings_sz;
231 	int			ed_szsigcode;
232 	long			ed_argc;
233 	long			ed_envc;
234 };
235 
236 /*
237  * data passed from parent lwp to child during a posix_spawn()
238  */
239 struct spawn_exec_data {
240 	struct execve_data	sed_exec;
241 	struct posix_spawn_file_actions
242 				*sed_actions;
243 	struct posix_spawnattr	*sed_attrs;
244 	struct proc		*sed_parent;
245 	kcondvar_t		sed_cv_child_ready;
246 	kmutex_t		sed_mtx_child;
247 	int			sed_error;
248 	volatile uint32_t	sed_refcnt;
249 };
250 
251 static void *
252 exec_pool_alloc(struct pool *pp, int flags)
253 {
254 
255 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
256 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
257 }
258 
259 static void
260 exec_pool_free(struct pool *pp, void *addr)
261 {
262 
263 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
264 }
265 
266 static struct pool exec_pool;
267 
268 static struct pool_allocator exec_palloc = {
269 	.pa_alloc = exec_pool_alloc,
270 	.pa_free = exec_pool_free,
271 	.pa_pagesz = NCARGS
272 };
273 
274 /*
275  * check exec:
276  * given an "executable" described in the exec package's namei info,
277  * see what we can do with it.
278  *
279  * ON ENTRY:
280  *	exec package with appropriate namei info
281  *	lwp pointer of exec'ing lwp
282  *	NO SELF-LOCKED VNODES
283  *
284  * ON EXIT:
285  *	error:	nothing held, etc.  exec header still allocated.
286  *	ok:	filled exec package, executable's vnode (unlocked).
287  *
288  * EXEC SWITCH ENTRY:
289  * 	Locked vnode to check, exec package, proc.
290  *
291  * EXEC SWITCH EXIT:
292  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
293  *	error:	destructive:
294  *			everything deallocated execept exec header.
295  *		non-destructive:
296  *			error code, executable's vnode (unlocked),
297  *			exec header unmodified.
298  */
299 int
300 /*ARGSUSED*/
301 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
302 {
303 	int		error, i;
304 	struct vnode	*vp;
305 	struct nameidata nd;
306 	size_t		resid;
307 
308 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
309 
310 	/* first get the vnode */
311 	if ((error = namei(&nd)) != 0)
312 		return error;
313 	epp->ep_vp = vp = nd.ni_vp;
314 	/* this cannot overflow as both are size PATH_MAX */
315 	strcpy(epp->ep_resolvedname, nd.ni_pnbuf);
316 
317 #ifdef DIAGNOSTIC
318 	/* paranoia (take this out once namei stuff stabilizes) */
319 	memset(nd.ni_pnbuf, '~', PATH_MAX);
320 #endif
321 
322 	/* check access and type */
323 	if (vp->v_type != VREG) {
324 		error = EACCES;
325 		goto bad1;
326 	}
327 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
328 		goto bad1;
329 
330 	/* get attributes */
331 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
332 		goto bad1;
333 
334 	/* Check mount point */
335 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
336 		error = EACCES;
337 		goto bad1;
338 	}
339 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
340 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
341 
342 	/* try to open it */
343 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
344 		goto bad1;
345 
346 	/* unlock vp, since we need it unlocked from here on out. */
347 	VOP_UNLOCK(vp);
348 
349 #if NVERIEXEC > 0
350 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
351 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
352 	    NULL);
353 	if (error)
354 		goto bad2;
355 #endif /* NVERIEXEC > 0 */
356 
357 #ifdef PAX_SEGVGUARD
358 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
359 	if (error)
360 		goto bad2;
361 #endif /* PAX_SEGVGUARD */
362 
363 	/* now we have the file, get the exec header */
364 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
365 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
366 	if (error)
367 		goto bad2;
368 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
369 
370 	/*
371 	 * Set up default address space limits.  Can be overridden
372 	 * by individual exec packages.
373 	 *
374 	 * XXX probably should be all done in the exec packages.
375 	 */
376 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
377 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
378 	/*
379 	 * set up the vmcmds for creation of the process
380 	 * address space
381 	 */
382 	error = ENOEXEC;
383 	for (i = 0; i < nexecs; i++) {
384 		int newerror;
385 
386 		epp->ep_esch = execsw[i];
387 		newerror = (*execsw[i]->es_makecmds)(l, epp);
388 
389 		if (!newerror) {
390 			/* Seems ok: check that entry point is not too high */
391 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
392 #ifdef DIAGNOSTIC
393 				printf("%s: rejecting %p due to "
394 				    "too high entry address (> %p)\n",
395 					 __func__, (void *)epp->ep_entry,
396 					 (void *)epp->ep_vm_maxaddr);
397 #endif
398 				error = ENOEXEC;
399 				break;
400 			}
401 			/* Seems ok: check that entry point is not too low */
402 			if (epp->ep_entry < epp->ep_vm_minaddr) {
403 #ifdef DIAGNOSTIC
404 				printf("%s: rejecting %p due to "
405 				    "too low entry address (< %p)\n",
406 				     __func__, (void *)epp->ep_entry,
407 				     (void *)epp->ep_vm_minaddr);
408 #endif
409 				error = ENOEXEC;
410 				break;
411 			}
412 
413 			/* check limits */
414 			if ((epp->ep_tsize > MAXTSIZ) ||
415 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
416 						    [RLIMIT_DATA].rlim_cur)) {
417 #ifdef DIAGNOSTIC
418 				printf("%s: rejecting due to "
419 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
420 				    __func__,
421 				    (unsigned long long)epp->ep_tsize,
422 				    (unsigned long long)MAXTSIZ,
423 				    (unsigned long long)epp->ep_dsize,
424 				    (unsigned long long)
425 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
426 #endif
427 				error = ENOMEM;
428 				break;
429 			}
430 			return 0;
431 		}
432 
433 		if (epp->ep_emul_root != NULL) {
434 			vrele(epp->ep_emul_root);
435 			epp->ep_emul_root = NULL;
436 		}
437 		if (epp->ep_interp != NULL) {
438 			vrele(epp->ep_interp);
439 			epp->ep_interp = NULL;
440 		}
441 
442 		/* make sure the first "interesting" error code is saved. */
443 		if (error == ENOEXEC)
444 			error = newerror;
445 
446 		if (epp->ep_flags & EXEC_DESTR)
447 			/* Error from "#!" code, tidied up by recursive call */
448 			return error;
449 	}
450 
451 	/* not found, error */
452 
453 	/*
454 	 * free any vmspace-creation commands,
455 	 * and release their references
456 	 */
457 	kill_vmcmds(&epp->ep_vmcmds);
458 
459 bad2:
460 	/*
461 	 * close and release the vnode, restore the old one, free the
462 	 * pathname buf, and punt.
463 	 */
464 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
465 	VOP_CLOSE(vp, FREAD, l->l_cred);
466 	vput(vp);
467 	return error;
468 
469 bad1:
470 	/*
471 	 * free the namei pathname buffer, and put the vnode
472 	 * (which we don't yet have open).
473 	 */
474 	vput(vp);				/* was still locked */
475 	return error;
476 }
477 
478 #ifdef __MACHINE_STACK_GROWS_UP
479 #define STACK_PTHREADSPACE NBPG
480 #else
481 #define STACK_PTHREADSPACE 0
482 #endif
483 
484 static int
485 execve_fetch_element(char * const *array, size_t index, char **value)
486 {
487 	return copyin(array + index, value, sizeof(*value));
488 }
489 
490 /*
491  * exec system call
492  */
493 int
494 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
495 {
496 	/* {
497 		syscallarg(const char *)	path;
498 		syscallarg(char * const *)	argp;
499 		syscallarg(char * const *)	envp;
500 	} */
501 
502 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
503 	    SCARG(uap, envp), execve_fetch_element);
504 }
505 
506 int
507 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
508     register_t *retval)
509 {
510 	/* {
511 		syscallarg(int)			fd;
512 		syscallarg(char * const *)	argp;
513 		syscallarg(char * const *)	envp;
514 	} */
515 
516 	return ENOSYS;
517 }
518 
519 /*
520  * Load modules to try and execute an image that we do not understand.
521  * If no execsw entries are present, we load those likely to be needed
522  * in order to run native images only.  Otherwise, we autoload all
523  * possible modules that could let us run the binary.  XXX lame
524  */
525 static void
526 exec_autoload(void)
527 {
528 #ifdef MODULAR
529 	static const char * const native[] = {
530 		"exec_elf32",
531 		"exec_elf64",
532 		"exec_script",
533 		NULL
534 	};
535 	static const char * const compat[] = {
536 		"exec_elf32",
537 		"exec_elf64",
538 		"exec_script",
539 		"exec_aout",
540 		"exec_coff",
541 		"exec_ecoff",
542 		"compat_aoutm68k",
543 		"compat_freebsd",
544 		"compat_ibcs2",
545 		"compat_linux",
546 		"compat_linux32",
547 		"compat_netbsd32",
548 		"compat_sunos",
549 		"compat_sunos32",
550 		"compat_svr4",
551 		"compat_svr4_32",
552 		"compat_ultrix",
553 		NULL
554 	};
555 	char const * const *list;
556 	int i;
557 
558 	list = (nexecs == 0 ? native : compat);
559 	for (i = 0; list[i] != NULL; i++) {
560 		if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) {
561 		    	continue;
562 		}
563 	   	yield();
564 	}
565 #endif
566 }
567 
568 static int
569 execve_loadvm(struct lwp *l, const char *path, char * const *args,
570 	char * const *envs, execve_fetch_element_t fetch_element,
571 	struct execve_data * restrict data)
572 {
573 	int			error;
574 	struct proc		*p;
575 	char			*dp, *sp;
576 	size_t			i, len;
577 	struct exec_fakearg	*tmpfap;
578 	u_int			modgen;
579 
580 	KASSERT(data != NULL);
581 
582 	p = l->l_proc;
583  	modgen = 0;
584 
585 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
586 
587 	/*
588 	 * Check if we have exceeded our number of processes limit.
589 	 * This is so that we handle the case where a root daemon
590 	 * forked, ran setuid to become the desired user and is trying
591 	 * to exec. The obvious place to do the reference counting check
592 	 * is setuid(), but we don't do the reference counting check there
593 	 * like other OS's do because then all the programs that use setuid()
594 	 * must be modified to check the return code of setuid() and exit().
595 	 * It is dangerous to make setuid() fail, because it fails open and
596 	 * the program will continue to run as root. If we make it succeed
597 	 * and return an error code, again we are not enforcing the limit.
598 	 * The best place to enforce the limit is here, when the process tries
599 	 * to execute a new image, because eventually the process will need
600 	 * to call exec in order to do something useful.
601 	 */
602  retry:
603 	if (p->p_flag & PK_SUGID) {
604 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
605 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
606 		     &p->p_rlimit[RLIMIT_NPROC],
607 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
608 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
609 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
610 		return EAGAIN;
611 	}
612 
613 	/*
614 	 * Drain existing references and forbid new ones.  The process
615 	 * should be left alone until we're done here.  This is necessary
616 	 * to avoid race conditions - e.g. in ptrace() - that might allow
617 	 * a local user to illicitly obtain elevated privileges.
618 	 */
619 	rw_enter(&p->p_reflock, RW_WRITER);
620 
621 	/*
622 	 * Init the namei data to point the file user's program name.
623 	 * This is done here rather than in check_exec(), so that it's
624 	 * possible to override this settings if any of makecmd/probe
625 	 * functions call check_exec() recursively - for example,
626 	 * see exec_script_makecmds().
627 	 */
628 	error = pathbuf_copyin(path, &data->ed_pathbuf);
629 	if (error) {
630 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
631 		    path, error));
632 		goto clrflg;
633 	}
634 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
635 
636 	data->ed_resolvedpathbuf = PNBUF_GET();
637 #ifdef DIAGNOSTIC
638 	strcpy(data->ed_resolvedpathbuf, "/wrong");
639 #endif
640 
641 	/*
642 	 * initialize the fields of the exec package.
643 	 */
644 	data->ed_pack.ep_name = path;
645 	data->ed_pack.ep_kname = data->ed_pathstring;
646 	data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf;
647 	data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
648 	data->ed_pack.ep_hdrlen = exec_maxhdrsz;
649 	data->ed_pack.ep_hdrvalid = 0;
650 	data->ed_pack.ep_emul_arg = NULL;
651 	data->ed_pack.ep_emul_arg_free = NULL;
652 	data->ed_pack.ep_vmcmds.evs_cnt = 0;
653 	data->ed_pack.ep_vmcmds.evs_used = 0;
654 	data->ed_pack.ep_vap = &data->ed_attr;
655 	data->ed_pack.ep_flags = 0;
656 	data->ed_pack.ep_emul_root = NULL;
657 	data->ed_pack.ep_interp = NULL;
658 	data->ed_pack.ep_esch = NULL;
659 	data->ed_pack.ep_pax_flags = 0;
660 
661 	rw_enter(&exec_lock, RW_READER);
662 
663 	/* see if we can run it. */
664 	if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) {
665 		if (error != ENOENT) {
666 			DPRINTF(("%s: check exec failed %d\n",
667 			    __func__, error));
668 		}
669 		goto freehdr;
670 	}
671 
672 	/* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
673 
674 	/* allocate an argument buffer */
675 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
676 	KASSERT(data->ed_argp != NULL);
677 	dp = data->ed_argp;
678 	data->ed_argc = 0;
679 
680 	/* copy the fake args list, if there's one, freeing it as we go */
681 	if (data->ed_pack.ep_flags & EXEC_HASARGL) {
682 		tmpfap = data->ed_pack.ep_fa;
683 		while (tmpfap->fa_arg != NULL) {
684 			const char *cp;
685 
686 			cp = tmpfap->fa_arg;
687 			while (*cp)
688 				*dp++ = *cp++;
689 			*dp++ = '\0';
690 			ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
691 
692 			kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
693 			tmpfap++; data->ed_argc++;
694 		}
695 		kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len);
696 		data->ed_pack.ep_flags &= ~EXEC_HASARGL;
697 	}
698 
699 	/* Now get argv & environment */
700 	if (args == NULL) {
701 		DPRINTF(("%s: null args\n", __func__));
702 		error = EINVAL;
703 		goto bad;
704 	}
705 	/* 'i' will index the argp/envp element to be retrieved */
706 	i = 0;
707 	if (data->ed_pack.ep_flags & EXEC_SKIPARG)
708 		i++;
709 
710 	while (1) {
711 		len = data->ed_argp + ARG_MAX - dp;
712 		if ((error = (*fetch_element)(args, i, &sp)) != 0) {
713 			DPRINTF(("%s: fetch_element args %d\n",
714 			    __func__, error));
715 			goto bad;
716 		}
717 		if (!sp)
718 			break;
719 		if ((error = copyinstr(sp, dp, len, &len)) != 0) {
720 			DPRINTF(("%s: copyinstr args %d\n", __func__, error));
721 			if (error == ENAMETOOLONG)
722 				error = E2BIG;
723 			goto bad;
724 		}
725 		ktrexecarg(dp, len - 1);
726 		dp += len;
727 		i++;
728 		data->ed_argc++;
729 	}
730 
731 	data->ed_envc = 0;
732 	/* environment need not be there */
733 	if (envs != NULL) {
734 		i = 0;
735 		while (1) {
736 			len = data->ed_argp + ARG_MAX - dp;
737 			if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
738 				DPRINTF(("%s: fetch_element env %d\n",
739 				    __func__, error));
740 				goto bad;
741 			}
742 			if (!sp)
743 				break;
744 			if ((error = copyinstr(sp, dp, len, &len)) != 0) {
745 				DPRINTF(("%s: copyinstr env %d\n",
746 				    __func__, error));
747 				if (error == ENAMETOOLONG)
748 					error = E2BIG;
749 				goto bad;
750 			}
751 
752 			ktrexecenv(dp, len - 1);
753 			dp += len;
754 			i++;
755 			data->ed_envc++;
756 		}
757 	}
758 
759 	dp = (char *) ALIGN(dp);
760 
761 	data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode -
762 	    data->ed_pack.ep_esch->es_emul->e_sigcode;
763 
764 #ifdef __MACHINE_STACK_GROWS_UP
765 /* See big comment lower down */
766 #define	RTLD_GAP	32
767 #else
768 #define	RTLD_GAP	0
769 #endif
770 
771 	/* Now check if args & environ fit into new stack */
772 	if (data->ed_pack.ep_flags & EXEC_32) {
773 		data->ed_ps_strings_sz = sizeof(struct ps_strings32);
774 		len = ((data->ed_argc + data->ed_envc + 2 +
775 		    data->ed_pack.ep_esch->es_arglen) *
776 		    sizeof(int) + sizeof(int) + dp + RTLD_GAP +
777 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
778 		    - data->ed_argp;
779 	} else {
780 		data->ed_ps_strings_sz = sizeof(struct ps_strings);
781 		len = ((data->ed_argc + data->ed_envc + 2 +
782 		    data->ed_pack.ep_esch->es_arglen) *
783 		    sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
784 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
785 		    - data->ed_argp;
786 	}
787 
788 #ifdef PAX_ASLR
789 	if (pax_aslr_active(l))
790 		len += (cprng_fast32() % PAGE_SIZE);
791 #endif /* PAX_ASLR */
792 
793 	/* make the stack "safely" aligned */
794 	len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES);
795 
796 	if (len > data->ed_pack.ep_ssize) {
797 		/* in effect, compare to initial limit */
798 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
799 		goto bad;
800 	}
801 	/* adjust "active stack depth" for process VSZ */
802 	data->ed_pack.ep_ssize = len;
803 
804 	return 0;
805 
806  bad:
807 	/* free the vmspace-creation commands, and release their references */
808 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
809 	/* kill any opened file descriptor, if necessary */
810 	if (data->ed_pack.ep_flags & EXEC_HASFD) {
811 		data->ed_pack.ep_flags &= ~EXEC_HASFD;
812 		fd_close(data->ed_pack.ep_fd);
813 	}
814 	/* close and put the exec'd file */
815 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
816 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
817 	vput(data->ed_pack.ep_vp);
818 	pool_put(&exec_pool, data->ed_argp);
819 
820  freehdr:
821 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
822 	if (data->ed_pack.ep_emul_root != NULL)
823 		vrele(data->ed_pack.ep_emul_root);
824 	if (data->ed_pack.ep_interp != NULL)
825 		vrele(data->ed_pack.ep_interp);
826 
827 	rw_exit(&exec_lock);
828 
829 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
830 	pathbuf_destroy(data->ed_pathbuf);
831 	PNBUF_PUT(data->ed_resolvedpathbuf);
832 
833  clrflg:
834 	rw_exit(&p->p_reflock);
835 
836 	if (modgen != module_gen && error == ENOEXEC) {
837 		modgen = module_gen;
838 		exec_autoload();
839 		goto retry;
840 	}
841 
842 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
843 	return error;
844 }
845 
846 static void
847 execve_free_data(struct execve_data *data)
848 {
849 
850 	/* free the vmspace-creation commands, and release their references */
851 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
852 	/* kill any opened file descriptor, if necessary */
853 	if (data->ed_pack.ep_flags & EXEC_HASFD) {
854 		data->ed_pack.ep_flags &= ~EXEC_HASFD;
855 		fd_close(data->ed_pack.ep_fd);
856 	}
857 
858 	/* close and put the exec'd file */
859 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
860 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, curlwp->l_cred);
861 	vput(data->ed_pack.ep_vp);
862 	pool_put(&exec_pool, data->ed_argp);
863 
864 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
865 	if (data->ed_pack.ep_emul_root != NULL)
866 		vrele(data->ed_pack.ep_emul_root);
867 	if (data->ed_pack.ep_interp != NULL)
868 		vrele(data->ed_pack.ep_interp);
869 
870 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
871 	pathbuf_destroy(data->ed_pathbuf);
872 	PNBUF_PUT(data->ed_resolvedpathbuf);
873 }
874 
875 static int
876 execve_runproc(struct lwp *l, struct execve_data * restrict data,
877 	bool no_local_exec_lock, bool is_spawn)
878 {
879 	int error = 0;
880 	struct proc		*p;
881 	size_t			i;
882 	char			*stack, *dp;
883 	const char		*commandname;
884 	struct ps_strings32	arginfo32;
885 	struct exec_vmcmd	*base_vcp;
886 	void			*aip;
887 	struct vmspace		*vm;
888 	ksiginfo_t		ksi;
889 	ksiginfoq_t		kq;
890 
891 	/*
892 	 * In case of a posix_spawn operation, the child doing the exec
893 	 * might not hold the reader lock on exec_lock, but the parent
894 	 * will do this instead.
895 	 */
896 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
897 	KASSERT(data != NULL);
898 	if (data == NULL)
899 		return (EINVAL);
900 
901 	p = l->l_proc;
902 	if (no_local_exec_lock)
903 		KASSERT(is_spawn);
904 
905 	base_vcp = NULL;
906 
907 	if (data->ed_pack.ep_flags & EXEC_32)
908 		aip = &arginfo32;
909 	else
910 		aip = &data->ed_arginfo;
911 
912 	/* Get rid of other LWPs. */
913 	if (p->p_nlwps > 1) {
914 		mutex_enter(p->p_lock);
915 		exit_lwps(l);
916 		mutex_exit(p->p_lock);
917 	}
918 	KDASSERT(p->p_nlwps == 1);
919 
920 	/* Destroy any lwpctl info. */
921 	if (p->p_lwpctl != NULL)
922 		lwp_ctl_exit();
923 
924 	/* Remove POSIX timers */
925 	timers_free(p, TIMERS_POSIX);
926 
927 	/*
928 	 * Do whatever is necessary to prepare the address space
929 	 * for remapping.  Note that this might replace the current
930 	 * vmspace with another!
931 	 */
932 	if (is_spawn)
933 		uvmspace_spawn(l, data->ed_pack.ep_vm_minaddr,
934 		    data->ed_pack.ep_vm_maxaddr);
935 	else
936 		uvmspace_exec(l, data->ed_pack.ep_vm_minaddr,
937 		    data->ed_pack.ep_vm_maxaddr);
938 
939 	/* record proc's vnode, for use by procfs and others */
940         if (p->p_textvp)
941                 vrele(p->p_textvp);
942 	vref(data->ed_pack.ep_vp);
943 	p->p_textvp = data->ed_pack.ep_vp;
944 
945 	/* Now map address space */
946 	vm = p->p_vmspace;
947 	vm->vm_taddr = (void *)data->ed_pack.ep_taddr;
948 	vm->vm_tsize = btoc(data->ed_pack.ep_tsize);
949 	vm->vm_daddr = (void*)data->ed_pack.ep_daddr;
950 	vm->vm_dsize = btoc(data->ed_pack.ep_dsize);
951 	vm->vm_ssize = btoc(data->ed_pack.ep_ssize);
952 	vm->vm_issize = 0;
953 	vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr;
954 	vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr;
955 
956 #ifdef PAX_ASLR
957 	pax_aslr_init(l, vm);
958 #endif /* PAX_ASLR */
959 
960 	/* create the new process's VM space by running the vmcmds */
961 #ifdef DIAGNOSTIC
962 	if (data->ed_pack.ep_vmcmds.evs_used == 0)
963 		panic("%s: no vmcmds", __func__);
964 #endif
965 
966 #ifdef DEBUG_EXEC
967 	{
968 		size_t j;
969 		struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0];
970 		DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used));
971 		for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
972 			DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
973 			    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
974 			    PRIxVSIZE" prot=0%o flags=%d\n", j,
975 			    vp[j].ev_proc == vmcmd_map_pagedvn ?
976 			    "pagedvn" :
977 			    vp[j].ev_proc == vmcmd_map_readvn ?
978 			    "readvn" :
979 			    vp[j].ev_proc == vmcmd_map_zero ?
980 			    "zero" : "*unknown*",
981 			    vp[j].ev_addr, vp[j].ev_len,
982 			    vp[j].ev_offset, vp[j].ev_prot,
983 			    vp[j].ev_flags));
984 		}
985 	}
986 #endif	/* DEBUG_EXEC */
987 
988 	for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) {
989 		struct exec_vmcmd *vcp;
990 
991 		vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i];
992 		if (vcp->ev_flags & VMCMD_RELATIVE) {
993 #ifdef DIAGNOSTIC
994 			if (base_vcp == NULL)
995 				panic("%s: relative vmcmd with no base",
996 				    __func__);
997 			if (vcp->ev_flags & VMCMD_BASE)
998 				panic("%s: illegal base & relative vmcmd",
999 				    __func__);
1000 #endif
1001 			vcp->ev_addr += base_vcp->ev_addr;
1002 		}
1003 		error = (*vcp->ev_proc)(l, vcp);
1004 #ifdef DEBUG_EXEC
1005 		if (error) {
1006 			size_t j;
1007 			struct exec_vmcmd *vp =
1008 			    &data->ed_pack.ep_vmcmds.evs_cmds[0];
1009 			DPRINTF(("vmcmds %zu/%u, error %d\n", i,
1010 			    data->ed_pack.ep_vmcmds.evs_used, error));
1011 			for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
1012 				DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
1013 				    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
1014 				    PRIxVSIZE" prot=0%o flags=%d\n", j,
1015 				    vp[j].ev_proc == vmcmd_map_pagedvn ?
1016 				    "pagedvn" :
1017 				    vp[j].ev_proc == vmcmd_map_readvn ?
1018 				    "readvn" :
1019 				    vp[j].ev_proc == vmcmd_map_zero ?
1020 				    "zero" : "*unknown*",
1021 				    vp[j].ev_addr, vp[j].ev_len,
1022 				    vp[j].ev_offset, vp[j].ev_prot,
1023 				    vp[j].ev_flags));
1024 				if (j == i)
1025 					DPRINTF(("     ^--- failed\n"));
1026 			}
1027 		}
1028 #endif /* DEBUG_EXEC */
1029 		if (vcp->ev_flags & VMCMD_BASE)
1030 			base_vcp = vcp;
1031 	}
1032 
1033 	/* free the vmspace-creation commands, and release their references */
1034 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
1035 
1036 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
1037 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
1038 	vput(data->ed_pack.ep_vp);
1039 
1040 	/* if an error happened, deallocate and punt */
1041 	if (error) {
1042 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
1043 		goto exec_abort;
1044 	}
1045 
1046 	/* remember information about the process */
1047 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
1048 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
1049 
1050 	/* set command name & other accounting info */
1051 	commandname = strrchr(data->ed_pack.ep_resolvedname, '/');
1052 	if (commandname != NULL) {
1053 		commandname++;
1054 	} else {
1055 		commandname = data->ed_pack.ep_resolvedname;
1056 	}
1057 	i = min(strlen(commandname), MAXCOMLEN);
1058 	(void)memcpy(p->p_comm, commandname, i);
1059 	p->p_comm[i] = '\0';
1060 
1061 	dp = PNBUF_GET();
1062 	/*
1063 	 * If the path starts with /, we don't need to do any work.
1064 	 * This handles the majority of the cases.
1065 	 * In the future perhaps we could canonicalize it?
1066 	 */
1067 	if (data->ed_pathstring[0] == '/')
1068 		(void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring,
1069 		    MAXPATHLEN);
1070 #ifdef notyet
1071 	/*
1072 	 * Although this works most of the time [since the entry was just
1073 	 * entered in the cache] we don't use it because it theoretically
1074 	 * can fail and it is not the cleanest interface, because there
1075 	 * could be races. When the namei cache is re-written, this can
1076 	 * be changed to use the appropriate function.
1077 	 */
1078 	else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
1079 		data->ed_pack.ep_path = dp;
1080 #endif
1081 	else {
1082 #ifdef notyet
1083 		printf("Cannot get path for pid %d [%s] (error %d)\n",
1084 		    (int)p->p_pid, p->p_comm, error);
1085 #endif
1086 		data->ed_pack.ep_path = NULL;
1087 		PNBUF_PUT(dp);
1088 	}
1089 
1090 	stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1091 		STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
1092 		data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
1093 
1094 #ifdef __MACHINE_STACK_GROWS_UP
1095 	/*
1096 	 * The copyargs call always copies into lower addresses
1097 	 * first, moving towards higher addresses, starting with
1098 	 * the stack pointer that we give.  When the stack grows
1099 	 * down, this puts argc/argv/envp very shallow on the
1100 	 * stack, right at the first user stack pointer.
1101 	 * When the stack grows up, the situation is reversed.
1102 	 *
1103 	 * Normally, this is no big deal.  But the ld_elf.so _rtld()
1104 	 * function expects to be called with a single pointer to
1105 	 * a region that has a few words it can stash values into,
1106 	 * followed by argc/argv/envp.  When the stack grows down,
1107 	 * it's easy to decrement the stack pointer a little bit to
1108 	 * allocate the space for these few words and pass the new
1109 	 * stack pointer to _rtld.  When the stack grows up, however,
1110 	 * a few words before argc is part of the signal trampoline, XXX
1111 	 * so we have a problem.
1112 	 *
1113 	 * Instead of changing how _rtld works, we take the easy way
1114 	 * out and steal 32 bytes before we call copyargs.
1115 	 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
1116 	 */
1117 	stack += RTLD_GAP;
1118 #endif /* __MACHINE_STACK_GROWS_UP */
1119 
1120 	/* Now copy argc, args & environ to new stack */
1121 	error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack,
1122 	    &data->ed_arginfo, &stack, data->ed_argp);
1123 
1124 	if (data->ed_pack.ep_path) {
1125 		PNBUF_PUT(data->ed_pack.ep_path);
1126 		data->ed_pack.ep_path = NULL;
1127 	}
1128 	if (error) {
1129 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1130 		goto exec_abort;
1131 	}
1132 	/* Move the stack back to original point */
1133 	stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize);
1134 
1135 	/* fill process ps_strings info */
1136 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1137 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1138 
1139 	if (data->ed_pack.ep_flags & EXEC_32) {
1140 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1141 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1142 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1143 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1144 	}
1145 
1146 	/* copy out the process's ps_strings structure */
1147 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1148 	    != 0) {
1149 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1150 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1151 		goto exec_abort;
1152 	}
1153 
1154 	cwdexec(p);
1155 	fd_closeexec();		/* handle close on exec */
1156 
1157 	if (__predict_false(ktrace_on))
1158 		fd_ktrexecfd();
1159 
1160 	execsigs(p);		/* reset catched signals */
1161 
1162 	l->l_ctxlink = NULL;	/* reset ucontext link */
1163 
1164 
1165 	p->p_acflag &= ~AFORK;
1166 	mutex_enter(p->p_lock);
1167 	p->p_flag |= PK_EXEC;
1168 	mutex_exit(p->p_lock);
1169 
1170 	/*
1171 	 * Stop profiling.
1172 	 */
1173 	if ((p->p_stflag & PST_PROFIL) != 0) {
1174 		mutex_spin_enter(&p->p_stmutex);
1175 		stopprofclock(p);
1176 		mutex_spin_exit(&p->p_stmutex);
1177 	}
1178 
1179 	/*
1180 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1181 	 * exited and exec()/exit() are the only places it will be cleared.
1182 	 */
1183 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1184 #if 0
1185 		lwp_t *lp;
1186 
1187 		mutex_enter(proc_lock);
1188 		lp = p->p_vforklwp;
1189 		p->p_vforklwp = NULL;
1190 
1191 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1192 		p->p_lflag &= ~PL_PPWAIT;
1193 
1194 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1195 		cv_broadcast(&lp->l_waitcv);
1196 		mutex_exit(proc_lock);
1197 #else
1198 		mutex_enter(proc_lock);
1199 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1200 		p->p_lflag &= ~PL_PPWAIT;
1201 		cv_broadcast(&p->p_pptr->p_waitcv);
1202 		mutex_exit(proc_lock);
1203 #endif
1204 	}
1205 
1206 	/*
1207 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
1208 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
1209 	 * out additional references on the process for the moment.
1210 	 */
1211 	if ((p->p_slflag & PSL_TRACED) == 0 &&
1212 
1213 	    (((data->ed_attr.va_mode & S_ISUID) != 0 &&
1214 	      kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
1215 
1216 	     ((data->ed_attr.va_mode & S_ISGID) != 0 &&
1217 	      kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
1218 		/*
1219 		 * Mark the process as SUGID before we do
1220 		 * anything that might block.
1221 		 */
1222 		proc_crmod_enter();
1223 		proc_crmod_leave(NULL, NULL, true);
1224 
1225 		/* Make sure file descriptors 0..2 are in use. */
1226 		if ((error = fd_checkstd()) != 0) {
1227 			DPRINTF(("%s: fdcheckstd failed %d\n",
1228 			    __func__, error));
1229 			goto exec_abort;
1230 		}
1231 
1232 		/*
1233 		 * Copy the credential so other references don't see our
1234 		 * changes.
1235 		 */
1236 		l->l_cred = kauth_cred_copy(l->l_cred);
1237 #ifdef KTRACE
1238 		/*
1239 		 * If the persistent trace flag isn't set, turn off.
1240 		 */
1241 		if (p->p_tracep) {
1242 			mutex_enter(&ktrace_lock);
1243 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1244 				ktrderef(p);
1245 			mutex_exit(&ktrace_lock);
1246 		}
1247 #endif
1248 		if (data->ed_attr.va_mode & S_ISUID)
1249 			kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
1250 		if (data->ed_attr.va_mode & S_ISGID)
1251 			kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
1252 	} else {
1253 		if (kauth_cred_geteuid(l->l_cred) ==
1254 		    kauth_cred_getuid(l->l_cred) &&
1255 		    kauth_cred_getegid(l->l_cred) ==
1256 		    kauth_cred_getgid(l->l_cred))
1257 			p->p_flag &= ~PK_SUGID;
1258 	}
1259 
1260 	/*
1261 	 * Copy the credential so other references don't see our changes.
1262 	 * Test to see if this is necessary first, since in the common case
1263 	 * we won't need a private reference.
1264 	 */
1265 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1266 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1267 		l->l_cred = kauth_cred_copy(l->l_cred);
1268 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1269 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1270 	}
1271 
1272 	/* Update the master credentials. */
1273 	if (l->l_cred != p->p_cred) {
1274 		kauth_cred_t ocred;
1275 
1276 		kauth_cred_hold(l->l_cred);
1277 		mutex_enter(p->p_lock);
1278 		ocred = p->p_cred;
1279 		p->p_cred = l->l_cred;
1280 		mutex_exit(p->p_lock);
1281 		kauth_cred_free(ocred);
1282 	}
1283 
1284 #if defined(__HAVE_RAS)
1285 	/*
1286 	 * Remove all RASs from the address space.
1287 	 */
1288 	ras_purgeall();
1289 #endif
1290 
1291 	doexechooks(p);
1292 
1293 	/* setup new registers and do misc. setup. */
1294 	(*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack,
1295 	     (vaddr_t)stack);
1296 	if (data->ed_pack.ep_esch->es_setregs)
1297 		(*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack,
1298 		    (vaddr_t)stack);
1299 
1300 	/* Provide a consistent LWP private setting */
1301 	(void)lwp_setprivate(l, NULL);
1302 
1303 	/* Discard all PCU state; need to start fresh */
1304 	pcu_discard_all(l);
1305 
1306 	/* map the process's signal trampoline code */
1307 	if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) {
1308 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1309 		goto exec_abort;
1310 	}
1311 
1312 	pool_put(&exec_pool, data->ed_argp);
1313 
1314 	/* notify others that we exec'd */
1315 	KNOTE(&p->p_klist, NOTE_EXEC);
1316 
1317 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1318 
1319 	SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0);
1320 
1321 	/* The emulation root will usually have been found when we looked
1322 	 * for the elf interpreter (or similar), if not look now. */
1323 	if (data->ed_pack.ep_esch->es_emul->e_path != NULL &&
1324 	    data->ed_pack.ep_emul_root == NULL)
1325 		emul_find_root(l, &data->ed_pack);
1326 
1327 	/* Any old emulation root got removed by fdcloseexec */
1328 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1329 	p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root;
1330 	rw_exit(&p->p_cwdi->cwdi_lock);
1331 	data->ed_pack.ep_emul_root = NULL;
1332 	if (data->ed_pack.ep_interp != NULL)
1333 		vrele(data->ed_pack.ep_interp);
1334 
1335 	/*
1336 	 * Call emulation specific exec hook. This can setup per-process
1337 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1338 	 *
1339 	 * If we are executing process of different emulation than the
1340 	 * original forked process, call e_proc_exit() of the old emulation
1341 	 * first, then e_proc_exec() of new emulation. If the emulation is
1342 	 * same, the exec hook code should deallocate any old emulation
1343 	 * resources held previously by this process.
1344 	 */
1345 	if (p->p_emul && p->p_emul->e_proc_exit
1346 	    && p->p_emul != data->ed_pack.ep_esch->es_emul)
1347 		(*p->p_emul->e_proc_exit)(p);
1348 
1349 	/*
1350 	 * This is now LWP 1.
1351 	 */
1352 	mutex_enter(p->p_lock);
1353 	p->p_nlwpid = 1;
1354 	l->l_lid = 1;
1355 	mutex_exit(p->p_lock);
1356 
1357 	/*
1358 	 * Call exec hook. Emulation code may NOT store reference to anything
1359 	 * from &pack.
1360 	 */
1361 	if (data->ed_pack.ep_esch->es_emul->e_proc_exec)
1362 		(*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack);
1363 
1364 	/* update p_emul, the old value is no longer needed */
1365 	p->p_emul = data->ed_pack.ep_esch->es_emul;
1366 
1367 	/* ...and the same for p_execsw */
1368 	p->p_execsw = data->ed_pack.ep_esch;
1369 
1370 #ifdef __HAVE_SYSCALL_INTERN
1371 	(*p->p_emul->e_syscall_intern)(p);
1372 #endif
1373 	ktremul();
1374 
1375 	/* Allow new references from the debugger/procfs. */
1376 	rw_exit(&p->p_reflock);
1377 	if (!no_local_exec_lock)
1378 		rw_exit(&exec_lock);
1379 
1380 	mutex_enter(proc_lock);
1381 
1382 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1383 		KSI_INIT_EMPTY(&ksi);
1384 		ksi.ksi_signo = SIGTRAP;
1385 		ksi.ksi_lid = l->l_lid;
1386 		kpsignal(p, &ksi, NULL);
1387 	}
1388 
1389 	if (p->p_sflag & PS_STOPEXEC) {
1390 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1391 		p->p_pptr->p_nstopchild++;
1392 		p->p_pptr->p_waited = 0;
1393 		mutex_enter(p->p_lock);
1394 		ksiginfo_queue_init(&kq);
1395 		sigclearall(p, &contsigmask, &kq);
1396 		lwp_lock(l);
1397 		l->l_stat = LSSTOP;
1398 		p->p_stat = SSTOP;
1399 		p->p_nrlwps--;
1400 		lwp_unlock(l);
1401 		mutex_exit(p->p_lock);
1402 		mutex_exit(proc_lock);
1403 		lwp_lock(l);
1404 		mi_switch(l);
1405 		ksiginfo_queue_drain(&kq);
1406 		KERNEL_LOCK(l->l_biglocks, l);
1407 	} else {
1408 		mutex_exit(proc_lock);
1409 	}
1410 
1411 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1412 	pathbuf_destroy(data->ed_pathbuf);
1413 	PNBUF_PUT(data->ed_resolvedpathbuf);
1414 	DPRINTF(("%s finished\n", __func__));
1415 	return (EJUSTRETURN);
1416 
1417  exec_abort:
1418 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1419 	rw_exit(&p->p_reflock);
1420 	if (!no_local_exec_lock)
1421 		rw_exit(&exec_lock);
1422 
1423 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1424 	pathbuf_destroy(data->ed_pathbuf);
1425 	PNBUF_PUT(data->ed_resolvedpathbuf);
1426 
1427 	/*
1428 	 * the old process doesn't exist anymore.  exit gracefully.
1429 	 * get rid of the (new) address space we have created, if any, get rid
1430 	 * of our namei data and vnode, and exit noting failure
1431 	 */
1432 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1433 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1434 
1435 	exec_free_emul_arg(&data->ed_pack);
1436 	pool_put(&exec_pool, data->ed_argp);
1437 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1438 	if (data->ed_pack.ep_emul_root != NULL)
1439 		vrele(data->ed_pack.ep_emul_root);
1440 	if (data->ed_pack.ep_interp != NULL)
1441 		vrele(data->ed_pack.ep_interp);
1442 
1443 	/* Acquire the sched-state mutex (exit1() will release it). */
1444 	if (!is_spawn) {
1445 		mutex_enter(p->p_lock);
1446 		exit1(l, W_EXITCODE(error, SIGABRT));
1447 	}
1448 
1449 	return error;
1450 }
1451 
1452 int
1453 execve1(struct lwp *l, const char *path, char * const *args,
1454     char * const *envs, execve_fetch_element_t fetch_element)
1455 {
1456 	struct execve_data data;
1457 	int error;
1458 
1459 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1460 	if (error)
1461 		return error;
1462 	error = execve_runproc(l, &data, false, false);
1463 	return error;
1464 }
1465 
1466 int
1467 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1468     char **stackp, void *argp)
1469 {
1470 	char	**cpp, *dp, *sp;
1471 	size_t	len;
1472 	void	*nullp;
1473 	long	argc, envc;
1474 	int	error;
1475 
1476 	cpp = (char **)*stackp;
1477 	nullp = NULL;
1478 	argc = arginfo->ps_nargvstr;
1479 	envc = arginfo->ps_nenvstr;
1480 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1481 		COPYPRINTF("", cpp - 1, sizeof(argc));
1482 		return error;
1483 	}
1484 
1485 	dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1486 	sp = argp;
1487 
1488 	/* XXX don't copy them out, remap them! */
1489 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1490 
1491 	for (; --argc >= 0; sp += len, dp += len) {
1492 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1493 			COPYPRINTF("", cpp - 1, sizeof(dp));
1494 			return error;
1495 		}
1496 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1497 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1498 			return error;
1499 		}
1500 	}
1501 
1502 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1503 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1504 		return error;
1505 	}
1506 
1507 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1508 
1509 	for (; --envc >= 0; sp += len, dp += len) {
1510 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1511 			COPYPRINTF("", cpp - 1, sizeof(dp));
1512 			return error;
1513 		}
1514 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1515 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1516 			return error;
1517 		}
1518 
1519 	}
1520 
1521 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1522 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1523 		return error;
1524 	}
1525 
1526 	*stackp = (char *)cpp;
1527 	return 0;
1528 }
1529 
1530 
1531 /*
1532  * Add execsw[] entries.
1533  */
1534 int
1535 exec_add(struct execsw *esp, int count)
1536 {
1537 	struct exec_entry	*it;
1538 	int			i;
1539 
1540 	if (count == 0) {
1541 		return 0;
1542 	}
1543 
1544 	/* Check for duplicates. */
1545 	rw_enter(&exec_lock, RW_WRITER);
1546 	for (i = 0; i < count; i++) {
1547 		LIST_FOREACH(it, &ex_head, ex_list) {
1548 			/* assume unique (makecmds, probe_func, emulation) */
1549 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1550 			    it->ex_sw->u.elf_probe_func ==
1551 			    esp[i].u.elf_probe_func &&
1552 			    it->ex_sw->es_emul == esp[i].es_emul) {
1553 				rw_exit(&exec_lock);
1554 				return EEXIST;
1555 			}
1556 		}
1557 	}
1558 
1559 	/* Allocate new entries. */
1560 	for (i = 0; i < count; i++) {
1561 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1562 		it->ex_sw = &esp[i];
1563 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1564 	}
1565 
1566 	/* update execsw[] */
1567 	exec_init(0);
1568 	rw_exit(&exec_lock);
1569 	return 0;
1570 }
1571 
1572 /*
1573  * Remove execsw[] entry.
1574  */
1575 int
1576 exec_remove(struct execsw *esp, int count)
1577 {
1578 	struct exec_entry	*it, *next;
1579 	int			i;
1580 	const struct proclist_desc *pd;
1581 	proc_t			*p;
1582 
1583 	if (count == 0) {
1584 		return 0;
1585 	}
1586 
1587 	/* Abort if any are busy. */
1588 	rw_enter(&exec_lock, RW_WRITER);
1589 	for (i = 0; i < count; i++) {
1590 		mutex_enter(proc_lock);
1591 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1592 			PROCLIST_FOREACH(p, pd->pd_list) {
1593 				if (p->p_execsw == &esp[i]) {
1594 					mutex_exit(proc_lock);
1595 					rw_exit(&exec_lock);
1596 					return EBUSY;
1597 				}
1598 			}
1599 		}
1600 		mutex_exit(proc_lock);
1601 	}
1602 
1603 	/* None are busy, so remove them all. */
1604 	for (i = 0; i < count; i++) {
1605 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1606 			next = LIST_NEXT(it, ex_list);
1607 			if (it->ex_sw == &esp[i]) {
1608 				LIST_REMOVE(it, ex_list);
1609 				kmem_free(it, sizeof(*it));
1610 				break;
1611 			}
1612 		}
1613 	}
1614 
1615 	/* update execsw[] */
1616 	exec_init(0);
1617 	rw_exit(&exec_lock);
1618 	return 0;
1619 }
1620 
1621 /*
1622  * Initialize exec structures. If init_boot is true, also does necessary
1623  * one-time initialization (it's called from main() that way).
1624  * Once system is multiuser, this should be called with exec_lock held,
1625  * i.e. via exec_{add|remove}().
1626  */
1627 int
1628 exec_init(int init_boot)
1629 {
1630 	const struct execsw 	**sw;
1631 	struct exec_entry	*ex;
1632 	SLIST_HEAD(,exec_entry)	first;
1633 	SLIST_HEAD(,exec_entry)	any;
1634 	SLIST_HEAD(,exec_entry)	last;
1635 	int			i, sz;
1636 
1637 	if (init_boot) {
1638 		/* do one-time initializations */
1639 		rw_init(&exec_lock);
1640 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1641 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1642 		    "execargs", &exec_palloc, IPL_NONE);
1643 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1644 	} else {
1645 		KASSERT(rw_write_held(&exec_lock));
1646 	}
1647 
1648 	/* Sort each entry onto the appropriate queue. */
1649 	SLIST_INIT(&first);
1650 	SLIST_INIT(&any);
1651 	SLIST_INIT(&last);
1652 	sz = 0;
1653 	LIST_FOREACH(ex, &ex_head, ex_list) {
1654 		switch(ex->ex_sw->es_prio) {
1655 		case EXECSW_PRIO_FIRST:
1656 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1657 			break;
1658 		case EXECSW_PRIO_ANY:
1659 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1660 			break;
1661 		case EXECSW_PRIO_LAST:
1662 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1663 			break;
1664 		default:
1665 			panic("%s", __func__);
1666 			break;
1667 		}
1668 		sz++;
1669 	}
1670 
1671 	/*
1672 	 * Create new execsw[].  Ensure we do not try a zero-sized
1673 	 * allocation.
1674 	 */
1675 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1676 	i = 0;
1677 	SLIST_FOREACH(ex, &first, ex_slist) {
1678 		sw[i++] = ex->ex_sw;
1679 	}
1680 	SLIST_FOREACH(ex, &any, ex_slist) {
1681 		sw[i++] = ex->ex_sw;
1682 	}
1683 	SLIST_FOREACH(ex, &last, ex_slist) {
1684 		sw[i++] = ex->ex_sw;
1685 	}
1686 
1687 	/* Replace old execsw[] and free used memory. */
1688 	if (execsw != NULL) {
1689 		kmem_free(__UNCONST(execsw),
1690 		    nexecs * sizeof(struct execsw *) + 1);
1691 	}
1692 	execsw = sw;
1693 	nexecs = sz;
1694 
1695 	/* Figure out the maximum size of an exec header. */
1696 	exec_maxhdrsz = sizeof(int);
1697 	for (i = 0; i < nexecs; i++) {
1698 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1699 			exec_maxhdrsz = execsw[i]->es_hdrsz;
1700 	}
1701 
1702 	return 0;
1703 }
1704 
1705 static int
1706 exec_sigcode_map(struct proc *p, const struct emul *e)
1707 {
1708 	vaddr_t va;
1709 	vsize_t sz;
1710 	int error;
1711 	struct uvm_object *uobj;
1712 
1713 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1714 
1715 	if (e->e_sigobject == NULL || sz == 0) {
1716 		return 0;
1717 	}
1718 
1719 	/*
1720 	 * If we don't have a sigobject for this emulation, create one.
1721 	 *
1722 	 * sigobject is an anonymous memory object (just like SYSV shared
1723 	 * memory) that we keep a permanent reference to and that we map
1724 	 * in all processes that need this sigcode. The creation is simple,
1725 	 * we create an object, add a permanent reference to it, map it in
1726 	 * kernel space, copy out the sigcode to it and unmap it.
1727 	 * We map it with PROT_READ|PROT_EXEC into the process just
1728 	 * the way sys_mmap() would map it.
1729 	 */
1730 
1731 	uobj = *e->e_sigobject;
1732 	if (uobj == NULL) {
1733 		mutex_enter(&sigobject_lock);
1734 		if ((uobj = *e->e_sigobject) == NULL) {
1735 			uobj = uao_create(sz, 0);
1736 			(*uobj->pgops->pgo_reference)(uobj);
1737 			va = vm_map_min(kernel_map);
1738 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
1739 			    uobj, 0, 0,
1740 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1741 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1742 				printf("kernel mapping failed %d\n", error);
1743 				(*uobj->pgops->pgo_detach)(uobj);
1744 				mutex_exit(&sigobject_lock);
1745 				return (error);
1746 			}
1747 			memcpy((void *)va, e->e_sigcode, sz);
1748 #ifdef PMAP_NEED_PROCWR
1749 			pmap_procwr(&proc0, va, sz);
1750 #endif
1751 			uvm_unmap(kernel_map, va, va + round_page(sz));
1752 			*e->e_sigobject = uobj;
1753 		}
1754 		mutex_exit(&sigobject_lock);
1755 	}
1756 
1757 	/* Just a hint to uvm_map where to put it. */
1758 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1759 	    round_page(sz));
1760 
1761 #ifdef __alpha__
1762 	/*
1763 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
1764 	 * which causes the above calculation to put the sigcode at
1765 	 * an invalid address.  Put it just below the text instead.
1766 	 */
1767 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1768 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1769 	}
1770 #endif
1771 
1772 	(*uobj->pgops->pgo_reference)(uobj);
1773 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1774 			uobj, 0, 0,
1775 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1776 				    UVM_ADV_RANDOM, 0));
1777 	if (error) {
1778 		DPRINTF(("%s, %d: map %p "
1779 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1780 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1781 		    va, error));
1782 		(*uobj->pgops->pgo_detach)(uobj);
1783 		return (error);
1784 	}
1785 	p->p_sigctx.ps_sigcode = (void *)va;
1786 	return (0);
1787 }
1788 
1789 /*
1790  * Release a refcount on spawn_exec_data and destroy memory, if this
1791  * was the last one.
1792  */
1793 static void
1794 spawn_exec_data_release(struct spawn_exec_data *data)
1795 {
1796 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1797 		return;
1798 
1799 	cv_destroy(&data->sed_cv_child_ready);
1800 	mutex_destroy(&data->sed_mtx_child);
1801 
1802 	if (data->sed_actions)
1803 		posix_spawn_fa_free(data->sed_actions,
1804 		    data->sed_actions->len);
1805 	if (data->sed_attrs)
1806 		kmem_free(data->sed_attrs,
1807 		    sizeof(*data->sed_attrs));
1808 	kmem_free(data, sizeof(*data));
1809 }
1810 
1811 /*
1812  * A child lwp of a posix_spawn operation starts here and ends up in
1813  * cpu_spawn_return, dealing with all filedescriptor and scheduler
1814  * manipulations in between.
1815  * The parent waits for the child, as it is not clear wether the child
1816  * will be able to aquire its own exec_lock. If it can, the parent can
1817  * be released early and continue running in parallel. If not (or if the
1818  * magic debug flag is passed in the scheduler attribute struct), the
1819  * child rides on the parent's exec lock untill it is ready to return to
1820  * to userland - and only then releases the parent. This method loses
1821  * concurrency, but improves error reporting.
1822  */
1823 static void
1824 spawn_return(void *arg)
1825 {
1826 	struct spawn_exec_data *spawn_data = arg;
1827 	struct lwp *l = curlwp;
1828 	int error, newfd;
1829 	size_t i;
1830 	const struct posix_spawn_file_actions_entry *fae;
1831 	pid_t ppid;
1832 	register_t retval;
1833 	bool have_reflock;
1834 	bool parent_is_waiting = true;
1835 
1836 	/*
1837 	 * Check if we can release parent early.
1838 	 * We either need to have no sed_attrs, or sed_attrs does not
1839 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1840 	 * safe access to the parent proc (passed in sed_parent).
1841 	 * We then try to get the exec_lock, and only if that works, we can
1842 	 * release the parent here already.
1843 	 */
1844 	ppid = spawn_data->sed_parent->p_pid;
1845 	if ((!spawn_data->sed_attrs
1846 	    || (spawn_data->sed_attrs->sa_flags
1847 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1848 	    && rw_tryenter(&exec_lock, RW_READER)) {
1849 		parent_is_waiting = false;
1850 		mutex_enter(&spawn_data->sed_mtx_child);
1851 		cv_signal(&spawn_data->sed_cv_child_ready);
1852 		mutex_exit(&spawn_data->sed_mtx_child);
1853 	}
1854 
1855 	/* don't allow debugger access yet */
1856 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1857 	have_reflock = true;
1858 
1859 	error = 0;
1860 	/* handle posix_spawn_file_actions */
1861 	if (spawn_data->sed_actions != NULL) {
1862 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
1863 			fae = &spawn_data->sed_actions->fae[i];
1864 			switch (fae->fae_action) {
1865 			case FAE_OPEN:
1866 				if (fd_getfile(fae->fae_fildes) != NULL) {
1867 					error = fd_close(fae->fae_fildes);
1868 					if (error)
1869 						break;
1870 				}
1871 				error = fd_open(fae->fae_path, fae->fae_oflag,
1872 				    fae->fae_mode, &newfd);
1873  				if (error)
1874  					break;
1875 				if (newfd != fae->fae_fildes) {
1876 					error = dodup(l, newfd,
1877 					    fae->fae_fildes, 0, &retval);
1878 					if (fd_getfile(newfd) != NULL)
1879 						fd_close(newfd);
1880 				}
1881 				break;
1882 			case FAE_DUP2:
1883 				error = dodup(l, fae->fae_fildes,
1884 				    fae->fae_newfildes, 0, &retval);
1885 				break;
1886 			case FAE_CLOSE:
1887 				if (fd_getfile(fae->fae_fildes) == NULL) {
1888 					error = EBADF;
1889 					break;
1890 				}
1891 				error = fd_close(fae->fae_fildes);
1892 				break;
1893 			}
1894 			if (error)
1895 				goto report_error;
1896 		}
1897 	}
1898 
1899 	/* handle posix_spawnattr */
1900 	if (spawn_data->sed_attrs != NULL) {
1901 		int ostat;
1902 		struct sigaction sigact;
1903 		sigact._sa_u._sa_handler = SIG_DFL;
1904 		sigact.sa_flags = 0;
1905 
1906 		/*
1907 		 * set state to SSTOP so that this proc can be found by pid.
1908 		 * see proc_enterprp, do_sched_setparam below
1909 		 */
1910 		ostat = l->l_proc->p_stat;
1911 		l->l_proc->p_stat = SSTOP;
1912 
1913 		/* Set process group */
1914 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1915 			pid_t mypid = l->l_proc->p_pid,
1916 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
1917 
1918 			if (pgrp == 0)
1919 				pgrp = mypid;
1920 
1921 			error = proc_enterpgrp(spawn_data->sed_parent,
1922 			    mypid, pgrp, false);
1923 			if (error)
1924 				goto report_error;
1925 		}
1926 
1927 		/* Set scheduler policy */
1928 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1929 			error = do_sched_setparam(l->l_proc->p_pid, 0,
1930 			    spawn_data->sed_attrs->sa_schedpolicy,
1931 			    &spawn_data->sed_attrs->sa_schedparam);
1932 		else if (spawn_data->sed_attrs->sa_flags
1933 		    & POSIX_SPAWN_SETSCHEDPARAM) {
1934 			error = do_sched_setparam(ppid, 0,
1935 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
1936 		}
1937 		if (error)
1938 			goto report_error;
1939 
1940 		/* Reset user ID's */
1941 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
1942 			error = do_setresuid(l, -1,
1943 			     kauth_cred_getgid(l->l_cred), -1,
1944 			     ID_E_EQ_R | ID_E_EQ_S);
1945 			if (error)
1946 				goto report_error;
1947 			error = do_setresuid(l, -1,
1948 			    kauth_cred_getuid(l->l_cred), -1,
1949 			    ID_E_EQ_R | ID_E_EQ_S);
1950 			if (error)
1951 				goto report_error;
1952 		}
1953 
1954 		/* Set signal masks/defaults */
1955 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
1956 			mutex_enter(l->l_proc->p_lock);
1957 			error = sigprocmask1(l, SIG_SETMASK,
1958 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
1959 			mutex_exit(l->l_proc->p_lock);
1960 			if (error)
1961 				goto report_error;
1962 		}
1963 
1964 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
1965 			for (i = 1; i <= NSIG; i++) {
1966 				if (sigismember(
1967 				    &spawn_data->sed_attrs->sa_sigdefault, i))
1968 					sigaction1(l, i, &sigact, NULL, NULL,
1969 					    0);
1970 			}
1971 		}
1972 		l->l_proc->p_stat = ostat;
1973 	}
1974 
1975 	/* now do the real exec */
1976 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
1977 	    true);
1978 	have_reflock = false;
1979 	if (error == EJUSTRETURN)
1980 		error = 0;
1981 	else if (error)
1982 		goto report_error;
1983 
1984 	if (parent_is_waiting) {
1985 		mutex_enter(&spawn_data->sed_mtx_child);
1986 		cv_signal(&spawn_data->sed_cv_child_ready);
1987 		mutex_exit(&spawn_data->sed_mtx_child);
1988 	}
1989 
1990 	/* release our refcount on the data */
1991 	spawn_exec_data_release(spawn_data);
1992 
1993 	/* and finaly: leave to userland for the first time */
1994 	cpu_spawn_return(l);
1995 
1996 	/* NOTREACHED */
1997 	return;
1998 
1999  report_error:
2000  	if (have_reflock) {
2001  		/*
2002 		 * We have not passed through execve_runproc(),
2003 		 * which would have released the p_reflock and also
2004 		 * taken ownership of the sed_exec part of spawn_data,
2005 		 * so release/free both here.
2006 		 */
2007 		rw_exit(&l->l_proc->p_reflock);
2008 		execve_free_data(&spawn_data->sed_exec);
2009 	}
2010 
2011 	if (parent_is_waiting) {
2012 		/* pass error to parent */
2013 		mutex_enter(&spawn_data->sed_mtx_child);
2014 		spawn_data->sed_error = error;
2015 		cv_signal(&spawn_data->sed_cv_child_ready);
2016 		mutex_exit(&spawn_data->sed_mtx_child);
2017 	} else {
2018 		rw_exit(&exec_lock);
2019 	}
2020 
2021 	/* release our refcount on the data */
2022 	spawn_exec_data_release(spawn_data);
2023 
2024 	/* done, exit */
2025 	mutex_enter(l->l_proc->p_lock);
2026 	/*
2027 	 * Posix explicitly asks for an exit code of 127 if we report
2028 	 * errors from the child process - so, unfortunately, there
2029 	 * is no way to report a more exact error code.
2030 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2031 	 * flag bit in the attrp argument to posix_spawn(2), see above.
2032 	 */
2033 	exit1(l, W_EXITCODE(127, 0));
2034 }
2035 
2036 void
2037 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2038 {
2039 
2040 	for (size_t i = 0; i < len; i++) {
2041 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2042 		if (fae->fae_action != FAE_OPEN)
2043 			continue;
2044 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2045 	}
2046 	if (fa->len > 0)
2047 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2048 	kmem_free(fa, sizeof(*fa));
2049 }
2050 
2051 static int
2052 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2053     const struct posix_spawn_file_actions *ufa)
2054 {
2055 	struct posix_spawn_file_actions *fa;
2056 	struct posix_spawn_file_actions_entry *fae;
2057 	char *pbuf = NULL;
2058 	int error;
2059 	size_t i = 0;
2060 
2061 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2062 	error = copyin(ufa, fa, sizeof(*fa));
2063 	if (error) {
2064 		fa->fae = NULL;
2065 		fa->len = 0;
2066 		goto out;
2067 	}
2068 
2069 	if (fa->len == 0) {
2070 		kmem_free(fa, sizeof(*fa));
2071 		return 0;
2072 	}
2073 
2074 	fa->size = fa->len;
2075 	size_t fal = fa->len * sizeof(*fae);
2076 	fae = fa->fae;
2077 	fa->fae = kmem_alloc(fal, KM_SLEEP);
2078 	error = copyin(fae, fa->fae, fal);
2079 	if (error)
2080 		goto out;
2081 
2082 	pbuf = PNBUF_GET();
2083 	for (; i < fa->len; i++) {
2084 		fae = &fa->fae[i];
2085 		if (fae->fae_action != FAE_OPEN)
2086 			continue;
2087 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2088 		if (error)
2089 			goto out;
2090 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2091 		memcpy(fae->fae_path, pbuf, fal);
2092 	}
2093 	PNBUF_PUT(pbuf);
2094 
2095 	*fap = fa;
2096 	return 0;
2097 out:
2098 	if (pbuf)
2099 		PNBUF_PUT(pbuf);
2100 	posix_spawn_fa_free(fa, i);
2101 	return error;
2102 }
2103 
2104 int
2105 check_posix_spawn(struct lwp *l1)
2106 {
2107 	int error, tnprocs, count;
2108 	uid_t uid;
2109 	struct proc *p1;
2110 
2111 	p1 = l1->l_proc;
2112 	uid = kauth_cred_getuid(l1->l_cred);
2113 	tnprocs = atomic_inc_uint_nv(&nprocs);
2114 
2115 	/*
2116 	 * Although process entries are dynamically created, we still keep
2117 	 * a global limit on the maximum number we will create.
2118 	 */
2119 	if (__predict_false(tnprocs >= maxproc))
2120 		error = -1;
2121 	else
2122 		error = kauth_authorize_process(l1->l_cred,
2123 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2124 
2125 	if (error) {
2126 		atomic_dec_uint(&nprocs);
2127 		return EAGAIN;
2128 	}
2129 
2130 	/*
2131 	 * Enforce limits.
2132 	 */
2133 	count = chgproccnt(uid, 1);
2134 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2135 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2136 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2137 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2138 		(void)chgproccnt(uid, -1);
2139 		atomic_dec_uint(&nprocs);
2140 		return EAGAIN;
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 int
2147 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2148 	struct posix_spawn_file_actions *fa,
2149 	struct posix_spawnattr *sa,
2150 	char *const *argv, char *const *envp,
2151 	execve_fetch_element_t fetch)
2152 {
2153 
2154 	struct proc *p1, *p2;
2155 	struct lwp *l2;
2156 	int error;
2157 	struct spawn_exec_data *spawn_data;
2158 	vaddr_t uaddr;
2159 	pid_t pid;
2160 	bool have_exec_lock = false;
2161 
2162 	p1 = l1->l_proc;
2163 
2164 	/* Allocate and init spawn_data */
2165 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2166 	spawn_data->sed_refcnt = 1; /* only parent so far */
2167 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2168 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2169 	mutex_enter(&spawn_data->sed_mtx_child);
2170 
2171 	/*
2172 	 * Do the first part of the exec now, collect state
2173 	 * in spawn_data.
2174 	 */
2175 	error = execve_loadvm(l1, path, argv,
2176 	    envp, fetch, &spawn_data->sed_exec);
2177 	if (error == EJUSTRETURN)
2178 		error = 0;
2179 	else if (error)
2180 		goto error_exit;
2181 
2182 	have_exec_lock = true;
2183 
2184 	/*
2185 	 * Allocate virtual address space for the U-area now, while it
2186 	 * is still easy to abort the fork operation if we're out of
2187 	 * kernel virtual address space.
2188 	 */
2189 	uaddr = uvm_uarea_alloc();
2190 	if (__predict_false(uaddr == 0)) {
2191 		error = ENOMEM;
2192 		goto error_exit;
2193 	}
2194 
2195 	/*
2196 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
2197 	 * replace it with its own before returning to userland
2198 	 * in the child.
2199 	 * This is a point of no return, we will have to go through
2200 	 * the child proc to properly clean it up past this point.
2201 	 */
2202 	p2 = proc_alloc();
2203 	pid = p2->p_pid;
2204 
2205 	/*
2206 	 * Make a proc table entry for the new process.
2207 	 * Start by zeroing the section of proc that is zero-initialized,
2208 	 * then copy the section that is copied directly from the parent.
2209 	 */
2210 	memset(&p2->p_startzero, 0,
2211 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2212 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
2213 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2214 	p2->p_vmspace = proc0.p_vmspace;
2215 
2216 	CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
2217 
2218 	LIST_INIT(&p2->p_lwps);
2219 	LIST_INIT(&p2->p_sigwaiters);
2220 
2221 	/*
2222 	 * Duplicate sub-structures as needed.
2223 	 * Increase reference counts on shared objects.
2224 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
2225 	 * handling are important in order to keep a consistent behaviour
2226 	 * for the child after the fork.  If we are a 32-bit process, the
2227 	 * child will be too.
2228 	 */
2229 	p2->p_flag =
2230 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2231 	p2->p_emul = p1->p_emul;
2232 	p2->p_execsw = p1->p_execsw;
2233 
2234 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2235 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2236 	rw_init(&p2->p_reflock);
2237 	cv_init(&p2->p_waitcv, "wait");
2238 	cv_init(&p2->p_lwpcv, "lwpwait");
2239 
2240 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2241 
2242 	kauth_proc_fork(p1, p2);
2243 
2244 	p2->p_raslist = NULL;
2245 	p2->p_fd = fd_copy();
2246 
2247 	/* XXX racy */
2248 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2249 
2250 	p2->p_cwdi = cwdinit();
2251 
2252 	/*
2253 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2254 	 * we just need increase pl_refcnt.
2255 	 */
2256 	if (!p1->p_limit->pl_writeable) {
2257 		lim_addref(p1->p_limit);
2258 		p2->p_limit = p1->p_limit;
2259 	} else {
2260 		p2->p_limit = lim_copy(p1->p_limit);
2261 	}
2262 
2263 	p2->p_lflag = 0;
2264 	p2->p_sflag = 0;
2265 	p2->p_slflag = 0;
2266 	p2->p_pptr = p1;
2267 	p2->p_ppid = p1->p_pid;
2268 	LIST_INIT(&p2->p_children);
2269 
2270 	p2->p_aio = NULL;
2271 
2272 #ifdef KTRACE
2273 	/*
2274 	 * Copy traceflag and tracefile if enabled.
2275 	 * If not inherited, these were zeroed above.
2276 	 */
2277 	if (p1->p_traceflag & KTRFAC_INHERIT) {
2278 		mutex_enter(&ktrace_lock);
2279 		p2->p_traceflag = p1->p_traceflag;
2280 		if ((p2->p_tracep = p1->p_tracep) != NULL)
2281 			ktradref(p2);
2282 		mutex_exit(&ktrace_lock);
2283 	}
2284 #endif
2285 
2286 	/*
2287 	 * Create signal actions for the child process.
2288 	 */
2289 	p2->p_sigacts = sigactsinit(p1, 0);
2290 	mutex_enter(p1->p_lock);
2291 	p2->p_sflag |=
2292 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2293 	sched_proc_fork(p1, p2);
2294 	mutex_exit(p1->p_lock);
2295 
2296 	p2->p_stflag = p1->p_stflag;
2297 
2298 	/*
2299 	 * p_stats.
2300 	 * Copy parts of p_stats, and zero out the rest.
2301 	 */
2302 	p2->p_stats = pstatscopy(p1->p_stats);
2303 
2304 	/* copy over machdep flags to the new proc */
2305 	cpu_proc_fork(p1, p2);
2306 
2307 	/*
2308 	 * Prepare remaining parts of spawn data
2309 	 */
2310 	spawn_data->sed_actions = fa;
2311 	spawn_data->sed_attrs = sa;
2312 
2313 	spawn_data->sed_parent = p1;
2314 
2315 	/* create LWP */
2316 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2317 	    &l2, l1->l_class);
2318 	l2->l_ctxlink = NULL;	/* reset ucontext link */
2319 
2320 	/*
2321 	 * Copy the credential so other references don't see our changes.
2322 	 * Test to see if this is necessary first, since in the common case
2323 	 * we won't need a private reference.
2324 	 */
2325 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2326 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2327 		l2->l_cred = kauth_cred_copy(l2->l_cred);
2328 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2329 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2330 	}
2331 
2332 	/* Update the master credentials. */
2333 	if (l2->l_cred != p2->p_cred) {
2334 		kauth_cred_t ocred;
2335 
2336 		kauth_cred_hold(l2->l_cred);
2337 		mutex_enter(p2->p_lock);
2338 		ocred = p2->p_cred;
2339 		p2->p_cred = l2->l_cred;
2340 		mutex_exit(p2->p_lock);
2341 		kauth_cred_free(ocred);
2342 	}
2343 
2344 	*child_ok = true;
2345 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
2346 #if 0
2347 	l2->l_nopreempt = 1; /* start it non-preemptable */
2348 #endif
2349 
2350 	/*
2351 	 * It's now safe for the scheduler and other processes to see the
2352 	 * child process.
2353 	 */
2354 	mutex_enter(proc_lock);
2355 
2356 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2357 		p2->p_lflag |= PL_CONTROLT;
2358 
2359 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2360 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
2361 
2362 	LIST_INSERT_AFTER(p1, p2, p_pglist);
2363 	LIST_INSERT_HEAD(&allproc, p2, p_list);
2364 
2365 	p2->p_trace_enabled = trace_is_enabled(p2);
2366 #ifdef __HAVE_SYSCALL_INTERN
2367 	(*p2->p_emul->e_syscall_intern)(p2);
2368 #endif
2369 
2370 	/*
2371 	 * Make child runnable, set start time, and add to run queue except
2372 	 * if the parent requested the child to start in SSTOP state.
2373 	 */
2374 	mutex_enter(p2->p_lock);
2375 
2376 	getmicrotime(&p2->p_stats->p_start);
2377 
2378 	lwp_lock(l2);
2379 	KASSERT(p2->p_nrlwps == 1);
2380 	p2->p_nrlwps = 1;
2381 	p2->p_stat = SACTIVE;
2382 	l2->l_stat = LSRUN;
2383 	sched_enqueue(l2, false);
2384 	lwp_unlock(l2);
2385 
2386 	mutex_exit(p2->p_lock);
2387 	mutex_exit(proc_lock);
2388 
2389 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2390 	error = spawn_data->sed_error;
2391 	mutex_exit(&spawn_data->sed_mtx_child);
2392 	spawn_exec_data_release(spawn_data);
2393 
2394 	rw_exit(&p1->p_reflock);
2395 	rw_exit(&exec_lock);
2396 	have_exec_lock = false;
2397 
2398 	*pid_res = pid;
2399 	return error;
2400 
2401  error_exit:
2402  	if (have_exec_lock) {
2403 		execve_free_data(&spawn_data->sed_exec);
2404 		rw_exit(&p1->p_reflock);
2405  		rw_exit(&exec_lock);
2406 	}
2407 	mutex_exit(&spawn_data->sed_mtx_child);
2408 	spawn_exec_data_release(spawn_data);
2409 
2410 	return error;
2411 }
2412 
2413 int
2414 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2415     register_t *retval)
2416 {
2417 	/* {
2418 		syscallarg(pid_t *) pid;
2419 		syscallarg(const char *) path;
2420 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
2421 		syscallarg(const struct posix_spawnattr *) attrp;
2422 		syscallarg(char *const *) argv;
2423 		syscallarg(char *const *) envp;
2424 	} */
2425 
2426 	int error;
2427 	struct posix_spawn_file_actions *fa = NULL;
2428 	struct posix_spawnattr *sa = NULL;
2429 	pid_t pid;
2430 	bool child_ok = false;
2431 
2432 	error = check_posix_spawn(l1);
2433 	if (error) {
2434 		*retval = error;
2435 		return 0;
2436 	}
2437 
2438 	/* copy in file_actions struct */
2439 	if (SCARG(uap, file_actions) != NULL) {
2440 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions));
2441 		if (error)
2442 			goto error_exit;
2443 	}
2444 
2445 	/* copyin posix_spawnattr struct */
2446 	if (SCARG(uap, attrp) != NULL) {
2447 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2448 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2449 		if (error)
2450 			goto error_exit;
2451 	}
2452 
2453 	/*
2454 	 * Do the spawn
2455 	 */
2456 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2457 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2458 	if (error)
2459 		goto error_exit;
2460 
2461 	if (error == 0 && SCARG(uap, pid) != NULL)
2462 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2463 
2464 	*retval = error;
2465 	return 0;
2466 
2467  error_exit:
2468 	if (!child_ok) {
2469 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2470 		atomic_dec_uint(&nprocs);
2471 
2472 		if (sa)
2473 			kmem_free(sa, sizeof(*sa));
2474 		if (fa)
2475 			posix_spawn_fa_free(fa, fa->len);
2476 	}
2477 
2478 	*retval = error;
2479 	return 0;
2480 }
2481 
2482 void
2483 exec_free_emul_arg(struct exec_package *epp)
2484 {
2485 	if (epp->ep_emul_arg_free != NULL) {
2486 		KASSERT(epp->ep_emul_arg != NULL);
2487 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2488 		epp->ep_emul_arg_free = NULL;
2489 		epp->ep_emul_arg = NULL;
2490 	} else {
2491 		KASSERT(epp->ep_emul_arg == NULL);
2492 	}
2493 }
2494