1 /* $NetBSD: kern_exec.c,v 1.360 2013/04/20 22:28:58 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /*- 30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou 31 * Copyright (C) 1992 Wolfgang Solfrank. 32 * Copyright (C) 1992 TooLs GmbH. 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by TooLs GmbH. 46 * 4. The name of TooLs GmbH may not be used to endorse or promote products 47 * derived from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.360 2013/04/20 22:28:58 christos Exp $"); 63 64 #include "opt_exec.h" 65 #include "opt_execfmt.h" 66 #include "opt_ktrace.h" 67 #include "opt_modular.h" 68 #include "opt_syscall_debug.h" 69 #include "veriexec.h" 70 #include "opt_pax.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/filedesc.h> 75 #include <sys/kernel.h> 76 #include <sys/proc.h> 77 #include <sys/mount.h> 78 #include <sys/malloc.h> 79 #include <sys/kmem.h> 80 #include <sys/namei.h> 81 #include <sys/vnode.h> 82 #include <sys/file.h> 83 #include <sys/acct.h> 84 #include <sys/atomic.h> 85 #include <sys/exec.h> 86 #include <sys/ktrace.h> 87 #include <sys/uidinfo.h> 88 #include <sys/wait.h> 89 #include <sys/mman.h> 90 #include <sys/ras.h> 91 #include <sys/signalvar.h> 92 #include <sys/stat.h> 93 #include <sys/syscall.h> 94 #include <sys/kauth.h> 95 #include <sys/lwpctl.h> 96 #include <sys/pax.h> 97 #include <sys/cpu.h> 98 #include <sys/module.h> 99 #include <sys/syscallvar.h> 100 #include <sys/syscallargs.h> 101 #if NVERIEXEC > 0 102 #include <sys/verified_exec.h> 103 #endif /* NVERIEXEC > 0 */ 104 #include <sys/sdt.h> 105 #include <sys/spawn.h> 106 #include <sys/prot.h> 107 #include <sys/cprng.h> 108 109 #include <uvm/uvm_extern.h> 110 111 #include <machine/reg.h> 112 113 #include <compat/common/compat_util.h> 114 115 static int exec_sigcode_map(struct proc *, const struct emul *); 116 117 #ifdef DEBUG_EXEC 118 #define DPRINTF(a) printf a 119 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ 120 __LINE__, (s), (a), (b)) 121 #else 122 #define DPRINTF(a) 123 #define COPYPRINTF(s, a, b) 124 #endif /* DEBUG_EXEC */ 125 126 /* 127 * DTrace SDT provider definitions 128 */ 129 SDT_PROBE_DEFINE(proc,,,exec, 130 "char *", NULL, 131 NULL, NULL, NULL, NULL, 132 NULL, NULL, NULL, NULL); 133 SDT_PROBE_DEFINE(proc,,,exec_success, 134 "char *", NULL, 135 NULL, NULL, NULL, NULL, 136 NULL, NULL, NULL, NULL); 137 SDT_PROBE_DEFINE(proc,,,exec_failure, 138 "int", NULL, 139 NULL, NULL, NULL, NULL, 140 NULL, NULL, NULL, NULL); 141 142 /* 143 * Exec function switch: 144 * 145 * Note that each makecmds function is responsible for loading the 146 * exec package with the necessary functions for any exec-type-specific 147 * handling. 148 * 149 * Functions for specific exec types should be defined in their own 150 * header file. 151 */ 152 static const struct execsw **execsw = NULL; 153 static int nexecs; 154 155 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ 156 157 /* list of dynamically loaded execsw entries */ 158 static LIST_HEAD(execlist_head, exec_entry) ex_head = 159 LIST_HEAD_INITIALIZER(ex_head); 160 struct exec_entry { 161 LIST_ENTRY(exec_entry) ex_list; 162 SLIST_ENTRY(exec_entry) ex_slist; 163 const struct execsw *ex_sw; 164 }; 165 166 #ifndef __HAVE_SYSCALL_INTERN 167 void syscall(void); 168 #endif 169 170 /* NetBSD emul struct */ 171 struct emul emul_netbsd = { 172 .e_name = "netbsd", 173 .e_path = NULL, 174 #ifndef __HAVE_MINIMAL_EMUL 175 .e_flags = EMUL_HAS_SYS___syscall, 176 .e_errno = NULL, 177 .e_nosys = SYS_syscall, 178 .e_nsysent = SYS_NSYSENT, 179 #endif 180 .e_sysent = sysent, 181 #ifdef SYSCALL_DEBUG 182 .e_syscallnames = syscallnames, 183 #else 184 .e_syscallnames = NULL, 185 #endif 186 .e_sendsig = sendsig, 187 .e_trapsignal = trapsignal, 188 .e_tracesig = NULL, 189 .e_sigcode = NULL, 190 .e_esigcode = NULL, 191 .e_sigobject = NULL, 192 .e_setregs = setregs, 193 .e_proc_exec = NULL, 194 .e_proc_fork = NULL, 195 .e_proc_exit = NULL, 196 .e_lwp_fork = NULL, 197 .e_lwp_exit = NULL, 198 #ifdef __HAVE_SYSCALL_INTERN 199 .e_syscall_intern = syscall_intern, 200 #else 201 .e_syscall = syscall, 202 #endif 203 .e_sysctlovly = NULL, 204 .e_fault = NULL, 205 .e_vm_default_addr = uvm_default_mapaddr, 206 .e_usertrap = NULL, 207 .e_ucsize = sizeof(ucontext_t), 208 .e_startlwp = startlwp 209 }; 210 211 /* 212 * Exec lock. Used to control access to execsw[] structures. 213 * This must not be static so that netbsd32 can access it, too. 214 */ 215 krwlock_t exec_lock; 216 217 static kmutex_t sigobject_lock; 218 219 /* 220 * Data used between a loadvm and execve part of an "exec" operation 221 */ 222 struct execve_data { 223 struct exec_package ed_pack; 224 struct pathbuf *ed_pathbuf; 225 struct vattr ed_attr; 226 struct ps_strings ed_arginfo; 227 char *ed_argp; 228 const char *ed_pathstring; 229 char *ed_resolvedpathbuf; 230 size_t ed_ps_strings_sz; 231 int ed_szsigcode; 232 long ed_argc; 233 long ed_envc; 234 }; 235 236 /* 237 * data passed from parent lwp to child during a posix_spawn() 238 */ 239 struct spawn_exec_data { 240 struct execve_data sed_exec; 241 struct posix_spawn_file_actions 242 *sed_actions; 243 struct posix_spawnattr *sed_attrs; 244 struct proc *sed_parent; 245 kcondvar_t sed_cv_child_ready; 246 kmutex_t sed_mtx_child; 247 int sed_error; 248 volatile uint32_t sed_refcnt; 249 }; 250 251 static void * 252 exec_pool_alloc(struct pool *pp, int flags) 253 { 254 255 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0, 256 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 257 } 258 259 static void 260 exec_pool_free(struct pool *pp, void *addr) 261 { 262 263 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); 264 } 265 266 static struct pool exec_pool; 267 268 static struct pool_allocator exec_palloc = { 269 .pa_alloc = exec_pool_alloc, 270 .pa_free = exec_pool_free, 271 .pa_pagesz = NCARGS 272 }; 273 274 /* 275 * check exec: 276 * given an "executable" described in the exec package's namei info, 277 * see what we can do with it. 278 * 279 * ON ENTRY: 280 * exec package with appropriate namei info 281 * lwp pointer of exec'ing lwp 282 * NO SELF-LOCKED VNODES 283 * 284 * ON EXIT: 285 * error: nothing held, etc. exec header still allocated. 286 * ok: filled exec package, executable's vnode (unlocked). 287 * 288 * EXEC SWITCH ENTRY: 289 * Locked vnode to check, exec package, proc. 290 * 291 * EXEC SWITCH EXIT: 292 * ok: return 0, filled exec package, executable's vnode (unlocked). 293 * error: destructive: 294 * everything deallocated execept exec header. 295 * non-destructive: 296 * error code, executable's vnode (unlocked), 297 * exec header unmodified. 298 */ 299 int 300 /*ARGSUSED*/ 301 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) 302 { 303 int error, i; 304 struct vnode *vp; 305 struct nameidata nd; 306 size_t resid; 307 308 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 309 310 /* first get the vnode */ 311 if ((error = namei(&nd)) != 0) 312 return error; 313 epp->ep_vp = vp = nd.ni_vp; 314 /* this cannot overflow as both are size PATH_MAX */ 315 strcpy(epp->ep_resolvedname, nd.ni_pnbuf); 316 317 #ifdef DIAGNOSTIC 318 /* paranoia (take this out once namei stuff stabilizes) */ 319 memset(nd.ni_pnbuf, '~', PATH_MAX); 320 #endif 321 322 /* check access and type */ 323 if (vp->v_type != VREG) { 324 error = EACCES; 325 goto bad1; 326 } 327 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) 328 goto bad1; 329 330 /* get attributes */ 331 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) 332 goto bad1; 333 334 /* Check mount point */ 335 if (vp->v_mount->mnt_flag & MNT_NOEXEC) { 336 error = EACCES; 337 goto bad1; 338 } 339 if (vp->v_mount->mnt_flag & MNT_NOSUID) 340 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); 341 342 /* try to open it */ 343 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) 344 goto bad1; 345 346 /* unlock vp, since we need it unlocked from here on out. */ 347 VOP_UNLOCK(vp); 348 349 #if NVERIEXEC > 0 350 error = veriexec_verify(l, vp, epp->ep_resolvedname, 351 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, 352 NULL); 353 if (error) 354 goto bad2; 355 #endif /* NVERIEXEC > 0 */ 356 357 #ifdef PAX_SEGVGUARD 358 error = pax_segvguard(l, vp, epp->ep_resolvedname, false); 359 if (error) 360 goto bad2; 361 #endif /* PAX_SEGVGUARD */ 362 363 /* now we have the file, get the exec header */ 364 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, 365 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); 366 if (error) 367 goto bad2; 368 epp->ep_hdrvalid = epp->ep_hdrlen - resid; 369 370 /* 371 * Set up default address space limits. Can be overridden 372 * by individual exec packages. 373 * 374 * XXX probably should be all done in the exec packages. 375 */ 376 epp->ep_vm_minaddr = VM_MIN_ADDRESS; 377 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; 378 /* 379 * set up the vmcmds for creation of the process 380 * address space 381 */ 382 error = ENOEXEC; 383 for (i = 0; i < nexecs; i++) { 384 int newerror; 385 386 epp->ep_esch = execsw[i]; 387 newerror = (*execsw[i]->es_makecmds)(l, epp); 388 389 if (!newerror) { 390 /* Seems ok: check that entry point is not too high */ 391 if (epp->ep_entry > epp->ep_vm_maxaddr) { 392 #ifdef DIAGNOSTIC 393 printf("%s: rejecting %p due to " 394 "too high entry address (> %p)\n", 395 __func__, (void *)epp->ep_entry, 396 (void *)epp->ep_vm_maxaddr); 397 #endif 398 error = ENOEXEC; 399 break; 400 } 401 /* Seems ok: check that entry point is not too low */ 402 if (epp->ep_entry < epp->ep_vm_minaddr) { 403 #ifdef DIAGNOSTIC 404 printf("%s: rejecting %p due to " 405 "too low entry address (< %p)\n", 406 __func__, (void *)epp->ep_entry, 407 (void *)epp->ep_vm_minaddr); 408 #endif 409 error = ENOEXEC; 410 break; 411 } 412 413 /* check limits */ 414 if ((epp->ep_tsize > MAXTSIZ) || 415 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit 416 [RLIMIT_DATA].rlim_cur)) { 417 #ifdef DIAGNOSTIC 418 printf("%s: rejecting due to " 419 "limits (t=%llu > %llu || d=%llu > %llu)\n", 420 __func__, 421 (unsigned long long)epp->ep_tsize, 422 (unsigned long long)MAXTSIZ, 423 (unsigned long long)epp->ep_dsize, 424 (unsigned long long) 425 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); 426 #endif 427 error = ENOMEM; 428 break; 429 } 430 return 0; 431 } 432 433 if (epp->ep_emul_root != NULL) { 434 vrele(epp->ep_emul_root); 435 epp->ep_emul_root = NULL; 436 } 437 if (epp->ep_interp != NULL) { 438 vrele(epp->ep_interp); 439 epp->ep_interp = NULL; 440 } 441 442 /* make sure the first "interesting" error code is saved. */ 443 if (error == ENOEXEC) 444 error = newerror; 445 446 if (epp->ep_flags & EXEC_DESTR) 447 /* Error from "#!" code, tidied up by recursive call */ 448 return error; 449 } 450 451 /* not found, error */ 452 453 /* 454 * free any vmspace-creation commands, 455 * and release their references 456 */ 457 kill_vmcmds(&epp->ep_vmcmds); 458 459 bad2: 460 /* 461 * close and release the vnode, restore the old one, free the 462 * pathname buf, and punt. 463 */ 464 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 465 VOP_CLOSE(vp, FREAD, l->l_cred); 466 vput(vp); 467 return error; 468 469 bad1: 470 /* 471 * free the namei pathname buffer, and put the vnode 472 * (which we don't yet have open). 473 */ 474 vput(vp); /* was still locked */ 475 return error; 476 } 477 478 #ifdef __MACHINE_STACK_GROWS_UP 479 #define STACK_PTHREADSPACE NBPG 480 #else 481 #define STACK_PTHREADSPACE 0 482 #endif 483 484 static int 485 execve_fetch_element(char * const *array, size_t index, char **value) 486 { 487 return copyin(array + index, value, sizeof(*value)); 488 } 489 490 /* 491 * exec system call 492 */ 493 int 494 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) 495 { 496 /* { 497 syscallarg(const char *) path; 498 syscallarg(char * const *) argp; 499 syscallarg(char * const *) envp; 500 } */ 501 502 return execve1(l, SCARG(uap, path), SCARG(uap, argp), 503 SCARG(uap, envp), execve_fetch_element); 504 } 505 506 int 507 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, 508 register_t *retval) 509 { 510 /* { 511 syscallarg(int) fd; 512 syscallarg(char * const *) argp; 513 syscallarg(char * const *) envp; 514 } */ 515 516 return ENOSYS; 517 } 518 519 /* 520 * Load modules to try and execute an image that we do not understand. 521 * If no execsw entries are present, we load those likely to be needed 522 * in order to run native images only. Otherwise, we autoload all 523 * possible modules that could let us run the binary. XXX lame 524 */ 525 static void 526 exec_autoload(void) 527 { 528 #ifdef MODULAR 529 static const char * const native[] = { 530 "exec_elf32", 531 "exec_elf64", 532 "exec_script", 533 NULL 534 }; 535 static const char * const compat[] = { 536 "exec_elf32", 537 "exec_elf64", 538 "exec_script", 539 "exec_aout", 540 "exec_coff", 541 "exec_ecoff", 542 "compat_aoutm68k", 543 "compat_freebsd", 544 "compat_ibcs2", 545 "compat_linux", 546 "compat_linux32", 547 "compat_netbsd32", 548 "compat_sunos", 549 "compat_sunos32", 550 "compat_svr4", 551 "compat_svr4_32", 552 "compat_ultrix", 553 NULL 554 }; 555 char const * const *list; 556 int i; 557 558 list = (nexecs == 0 ? native : compat); 559 for (i = 0; list[i] != NULL; i++) { 560 if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) { 561 continue; 562 } 563 yield(); 564 } 565 #endif 566 } 567 568 static int 569 execve_loadvm(struct lwp *l, const char *path, char * const *args, 570 char * const *envs, execve_fetch_element_t fetch_element, 571 struct execve_data * restrict data) 572 { 573 int error; 574 struct proc *p; 575 char *dp, *sp; 576 size_t i, len; 577 struct exec_fakearg *tmpfap; 578 u_int modgen; 579 580 KASSERT(data != NULL); 581 582 p = l->l_proc; 583 modgen = 0; 584 585 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0); 586 587 /* 588 * Check if we have exceeded our number of processes limit. 589 * This is so that we handle the case where a root daemon 590 * forked, ran setuid to become the desired user and is trying 591 * to exec. The obvious place to do the reference counting check 592 * is setuid(), but we don't do the reference counting check there 593 * like other OS's do because then all the programs that use setuid() 594 * must be modified to check the return code of setuid() and exit(). 595 * It is dangerous to make setuid() fail, because it fails open and 596 * the program will continue to run as root. If we make it succeed 597 * and return an error code, again we are not enforcing the limit. 598 * The best place to enforce the limit is here, when the process tries 599 * to execute a new image, because eventually the process will need 600 * to call exec in order to do something useful. 601 */ 602 retry: 603 if (p->p_flag & PK_SUGID) { 604 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 605 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 606 &p->p_rlimit[RLIMIT_NPROC], 607 KAUTH_ARG(RLIMIT_NPROC)) != 0 && 608 chgproccnt(kauth_cred_getuid(l->l_cred), 0) > 609 p->p_rlimit[RLIMIT_NPROC].rlim_cur) 610 return EAGAIN; 611 } 612 613 /* 614 * Drain existing references and forbid new ones. The process 615 * should be left alone until we're done here. This is necessary 616 * to avoid race conditions - e.g. in ptrace() - that might allow 617 * a local user to illicitly obtain elevated privileges. 618 */ 619 rw_enter(&p->p_reflock, RW_WRITER); 620 621 /* 622 * Init the namei data to point the file user's program name. 623 * This is done here rather than in check_exec(), so that it's 624 * possible to override this settings if any of makecmd/probe 625 * functions call check_exec() recursively - for example, 626 * see exec_script_makecmds(). 627 */ 628 error = pathbuf_copyin(path, &data->ed_pathbuf); 629 if (error) { 630 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__, 631 path, error)); 632 goto clrflg; 633 } 634 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); 635 636 data->ed_resolvedpathbuf = PNBUF_GET(); 637 #ifdef DIAGNOSTIC 638 strcpy(data->ed_resolvedpathbuf, "/wrong"); 639 #endif 640 641 /* 642 * initialize the fields of the exec package. 643 */ 644 data->ed_pack.ep_name = path; 645 data->ed_pack.ep_kname = data->ed_pathstring; 646 data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf; 647 data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); 648 data->ed_pack.ep_hdrlen = exec_maxhdrsz; 649 data->ed_pack.ep_hdrvalid = 0; 650 data->ed_pack.ep_emul_arg = NULL; 651 data->ed_pack.ep_emul_arg_free = NULL; 652 data->ed_pack.ep_vmcmds.evs_cnt = 0; 653 data->ed_pack.ep_vmcmds.evs_used = 0; 654 data->ed_pack.ep_vap = &data->ed_attr; 655 data->ed_pack.ep_flags = 0; 656 data->ed_pack.ep_emul_root = NULL; 657 data->ed_pack.ep_interp = NULL; 658 data->ed_pack.ep_esch = NULL; 659 data->ed_pack.ep_pax_flags = 0; 660 661 rw_enter(&exec_lock, RW_READER); 662 663 /* see if we can run it. */ 664 if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) { 665 if (error != ENOENT) { 666 DPRINTF(("%s: check exec failed %d\n", 667 __func__, error)); 668 } 669 goto freehdr; 670 } 671 672 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */ 673 674 /* allocate an argument buffer */ 675 data->ed_argp = pool_get(&exec_pool, PR_WAITOK); 676 KASSERT(data->ed_argp != NULL); 677 dp = data->ed_argp; 678 data->ed_argc = 0; 679 680 /* copy the fake args list, if there's one, freeing it as we go */ 681 if (data->ed_pack.ep_flags & EXEC_HASARGL) { 682 tmpfap = data->ed_pack.ep_fa; 683 while (tmpfap->fa_arg != NULL) { 684 const char *cp; 685 686 cp = tmpfap->fa_arg; 687 while (*cp) 688 *dp++ = *cp++; 689 *dp++ = '\0'; 690 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg); 691 692 kmem_free(tmpfap->fa_arg, tmpfap->fa_len); 693 tmpfap++; data->ed_argc++; 694 } 695 kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len); 696 data->ed_pack.ep_flags &= ~EXEC_HASARGL; 697 } 698 699 /* Now get argv & environment */ 700 if (args == NULL) { 701 DPRINTF(("%s: null args\n", __func__)); 702 error = EINVAL; 703 goto bad; 704 } 705 /* 'i' will index the argp/envp element to be retrieved */ 706 i = 0; 707 if (data->ed_pack.ep_flags & EXEC_SKIPARG) 708 i++; 709 710 while (1) { 711 len = data->ed_argp + ARG_MAX - dp; 712 if ((error = (*fetch_element)(args, i, &sp)) != 0) { 713 DPRINTF(("%s: fetch_element args %d\n", 714 __func__, error)); 715 goto bad; 716 } 717 if (!sp) 718 break; 719 if ((error = copyinstr(sp, dp, len, &len)) != 0) { 720 DPRINTF(("%s: copyinstr args %d\n", __func__, error)); 721 if (error == ENAMETOOLONG) 722 error = E2BIG; 723 goto bad; 724 } 725 ktrexecarg(dp, len - 1); 726 dp += len; 727 i++; 728 data->ed_argc++; 729 } 730 731 data->ed_envc = 0; 732 /* environment need not be there */ 733 if (envs != NULL) { 734 i = 0; 735 while (1) { 736 len = data->ed_argp + ARG_MAX - dp; 737 if ((error = (*fetch_element)(envs, i, &sp)) != 0) { 738 DPRINTF(("%s: fetch_element env %d\n", 739 __func__, error)); 740 goto bad; 741 } 742 if (!sp) 743 break; 744 if ((error = copyinstr(sp, dp, len, &len)) != 0) { 745 DPRINTF(("%s: copyinstr env %d\n", 746 __func__, error)); 747 if (error == ENAMETOOLONG) 748 error = E2BIG; 749 goto bad; 750 } 751 752 ktrexecenv(dp, len - 1); 753 dp += len; 754 i++; 755 data->ed_envc++; 756 } 757 } 758 759 dp = (char *) ALIGN(dp); 760 761 data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode - 762 data->ed_pack.ep_esch->es_emul->e_sigcode; 763 764 #ifdef __MACHINE_STACK_GROWS_UP 765 /* See big comment lower down */ 766 #define RTLD_GAP 32 767 #else 768 #define RTLD_GAP 0 769 #endif 770 771 /* Now check if args & environ fit into new stack */ 772 if (data->ed_pack.ep_flags & EXEC_32) { 773 data->ed_ps_strings_sz = sizeof(struct ps_strings32); 774 len = ((data->ed_argc + data->ed_envc + 2 + 775 data->ed_pack.ep_esch->es_arglen) * 776 sizeof(int) + sizeof(int) + dp + RTLD_GAP + 777 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE) 778 - data->ed_argp; 779 } else { 780 data->ed_ps_strings_sz = sizeof(struct ps_strings); 781 len = ((data->ed_argc + data->ed_envc + 2 + 782 data->ed_pack.ep_esch->es_arglen) * 783 sizeof(char *) + sizeof(int) + dp + RTLD_GAP + 784 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE) 785 - data->ed_argp; 786 } 787 788 #ifdef PAX_ASLR 789 if (pax_aslr_active(l)) 790 len += (cprng_fast32() % PAGE_SIZE); 791 #endif /* PAX_ASLR */ 792 793 /* make the stack "safely" aligned */ 794 len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES); 795 796 if (len > data->ed_pack.ep_ssize) { 797 /* in effect, compare to initial limit */ 798 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len)); 799 goto bad; 800 } 801 /* adjust "active stack depth" for process VSZ */ 802 data->ed_pack.ep_ssize = len; 803 804 return 0; 805 806 bad: 807 /* free the vmspace-creation commands, and release their references */ 808 kill_vmcmds(&data->ed_pack.ep_vmcmds); 809 /* kill any opened file descriptor, if necessary */ 810 if (data->ed_pack.ep_flags & EXEC_HASFD) { 811 data->ed_pack.ep_flags &= ~EXEC_HASFD; 812 fd_close(data->ed_pack.ep_fd); 813 } 814 /* close and put the exec'd file */ 815 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY); 816 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred); 817 vput(data->ed_pack.ep_vp); 818 pool_put(&exec_pool, data->ed_argp); 819 820 freehdr: 821 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 822 if (data->ed_pack.ep_emul_root != NULL) 823 vrele(data->ed_pack.ep_emul_root); 824 if (data->ed_pack.ep_interp != NULL) 825 vrele(data->ed_pack.ep_interp); 826 827 rw_exit(&exec_lock); 828 829 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 830 pathbuf_destroy(data->ed_pathbuf); 831 PNBUF_PUT(data->ed_resolvedpathbuf); 832 833 clrflg: 834 rw_exit(&p->p_reflock); 835 836 if (modgen != module_gen && error == ENOEXEC) { 837 modgen = module_gen; 838 exec_autoload(); 839 goto retry; 840 } 841 842 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 843 return error; 844 } 845 846 static void 847 execve_free_data(struct execve_data *data) 848 { 849 850 /* free the vmspace-creation commands, and release their references */ 851 kill_vmcmds(&data->ed_pack.ep_vmcmds); 852 /* kill any opened file descriptor, if necessary */ 853 if (data->ed_pack.ep_flags & EXEC_HASFD) { 854 data->ed_pack.ep_flags &= ~EXEC_HASFD; 855 fd_close(data->ed_pack.ep_fd); 856 } 857 858 /* close and put the exec'd file */ 859 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY); 860 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, curlwp->l_cred); 861 vput(data->ed_pack.ep_vp); 862 pool_put(&exec_pool, data->ed_argp); 863 864 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 865 if (data->ed_pack.ep_emul_root != NULL) 866 vrele(data->ed_pack.ep_emul_root); 867 if (data->ed_pack.ep_interp != NULL) 868 vrele(data->ed_pack.ep_interp); 869 870 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 871 pathbuf_destroy(data->ed_pathbuf); 872 PNBUF_PUT(data->ed_resolvedpathbuf); 873 } 874 875 static int 876 execve_runproc(struct lwp *l, struct execve_data * restrict data, 877 bool no_local_exec_lock, bool is_spawn) 878 { 879 int error = 0; 880 struct proc *p; 881 size_t i; 882 char *stack, *dp; 883 const char *commandname; 884 struct ps_strings32 arginfo32; 885 struct exec_vmcmd *base_vcp; 886 void *aip; 887 struct vmspace *vm; 888 ksiginfo_t ksi; 889 ksiginfoq_t kq; 890 891 /* 892 * In case of a posix_spawn operation, the child doing the exec 893 * might not hold the reader lock on exec_lock, but the parent 894 * will do this instead. 895 */ 896 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock)); 897 KASSERT(data != NULL); 898 if (data == NULL) 899 return (EINVAL); 900 901 p = l->l_proc; 902 if (no_local_exec_lock) 903 KASSERT(is_spawn); 904 905 base_vcp = NULL; 906 907 if (data->ed_pack.ep_flags & EXEC_32) 908 aip = &arginfo32; 909 else 910 aip = &data->ed_arginfo; 911 912 /* Get rid of other LWPs. */ 913 if (p->p_nlwps > 1) { 914 mutex_enter(p->p_lock); 915 exit_lwps(l); 916 mutex_exit(p->p_lock); 917 } 918 KDASSERT(p->p_nlwps == 1); 919 920 /* Destroy any lwpctl info. */ 921 if (p->p_lwpctl != NULL) 922 lwp_ctl_exit(); 923 924 /* Remove POSIX timers */ 925 timers_free(p, TIMERS_POSIX); 926 927 /* 928 * Do whatever is necessary to prepare the address space 929 * for remapping. Note that this might replace the current 930 * vmspace with another! 931 */ 932 if (is_spawn) 933 uvmspace_spawn(l, data->ed_pack.ep_vm_minaddr, 934 data->ed_pack.ep_vm_maxaddr); 935 else 936 uvmspace_exec(l, data->ed_pack.ep_vm_minaddr, 937 data->ed_pack.ep_vm_maxaddr); 938 939 /* record proc's vnode, for use by procfs and others */ 940 if (p->p_textvp) 941 vrele(p->p_textvp); 942 vref(data->ed_pack.ep_vp); 943 p->p_textvp = data->ed_pack.ep_vp; 944 945 /* Now map address space */ 946 vm = p->p_vmspace; 947 vm->vm_taddr = (void *)data->ed_pack.ep_taddr; 948 vm->vm_tsize = btoc(data->ed_pack.ep_tsize); 949 vm->vm_daddr = (void*)data->ed_pack.ep_daddr; 950 vm->vm_dsize = btoc(data->ed_pack.ep_dsize); 951 vm->vm_ssize = btoc(data->ed_pack.ep_ssize); 952 vm->vm_issize = 0; 953 vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr; 954 vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr; 955 956 #ifdef PAX_ASLR 957 pax_aslr_init(l, vm); 958 #endif /* PAX_ASLR */ 959 960 /* create the new process's VM space by running the vmcmds */ 961 #ifdef DIAGNOSTIC 962 if (data->ed_pack.ep_vmcmds.evs_used == 0) 963 panic("%s: no vmcmds", __func__); 964 #endif 965 966 #ifdef DEBUG_EXEC 967 { 968 size_t j; 969 struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0]; 970 DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used)); 971 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) { 972 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 973 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 974 PRIxVSIZE" prot=0%o flags=%d\n", j, 975 vp[j].ev_proc == vmcmd_map_pagedvn ? 976 "pagedvn" : 977 vp[j].ev_proc == vmcmd_map_readvn ? 978 "readvn" : 979 vp[j].ev_proc == vmcmd_map_zero ? 980 "zero" : "*unknown*", 981 vp[j].ev_addr, vp[j].ev_len, 982 vp[j].ev_offset, vp[j].ev_prot, 983 vp[j].ev_flags)); 984 } 985 } 986 #endif /* DEBUG_EXEC */ 987 988 for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) { 989 struct exec_vmcmd *vcp; 990 991 vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i]; 992 if (vcp->ev_flags & VMCMD_RELATIVE) { 993 #ifdef DIAGNOSTIC 994 if (base_vcp == NULL) 995 panic("%s: relative vmcmd with no base", 996 __func__); 997 if (vcp->ev_flags & VMCMD_BASE) 998 panic("%s: illegal base & relative vmcmd", 999 __func__); 1000 #endif 1001 vcp->ev_addr += base_vcp->ev_addr; 1002 } 1003 error = (*vcp->ev_proc)(l, vcp); 1004 #ifdef DEBUG_EXEC 1005 if (error) { 1006 size_t j; 1007 struct exec_vmcmd *vp = 1008 &data->ed_pack.ep_vmcmds.evs_cmds[0]; 1009 DPRINTF(("vmcmds %zu/%u, error %d\n", i, 1010 data->ed_pack.ep_vmcmds.evs_used, error)); 1011 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) { 1012 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 1013 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 1014 PRIxVSIZE" prot=0%o flags=%d\n", j, 1015 vp[j].ev_proc == vmcmd_map_pagedvn ? 1016 "pagedvn" : 1017 vp[j].ev_proc == vmcmd_map_readvn ? 1018 "readvn" : 1019 vp[j].ev_proc == vmcmd_map_zero ? 1020 "zero" : "*unknown*", 1021 vp[j].ev_addr, vp[j].ev_len, 1022 vp[j].ev_offset, vp[j].ev_prot, 1023 vp[j].ev_flags)); 1024 if (j == i) 1025 DPRINTF((" ^--- failed\n")); 1026 } 1027 } 1028 #endif /* DEBUG_EXEC */ 1029 if (vcp->ev_flags & VMCMD_BASE) 1030 base_vcp = vcp; 1031 } 1032 1033 /* free the vmspace-creation commands, and release their references */ 1034 kill_vmcmds(&data->ed_pack.ep_vmcmds); 1035 1036 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY); 1037 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred); 1038 vput(data->ed_pack.ep_vp); 1039 1040 /* if an error happened, deallocate and punt */ 1041 if (error) { 1042 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error)); 1043 goto exec_abort; 1044 } 1045 1046 /* remember information about the process */ 1047 data->ed_arginfo.ps_nargvstr = data->ed_argc; 1048 data->ed_arginfo.ps_nenvstr = data->ed_envc; 1049 1050 /* set command name & other accounting info */ 1051 commandname = strrchr(data->ed_pack.ep_resolvedname, '/'); 1052 if (commandname != NULL) { 1053 commandname++; 1054 } else { 1055 commandname = data->ed_pack.ep_resolvedname; 1056 } 1057 i = min(strlen(commandname), MAXCOMLEN); 1058 (void)memcpy(p->p_comm, commandname, i); 1059 p->p_comm[i] = '\0'; 1060 1061 dp = PNBUF_GET(); 1062 /* 1063 * If the path starts with /, we don't need to do any work. 1064 * This handles the majority of the cases. 1065 * In the future perhaps we could canonicalize it? 1066 */ 1067 if (data->ed_pathstring[0] == '/') 1068 (void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring, 1069 MAXPATHLEN); 1070 #ifdef notyet 1071 /* 1072 * Although this works most of the time [since the entry was just 1073 * entered in the cache] we don't use it because it theoretically 1074 * can fail and it is not the cleanest interface, because there 1075 * could be races. When the namei cache is re-written, this can 1076 * be changed to use the appropriate function. 1077 */ 1078 else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p))) 1079 data->ed_pack.ep_path = dp; 1080 #endif 1081 else { 1082 #ifdef notyet 1083 printf("Cannot get path for pid %d [%s] (error %d)\n", 1084 (int)p->p_pid, p->p_comm, error); 1085 #endif 1086 data->ed_pack.ep_path = NULL; 1087 PNBUF_PUT(dp); 1088 } 1089 1090 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr, 1091 STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode), 1092 data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode)); 1093 1094 #ifdef __MACHINE_STACK_GROWS_UP 1095 /* 1096 * The copyargs call always copies into lower addresses 1097 * first, moving towards higher addresses, starting with 1098 * the stack pointer that we give. When the stack grows 1099 * down, this puts argc/argv/envp very shallow on the 1100 * stack, right at the first user stack pointer. 1101 * When the stack grows up, the situation is reversed. 1102 * 1103 * Normally, this is no big deal. But the ld_elf.so _rtld() 1104 * function expects to be called with a single pointer to 1105 * a region that has a few words it can stash values into, 1106 * followed by argc/argv/envp. When the stack grows down, 1107 * it's easy to decrement the stack pointer a little bit to 1108 * allocate the space for these few words and pass the new 1109 * stack pointer to _rtld. When the stack grows up, however, 1110 * a few words before argc is part of the signal trampoline, XXX 1111 * so we have a problem. 1112 * 1113 * Instead of changing how _rtld works, we take the easy way 1114 * out and steal 32 bytes before we call copyargs. 1115 * This extra space was allowed for when 'pack.ep_ssize' was calculated. 1116 */ 1117 stack += RTLD_GAP; 1118 #endif /* __MACHINE_STACK_GROWS_UP */ 1119 1120 /* Now copy argc, args & environ to new stack */ 1121 error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack, 1122 &data->ed_arginfo, &stack, data->ed_argp); 1123 1124 if (data->ed_pack.ep_path) { 1125 PNBUF_PUT(data->ed_pack.ep_path); 1126 data->ed_pack.ep_path = NULL; 1127 } 1128 if (error) { 1129 DPRINTF(("%s: copyargs failed %d\n", __func__, error)); 1130 goto exec_abort; 1131 } 1132 /* Move the stack back to original point */ 1133 stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize); 1134 1135 /* fill process ps_strings info */ 1136 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr, 1137 STACK_PTHREADSPACE), data->ed_ps_strings_sz); 1138 1139 if (data->ed_pack.ep_flags & EXEC_32) { 1140 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; 1141 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; 1142 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; 1143 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; 1144 } 1145 1146 /* copy out the process's ps_strings structure */ 1147 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) 1148 != 0) { 1149 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n", 1150 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); 1151 goto exec_abort; 1152 } 1153 1154 cwdexec(p); 1155 fd_closeexec(); /* handle close on exec */ 1156 1157 if (__predict_false(ktrace_on)) 1158 fd_ktrexecfd(); 1159 1160 execsigs(p); /* reset catched signals */ 1161 1162 l->l_ctxlink = NULL; /* reset ucontext link */ 1163 1164 1165 p->p_acflag &= ~AFORK; 1166 mutex_enter(p->p_lock); 1167 p->p_flag |= PK_EXEC; 1168 mutex_exit(p->p_lock); 1169 1170 /* 1171 * Stop profiling. 1172 */ 1173 if ((p->p_stflag & PST_PROFIL) != 0) { 1174 mutex_spin_enter(&p->p_stmutex); 1175 stopprofclock(p); 1176 mutex_spin_exit(&p->p_stmutex); 1177 } 1178 1179 /* 1180 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have 1181 * exited and exec()/exit() are the only places it will be cleared. 1182 */ 1183 if ((p->p_lflag & PL_PPWAIT) != 0) { 1184 #if 0 1185 lwp_t *lp; 1186 1187 mutex_enter(proc_lock); 1188 lp = p->p_vforklwp; 1189 p->p_vforklwp = NULL; 1190 1191 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1192 p->p_lflag &= ~PL_PPWAIT; 1193 1194 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */ 1195 cv_broadcast(&lp->l_waitcv); 1196 mutex_exit(proc_lock); 1197 #else 1198 mutex_enter(proc_lock); 1199 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1200 p->p_lflag &= ~PL_PPWAIT; 1201 cv_broadcast(&p->p_pptr->p_waitcv); 1202 mutex_exit(proc_lock); 1203 #endif 1204 } 1205 1206 /* 1207 * Deal with set[ug]id. MNT_NOSUID has already been used to disable 1208 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked 1209 * out additional references on the process for the moment. 1210 */ 1211 if ((p->p_slflag & PSL_TRACED) == 0 && 1212 1213 (((data->ed_attr.va_mode & S_ISUID) != 0 && 1214 kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) || 1215 1216 ((data->ed_attr.va_mode & S_ISGID) != 0 && 1217 kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) { 1218 /* 1219 * Mark the process as SUGID before we do 1220 * anything that might block. 1221 */ 1222 proc_crmod_enter(); 1223 proc_crmod_leave(NULL, NULL, true); 1224 1225 /* Make sure file descriptors 0..2 are in use. */ 1226 if ((error = fd_checkstd()) != 0) { 1227 DPRINTF(("%s: fdcheckstd failed %d\n", 1228 __func__, error)); 1229 goto exec_abort; 1230 } 1231 1232 /* 1233 * Copy the credential so other references don't see our 1234 * changes. 1235 */ 1236 l->l_cred = kauth_cred_copy(l->l_cred); 1237 #ifdef KTRACE 1238 /* 1239 * If the persistent trace flag isn't set, turn off. 1240 */ 1241 if (p->p_tracep) { 1242 mutex_enter(&ktrace_lock); 1243 if (!(p->p_traceflag & KTRFAC_PERSISTENT)) 1244 ktrderef(p); 1245 mutex_exit(&ktrace_lock); 1246 } 1247 #endif 1248 if (data->ed_attr.va_mode & S_ISUID) 1249 kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid); 1250 if (data->ed_attr.va_mode & S_ISGID) 1251 kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid); 1252 } else { 1253 if (kauth_cred_geteuid(l->l_cred) == 1254 kauth_cred_getuid(l->l_cred) && 1255 kauth_cred_getegid(l->l_cred) == 1256 kauth_cred_getgid(l->l_cred)) 1257 p->p_flag &= ~PK_SUGID; 1258 } 1259 1260 /* 1261 * Copy the credential so other references don't see our changes. 1262 * Test to see if this is necessary first, since in the common case 1263 * we won't need a private reference. 1264 */ 1265 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || 1266 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { 1267 l->l_cred = kauth_cred_copy(l->l_cred); 1268 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); 1269 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); 1270 } 1271 1272 /* Update the master credentials. */ 1273 if (l->l_cred != p->p_cred) { 1274 kauth_cred_t ocred; 1275 1276 kauth_cred_hold(l->l_cred); 1277 mutex_enter(p->p_lock); 1278 ocred = p->p_cred; 1279 p->p_cred = l->l_cred; 1280 mutex_exit(p->p_lock); 1281 kauth_cred_free(ocred); 1282 } 1283 1284 #if defined(__HAVE_RAS) 1285 /* 1286 * Remove all RASs from the address space. 1287 */ 1288 ras_purgeall(); 1289 #endif 1290 1291 doexechooks(p); 1292 1293 /* setup new registers and do misc. setup. */ 1294 (*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack, 1295 (vaddr_t)stack); 1296 if (data->ed_pack.ep_esch->es_setregs) 1297 (*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack, 1298 (vaddr_t)stack); 1299 1300 /* Provide a consistent LWP private setting */ 1301 (void)lwp_setprivate(l, NULL); 1302 1303 /* Discard all PCU state; need to start fresh */ 1304 pcu_discard_all(l); 1305 1306 /* map the process's signal trampoline code */ 1307 if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) { 1308 DPRINTF(("%s: map sigcode failed %d\n", __func__, error)); 1309 goto exec_abort; 1310 } 1311 1312 pool_put(&exec_pool, data->ed_argp); 1313 1314 /* notify others that we exec'd */ 1315 KNOTE(&p->p_klist, NOTE_EXEC); 1316 1317 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 1318 1319 SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0); 1320 1321 /* The emulation root will usually have been found when we looked 1322 * for the elf interpreter (or similar), if not look now. */ 1323 if (data->ed_pack.ep_esch->es_emul->e_path != NULL && 1324 data->ed_pack.ep_emul_root == NULL) 1325 emul_find_root(l, &data->ed_pack); 1326 1327 /* Any old emulation root got removed by fdcloseexec */ 1328 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); 1329 p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root; 1330 rw_exit(&p->p_cwdi->cwdi_lock); 1331 data->ed_pack.ep_emul_root = NULL; 1332 if (data->ed_pack.ep_interp != NULL) 1333 vrele(data->ed_pack.ep_interp); 1334 1335 /* 1336 * Call emulation specific exec hook. This can setup per-process 1337 * p->p_emuldata or do any other per-process stuff an emulation needs. 1338 * 1339 * If we are executing process of different emulation than the 1340 * original forked process, call e_proc_exit() of the old emulation 1341 * first, then e_proc_exec() of new emulation. If the emulation is 1342 * same, the exec hook code should deallocate any old emulation 1343 * resources held previously by this process. 1344 */ 1345 if (p->p_emul && p->p_emul->e_proc_exit 1346 && p->p_emul != data->ed_pack.ep_esch->es_emul) 1347 (*p->p_emul->e_proc_exit)(p); 1348 1349 /* 1350 * This is now LWP 1. 1351 */ 1352 mutex_enter(p->p_lock); 1353 p->p_nlwpid = 1; 1354 l->l_lid = 1; 1355 mutex_exit(p->p_lock); 1356 1357 /* 1358 * Call exec hook. Emulation code may NOT store reference to anything 1359 * from &pack. 1360 */ 1361 if (data->ed_pack.ep_esch->es_emul->e_proc_exec) 1362 (*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack); 1363 1364 /* update p_emul, the old value is no longer needed */ 1365 p->p_emul = data->ed_pack.ep_esch->es_emul; 1366 1367 /* ...and the same for p_execsw */ 1368 p->p_execsw = data->ed_pack.ep_esch; 1369 1370 #ifdef __HAVE_SYSCALL_INTERN 1371 (*p->p_emul->e_syscall_intern)(p); 1372 #endif 1373 ktremul(); 1374 1375 /* Allow new references from the debugger/procfs. */ 1376 rw_exit(&p->p_reflock); 1377 if (!no_local_exec_lock) 1378 rw_exit(&exec_lock); 1379 1380 mutex_enter(proc_lock); 1381 1382 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) { 1383 KSI_INIT_EMPTY(&ksi); 1384 ksi.ksi_signo = SIGTRAP; 1385 ksi.ksi_lid = l->l_lid; 1386 kpsignal(p, &ksi, NULL); 1387 } 1388 1389 if (p->p_sflag & PS_STOPEXEC) { 1390 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 1391 p->p_pptr->p_nstopchild++; 1392 p->p_pptr->p_waited = 0; 1393 mutex_enter(p->p_lock); 1394 ksiginfo_queue_init(&kq); 1395 sigclearall(p, &contsigmask, &kq); 1396 lwp_lock(l); 1397 l->l_stat = LSSTOP; 1398 p->p_stat = SSTOP; 1399 p->p_nrlwps--; 1400 lwp_unlock(l); 1401 mutex_exit(p->p_lock); 1402 mutex_exit(proc_lock); 1403 lwp_lock(l); 1404 mi_switch(l); 1405 ksiginfo_queue_drain(&kq); 1406 KERNEL_LOCK(l->l_biglocks, l); 1407 } else { 1408 mutex_exit(proc_lock); 1409 } 1410 1411 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1412 pathbuf_destroy(data->ed_pathbuf); 1413 PNBUF_PUT(data->ed_resolvedpathbuf); 1414 DPRINTF(("%s finished\n", __func__)); 1415 return (EJUSTRETURN); 1416 1417 exec_abort: 1418 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 1419 rw_exit(&p->p_reflock); 1420 if (!no_local_exec_lock) 1421 rw_exit(&exec_lock); 1422 1423 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1424 pathbuf_destroy(data->ed_pathbuf); 1425 PNBUF_PUT(data->ed_resolvedpathbuf); 1426 1427 /* 1428 * the old process doesn't exist anymore. exit gracefully. 1429 * get rid of the (new) address space we have created, if any, get rid 1430 * of our namei data and vnode, and exit noting failure 1431 */ 1432 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, 1433 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); 1434 1435 exec_free_emul_arg(&data->ed_pack); 1436 pool_put(&exec_pool, data->ed_argp); 1437 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 1438 if (data->ed_pack.ep_emul_root != NULL) 1439 vrele(data->ed_pack.ep_emul_root); 1440 if (data->ed_pack.ep_interp != NULL) 1441 vrele(data->ed_pack.ep_interp); 1442 1443 /* Acquire the sched-state mutex (exit1() will release it). */ 1444 if (!is_spawn) { 1445 mutex_enter(p->p_lock); 1446 exit1(l, W_EXITCODE(error, SIGABRT)); 1447 } 1448 1449 return error; 1450 } 1451 1452 int 1453 execve1(struct lwp *l, const char *path, char * const *args, 1454 char * const *envs, execve_fetch_element_t fetch_element) 1455 { 1456 struct execve_data data; 1457 int error; 1458 1459 error = execve_loadvm(l, path, args, envs, fetch_element, &data); 1460 if (error) 1461 return error; 1462 error = execve_runproc(l, &data, false, false); 1463 return error; 1464 } 1465 1466 int 1467 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, 1468 char **stackp, void *argp) 1469 { 1470 char **cpp, *dp, *sp; 1471 size_t len; 1472 void *nullp; 1473 long argc, envc; 1474 int error; 1475 1476 cpp = (char **)*stackp; 1477 nullp = NULL; 1478 argc = arginfo->ps_nargvstr; 1479 envc = arginfo->ps_nenvstr; 1480 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { 1481 COPYPRINTF("", cpp - 1, sizeof(argc)); 1482 return error; 1483 } 1484 1485 dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen); 1486 sp = argp; 1487 1488 /* XXX don't copy them out, remap them! */ 1489 arginfo->ps_argvstr = cpp; /* remember location of argv for later */ 1490 1491 for (; --argc >= 0; sp += len, dp += len) { 1492 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1493 COPYPRINTF("", cpp - 1, sizeof(dp)); 1494 return error; 1495 } 1496 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1497 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1498 return error; 1499 } 1500 } 1501 1502 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1503 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1504 return error; 1505 } 1506 1507 arginfo->ps_envstr = cpp; /* remember location of envp for later */ 1508 1509 for (; --envc >= 0; sp += len, dp += len) { 1510 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1511 COPYPRINTF("", cpp - 1, sizeof(dp)); 1512 return error; 1513 } 1514 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1515 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1516 return error; 1517 } 1518 1519 } 1520 1521 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1522 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1523 return error; 1524 } 1525 1526 *stackp = (char *)cpp; 1527 return 0; 1528 } 1529 1530 1531 /* 1532 * Add execsw[] entries. 1533 */ 1534 int 1535 exec_add(struct execsw *esp, int count) 1536 { 1537 struct exec_entry *it; 1538 int i; 1539 1540 if (count == 0) { 1541 return 0; 1542 } 1543 1544 /* Check for duplicates. */ 1545 rw_enter(&exec_lock, RW_WRITER); 1546 for (i = 0; i < count; i++) { 1547 LIST_FOREACH(it, &ex_head, ex_list) { 1548 /* assume unique (makecmds, probe_func, emulation) */ 1549 if (it->ex_sw->es_makecmds == esp[i].es_makecmds && 1550 it->ex_sw->u.elf_probe_func == 1551 esp[i].u.elf_probe_func && 1552 it->ex_sw->es_emul == esp[i].es_emul) { 1553 rw_exit(&exec_lock); 1554 return EEXIST; 1555 } 1556 } 1557 } 1558 1559 /* Allocate new entries. */ 1560 for (i = 0; i < count; i++) { 1561 it = kmem_alloc(sizeof(*it), KM_SLEEP); 1562 it->ex_sw = &esp[i]; 1563 LIST_INSERT_HEAD(&ex_head, it, ex_list); 1564 } 1565 1566 /* update execsw[] */ 1567 exec_init(0); 1568 rw_exit(&exec_lock); 1569 return 0; 1570 } 1571 1572 /* 1573 * Remove execsw[] entry. 1574 */ 1575 int 1576 exec_remove(struct execsw *esp, int count) 1577 { 1578 struct exec_entry *it, *next; 1579 int i; 1580 const struct proclist_desc *pd; 1581 proc_t *p; 1582 1583 if (count == 0) { 1584 return 0; 1585 } 1586 1587 /* Abort if any are busy. */ 1588 rw_enter(&exec_lock, RW_WRITER); 1589 for (i = 0; i < count; i++) { 1590 mutex_enter(proc_lock); 1591 for (pd = proclists; pd->pd_list != NULL; pd++) { 1592 PROCLIST_FOREACH(p, pd->pd_list) { 1593 if (p->p_execsw == &esp[i]) { 1594 mutex_exit(proc_lock); 1595 rw_exit(&exec_lock); 1596 return EBUSY; 1597 } 1598 } 1599 } 1600 mutex_exit(proc_lock); 1601 } 1602 1603 /* None are busy, so remove them all. */ 1604 for (i = 0; i < count; i++) { 1605 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { 1606 next = LIST_NEXT(it, ex_list); 1607 if (it->ex_sw == &esp[i]) { 1608 LIST_REMOVE(it, ex_list); 1609 kmem_free(it, sizeof(*it)); 1610 break; 1611 } 1612 } 1613 } 1614 1615 /* update execsw[] */ 1616 exec_init(0); 1617 rw_exit(&exec_lock); 1618 return 0; 1619 } 1620 1621 /* 1622 * Initialize exec structures. If init_boot is true, also does necessary 1623 * one-time initialization (it's called from main() that way). 1624 * Once system is multiuser, this should be called with exec_lock held, 1625 * i.e. via exec_{add|remove}(). 1626 */ 1627 int 1628 exec_init(int init_boot) 1629 { 1630 const struct execsw **sw; 1631 struct exec_entry *ex; 1632 SLIST_HEAD(,exec_entry) first; 1633 SLIST_HEAD(,exec_entry) any; 1634 SLIST_HEAD(,exec_entry) last; 1635 int i, sz; 1636 1637 if (init_boot) { 1638 /* do one-time initializations */ 1639 rw_init(&exec_lock); 1640 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); 1641 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, 1642 "execargs", &exec_palloc, IPL_NONE); 1643 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0); 1644 } else { 1645 KASSERT(rw_write_held(&exec_lock)); 1646 } 1647 1648 /* Sort each entry onto the appropriate queue. */ 1649 SLIST_INIT(&first); 1650 SLIST_INIT(&any); 1651 SLIST_INIT(&last); 1652 sz = 0; 1653 LIST_FOREACH(ex, &ex_head, ex_list) { 1654 switch(ex->ex_sw->es_prio) { 1655 case EXECSW_PRIO_FIRST: 1656 SLIST_INSERT_HEAD(&first, ex, ex_slist); 1657 break; 1658 case EXECSW_PRIO_ANY: 1659 SLIST_INSERT_HEAD(&any, ex, ex_slist); 1660 break; 1661 case EXECSW_PRIO_LAST: 1662 SLIST_INSERT_HEAD(&last, ex, ex_slist); 1663 break; 1664 default: 1665 panic("%s", __func__); 1666 break; 1667 } 1668 sz++; 1669 } 1670 1671 /* 1672 * Create new execsw[]. Ensure we do not try a zero-sized 1673 * allocation. 1674 */ 1675 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); 1676 i = 0; 1677 SLIST_FOREACH(ex, &first, ex_slist) { 1678 sw[i++] = ex->ex_sw; 1679 } 1680 SLIST_FOREACH(ex, &any, ex_slist) { 1681 sw[i++] = ex->ex_sw; 1682 } 1683 SLIST_FOREACH(ex, &last, ex_slist) { 1684 sw[i++] = ex->ex_sw; 1685 } 1686 1687 /* Replace old execsw[] and free used memory. */ 1688 if (execsw != NULL) { 1689 kmem_free(__UNCONST(execsw), 1690 nexecs * sizeof(struct execsw *) + 1); 1691 } 1692 execsw = sw; 1693 nexecs = sz; 1694 1695 /* Figure out the maximum size of an exec header. */ 1696 exec_maxhdrsz = sizeof(int); 1697 for (i = 0; i < nexecs; i++) { 1698 if (execsw[i]->es_hdrsz > exec_maxhdrsz) 1699 exec_maxhdrsz = execsw[i]->es_hdrsz; 1700 } 1701 1702 return 0; 1703 } 1704 1705 static int 1706 exec_sigcode_map(struct proc *p, const struct emul *e) 1707 { 1708 vaddr_t va; 1709 vsize_t sz; 1710 int error; 1711 struct uvm_object *uobj; 1712 1713 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; 1714 1715 if (e->e_sigobject == NULL || sz == 0) { 1716 return 0; 1717 } 1718 1719 /* 1720 * If we don't have a sigobject for this emulation, create one. 1721 * 1722 * sigobject is an anonymous memory object (just like SYSV shared 1723 * memory) that we keep a permanent reference to and that we map 1724 * in all processes that need this sigcode. The creation is simple, 1725 * we create an object, add a permanent reference to it, map it in 1726 * kernel space, copy out the sigcode to it and unmap it. 1727 * We map it with PROT_READ|PROT_EXEC into the process just 1728 * the way sys_mmap() would map it. 1729 */ 1730 1731 uobj = *e->e_sigobject; 1732 if (uobj == NULL) { 1733 mutex_enter(&sigobject_lock); 1734 if ((uobj = *e->e_sigobject) == NULL) { 1735 uobj = uao_create(sz, 0); 1736 (*uobj->pgops->pgo_reference)(uobj); 1737 va = vm_map_min(kernel_map); 1738 if ((error = uvm_map(kernel_map, &va, round_page(sz), 1739 uobj, 0, 0, 1740 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1741 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { 1742 printf("kernel mapping failed %d\n", error); 1743 (*uobj->pgops->pgo_detach)(uobj); 1744 mutex_exit(&sigobject_lock); 1745 return (error); 1746 } 1747 memcpy((void *)va, e->e_sigcode, sz); 1748 #ifdef PMAP_NEED_PROCWR 1749 pmap_procwr(&proc0, va, sz); 1750 #endif 1751 uvm_unmap(kernel_map, va, va + round_page(sz)); 1752 *e->e_sigobject = uobj; 1753 } 1754 mutex_exit(&sigobject_lock); 1755 } 1756 1757 /* Just a hint to uvm_map where to put it. */ 1758 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, 1759 round_page(sz)); 1760 1761 #ifdef __alpha__ 1762 /* 1763 * Tru64 puts /sbin/loader at the end of user virtual memory, 1764 * which causes the above calculation to put the sigcode at 1765 * an invalid address. Put it just below the text instead. 1766 */ 1767 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { 1768 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); 1769 } 1770 #endif 1771 1772 (*uobj->pgops->pgo_reference)(uobj); 1773 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), 1774 uobj, 0, 0, 1775 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, 1776 UVM_ADV_RANDOM, 0)); 1777 if (error) { 1778 DPRINTF(("%s, %d: map %p " 1779 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n", 1780 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), 1781 va, error)); 1782 (*uobj->pgops->pgo_detach)(uobj); 1783 return (error); 1784 } 1785 p->p_sigctx.ps_sigcode = (void *)va; 1786 return (0); 1787 } 1788 1789 /* 1790 * Release a refcount on spawn_exec_data and destroy memory, if this 1791 * was the last one. 1792 */ 1793 static void 1794 spawn_exec_data_release(struct spawn_exec_data *data) 1795 { 1796 if (atomic_dec_32_nv(&data->sed_refcnt) != 0) 1797 return; 1798 1799 cv_destroy(&data->sed_cv_child_ready); 1800 mutex_destroy(&data->sed_mtx_child); 1801 1802 if (data->sed_actions) 1803 posix_spawn_fa_free(data->sed_actions, 1804 data->sed_actions->len); 1805 if (data->sed_attrs) 1806 kmem_free(data->sed_attrs, 1807 sizeof(*data->sed_attrs)); 1808 kmem_free(data, sizeof(*data)); 1809 } 1810 1811 /* 1812 * A child lwp of a posix_spawn operation starts here and ends up in 1813 * cpu_spawn_return, dealing with all filedescriptor and scheduler 1814 * manipulations in between. 1815 * The parent waits for the child, as it is not clear wether the child 1816 * will be able to aquire its own exec_lock. If it can, the parent can 1817 * be released early and continue running in parallel. If not (or if the 1818 * magic debug flag is passed in the scheduler attribute struct), the 1819 * child rides on the parent's exec lock untill it is ready to return to 1820 * to userland - and only then releases the parent. This method loses 1821 * concurrency, but improves error reporting. 1822 */ 1823 static void 1824 spawn_return(void *arg) 1825 { 1826 struct spawn_exec_data *spawn_data = arg; 1827 struct lwp *l = curlwp; 1828 int error, newfd; 1829 size_t i; 1830 const struct posix_spawn_file_actions_entry *fae; 1831 pid_t ppid; 1832 register_t retval; 1833 bool have_reflock; 1834 bool parent_is_waiting = true; 1835 1836 /* 1837 * Check if we can release parent early. 1838 * We either need to have no sed_attrs, or sed_attrs does not 1839 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require 1840 * safe access to the parent proc (passed in sed_parent). 1841 * We then try to get the exec_lock, and only if that works, we can 1842 * release the parent here already. 1843 */ 1844 ppid = spawn_data->sed_parent->p_pid; 1845 if ((!spawn_data->sed_attrs 1846 || (spawn_data->sed_attrs->sa_flags 1847 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0) 1848 && rw_tryenter(&exec_lock, RW_READER)) { 1849 parent_is_waiting = false; 1850 mutex_enter(&spawn_data->sed_mtx_child); 1851 cv_signal(&spawn_data->sed_cv_child_ready); 1852 mutex_exit(&spawn_data->sed_mtx_child); 1853 } 1854 1855 /* don't allow debugger access yet */ 1856 rw_enter(&l->l_proc->p_reflock, RW_WRITER); 1857 have_reflock = true; 1858 1859 error = 0; 1860 /* handle posix_spawn_file_actions */ 1861 if (spawn_data->sed_actions != NULL) { 1862 for (i = 0; i < spawn_data->sed_actions->len; i++) { 1863 fae = &spawn_data->sed_actions->fae[i]; 1864 switch (fae->fae_action) { 1865 case FAE_OPEN: 1866 if (fd_getfile(fae->fae_fildes) != NULL) { 1867 error = fd_close(fae->fae_fildes); 1868 if (error) 1869 break; 1870 } 1871 error = fd_open(fae->fae_path, fae->fae_oflag, 1872 fae->fae_mode, &newfd); 1873 if (error) 1874 break; 1875 if (newfd != fae->fae_fildes) { 1876 error = dodup(l, newfd, 1877 fae->fae_fildes, 0, &retval); 1878 if (fd_getfile(newfd) != NULL) 1879 fd_close(newfd); 1880 } 1881 break; 1882 case FAE_DUP2: 1883 error = dodup(l, fae->fae_fildes, 1884 fae->fae_newfildes, 0, &retval); 1885 break; 1886 case FAE_CLOSE: 1887 if (fd_getfile(fae->fae_fildes) == NULL) { 1888 error = EBADF; 1889 break; 1890 } 1891 error = fd_close(fae->fae_fildes); 1892 break; 1893 } 1894 if (error) 1895 goto report_error; 1896 } 1897 } 1898 1899 /* handle posix_spawnattr */ 1900 if (spawn_data->sed_attrs != NULL) { 1901 int ostat; 1902 struct sigaction sigact; 1903 sigact._sa_u._sa_handler = SIG_DFL; 1904 sigact.sa_flags = 0; 1905 1906 /* 1907 * set state to SSTOP so that this proc can be found by pid. 1908 * see proc_enterprp, do_sched_setparam below 1909 */ 1910 ostat = l->l_proc->p_stat; 1911 l->l_proc->p_stat = SSTOP; 1912 1913 /* Set process group */ 1914 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { 1915 pid_t mypid = l->l_proc->p_pid, 1916 pgrp = spawn_data->sed_attrs->sa_pgroup; 1917 1918 if (pgrp == 0) 1919 pgrp = mypid; 1920 1921 error = proc_enterpgrp(spawn_data->sed_parent, 1922 mypid, pgrp, false); 1923 if (error) 1924 goto report_error; 1925 } 1926 1927 /* Set scheduler policy */ 1928 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) 1929 error = do_sched_setparam(l->l_proc->p_pid, 0, 1930 spawn_data->sed_attrs->sa_schedpolicy, 1931 &spawn_data->sed_attrs->sa_schedparam); 1932 else if (spawn_data->sed_attrs->sa_flags 1933 & POSIX_SPAWN_SETSCHEDPARAM) { 1934 error = do_sched_setparam(ppid, 0, 1935 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); 1936 } 1937 if (error) 1938 goto report_error; 1939 1940 /* Reset user ID's */ 1941 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { 1942 error = do_setresuid(l, -1, 1943 kauth_cred_getgid(l->l_cred), -1, 1944 ID_E_EQ_R | ID_E_EQ_S); 1945 if (error) 1946 goto report_error; 1947 error = do_setresuid(l, -1, 1948 kauth_cred_getuid(l->l_cred), -1, 1949 ID_E_EQ_R | ID_E_EQ_S); 1950 if (error) 1951 goto report_error; 1952 } 1953 1954 /* Set signal masks/defaults */ 1955 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { 1956 mutex_enter(l->l_proc->p_lock); 1957 error = sigprocmask1(l, SIG_SETMASK, 1958 &spawn_data->sed_attrs->sa_sigmask, NULL); 1959 mutex_exit(l->l_proc->p_lock); 1960 if (error) 1961 goto report_error; 1962 } 1963 1964 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { 1965 for (i = 1; i <= NSIG; i++) { 1966 if (sigismember( 1967 &spawn_data->sed_attrs->sa_sigdefault, i)) 1968 sigaction1(l, i, &sigact, NULL, NULL, 1969 0); 1970 } 1971 } 1972 l->l_proc->p_stat = ostat; 1973 } 1974 1975 /* now do the real exec */ 1976 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting, 1977 true); 1978 have_reflock = false; 1979 if (error == EJUSTRETURN) 1980 error = 0; 1981 else if (error) 1982 goto report_error; 1983 1984 if (parent_is_waiting) { 1985 mutex_enter(&spawn_data->sed_mtx_child); 1986 cv_signal(&spawn_data->sed_cv_child_ready); 1987 mutex_exit(&spawn_data->sed_mtx_child); 1988 } 1989 1990 /* release our refcount on the data */ 1991 spawn_exec_data_release(spawn_data); 1992 1993 /* and finaly: leave to userland for the first time */ 1994 cpu_spawn_return(l); 1995 1996 /* NOTREACHED */ 1997 return; 1998 1999 report_error: 2000 if (have_reflock) { 2001 /* 2002 * We have not passed through execve_runproc(), 2003 * which would have released the p_reflock and also 2004 * taken ownership of the sed_exec part of spawn_data, 2005 * so release/free both here. 2006 */ 2007 rw_exit(&l->l_proc->p_reflock); 2008 execve_free_data(&spawn_data->sed_exec); 2009 } 2010 2011 if (parent_is_waiting) { 2012 /* pass error to parent */ 2013 mutex_enter(&spawn_data->sed_mtx_child); 2014 spawn_data->sed_error = error; 2015 cv_signal(&spawn_data->sed_cv_child_ready); 2016 mutex_exit(&spawn_data->sed_mtx_child); 2017 } else { 2018 rw_exit(&exec_lock); 2019 } 2020 2021 /* release our refcount on the data */ 2022 spawn_exec_data_release(spawn_data); 2023 2024 /* done, exit */ 2025 mutex_enter(l->l_proc->p_lock); 2026 /* 2027 * Posix explicitly asks for an exit code of 127 if we report 2028 * errors from the child process - so, unfortunately, there 2029 * is no way to report a more exact error code. 2030 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as 2031 * flag bit in the attrp argument to posix_spawn(2), see above. 2032 */ 2033 exit1(l, W_EXITCODE(127, 0)); 2034 } 2035 2036 void 2037 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) 2038 { 2039 2040 for (size_t i = 0; i < len; i++) { 2041 struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; 2042 if (fae->fae_action != FAE_OPEN) 2043 continue; 2044 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1); 2045 } 2046 if (fa->len > 0) 2047 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); 2048 kmem_free(fa, sizeof(*fa)); 2049 } 2050 2051 static int 2052 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, 2053 const struct posix_spawn_file_actions *ufa) 2054 { 2055 struct posix_spawn_file_actions *fa; 2056 struct posix_spawn_file_actions_entry *fae; 2057 char *pbuf = NULL; 2058 int error; 2059 size_t i = 0; 2060 2061 fa = kmem_alloc(sizeof(*fa), KM_SLEEP); 2062 error = copyin(ufa, fa, sizeof(*fa)); 2063 if (error) { 2064 fa->fae = NULL; 2065 fa->len = 0; 2066 goto out; 2067 } 2068 2069 if (fa->len == 0) { 2070 kmem_free(fa, sizeof(*fa)); 2071 return 0; 2072 } 2073 2074 fa->size = fa->len; 2075 size_t fal = fa->len * sizeof(*fae); 2076 fae = fa->fae; 2077 fa->fae = kmem_alloc(fal, KM_SLEEP); 2078 error = copyin(fae, fa->fae, fal); 2079 if (error) 2080 goto out; 2081 2082 pbuf = PNBUF_GET(); 2083 for (; i < fa->len; i++) { 2084 fae = &fa->fae[i]; 2085 if (fae->fae_action != FAE_OPEN) 2086 continue; 2087 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); 2088 if (error) 2089 goto out; 2090 fae->fae_path = kmem_alloc(fal, KM_SLEEP); 2091 memcpy(fae->fae_path, pbuf, fal); 2092 } 2093 PNBUF_PUT(pbuf); 2094 2095 *fap = fa; 2096 return 0; 2097 out: 2098 if (pbuf) 2099 PNBUF_PUT(pbuf); 2100 posix_spawn_fa_free(fa, i); 2101 return error; 2102 } 2103 2104 int 2105 check_posix_spawn(struct lwp *l1) 2106 { 2107 int error, tnprocs, count; 2108 uid_t uid; 2109 struct proc *p1; 2110 2111 p1 = l1->l_proc; 2112 uid = kauth_cred_getuid(l1->l_cred); 2113 tnprocs = atomic_inc_uint_nv(&nprocs); 2114 2115 /* 2116 * Although process entries are dynamically created, we still keep 2117 * a global limit on the maximum number we will create. 2118 */ 2119 if (__predict_false(tnprocs >= maxproc)) 2120 error = -1; 2121 else 2122 error = kauth_authorize_process(l1->l_cred, 2123 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 2124 2125 if (error) { 2126 atomic_dec_uint(&nprocs); 2127 return EAGAIN; 2128 } 2129 2130 /* 2131 * Enforce limits. 2132 */ 2133 count = chgproccnt(uid, 1); 2134 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, 2135 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 2136 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 && 2137 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 2138 (void)chgproccnt(uid, -1); 2139 atomic_dec_uint(&nprocs); 2140 return EAGAIN; 2141 } 2142 2143 return 0; 2144 } 2145 2146 int 2147 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path, 2148 struct posix_spawn_file_actions *fa, 2149 struct posix_spawnattr *sa, 2150 char *const *argv, char *const *envp, 2151 execve_fetch_element_t fetch) 2152 { 2153 2154 struct proc *p1, *p2; 2155 struct lwp *l2; 2156 int error; 2157 struct spawn_exec_data *spawn_data; 2158 vaddr_t uaddr; 2159 pid_t pid; 2160 bool have_exec_lock = false; 2161 2162 p1 = l1->l_proc; 2163 2164 /* Allocate and init spawn_data */ 2165 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); 2166 spawn_data->sed_refcnt = 1; /* only parent so far */ 2167 cv_init(&spawn_data->sed_cv_child_ready, "pspawn"); 2168 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); 2169 mutex_enter(&spawn_data->sed_mtx_child); 2170 2171 /* 2172 * Do the first part of the exec now, collect state 2173 * in spawn_data. 2174 */ 2175 error = execve_loadvm(l1, path, argv, 2176 envp, fetch, &spawn_data->sed_exec); 2177 if (error == EJUSTRETURN) 2178 error = 0; 2179 else if (error) 2180 goto error_exit; 2181 2182 have_exec_lock = true; 2183 2184 /* 2185 * Allocate virtual address space for the U-area now, while it 2186 * is still easy to abort the fork operation if we're out of 2187 * kernel virtual address space. 2188 */ 2189 uaddr = uvm_uarea_alloc(); 2190 if (__predict_false(uaddr == 0)) { 2191 error = ENOMEM; 2192 goto error_exit; 2193 } 2194 2195 /* 2196 * Allocate new proc. Borrow proc0 vmspace for it, we will 2197 * replace it with its own before returning to userland 2198 * in the child. 2199 * This is a point of no return, we will have to go through 2200 * the child proc to properly clean it up past this point. 2201 */ 2202 p2 = proc_alloc(); 2203 pid = p2->p_pid; 2204 2205 /* 2206 * Make a proc table entry for the new process. 2207 * Start by zeroing the section of proc that is zero-initialized, 2208 * then copy the section that is copied directly from the parent. 2209 */ 2210 memset(&p2->p_startzero, 0, 2211 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 2212 memcpy(&p2->p_startcopy, &p1->p_startcopy, 2213 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 2214 p2->p_vmspace = proc0.p_vmspace; 2215 2216 CIRCLEQ_INIT(&p2->p_sigpend.sp_info); 2217 2218 LIST_INIT(&p2->p_lwps); 2219 LIST_INIT(&p2->p_sigwaiters); 2220 2221 /* 2222 * Duplicate sub-structures as needed. 2223 * Increase reference counts on shared objects. 2224 * Inherit flags we want to keep. The flags related to SIGCHLD 2225 * handling are important in order to keep a consistent behaviour 2226 * for the child after the fork. If we are a 32-bit process, the 2227 * child will be too. 2228 */ 2229 p2->p_flag = 2230 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 2231 p2->p_emul = p1->p_emul; 2232 p2->p_execsw = p1->p_execsw; 2233 2234 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 2235 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 2236 rw_init(&p2->p_reflock); 2237 cv_init(&p2->p_waitcv, "wait"); 2238 cv_init(&p2->p_lwpcv, "lwpwait"); 2239 2240 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2241 2242 kauth_proc_fork(p1, p2); 2243 2244 p2->p_raslist = NULL; 2245 p2->p_fd = fd_copy(); 2246 2247 /* XXX racy */ 2248 p2->p_mqueue_cnt = p1->p_mqueue_cnt; 2249 2250 p2->p_cwdi = cwdinit(); 2251 2252 /* 2253 * Note: p_limit (rlimit stuff) is copy-on-write, so normally 2254 * we just need increase pl_refcnt. 2255 */ 2256 if (!p1->p_limit->pl_writeable) { 2257 lim_addref(p1->p_limit); 2258 p2->p_limit = p1->p_limit; 2259 } else { 2260 p2->p_limit = lim_copy(p1->p_limit); 2261 } 2262 2263 p2->p_lflag = 0; 2264 p2->p_sflag = 0; 2265 p2->p_slflag = 0; 2266 p2->p_pptr = p1; 2267 p2->p_ppid = p1->p_pid; 2268 LIST_INIT(&p2->p_children); 2269 2270 p2->p_aio = NULL; 2271 2272 #ifdef KTRACE 2273 /* 2274 * Copy traceflag and tracefile if enabled. 2275 * If not inherited, these were zeroed above. 2276 */ 2277 if (p1->p_traceflag & KTRFAC_INHERIT) { 2278 mutex_enter(&ktrace_lock); 2279 p2->p_traceflag = p1->p_traceflag; 2280 if ((p2->p_tracep = p1->p_tracep) != NULL) 2281 ktradref(p2); 2282 mutex_exit(&ktrace_lock); 2283 } 2284 #endif 2285 2286 /* 2287 * Create signal actions for the child process. 2288 */ 2289 p2->p_sigacts = sigactsinit(p1, 0); 2290 mutex_enter(p1->p_lock); 2291 p2->p_sflag |= 2292 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 2293 sched_proc_fork(p1, p2); 2294 mutex_exit(p1->p_lock); 2295 2296 p2->p_stflag = p1->p_stflag; 2297 2298 /* 2299 * p_stats. 2300 * Copy parts of p_stats, and zero out the rest. 2301 */ 2302 p2->p_stats = pstatscopy(p1->p_stats); 2303 2304 /* copy over machdep flags to the new proc */ 2305 cpu_proc_fork(p1, p2); 2306 2307 /* 2308 * Prepare remaining parts of spawn data 2309 */ 2310 spawn_data->sed_actions = fa; 2311 spawn_data->sed_attrs = sa; 2312 2313 spawn_data->sed_parent = p1; 2314 2315 /* create LWP */ 2316 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, 2317 &l2, l1->l_class); 2318 l2->l_ctxlink = NULL; /* reset ucontext link */ 2319 2320 /* 2321 * Copy the credential so other references don't see our changes. 2322 * Test to see if this is necessary first, since in the common case 2323 * we won't need a private reference. 2324 */ 2325 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || 2326 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { 2327 l2->l_cred = kauth_cred_copy(l2->l_cred); 2328 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); 2329 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); 2330 } 2331 2332 /* Update the master credentials. */ 2333 if (l2->l_cred != p2->p_cred) { 2334 kauth_cred_t ocred; 2335 2336 kauth_cred_hold(l2->l_cred); 2337 mutex_enter(p2->p_lock); 2338 ocred = p2->p_cred; 2339 p2->p_cred = l2->l_cred; 2340 mutex_exit(p2->p_lock); 2341 kauth_cred_free(ocred); 2342 } 2343 2344 *child_ok = true; 2345 spawn_data->sed_refcnt = 2; /* child gets it as well */ 2346 #if 0 2347 l2->l_nopreempt = 1; /* start it non-preemptable */ 2348 #endif 2349 2350 /* 2351 * It's now safe for the scheduler and other processes to see the 2352 * child process. 2353 */ 2354 mutex_enter(proc_lock); 2355 2356 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 2357 p2->p_lflag |= PL_CONTROLT; 2358 2359 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); 2360 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ 2361 2362 LIST_INSERT_AFTER(p1, p2, p_pglist); 2363 LIST_INSERT_HEAD(&allproc, p2, p_list); 2364 2365 p2->p_trace_enabled = trace_is_enabled(p2); 2366 #ifdef __HAVE_SYSCALL_INTERN 2367 (*p2->p_emul->e_syscall_intern)(p2); 2368 #endif 2369 2370 /* 2371 * Make child runnable, set start time, and add to run queue except 2372 * if the parent requested the child to start in SSTOP state. 2373 */ 2374 mutex_enter(p2->p_lock); 2375 2376 getmicrotime(&p2->p_stats->p_start); 2377 2378 lwp_lock(l2); 2379 KASSERT(p2->p_nrlwps == 1); 2380 p2->p_nrlwps = 1; 2381 p2->p_stat = SACTIVE; 2382 l2->l_stat = LSRUN; 2383 sched_enqueue(l2, false); 2384 lwp_unlock(l2); 2385 2386 mutex_exit(p2->p_lock); 2387 mutex_exit(proc_lock); 2388 2389 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); 2390 error = spawn_data->sed_error; 2391 mutex_exit(&spawn_data->sed_mtx_child); 2392 spawn_exec_data_release(spawn_data); 2393 2394 rw_exit(&p1->p_reflock); 2395 rw_exit(&exec_lock); 2396 have_exec_lock = false; 2397 2398 *pid_res = pid; 2399 return error; 2400 2401 error_exit: 2402 if (have_exec_lock) { 2403 execve_free_data(&spawn_data->sed_exec); 2404 rw_exit(&p1->p_reflock); 2405 rw_exit(&exec_lock); 2406 } 2407 mutex_exit(&spawn_data->sed_mtx_child); 2408 spawn_exec_data_release(spawn_data); 2409 2410 return error; 2411 } 2412 2413 int 2414 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, 2415 register_t *retval) 2416 { 2417 /* { 2418 syscallarg(pid_t *) pid; 2419 syscallarg(const char *) path; 2420 syscallarg(const struct posix_spawn_file_actions *) file_actions; 2421 syscallarg(const struct posix_spawnattr *) attrp; 2422 syscallarg(char *const *) argv; 2423 syscallarg(char *const *) envp; 2424 } */ 2425 2426 int error; 2427 struct posix_spawn_file_actions *fa = NULL; 2428 struct posix_spawnattr *sa = NULL; 2429 pid_t pid; 2430 bool child_ok = false; 2431 2432 error = check_posix_spawn(l1); 2433 if (error) { 2434 *retval = error; 2435 return 0; 2436 } 2437 2438 /* copy in file_actions struct */ 2439 if (SCARG(uap, file_actions) != NULL) { 2440 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions)); 2441 if (error) 2442 goto error_exit; 2443 } 2444 2445 /* copyin posix_spawnattr struct */ 2446 if (SCARG(uap, attrp) != NULL) { 2447 sa = kmem_alloc(sizeof(*sa), KM_SLEEP); 2448 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); 2449 if (error) 2450 goto error_exit; 2451 } 2452 2453 /* 2454 * Do the spawn 2455 */ 2456 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa, 2457 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element); 2458 if (error) 2459 goto error_exit; 2460 2461 if (error == 0 && SCARG(uap, pid) != NULL) 2462 error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); 2463 2464 *retval = error; 2465 return 0; 2466 2467 error_exit: 2468 if (!child_ok) { 2469 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1); 2470 atomic_dec_uint(&nprocs); 2471 2472 if (sa) 2473 kmem_free(sa, sizeof(*sa)); 2474 if (fa) 2475 posix_spawn_fa_free(fa, fa->len); 2476 } 2477 2478 *retval = error; 2479 return 0; 2480 } 2481 2482 void 2483 exec_free_emul_arg(struct exec_package *epp) 2484 { 2485 if (epp->ep_emul_arg_free != NULL) { 2486 KASSERT(epp->ep_emul_arg != NULL); 2487 (*epp->ep_emul_arg_free)(epp->ep_emul_arg); 2488 epp->ep_emul_arg_free = NULL; 2489 epp->ep_emul_arg = NULL; 2490 } else { 2491 KASSERT(epp->ep_emul_arg == NULL); 2492 } 2493 } 2494