xref: /netbsd-src/sys/kern/kern_exec.c (revision c5e820cae412164fcbee52f470436200af5358ea)
1 /*	$NetBSD: kern_exec.c,v 1.347 2012/03/13 18:40:52 elad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31  * Copyright (C) 1992 Wolfgang Solfrank.
32  * Copyright (C) 1992 TooLs GmbH.
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by TooLs GmbH.
46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.347 2012/03/13 18:40:52 elad Exp $");
63 
64 #include "opt_exec.h"
65 #include "opt_ktrace.h"
66 #include "opt_modular.h"
67 #include "opt_syscall_debug.h"
68 #include "veriexec.h"
69 #include "opt_pax.h"
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/filedesc.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/mount.h>
77 #include <sys/malloc.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/acct.h>
83 #include <sys/atomic.h>
84 #include <sys/exec.h>
85 #include <sys/ktrace.h>
86 #include <sys/uidinfo.h>
87 #include <sys/wait.h>
88 #include <sys/mman.h>
89 #include <sys/ras.h>
90 #include <sys/signalvar.h>
91 #include <sys/stat.h>
92 #include <sys/syscall.h>
93 #include <sys/kauth.h>
94 #include <sys/lwpctl.h>
95 #include <sys/pax.h>
96 #include <sys/cpu.h>
97 #include <sys/module.h>
98 #include <sys/syscallvar.h>
99 #include <sys/syscallargs.h>
100 #if NVERIEXEC > 0
101 #include <sys/verified_exec.h>
102 #endif /* NVERIEXEC > 0 */
103 #include <sys/sdt.h>
104 #include <sys/spawn.h>
105 #include <sys/prot.h>
106 #include <sys/cprng.h>
107 
108 #include <uvm/uvm_extern.h>
109 
110 #include <machine/reg.h>
111 
112 #include <compat/common/compat_util.h>
113 
114 static int exec_sigcode_map(struct proc *, const struct emul *);
115 
116 #ifdef DEBUG_EXEC
117 #define DPRINTF(a) printf a
118 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
119     __LINE__, (s), (a), (b))
120 #else
121 #define DPRINTF(a)
122 #define COPYPRINTF(s, a, b)
123 #endif /* DEBUG_EXEC */
124 
125 /*
126  * DTrace SDT provider definitions
127  */
128 SDT_PROBE_DEFINE(proc,,,exec,
129 	    "char *", NULL,
130 	    NULL, NULL, NULL, NULL,
131 	    NULL, NULL, NULL, NULL);
132 SDT_PROBE_DEFINE(proc,,,exec_success,
133 	    "char *", NULL,
134 	    NULL, NULL, NULL, NULL,
135 	    NULL, NULL, NULL, NULL);
136 SDT_PROBE_DEFINE(proc,,,exec_failure,
137 	    "int", NULL,
138 	    NULL, NULL, NULL, NULL,
139 	    NULL, NULL, NULL, NULL);
140 
141 /*
142  * Exec function switch:
143  *
144  * Note that each makecmds function is responsible for loading the
145  * exec package with the necessary functions for any exec-type-specific
146  * handling.
147  *
148  * Functions for specific exec types should be defined in their own
149  * header file.
150  */
151 static const struct execsw	**execsw = NULL;
152 static int			nexecs;
153 
154 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
155 
156 /* list of dynamically loaded execsw entries */
157 static LIST_HEAD(execlist_head, exec_entry) ex_head =
158     LIST_HEAD_INITIALIZER(ex_head);
159 struct exec_entry {
160 	LIST_ENTRY(exec_entry)	ex_list;
161 	SLIST_ENTRY(exec_entry)	ex_slist;
162 	const struct execsw	*ex_sw;
163 };
164 
165 #ifndef __HAVE_SYSCALL_INTERN
166 void	syscall(void);
167 #endif
168 
169 /* NetBSD emul struct */
170 struct emul emul_netbsd = {
171 	.e_name =		"netbsd",
172 	.e_path =		NULL,
173 #ifndef __HAVE_MINIMAL_EMUL
174 	.e_flags =		EMUL_HAS_SYS___syscall,
175 	.e_errno =		NULL,
176 	.e_nosys =		SYS_syscall,
177 	.e_nsysent =		SYS_NSYSENT,
178 #endif
179 	.e_sysent =		sysent,
180 #ifdef SYSCALL_DEBUG
181 	.e_syscallnames =	syscallnames,
182 #else
183 	.e_syscallnames =	NULL,
184 #endif
185 	.e_sendsig =		sendsig,
186 	.e_trapsignal =		trapsignal,
187 	.e_tracesig =		NULL,
188 	.e_sigcode =		NULL,
189 	.e_esigcode =		NULL,
190 	.e_sigobject =		NULL,
191 	.e_setregs =		setregs,
192 	.e_proc_exec =		NULL,
193 	.e_proc_fork =		NULL,
194 	.e_proc_exit =		NULL,
195 	.e_lwp_fork =		NULL,
196 	.e_lwp_exit =		NULL,
197 #ifdef __HAVE_SYSCALL_INTERN
198 	.e_syscall_intern =	syscall_intern,
199 #else
200 	.e_syscall =		syscall,
201 #endif
202 	.e_sysctlovly =		NULL,
203 	.e_fault =		NULL,
204 	.e_vm_default_addr =	uvm_default_mapaddr,
205 	.e_usertrap =		NULL,
206 	.e_ucsize =		sizeof(ucontext_t),
207 	.e_startlwp =		startlwp
208 };
209 
210 /*
211  * Exec lock. Used to control access to execsw[] structures.
212  * This must not be static so that netbsd32 can access it, too.
213  */
214 krwlock_t exec_lock;
215 
216 static kmutex_t sigobject_lock;
217 
218 /*
219  * Data used between a loadvm and execve part of an "exec" operation
220  */
221 struct execve_data {
222 	struct exec_package	ed_pack;
223 	struct pathbuf		*ed_pathbuf;
224 	struct vattr		ed_attr;
225 	struct ps_strings	ed_arginfo;
226 	char			*ed_argp;
227 	const char		*ed_pathstring;
228 	char			*ed_resolvedpathbuf;
229 	size_t			ed_ps_strings_sz;
230 	int			ed_szsigcode;
231 	long			ed_argc;
232 	long			ed_envc;
233 };
234 
235 /*
236  * data passed from parent lwp to child during a posix_spawn()
237  */
238 struct spawn_exec_data {
239 	struct execve_data	sed_exec;
240 	size_t 			sed_actions_len;
241 	struct posix_spawn_file_actions_entry
242 				*sed_actions;
243 	struct posix_spawnattr	*sed_attrs;
244 	struct proc		*sed_parent;
245 	kcondvar_t		sed_cv_child_ready;
246 	kmutex_t		sed_mtx_child;
247 	int			sed_error;
248 };
249 
250 static void *
251 exec_pool_alloc(struct pool *pp, int flags)
252 {
253 
254 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
255 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
256 }
257 
258 static void
259 exec_pool_free(struct pool *pp, void *addr)
260 {
261 
262 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
263 }
264 
265 static struct pool exec_pool;
266 
267 static struct pool_allocator exec_palloc = {
268 	.pa_alloc = exec_pool_alloc,
269 	.pa_free = exec_pool_free,
270 	.pa_pagesz = NCARGS
271 };
272 
273 /*
274  * check exec:
275  * given an "executable" described in the exec package's namei info,
276  * see what we can do with it.
277  *
278  * ON ENTRY:
279  *	exec package with appropriate namei info
280  *	lwp pointer of exec'ing lwp
281  *	NO SELF-LOCKED VNODES
282  *
283  * ON EXIT:
284  *	error:	nothing held, etc.  exec header still allocated.
285  *	ok:	filled exec package, executable's vnode (unlocked).
286  *
287  * EXEC SWITCH ENTRY:
288  * 	Locked vnode to check, exec package, proc.
289  *
290  * EXEC SWITCH EXIT:
291  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
292  *	error:	destructive:
293  *			everything deallocated execept exec header.
294  *		non-destructive:
295  *			error code, executable's vnode (unlocked),
296  *			exec header unmodified.
297  */
298 int
299 /*ARGSUSED*/
300 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
301 {
302 	int		error, i;
303 	struct vnode	*vp;
304 	struct nameidata nd;
305 	size_t		resid;
306 
307 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
308 
309 	/* first get the vnode */
310 	if ((error = namei(&nd)) != 0)
311 		return error;
312 	epp->ep_vp = vp = nd.ni_vp;
313 	/* this cannot overflow as both are size PATH_MAX */
314 	strcpy(epp->ep_resolvedname, nd.ni_pnbuf);
315 
316 #ifdef DIAGNOSTIC
317 	/* paranoia (take this out once namei stuff stabilizes) */
318 	memset(nd.ni_pnbuf, '~', PATH_MAX);
319 #endif
320 
321 	/* check access and type */
322 	if (vp->v_type != VREG) {
323 		error = EACCES;
324 		goto bad1;
325 	}
326 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
327 		goto bad1;
328 
329 	/* get attributes */
330 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
331 		goto bad1;
332 
333 	/* Check mount point */
334 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
335 		error = EACCES;
336 		goto bad1;
337 	}
338 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
339 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
340 
341 	/* try to open it */
342 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
343 		goto bad1;
344 
345 	/* unlock vp, since we need it unlocked from here on out. */
346 	VOP_UNLOCK(vp);
347 
348 #if NVERIEXEC > 0
349 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
350 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
351 	    NULL);
352 	if (error)
353 		goto bad2;
354 #endif /* NVERIEXEC > 0 */
355 
356 #ifdef PAX_SEGVGUARD
357 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
358 	if (error)
359 		goto bad2;
360 #endif /* PAX_SEGVGUARD */
361 
362 	/* now we have the file, get the exec header */
363 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
364 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
365 	if (error)
366 		goto bad2;
367 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
368 
369 	/*
370 	 * Set up default address space limits.  Can be overridden
371 	 * by individual exec packages.
372 	 *
373 	 * XXX probably should be all done in the exec packages.
374 	 */
375 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
376 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
377 	/*
378 	 * set up the vmcmds for creation of the process
379 	 * address space
380 	 */
381 	error = ENOEXEC;
382 	for (i = 0; i < nexecs; i++) {
383 		int newerror;
384 
385 		epp->ep_esch = execsw[i];
386 		newerror = (*execsw[i]->es_makecmds)(l, epp);
387 
388 		if (!newerror) {
389 			/* Seems ok: check that entry point is not too high */
390 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
391 #ifdef DIAGNOSTIC
392 				printf("%s: rejecting %p due to "
393 				    "too high entry address (> %p)\n",
394 					 __func__, (void *)epp->ep_entry,
395 					 (void *)epp->ep_vm_maxaddr);
396 #endif
397 				error = ENOEXEC;
398 				break;
399 			}
400 			/* Seems ok: check that entry point is not too low */
401 			if (epp->ep_entry < epp->ep_vm_minaddr) {
402 #ifdef DIAGNOSTIC
403 				printf("%s: rejecting %p due to "
404 				    "too low entry address (< %p)\n",
405 				     __func__, (void *)epp->ep_entry,
406 				     (void *)epp->ep_vm_minaddr);
407 #endif
408 				error = ENOEXEC;
409 				break;
410 			}
411 
412 			/* check limits */
413 			if ((epp->ep_tsize > MAXTSIZ) ||
414 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
415 						    [RLIMIT_DATA].rlim_cur)) {
416 #ifdef DIAGNOSTIC
417 				printf("%s: rejecting due to "
418 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
419 				    __func__,
420 				    (unsigned long long)epp->ep_tsize,
421 				    (unsigned long long)MAXTSIZ,
422 				    (unsigned long long)epp->ep_dsize,
423 				    (unsigned long long)
424 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
425 #endif
426 				error = ENOMEM;
427 				break;
428 			}
429 			return 0;
430 		}
431 
432 		if (epp->ep_emul_root != NULL) {
433 			vrele(epp->ep_emul_root);
434 			epp->ep_emul_root = NULL;
435 		}
436 		if (epp->ep_interp != NULL) {
437 			vrele(epp->ep_interp);
438 			epp->ep_interp = NULL;
439 		}
440 
441 		/* make sure the first "interesting" error code is saved. */
442 		if (error == ENOEXEC)
443 			error = newerror;
444 
445 		if (epp->ep_flags & EXEC_DESTR)
446 			/* Error from "#!" code, tidied up by recursive call */
447 			return error;
448 	}
449 
450 	/* not found, error */
451 
452 	/*
453 	 * free any vmspace-creation commands,
454 	 * and release their references
455 	 */
456 	kill_vmcmds(&epp->ep_vmcmds);
457 
458 bad2:
459 	/*
460 	 * close and release the vnode, restore the old one, free the
461 	 * pathname buf, and punt.
462 	 */
463 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
464 	VOP_CLOSE(vp, FREAD, l->l_cred);
465 	vput(vp);
466 	return error;
467 
468 bad1:
469 	/*
470 	 * free the namei pathname buffer, and put the vnode
471 	 * (which we don't yet have open).
472 	 */
473 	vput(vp);				/* was still locked */
474 	return error;
475 }
476 
477 #ifdef __MACHINE_STACK_GROWS_UP
478 #define STACK_PTHREADSPACE NBPG
479 #else
480 #define STACK_PTHREADSPACE 0
481 #endif
482 
483 static int
484 execve_fetch_element(char * const *array, size_t index, char **value)
485 {
486 	return copyin(array + index, value, sizeof(*value));
487 }
488 
489 /*
490  * exec system call
491  */
492 int
493 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
494 {
495 	/* {
496 		syscallarg(const char *)	path;
497 		syscallarg(char * const *)	argp;
498 		syscallarg(char * const *)	envp;
499 	} */
500 
501 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
502 	    SCARG(uap, envp), execve_fetch_element);
503 }
504 
505 int
506 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
507     register_t *retval)
508 {
509 	/* {
510 		syscallarg(int)			fd;
511 		syscallarg(char * const *)	argp;
512 		syscallarg(char * const *)	envp;
513 	} */
514 
515 	return ENOSYS;
516 }
517 
518 /*
519  * Load modules to try and execute an image that we do not understand.
520  * If no execsw entries are present, we load those likely to be needed
521  * in order to run native images only.  Otherwise, we autoload all
522  * possible modules that could let us run the binary.  XXX lame
523  */
524 static void
525 exec_autoload(void)
526 {
527 #ifdef MODULAR
528 	static const char * const native[] = {
529 		"exec_elf32",
530 		"exec_elf64",
531 		"exec_script",
532 		NULL
533 	};
534 	static const char * const compat[] = {
535 		"exec_elf32",
536 		"exec_elf64",
537 		"exec_script",
538 		"exec_aout",
539 		"exec_coff",
540 		"exec_ecoff",
541 		"compat_aoutm68k",
542 		"compat_freebsd",
543 		"compat_ibcs2",
544 		"compat_linux",
545 		"compat_linux32",
546 		"compat_netbsd32",
547 		"compat_sunos",
548 		"compat_sunos32",
549 		"compat_svr4",
550 		"compat_svr4_32",
551 		"compat_ultrix",
552 		NULL
553 	};
554 	char const * const *list;
555 	int i;
556 
557 	list = (nexecs == 0 ? native : compat);
558 	for (i = 0; list[i] != NULL; i++) {
559 		if (module_autoload(list[i], MODULE_CLASS_MISC) != 0) {
560 		    	continue;
561 		}
562 	   	yield();
563 	}
564 #endif
565 }
566 
567 static int
568 execve_loadvm(struct lwp *l, const char *path, char * const *args,
569 	char * const *envs, execve_fetch_element_t fetch_element,
570 	struct execve_data * restrict data)
571 {
572 	int			error;
573 	struct proc		*p;
574 	char			*dp, *sp;
575 	size_t			i, len;
576 	struct exec_fakearg	*tmpfap;
577 	u_int			modgen;
578 
579 	KASSERT(data != NULL);
580 
581 	p = l->l_proc;
582  	modgen = 0;
583 
584 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
585 
586 	/*
587 	 * Check if we have exceeded our number of processes limit.
588 	 * This is so that we handle the case where a root daemon
589 	 * forked, ran setuid to become the desired user and is trying
590 	 * to exec. The obvious place to do the reference counting check
591 	 * is setuid(), but we don't do the reference counting check there
592 	 * like other OS's do because then all the programs that use setuid()
593 	 * must be modified to check the return code of setuid() and exit().
594 	 * It is dangerous to make setuid() fail, because it fails open and
595 	 * the program will continue to run as root. If we make it succeed
596 	 * and return an error code, again we are not enforcing the limit.
597 	 * The best place to enforce the limit is here, when the process tries
598 	 * to execute a new image, because eventually the process will need
599 	 * to call exec in order to do something useful.
600 	 */
601  retry:
602 	if (p->p_flag & PK_SUGID) {
603 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
604 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
605 		     &p->p_rlimit[RLIMIT_NPROC],
606 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
607 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
608 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
609 		return EAGAIN;
610 	}
611 
612 	/*
613 	 * Drain existing references and forbid new ones.  The process
614 	 * should be left alone until we're done here.  This is necessary
615 	 * to avoid race conditions - e.g. in ptrace() - that might allow
616 	 * a local user to illicitly obtain elevated privileges.
617 	 */
618 	rw_enter(&p->p_reflock, RW_WRITER);
619 
620 	/*
621 	 * Init the namei data to point the file user's program name.
622 	 * This is done here rather than in check_exec(), so that it's
623 	 * possible to override this settings if any of makecmd/probe
624 	 * functions call check_exec() recursively - for example,
625 	 * see exec_script_makecmds().
626 	 */
627 	error = pathbuf_copyin(path, &data->ed_pathbuf);
628 	if (error) {
629 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
630 		    path, error));
631 		goto clrflg;
632 	}
633 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
634 
635 	data->ed_resolvedpathbuf = PNBUF_GET();
636 #ifdef DIAGNOSTIC
637 	strcpy(data->ed_resolvedpathbuf, "/wrong");
638 #endif
639 
640 	/*
641 	 * initialize the fields of the exec package.
642 	 */
643 	data->ed_pack.ep_name = path;
644 	data->ed_pack.ep_kname = data->ed_pathstring;
645 	data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf;
646 	data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
647 	data->ed_pack.ep_hdrlen = exec_maxhdrsz;
648 	data->ed_pack.ep_hdrvalid = 0;
649 	data->ed_pack.ep_emul_arg = NULL;
650 	data->ed_pack.ep_emul_arg_free = NULL;
651 	data->ed_pack.ep_vmcmds.evs_cnt = 0;
652 	data->ed_pack.ep_vmcmds.evs_used = 0;
653 	data->ed_pack.ep_vap = &data->ed_attr;
654 	data->ed_pack.ep_flags = 0;
655 	data->ed_pack.ep_emul_root = NULL;
656 	data->ed_pack.ep_interp = NULL;
657 	data->ed_pack.ep_esch = NULL;
658 	data->ed_pack.ep_pax_flags = 0;
659 
660 	rw_enter(&exec_lock, RW_READER);
661 
662 	/* see if we can run it. */
663 	if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) {
664 		if (error != ENOENT) {
665 			DPRINTF(("%s: check exec failed %d\n",
666 			    __func__, error));
667 		}
668 		goto freehdr;
669 	}
670 
671 	/* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
672 
673 	/* allocate an argument buffer */
674 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
675 	KASSERT(data->ed_argp != NULL);
676 	dp = data->ed_argp;
677 	data->ed_argc = 0;
678 
679 	/* copy the fake args list, if there's one, freeing it as we go */
680 	if (data->ed_pack.ep_flags & EXEC_HASARGL) {
681 		tmpfap = data->ed_pack.ep_fa;
682 		while (tmpfap->fa_arg != NULL) {
683 			const char *cp;
684 
685 			cp = tmpfap->fa_arg;
686 			while (*cp)
687 				*dp++ = *cp++;
688 			*dp++ = '\0';
689 			ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
690 
691 			kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
692 			tmpfap++; data->ed_argc++;
693 		}
694 		kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len);
695 		data->ed_pack.ep_flags &= ~EXEC_HASARGL;
696 	}
697 
698 	/* Now get argv & environment */
699 	if (args == NULL) {
700 		DPRINTF(("%s: null args\n", __func__));
701 		error = EINVAL;
702 		goto bad;
703 	}
704 	/* 'i' will index the argp/envp element to be retrieved */
705 	i = 0;
706 	if (data->ed_pack.ep_flags & EXEC_SKIPARG)
707 		i++;
708 
709 	while (1) {
710 		len = data->ed_argp + ARG_MAX - dp;
711 		if ((error = (*fetch_element)(args, i, &sp)) != 0) {
712 			DPRINTF(("%s: fetch_element args %d\n",
713 			    __func__, error));
714 			goto bad;
715 		}
716 		if (!sp)
717 			break;
718 		if ((error = copyinstr(sp, dp, len, &len)) != 0) {
719 			DPRINTF(("%s: copyinstr args %d\n", __func__, error));
720 			if (error == ENAMETOOLONG)
721 				error = E2BIG;
722 			goto bad;
723 		}
724 		ktrexecarg(dp, len - 1);
725 		dp += len;
726 		i++;
727 		data->ed_argc++;
728 	}
729 
730 	data->ed_envc = 0;
731 	/* environment need not be there */
732 	if (envs != NULL) {
733 		i = 0;
734 		while (1) {
735 			len = data->ed_argp + ARG_MAX - dp;
736 			if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
737 				DPRINTF(("%s: fetch_element env %d\n",
738 				    __func__, error));
739 				goto bad;
740 			}
741 			if (!sp)
742 				break;
743 			if ((error = copyinstr(sp, dp, len, &len)) != 0) {
744 				DPRINTF(("%s: copyinstr env %d\n",
745 				    __func__, error));
746 				if (error == ENAMETOOLONG)
747 					error = E2BIG;
748 				goto bad;
749 			}
750 
751 			ktrexecenv(dp, len - 1);
752 			dp += len;
753 			i++;
754 			data->ed_envc++;
755 		}
756 	}
757 
758 	dp = (char *) ALIGN(dp);
759 
760 	data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode -
761 	    data->ed_pack.ep_esch->es_emul->e_sigcode;
762 
763 #ifdef __MACHINE_STACK_GROWS_UP
764 /* See big comment lower down */
765 #define	RTLD_GAP	32
766 #else
767 #define	RTLD_GAP	0
768 #endif
769 
770 	/* Now check if args & environ fit into new stack */
771 	if (data->ed_pack.ep_flags & EXEC_32) {
772 		data->ed_ps_strings_sz = sizeof(struct ps_strings32);
773 		len = ((data->ed_argc + data->ed_envc + 2 +
774 		    data->ed_pack.ep_esch->es_arglen) *
775 		    sizeof(int) + sizeof(int) + dp + RTLD_GAP +
776 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
777 		    - data->ed_argp;
778 	} else {
779 		data->ed_ps_strings_sz = sizeof(struct ps_strings);
780 		len = ((data->ed_argc + data->ed_envc + 2 +
781 		    data->ed_pack.ep_esch->es_arglen) *
782 		    sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
783 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
784 		    - data->ed_argp;
785 	}
786 
787 #ifdef PAX_ASLR
788 	if (pax_aslr_active(l))
789 		len += (cprng_fast32() % PAGE_SIZE);
790 #endif /* PAX_ASLR */
791 
792 	/* make the stack "safely" aligned */
793 	len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES);
794 
795 	if (len > data->ed_pack.ep_ssize) {
796 		/* in effect, compare to initial limit */
797 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
798 		goto bad;
799 	}
800 	/* adjust "active stack depth" for process VSZ */
801 	data->ed_pack.ep_ssize = len;
802 
803 	return 0;
804 
805  bad:
806 	/* free the vmspace-creation commands, and release their references */
807 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
808 	/* kill any opened file descriptor, if necessary */
809 	if (data->ed_pack.ep_flags & EXEC_HASFD) {
810 		data->ed_pack.ep_flags &= ~EXEC_HASFD;
811 		fd_close(data->ed_pack.ep_fd);
812 	}
813 	/* close and put the exec'd file */
814 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
815 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
816 	vput(data->ed_pack.ep_vp);
817 	pool_put(&exec_pool, data->ed_argp);
818 
819  freehdr:
820 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
821 	if (data->ed_pack.ep_emul_root != NULL)
822 		vrele(data->ed_pack.ep_emul_root);
823 	if (data->ed_pack.ep_interp != NULL)
824 		vrele(data->ed_pack.ep_interp);
825 
826 	rw_exit(&exec_lock);
827 
828 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
829 	pathbuf_destroy(data->ed_pathbuf);
830 	PNBUF_PUT(data->ed_resolvedpathbuf);
831 
832  clrflg:
833 	rw_exit(&p->p_reflock);
834 
835 	if (modgen != module_gen && error == ENOEXEC) {
836 		modgen = module_gen;
837 		exec_autoload();
838 		goto retry;
839 	}
840 
841 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
842 	return error;
843 }
844 
845 static int
846 execve_runproc(struct lwp *l, struct execve_data * restrict data)
847 {
848 	int error = 0;
849 	struct proc		*p;
850 	size_t			i;
851 	char			*stack, *dp;
852 	const char		*commandname;
853 	struct ps_strings32	arginfo32;
854 	struct exec_vmcmd	*base_vcp;
855 	void			*aip;
856 	struct vmspace		*vm;
857 	ksiginfo_t		ksi;
858 	ksiginfoq_t		kq;
859 	bool			proc_is_new;
860 
861 	KASSERT(rw_lock_held(&exec_lock));
862 	KASSERT(data != NULL);
863 	if (data == NULL)
864 		return (EINVAL);
865 
866 	p = l->l_proc;
867 	proc_is_new = p->p_vmspace == NULL;
868 
869 	base_vcp = NULL;
870 
871 	if (data->ed_pack.ep_flags & EXEC_32)
872 		aip = &arginfo32;
873 	else
874 		aip = &data->ed_arginfo;
875 
876 	/* Get rid of other LWPs. */
877 	if (p->p_nlwps > 1) {
878 		mutex_enter(p->p_lock);
879 		exit_lwps(l);
880 		mutex_exit(p->p_lock);
881 	}
882 	KDASSERT(p->p_nlwps == 1);
883 
884 	/* Destroy any lwpctl info. */
885 	if (p->p_lwpctl != NULL)
886 		lwp_ctl_exit();
887 
888 	/* Remove POSIX timers */
889 	timers_free(p, TIMERS_POSIX);
890 
891 	/*
892 	 * Do whatever is necessary to prepare the address space
893 	 * for remapping.  Note that this might replace the current
894 	 * vmspace with another!
895 	 */
896 	uvmspace_exec(l, data->ed_pack.ep_vm_minaddr, data->ed_pack.ep_vm_maxaddr);
897 
898 	/* record proc's vnode, for use by procfs and others */
899         if (p->p_textvp)
900                 vrele(p->p_textvp);
901 	vref(data->ed_pack.ep_vp);
902 	p->p_textvp = data->ed_pack.ep_vp;
903 
904 	/* Now map address space */
905 	vm = p->p_vmspace;
906 	vm->vm_taddr = (void *)data->ed_pack.ep_taddr;
907 	vm->vm_tsize = btoc(data->ed_pack.ep_tsize);
908 	vm->vm_daddr = (void*)data->ed_pack.ep_daddr;
909 	vm->vm_dsize = btoc(data->ed_pack.ep_dsize);
910 	vm->vm_ssize = btoc(data->ed_pack.ep_ssize);
911 	vm->vm_issize = 0;
912 	vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr;
913 	vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr;
914 
915 #ifdef PAX_ASLR
916 	pax_aslr_init(l, vm);
917 #endif /* PAX_ASLR */
918 
919 	/* create the new process's VM space by running the vmcmds */
920 #ifdef DIAGNOSTIC
921 	if (data->ed_pack.ep_vmcmds.evs_used == 0)
922 		panic("%s: no vmcmds", __func__);
923 #endif
924 
925 #ifdef DEBUG_EXEC
926 	{
927 		size_t j;
928 		struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0];
929 		DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used));
930 		for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
931 			DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
932 			    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
933 			    PRIxVSIZE" prot=0%o flags=%d\n", j,
934 			    vp[j].ev_proc == vmcmd_map_pagedvn ?
935 			    "pagedvn" :
936 			    vp[j].ev_proc == vmcmd_map_readvn ?
937 			    "readvn" :
938 			    vp[j].ev_proc == vmcmd_map_zero ?
939 			    "zero" : "*unknown*",
940 			    vp[j].ev_addr, vp[j].ev_len,
941 			    vp[j].ev_offset, vp[j].ev_prot,
942 			    vp[j].ev_flags));
943 		}
944 	}
945 #endif	/* DEBUG_EXEC */
946 
947 	for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) {
948 		struct exec_vmcmd *vcp;
949 
950 		vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i];
951 		if (vcp->ev_flags & VMCMD_RELATIVE) {
952 #ifdef DIAGNOSTIC
953 			if (base_vcp == NULL)
954 				panic("%s: relative vmcmd with no base",
955 				    __func__);
956 			if (vcp->ev_flags & VMCMD_BASE)
957 				panic("%s: illegal base & relative vmcmd",
958 				    __func__);
959 #endif
960 			vcp->ev_addr += base_vcp->ev_addr;
961 		}
962 		error = (*vcp->ev_proc)(l, vcp);
963 #ifdef DEBUG_EXEC
964 		if (error) {
965 			size_t j;
966 			struct exec_vmcmd *vp =
967 			    &data->ed_pack.ep_vmcmds.evs_cmds[0];
968 			DPRINTF(("vmcmds %zu/%u, error %d\n", i,
969 			    data->ed_pack.ep_vmcmds.evs_used, error));
970 			for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
971 				DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
972 				    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
973 				    PRIxVSIZE" prot=0%o flags=%d\n", j,
974 				    vp[j].ev_proc == vmcmd_map_pagedvn ?
975 				    "pagedvn" :
976 				    vp[j].ev_proc == vmcmd_map_readvn ?
977 				    "readvn" :
978 				    vp[j].ev_proc == vmcmd_map_zero ?
979 				    "zero" : "*unknown*",
980 				    vp[j].ev_addr, vp[j].ev_len,
981 				    vp[j].ev_offset, vp[j].ev_prot,
982 				    vp[j].ev_flags));
983 				if (j == i)
984 					DPRINTF(("     ^--- failed\n"));
985 			}
986 		}
987 #endif /* DEBUG_EXEC */
988 		if (vcp->ev_flags & VMCMD_BASE)
989 			base_vcp = vcp;
990 	}
991 
992 	/* free the vmspace-creation commands, and release their references */
993 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
994 
995 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
996 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
997 	vput(data->ed_pack.ep_vp);
998 
999 	/* if an error happened, deallocate and punt */
1000 	if (error) {
1001 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
1002 		goto exec_abort;
1003 	}
1004 
1005 	/* remember information about the process */
1006 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
1007 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
1008 
1009 	/* set command name & other accounting info */
1010 	commandname = strrchr(data->ed_pack.ep_resolvedname, '/');
1011 	if (commandname != NULL) {
1012 		commandname++;
1013 	} else {
1014 		commandname = data->ed_pack.ep_resolvedname;
1015 	}
1016 	i = min(strlen(commandname), MAXCOMLEN);
1017 	(void)memcpy(p->p_comm, commandname, i);
1018 	p->p_comm[i] = '\0';
1019 
1020 	dp = PNBUF_GET();
1021 	/*
1022 	 * If the path starts with /, we don't need to do any work.
1023 	 * This handles the majority of the cases.
1024 	 * In the future perhaps we could canonicalize it?
1025 	 */
1026 	if (data->ed_pathstring[0] == '/')
1027 		(void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring,
1028 		    MAXPATHLEN);
1029 #ifdef notyet
1030 	/*
1031 	 * Although this works most of the time [since the entry was just
1032 	 * entered in the cache] we don't use it because it theoretically
1033 	 * can fail and it is not the cleanest interface, because there
1034 	 * could be races. When the namei cache is re-written, this can
1035 	 * be changed to use the appropriate function.
1036 	 */
1037 	else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
1038 		data->ed_pack.ep_path = dp;
1039 #endif
1040 	else {
1041 #ifdef notyet
1042 		printf("Cannot get path for pid %d [%s] (error %d)",
1043 		    (int)p->p_pid, p->p_comm, error);
1044 #endif
1045 		data->ed_pack.ep_path = NULL;
1046 		PNBUF_PUT(dp);
1047 	}
1048 
1049 	stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1050 		STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
1051 		data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
1052 
1053 #ifdef __MACHINE_STACK_GROWS_UP
1054 	/*
1055 	 * The copyargs call always copies into lower addresses
1056 	 * first, moving towards higher addresses, starting with
1057 	 * the stack pointer that we give.  When the stack grows
1058 	 * down, this puts argc/argv/envp very shallow on the
1059 	 * stack, right at the first user stack pointer.
1060 	 * When the stack grows up, the situation is reversed.
1061 	 *
1062 	 * Normally, this is no big deal.  But the ld_elf.so _rtld()
1063 	 * function expects to be called with a single pointer to
1064 	 * a region that has a few words it can stash values into,
1065 	 * followed by argc/argv/envp.  When the stack grows down,
1066 	 * it's easy to decrement the stack pointer a little bit to
1067 	 * allocate the space for these few words and pass the new
1068 	 * stack pointer to _rtld.  When the stack grows up, however,
1069 	 * a few words before argc is part of the signal trampoline, XXX
1070 	 * so we have a problem.
1071 	 *
1072 	 * Instead of changing how _rtld works, we take the easy way
1073 	 * out and steal 32 bytes before we call copyargs.
1074 	 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
1075 	 */
1076 	stack += RTLD_GAP;
1077 #endif /* __MACHINE_STACK_GROWS_UP */
1078 
1079 	/* Now copy argc, args & environ to new stack */
1080 	error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack,
1081 	    &data->ed_arginfo, &stack, data->ed_argp);
1082 
1083 	if (data->ed_pack.ep_path) {
1084 		PNBUF_PUT(data->ed_pack.ep_path);
1085 		data->ed_pack.ep_path = NULL;
1086 	}
1087 	if (error) {
1088 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1089 		goto exec_abort;
1090 	}
1091 	/* Move the stack back to original point */
1092 	stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize);
1093 
1094 	/* fill process ps_strings info */
1095 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1096 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1097 
1098 	if (data->ed_pack.ep_flags & EXEC_32) {
1099 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1100 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1101 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1102 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1103 	}
1104 
1105 	/* copy out the process's ps_strings structure */
1106 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1107 	    != 0) {
1108 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1109 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1110 		goto exec_abort;
1111 	}
1112 
1113 	cwdexec(p);
1114 	fd_closeexec();		/* handle close on exec */
1115 
1116 	if (__predict_false(ktrace_on))
1117 		fd_ktrexecfd();
1118 
1119 	execsigs(p);		/* reset catched signals */
1120 
1121 	l->l_ctxlink = NULL;	/* reset ucontext link */
1122 
1123 
1124 	p->p_acflag &= ~AFORK;
1125 	mutex_enter(p->p_lock);
1126 	p->p_flag |= PK_EXEC;
1127 	mutex_exit(p->p_lock);
1128 
1129 	/*
1130 	 * Stop profiling.
1131 	 */
1132 	if ((p->p_stflag & PST_PROFIL) != 0) {
1133 		mutex_spin_enter(&p->p_stmutex);
1134 		stopprofclock(p);
1135 		mutex_spin_exit(&p->p_stmutex);
1136 	}
1137 
1138 	/*
1139 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1140 	 * exited and exec()/exit() are the only places it will be cleared.
1141 	 */
1142 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1143 		mutex_enter(proc_lock);
1144 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1145 		p->p_lflag &= ~PL_PPWAIT;
1146 		cv_broadcast(&p->p_pptr->p_waitcv);
1147 		mutex_exit(proc_lock);
1148 	}
1149 
1150 	/*
1151 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
1152 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
1153 	 * out additional references on the process for the moment.
1154 	 */
1155 	if ((p->p_slflag & PSL_TRACED) == 0 &&
1156 
1157 	    (((data->ed_attr.va_mode & S_ISUID) != 0 &&
1158 	      kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
1159 
1160 	     ((data->ed_attr.va_mode & S_ISGID) != 0 &&
1161 	      kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
1162 		/*
1163 		 * Mark the process as SUGID before we do
1164 		 * anything that might block.
1165 		 */
1166 		proc_crmod_enter();
1167 		proc_crmod_leave(NULL, NULL, true);
1168 
1169 		/* Make sure file descriptors 0..2 are in use. */
1170 		if ((error = fd_checkstd()) != 0) {
1171 			DPRINTF(("%s: fdcheckstd failed %d\n",
1172 			    __func__, error));
1173 			goto exec_abort;
1174 		}
1175 
1176 		/*
1177 		 * Copy the credential so other references don't see our
1178 		 * changes.
1179 		 */
1180 		l->l_cred = kauth_cred_copy(l->l_cred);
1181 #ifdef KTRACE
1182 		/*
1183 		 * If the persistent trace flag isn't set, turn off.
1184 		 */
1185 		if (p->p_tracep) {
1186 			mutex_enter(&ktrace_lock);
1187 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1188 				ktrderef(p);
1189 			mutex_exit(&ktrace_lock);
1190 		}
1191 #endif
1192 		if (data->ed_attr.va_mode & S_ISUID)
1193 			kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
1194 		if (data->ed_attr.va_mode & S_ISGID)
1195 			kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
1196 	} else {
1197 		if (kauth_cred_geteuid(l->l_cred) ==
1198 		    kauth_cred_getuid(l->l_cred) &&
1199 		    kauth_cred_getegid(l->l_cred) ==
1200 		    kauth_cred_getgid(l->l_cred))
1201 			p->p_flag &= ~PK_SUGID;
1202 	}
1203 
1204 	/*
1205 	 * Copy the credential so other references don't see our changes.
1206 	 * Test to see if this is necessary first, since in the common case
1207 	 * we won't need a private reference.
1208 	 */
1209 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1210 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1211 		l->l_cred = kauth_cred_copy(l->l_cred);
1212 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1213 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1214 	}
1215 
1216 	/* Update the master credentials. */
1217 	if (l->l_cred != p->p_cred) {
1218 		kauth_cred_t ocred;
1219 
1220 		kauth_cred_hold(l->l_cred);
1221 		mutex_enter(p->p_lock);
1222 		ocred = p->p_cred;
1223 		p->p_cred = l->l_cred;
1224 		mutex_exit(p->p_lock);
1225 		kauth_cred_free(ocred);
1226 	}
1227 
1228 #if defined(__HAVE_RAS)
1229 	/*
1230 	 * Remove all RASs from the address space.
1231 	 */
1232 	ras_purgeall();
1233 #endif
1234 
1235 	doexechooks(p);
1236 
1237 	/* setup new registers and do misc. setup. */
1238 	(*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack,
1239 	     (vaddr_t)stack);
1240 	if (data->ed_pack.ep_esch->es_setregs)
1241 		(*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack,
1242 		    (vaddr_t)stack);
1243 
1244 	/* Provide a consistent LWP private setting */
1245 	(void)lwp_setprivate(l, NULL);
1246 
1247 	/* Discard all PCU state; need to start fresh */
1248 	pcu_discard_all(l);
1249 
1250 	/* map the process's signal trampoline code */
1251 	if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) {
1252 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1253 		goto exec_abort;
1254 	}
1255 
1256 	pool_put(&exec_pool, data->ed_argp);
1257 
1258 	/* notify others that we exec'd */
1259 	KNOTE(&p->p_klist, NOTE_EXEC);
1260 
1261 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1262 
1263 	SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0);
1264 
1265 	/* The emulation root will usually have been found when we looked
1266 	 * for the elf interpreter (or similar), if not look now. */
1267 	if (data->ed_pack.ep_esch->es_emul->e_path != NULL &&
1268 	    data->ed_pack.ep_emul_root == NULL)
1269 		emul_find_root(l, &data->ed_pack);
1270 
1271 	/* Any old emulation root got removed by fdcloseexec */
1272 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1273 	p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root;
1274 	rw_exit(&p->p_cwdi->cwdi_lock);
1275 	data->ed_pack.ep_emul_root = NULL;
1276 	if (data->ed_pack.ep_interp != NULL)
1277 		vrele(data->ed_pack.ep_interp);
1278 
1279 	/*
1280 	 * Call emulation specific exec hook. This can setup per-process
1281 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1282 	 *
1283 	 * If we are executing process of different emulation than the
1284 	 * original forked process, call e_proc_exit() of the old emulation
1285 	 * first, then e_proc_exec() of new emulation. If the emulation is
1286 	 * same, the exec hook code should deallocate any old emulation
1287 	 * resources held previously by this process.
1288 	 */
1289 	if (p->p_emul && p->p_emul->e_proc_exit
1290 	    && p->p_emul != data->ed_pack.ep_esch->es_emul)
1291 		(*p->p_emul->e_proc_exit)(p);
1292 
1293 	/*
1294 	 * This is now LWP 1.
1295 	 */
1296 	mutex_enter(p->p_lock);
1297 	p->p_nlwpid = 1;
1298 	l->l_lid = 1;
1299 	mutex_exit(p->p_lock);
1300 
1301 	/*
1302 	 * Call exec hook. Emulation code may NOT store reference to anything
1303 	 * from &pack.
1304 	 */
1305 	if (data->ed_pack.ep_esch->es_emul->e_proc_exec)
1306 		(*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack);
1307 
1308 	/* update p_emul, the old value is no longer needed */
1309 	p->p_emul = data->ed_pack.ep_esch->es_emul;
1310 
1311 	/* ...and the same for p_execsw */
1312 	p->p_execsw = data->ed_pack.ep_esch;
1313 
1314 #ifdef __HAVE_SYSCALL_INTERN
1315 	(*p->p_emul->e_syscall_intern)(p);
1316 #endif
1317 	ktremul();
1318 
1319 	/* Allow new references from the debugger/procfs. */
1320 	rw_exit(&p->p_reflock);
1321 	rw_exit(&exec_lock);
1322 
1323 	mutex_enter(proc_lock);
1324 
1325 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1326 		KSI_INIT_EMPTY(&ksi);
1327 		ksi.ksi_signo = SIGTRAP;
1328 		ksi.ksi_lid = l->l_lid;
1329 		kpsignal(p, &ksi, NULL);
1330 	}
1331 
1332 	if (p->p_sflag & PS_STOPEXEC) {
1333 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1334 		p->p_pptr->p_nstopchild++;
1335 		p->p_pptr->p_waited = 0;
1336 		mutex_enter(p->p_lock);
1337 		ksiginfo_queue_init(&kq);
1338 		sigclearall(p, &contsigmask, &kq);
1339 		lwp_lock(l);
1340 		l->l_stat = LSSTOP;
1341 		p->p_stat = SSTOP;
1342 		p->p_nrlwps--;
1343 		lwp_unlock(l);
1344 		mutex_exit(p->p_lock);
1345 		mutex_exit(proc_lock);
1346 		lwp_lock(l);
1347 		mi_switch(l);
1348 		ksiginfo_queue_drain(&kq);
1349 		KERNEL_LOCK(l->l_biglocks, l);
1350 	} else {
1351 		mutex_exit(proc_lock);
1352 	}
1353 
1354 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1355 	pathbuf_destroy(data->ed_pathbuf);
1356 	PNBUF_PUT(data->ed_resolvedpathbuf);
1357 	DPRINTF(("%s finished\n", __func__));
1358 	return (EJUSTRETURN);
1359 
1360  exec_abort:
1361 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1362 	rw_exit(&p->p_reflock);
1363 	rw_exit(&exec_lock);
1364 
1365 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1366 	pathbuf_destroy(data->ed_pathbuf);
1367 	PNBUF_PUT(data->ed_resolvedpathbuf);
1368 
1369 	/*
1370 	 * the old process doesn't exist anymore.  exit gracefully.
1371 	 * get rid of the (new) address space we have created, if any, get rid
1372 	 * of our namei data and vnode, and exit noting failure
1373 	 */
1374 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1375 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1376 	exec_free_emul_arg(&data->ed_pack);
1377 	pool_put(&exec_pool, data->ed_argp);
1378 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1379 	if (data->ed_pack.ep_emul_root != NULL)
1380 		vrele(data->ed_pack.ep_emul_root);
1381 	if (data->ed_pack.ep_interp != NULL)
1382 		vrele(data->ed_pack.ep_interp);
1383 
1384 	/* Acquire the sched-state mutex (exit1() will release it). */
1385 	if (!proc_is_new) {
1386 		mutex_enter(p->p_lock);
1387 		exit1(l, W_EXITCODE(error, SIGABRT));
1388 	}
1389 
1390 	/* NOTREACHED */
1391 	return 0;
1392 }
1393 
1394 int
1395 execve1(struct lwp *l, const char *path, char * const *args,
1396     char * const *envs, execve_fetch_element_t fetch_element)
1397 {
1398 	struct execve_data data;
1399 	int error;
1400 
1401 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1402 	if (error)
1403 		return error;
1404 	error = execve_runproc(l, &data);
1405 	return error;
1406 }
1407 
1408 int
1409 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1410     char **stackp, void *argp)
1411 {
1412 	char	**cpp, *dp, *sp;
1413 	size_t	len;
1414 	void	*nullp;
1415 	long	argc, envc;
1416 	int	error;
1417 
1418 	cpp = (char **)*stackp;
1419 	nullp = NULL;
1420 	argc = arginfo->ps_nargvstr;
1421 	envc = arginfo->ps_nenvstr;
1422 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1423 		COPYPRINTF("", cpp - 1, sizeof(argc));
1424 		return error;
1425 	}
1426 
1427 	dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1428 	sp = argp;
1429 
1430 	/* XXX don't copy them out, remap them! */
1431 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1432 
1433 	for (; --argc >= 0; sp += len, dp += len) {
1434 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1435 			COPYPRINTF("", cpp - 1, sizeof(dp));
1436 			return error;
1437 		}
1438 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1439 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1440 			return error;
1441 		}
1442 	}
1443 
1444 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1445 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1446 		return error;
1447 	}
1448 
1449 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1450 
1451 	for (; --envc >= 0; sp += len, dp += len) {
1452 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1453 			COPYPRINTF("", cpp - 1, sizeof(dp));
1454 			return error;
1455 		}
1456 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1457 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1458 			return error;
1459 		}
1460 
1461 	}
1462 
1463 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1464 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1465 		return error;
1466 	}
1467 
1468 	*stackp = (char *)cpp;
1469 	return 0;
1470 }
1471 
1472 
1473 /*
1474  * Add execsw[] entries.
1475  */
1476 int
1477 exec_add(struct execsw *esp, int count)
1478 {
1479 	struct exec_entry	*it;
1480 	int			i;
1481 
1482 	if (count == 0) {
1483 		return 0;
1484 	}
1485 
1486 	/* Check for duplicates. */
1487 	rw_enter(&exec_lock, RW_WRITER);
1488 	for (i = 0; i < count; i++) {
1489 		LIST_FOREACH(it, &ex_head, ex_list) {
1490 			/* assume unique (makecmds, probe_func, emulation) */
1491 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1492 			    it->ex_sw->u.elf_probe_func ==
1493 			    esp[i].u.elf_probe_func &&
1494 			    it->ex_sw->es_emul == esp[i].es_emul) {
1495 				rw_exit(&exec_lock);
1496 				return EEXIST;
1497 			}
1498 		}
1499 	}
1500 
1501 	/* Allocate new entries. */
1502 	for (i = 0; i < count; i++) {
1503 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1504 		it->ex_sw = &esp[i];
1505 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1506 	}
1507 
1508 	/* update execsw[] */
1509 	exec_init(0);
1510 	rw_exit(&exec_lock);
1511 	return 0;
1512 }
1513 
1514 /*
1515  * Remove execsw[] entry.
1516  */
1517 int
1518 exec_remove(struct execsw *esp, int count)
1519 {
1520 	struct exec_entry	*it, *next;
1521 	int			i;
1522 	const struct proclist_desc *pd;
1523 	proc_t			*p;
1524 
1525 	if (count == 0) {
1526 		return 0;
1527 	}
1528 
1529 	/* Abort if any are busy. */
1530 	rw_enter(&exec_lock, RW_WRITER);
1531 	for (i = 0; i < count; i++) {
1532 		mutex_enter(proc_lock);
1533 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1534 			PROCLIST_FOREACH(p, pd->pd_list) {
1535 				if (p->p_execsw == &esp[i]) {
1536 					mutex_exit(proc_lock);
1537 					rw_exit(&exec_lock);
1538 					return EBUSY;
1539 				}
1540 			}
1541 		}
1542 		mutex_exit(proc_lock);
1543 	}
1544 
1545 	/* None are busy, so remove them all. */
1546 	for (i = 0; i < count; i++) {
1547 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1548 			next = LIST_NEXT(it, ex_list);
1549 			if (it->ex_sw == &esp[i]) {
1550 				LIST_REMOVE(it, ex_list);
1551 				kmem_free(it, sizeof(*it));
1552 				break;
1553 			}
1554 		}
1555 	}
1556 
1557 	/* update execsw[] */
1558 	exec_init(0);
1559 	rw_exit(&exec_lock);
1560 	return 0;
1561 }
1562 
1563 /*
1564  * Initialize exec structures. If init_boot is true, also does necessary
1565  * one-time initialization (it's called from main() that way).
1566  * Once system is multiuser, this should be called with exec_lock held,
1567  * i.e. via exec_{add|remove}().
1568  */
1569 int
1570 exec_init(int init_boot)
1571 {
1572 	const struct execsw 	**sw;
1573 	struct exec_entry	*ex;
1574 	SLIST_HEAD(,exec_entry)	first;
1575 	SLIST_HEAD(,exec_entry)	any;
1576 	SLIST_HEAD(,exec_entry)	last;
1577 	int			i, sz;
1578 
1579 	if (init_boot) {
1580 		/* do one-time initializations */
1581 		rw_init(&exec_lock);
1582 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1583 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1584 		    "execargs", &exec_palloc, IPL_NONE);
1585 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1586 	} else {
1587 		KASSERT(rw_write_held(&exec_lock));
1588 	}
1589 
1590 	/* Sort each entry onto the appropriate queue. */
1591 	SLIST_INIT(&first);
1592 	SLIST_INIT(&any);
1593 	SLIST_INIT(&last);
1594 	sz = 0;
1595 	LIST_FOREACH(ex, &ex_head, ex_list) {
1596 		switch(ex->ex_sw->es_prio) {
1597 		case EXECSW_PRIO_FIRST:
1598 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1599 			break;
1600 		case EXECSW_PRIO_ANY:
1601 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1602 			break;
1603 		case EXECSW_PRIO_LAST:
1604 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1605 			break;
1606 		default:
1607 			panic("%s", __func__);
1608 			break;
1609 		}
1610 		sz++;
1611 	}
1612 
1613 	/*
1614 	 * Create new execsw[].  Ensure we do not try a zero-sized
1615 	 * allocation.
1616 	 */
1617 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1618 	i = 0;
1619 	SLIST_FOREACH(ex, &first, ex_slist) {
1620 		sw[i++] = ex->ex_sw;
1621 	}
1622 	SLIST_FOREACH(ex, &any, ex_slist) {
1623 		sw[i++] = ex->ex_sw;
1624 	}
1625 	SLIST_FOREACH(ex, &last, ex_slist) {
1626 		sw[i++] = ex->ex_sw;
1627 	}
1628 
1629 	/* Replace old execsw[] and free used memory. */
1630 	if (execsw != NULL) {
1631 		kmem_free(__UNCONST(execsw),
1632 		    nexecs * sizeof(struct execsw *) + 1);
1633 	}
1634 	execsw = sw;
1635 	nexecs = sz;
1636 
1637 	/* Figure out the maximum size of an exec header. */
1638 	exec_maxhdrsz = sizeof(int);
1639 	for (i = 0; i < nexecs; i++) {
1640 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1641 			exec_maxhdrsz = execsw[i]->es_hdrsz;
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 static int
1648 exec_sigcode_map(struct proc *p, const struct emul *e)
1649 {
1650 	vaddr_t va;
1651 	vsize_t sz;
1652 	int error;
1653 	struct uvm_object *uobj;
1654 
1655 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1656 
1657 	if (e->e_sigobject == NULL || sz == 0) {
1658 		return 0;
1659 	}
1660 
1661 	/*
1662 	 * If we don't have a sigobject for this emulation, create one.
1663 	 *
1664 	 * sigobject is an anonymous memory object (just like SYSV shared
1665 	 * memory) that we keep a permanent reference to and that we map
1666 	 * in all processes that need this sigcode. The creation is simple,
1667 	 * we create an object, add a permanent reference to it, map it in
1668 	 * kernel space, copy out the sigcode to it and unmap it.
1669 	 * We map it with PROT_READ|PROT_EXEC into the process just
1670 	 * the way sys_mmap() would map it.
1671 	 */
1672 
1673 	uobj = *e->e_sigobject;
1674 	if (uobj == NULL) {
1675 		mutex_enter(&sigobject_lock);
1676 		if ((uobj = *e->e_sigobject) == NULL) {
1677 			uobj = uao_create(sz, 0);
1678 			(*uobj->pgops->pgo_reference)(uobj);
1679 			va = vm_map_min(kernel_map);
1680 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
1681 			    uobj, 0, 0,
1682 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1683 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1684 				printf("kernel mapping failed %d\n", error);
1685 				(*uobj->pgops->pgo_detach)(uobj);
1686 				mutex_exit(&sigobject_lock);
1687 				return (error);
1688 			}
1689 			memcpy((void *)va, e->e_sigcode, sz);
1690 #ifdef PMAP_NEED_PROCWR
1691 			pmap_procwr(&proc0, va, sz);
1692 #endif
1693 			uvm_unmap(kernel_map, va, va + round_page(sz));
1694 			*e->e_sigobject = uobj;
1695 		}
1696 		mutex_exit(&sigobject_lock);
1697 	}
1698 
1699 	/* Just a hint to uvm_map where to put it. */
1700 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1701 	    round_page(sz));
1702 
1703 #ifdef __alpha__
1704 	/*
1705 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
1706 	 * which causes the above calculation to put the sigcode at
1707 	 * an invalid address.  Put it just below the text instead.
1708 	 */
1709 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1710 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1711 	}
1712 #endif
1713 
1714 	(*uobj->pgops->pgo_reference)(uobj);
1715 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1716 			uobj, 0, 0,
1717 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1718 				    UVM_ADV_RANDOM, 0));
1719 	if (error) {
1720 		DPRINTF(("%s, %d: map %p "
1721 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1722 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1723 		    va, error));
1724 		(*uobj->pgops->pgo_detach)(uobj);
1725 		return (error);
1726 	}
1727 	p->p_sigctx.ps_sigcode = (void *)va;
1728 	return (0);
1729 }
1730 
1731 /*
1732  * A child lwp of a posix_spawn operation starts here and ends up in
1733  * cpu_spawn_return, dealing with all filedescriptor and scheduler
1734  * manipulations in between.
1735  */
1736 static void
1737 spawn_return(void *arg)
1738 {
1739 	struct spawn_exec_data *spawn_data = arg;
1740 	struct lwp *l = curlwp;
1741 	int error, newfd;
1742 	size_t i;
1743 	const struct posix_spawn_file_actions_entry *fae;
1744 	register_t retval;
1745 	bool have_reflock;
1746 
1747 	/* we have been created non-preemptable */
1748 	KASSERT(l->l_nopreempt == 1);
1749 
1750 	/*
1751 	 * The following actions may block, so we need a temporary
1752 	 * vmspace - borrow the kernel one
1753 	 */
1754 	l->l_proc->p_vmspace = proc0.p_vmspace;
1755 	pmap_activate(l);
1756 	KPREEMPT_ENABLE(l);
1757 
1758 	/* don't allow debugger access yet */
1759 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1760 	have_reflock = true;
1761 
1762 	error = 0;
1763 	/* handle posix_spawn_file_actions */
1764 	if (spawn_data->sed_actions != NULL) {
1765 		for (i = 0; i < spawn_data->sed_actions_len; i++) {
1766 			fae = &spawn_data->sed_actions[i];
1767 			switch (fae->fae_action) {
1768 			case FAE_OPEN:
1769 				if (fd_getfile(fae->fae_fildes) != NULL) {
1770 					error = fd_close(fae->fae_fildes);
1771 					if (error)
1772 						break;
1773 				}
1774 				error = fd_open(fae->fae_path, fae->fae_oflag,
1775 				    fae->fae_mode, &newfd);
1776  				if (error)
1777  					break;
1778 				if (newfd != fae->fae_fildes) {
1779 					error = dodup(l, newfd,
1780 					    fae->fae_fildes, 0, &retval);
1781 					if (fd_getfile(newfd) != NULL)
1782 						fd_close(newfd);
1783 				}
1784 				break;
1785 			case FAE_DUP2:
1786 				error = dodup(l, fae->fae_fildes,
1787 				    fae->fae_newfildes, 0, &retval);
1788 				break;
1789 			case FAE_CLOSE:
1790 				if (fd_getfile(fae->fae_fildes) == NULL) {
1791 					error = EBADF;
1792 					break;
1793 				}
1794 				error = fd_close(fae->fae_fildes);
1795 				break;
1796 			}
1797 			if (error)
1798 				goto report_error;
1799 		}
1800 	}
1801 
1802 	/* handle posix_spawnattr */
1803 	if (spawn_data->sed_attrs != NULL) {
1804 		struct sigaction sigact;
1805 		sigact._sa_u._sa_handler = SIG_DFL;
1806 		sigact.sa_flags = 0;
1807 
1808 		/*
1809 		 * set state to SSTOP so that this proc can be found by pid.
1810 		 * see proc_enterprp, do_sched_setparam below
1811 		 */
1812 		l->l_proc->p_stat = SSTOP;
1813 
1814 		/* Set process group */
1815 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1816 			pid_t mypid = l->l_proc->p_pid,
1817 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
1818 
1819 			if (pgrp == 0)
1820 				pgrp = mypid;
1821 
1822 			error = proc_enterpgrp(spawn_data->sed_parent,
1823 			    mypid, pgrp, false);
1824 			if (error)
1825 				goto report_error;
1826 		}
1827 
1828 		/* Set scheduler policy */
1829 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1830 			error = do_sched_setparam(l->l_proc->p_pid, 0,
1831 			    spawn_data->sed_attrs->sa_schedpolicy,
1832 			    &spawn_data->sed_attrs->sa_schedparam);
1833 		else if (spawn_data->sed_attrs->sa_flags
1834 		    & POSIX_SPAWN_SETSCHEDPARAM) {
1835 			error = do_sched_setparam(spawn_data->sed_parent->p_pid, 0,
1836 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
1837 		}
1838 		if (error)
1839 			goto report_error;
1840 
1841 		/* Reset user ID's */
1842 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
1843 			error = do_setresuid(l, -1,
1844 			     kauth_cred_getgid(l->l_cred), -1,
1845 			     ID_E_EQ_R | ID_E_EQ_S);
1846 			if (error)
1847 				goto report_error;
1848 			error = do_setresuid(l, -1,
1849 			    kauth_cred_getuid(l->l_cred), -1,
1850 			    ID_E_EQ_R | ID_E_EQ_S);
1851 			if (error)
1852 				goto report_error;
1853 		}
1854 
1855 		/* Set signal masks/defaults */
1856 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
1857 			mutex_enter(l->l_proc->p_lock);
1858 			error = sigprocmask1(l, SIG_SETMASK,
1859 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
1860 			mutex_exit(l->l_proc->p_lock);
1861 			if (error)
1862 				goto report_error;
1863 		}
1864 
1865 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
1866 			for (i = 1; i <= NSIG; i++) {
1867 				if (sigismember(
1868 				    &spawn_data->sed_attrs->sa_sigdefault, i))
1869 					sigaction1(l, i, &sigact, NULL, NULL,
1870 					    0);
1871 			}
1872 		}
1873 	}
1874 
1875 	/* stop using kernel vmspace */
1876 	KPREEMPT_DISABLE(l);
1877 	pmap_deactivate(l);
1878 	l->l_proc->p_vmspace = NULL;
1879 
1880 	/* now do the real exec */
1881 	rw_enter(&exec_lock, RW_READER);
1882 	error = execve_runproc(l, &spawn_data->sed_exec);
1883 	have_reflock = false;
1884 	if (error == EJUSTRETURN)
1885 		error = 0;
1886 	else if (error)
1887 		goto report_error;
1888 
1889 	/* we now have our own vmspace */
1890 	KPREEMPT_ENABLE(l);
1891 	KASSERT(l->l_nopreempt == 0);
1892 
1893 	/* done, signal parent */
1894 	mutex_enter(&spawn_data->sed_mtx_child);
1895 	cv_signal(&spawn_data->sed_cv_child_ready);
1896 	mutex_exit(&spawn_data->sed_mtx_child);
1897 
1898 	/* and finaly: leave to userland for the first time */
1899 	cpu_spawn_return(l);
1900 
1901 	/* NOTREACHED */
1902 	return;
1903 
1904  report_error:
1905 	if (have_reflock)
1906 		rw_exit(&l->l_proc->p_reflock);
1907 
1908 	/* stop using kernel vmspace (if we haven't already) */
1909 	if (l->l_proc->p_vmspace) {
1910 		KPREEMPT_DISABLE(l);
1911 		pmap_deactivate(l);
1912 		l->l_proc->p_vmspace = NULL;
1913 		/* do not enable preemption without vmspace */
1914 	}
1915 
1916  	/*
1917  	 * Set error value for parent to pick up (and take over ownership
1918  	 * of spawn_data again), signal parent and exit this process.
1919  	 */
1920 	mutex_enter(&spawn_data->sed_mtx_child);
1921 	spawn_data->sed_error = error;
1922 	cv_signal(&spawn_data->sed_cv_child_ready);
1923 	mutex_exit(&spawn_data->sed_mtx_child);
1924 	mutex_enter(l->l_proc->p_lock);
1925 	exit1(l, W_EXITCODE(error, SIGABRT));
1926 }
1927 
1928 static void
1929 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
1930 {
1931 
1932 	for (size_t i = 0; i < len; i++) {
1933 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
1934 		if (fae->fae_action != FAE_OPEN)
1935 			continue;
1936 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
1937 	}
1938 	if (fa->len)
1939 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
1940 	kmem_free(fa, sizeof(*fa));
1941 }
1942 
1943 static int
1944 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
1945     const struct posix_spawn_file_actions *ufa)
1946 {
1947 	struct posix_spawn_file_actions *fa;
1948 	struct posix_spawn_file_actions_entry *fae;
1949 	char *pbuf = NULL;
1950 	int error;
1951 	size_t i = 0;
1952 
1953 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
1954 	error = copyin(ufa, fa, sizeof(*fa));
1955 	if (error) {
1956 		fa->fae = NULL;
1957 		fa->len = 0;
1958 		goto out;
1959 	}
1960 
1961 	if (fa->len == 0)
1962 		return 0;
1963 
1964 	size_t fal = fa->len * sizeof(*fae);
1965 	fae = fa->fae;
1966 	fa->fae = kmem_alloc(fal, KM_SLEEP);
1967 	error = copyin(fae, fa->fae, fal);
1968 	if (error)
1969 		goto out;
1970 
1971 	pbuf = PNBUF_GET();
1972 	for (; i < fa->len; i++) {
1973 		fae = &fa->fae[i];
1974 		if (fae->fae_action != FAE_OPEN)
1975 			continue;
1976 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
1977 		if (error)
1978 			goto out;
1979 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
1980 		memcpy(fae->fae_path, pbuf, fal);
1981 	}
1982 	PNBUF_PUT(pbuf);
1983 	*fap = fa;
1984 	return 0;
1985 out:
1986 	if (pbuf)
1987 		PNBUF_PUT(pbuf);
1988 	posix_spawn_fa_free(fa, i);
1989 	return error;
1990 }
1991 
1992 int
1993 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
1994     register_t *retval)
1995 {
1996 	/* {
1997 		syscallarg(pid_t *) pid;
1998 		syscallarg(const char *) path;
1999 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
2000 		syscallarg(const struct posix_spawnattr *) attrp;
2001 		syscallarg(char *const *) argv;
2002 		syscallarg(char *const *) envp;
2003 	} */
2004 
2005 	struct proc *p1, *p2;
2006 	struct plimit *p1_lim;
2007 	struct lwp *l2;
2008 	int error = 0, tnprocs, count;
2009 	struct posix_spawn_file_actions *fa = NULL;
2010 	struct posix_spawnattr *sa = NULL;
2011 	struct spawn_exec_data *spawn_data;
2012 	uid_t uid;
2013 	vaddr_t uaddr;
2014 	pid_t pid;
2015 	bool have_exec_lock = false;
2016 
2017 	p1 = l1->l_proc;
2018 	uid = kauth_cred_getuid(l1->l_cred);
2019 	tnprocs = atomic_inc_uint_nv(&nprocs);
2020 
2021 	/*
2022 	 * Although process entries are dynamically created, we still keep
2023 	 * a global limit on the maximum number we will create.
2024 	 */
2025 	if (__predict_false(tnprocs >= maxproc))
2026 		error = -1;
2027 	else
2028 		error = kauth_authorize_process(l1->l_cred,
2029 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2030 
2031 	if (error) {
2032 		atomic_dec_uint(&nprocs);
2033 		*retval = EAGAIN;
2034 		return 0;
2035 	}
2036 
2037 	/*
2038 	 * Enforce limits.
2039 	 */
2040 	count = chgproccnt(uid, 1);
2041 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2042 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2043 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2044 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2045 		error = EAGAIN;
2046 		goto error_exit;
2047 	}
2048 
2049 	/* copy in file_actions struct */
2050 	if (SCARG(uap, file_actions) != NULL) {
2051 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions));
2052 		if (error)
2053 			goto error_exit;
2054 	}
2055 
2056 	/* copyin posix_spawnattr struct */
2057 	if (SCARG(uap, attrp) != NULL) {
2058 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2059 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2060 		if (error)
2061 			goto error_exit;
2062 	}
2063 
2064 	/*
2065 	 * Do the first part of the exec now, collect state
2066 	 * in spawn_data.
2067 	 */
2068 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2069 	error = execve_loadvm(l1, SCARG(uap, path), SCARG(uap, argv),
2070 	    SCARG(uap, envp), execve_fetch_element, &spawn_data->sed_exec);
2071 	if (error == EJUSTRETURN)
2072 		error = 0;
2073 	else if (error)
2074 		goto error_exit;
2075 
2076 	have_exec_lock = true;
2077 
2078 	/*
2079 	 * Allocate virtual address space for the U-area now, while it
2080 	 * is still easy to abort the fork operation if we're out of
2081 	 * kernel virtual address space.
2082 	 */
2083 	uaddr = uvm_uarea_alloc();
2084 	if (__predict_false(uaddr == 0)) {
2085 		error = ENOMEM;
2086 		goto error_exit;
2087 	}
2088 
2089 	/*
2090 	 * Allocate new proc. Leave it's p_vmspace NULL for now.
2091 	 * This is a point of no return, we will have to go through
2092 	 * the child proc to properly clean it up past this point.
2093 	 */
2094 	p2 = proc_alloc();
2095 	pid = p2->p_pid;
2096 
2097 	/*
2098 	 * Make a proc table entry for the new process.
2099 	 * Start by zeroing the section of proc that is zero-initialized,
2100 	 * then copy the section that is copied directly from the parent.
2101 	 */
2102 	memset(&p2->p_startzero, 0,
2103 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2104 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
2105 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2106 	p2->p_vmspace = NULL;
2107 
2108 	CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
2109 
2110 	LIST_INIT(&p2->p_lwps);
2111 	LIST_INIT(&p2->p_sigwaiters);
2112 
2113 	/*
2114 	 * Duplicate sub-structures as needed.
2115 	 * Increase reference counts on shared objects.
2116 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
2117 	 * handling are important in order to keep a consistent behaviour
2118 	 * for the child after the fork.  If we are a 32-bit process, the
2119 	 * child will be too.
2120 	 */
2121 	p2->p_flag =
2122 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2123 	p2->p_emul = p1->p_emul;
2124 	p2->p_execsw = p1->p_execsw;
2125 
2126 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2127 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2128 	rw_init(&p2->p_reflock);
2129 	cv_init(&p2->p_waitcv, "wait");
2130 	cv_init(&p2->p_lwpcv, "lwpwait");
2131 
2132 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2133 
2134 	kauth_proc_fork(p1, p2);
2135 
2136 	p2->p_raslist = NULL;
2137 	p2->p_fd = fd_copy();
2138 
2139 	/* XXX racy */
2140 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2141 
2142 	p2->p_cwdi = cwdinit();
2143 
2144 	/*
2145 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2146 	 * we just need increase pl_refcnt.
2147 	 */
2148 	p1_lim = p1->p_limit;
2149 	if (!p1_lim->pl_writeable) {
2150 		lim_addref(p1_lim);
2151 		p2->p_limit = p1_lim;
2152 	} else {
2153 		p2->p_limit = lim_copy(p1->p_limit);
2154 	}
2155 
2156 	p2->p_lflag = 0;
2157 	p2->p_sflag = 0;
2158 	p2->p_slflag = 0;
2159 	p2->p_pptr = p1;
2160 	p2->p_ppid = p1->p_pid;
2161 	LIST_INIT(&p2->p_children);
2162 
2163 	p2->p_aio = NULL;
2164 
2165 #ifdef KTRACE
2166 	/*
2167 	 * Copy traceflag and tracefile if enabled.
2168 	 * If not inherited, these were zeroed above.
2169 	 */
2170 	if (p1->p_traceflag & KTRFAC_INHERIT) {
2171 		mutex_enter(&ktrace_lock);
2172 		p2->p_traceflag = p1->p_traceflag;
2173 		if ((p2->p_tracep = p1->p_tracep) != NULL)
2174 			ktradref(p2);
2175 		mutex_exit(&ktrace_lock);
2176 	}
2177 #endif
2178 
2179 	/*
2180 	 * Create signal actions for the child process.
2181 	 */
2182 	p2->p_sigacts = sigactsinit(p1, 0);
2183 	mutex_enter(p1->p_lock);
2184 	p2->p_sflag |=
2185 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2186 	sched_proc_fork(p1, p2);
2187 	mutex_exit(p1->p_lock);
2188 
2189 	p2->p_stflag = p1->p_stflag;
2190 
2191 	/*
2192 	 * p_stats.
2193 	 * Copy parts of p_stats, and zero out the rest.
2194 	 */
2195 	p2->p_stats = pstatscopy(p1->p_stats);
2196 
2197 	/* copy over machdep flags to the new proc */
2198 	cpu_proc_fork(p1, p2);
2199 
2200 	/*
2201 	 * Prepare remaining parts of spawn data
2202 	 */
2203 	if (fa && fa->len) {
2204 		spawn_data->sed_actions_len = fa->len;
2205 		spawn_data->sed_actions = fa->fae;
2206 	}
2207 	if (sa)
2208 		spawn_data->sed_attrs = sa;
2209 
2210 	spawn_data->sed_parent = p1;
2211 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2212 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2213 	mutex_enter(&spawn_data->sed_mtx_child);
2214 
2215 	/* create LWP */
2216 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2217 	    &l2, l1->l_class);
2218 	l2->l_ctxlink = NULL;	/* reset ucontext link */
2219 
2220 	/*
2221 	 * Copy the credential so other references don't see our changes.
2222 	 * Test to see if this is necessary first, since in the common case
2223 	 * we won't need a private reference.
2224 	 */
2225 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2226 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2227 		l2->l_cred = kauth_cred_copy(l2->l_cred);
2228 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2229 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2230 	}
2231 
2232 	/* Update the master credentials. */
2233 	if (l2->l_cred != p2->p_cred) {
2234 		kauth_cred_t ocred;
2235 
2236 		kauth_cred_hold(l2->l_cred);
2237 		mutex_enter(p2->p_lock);
2238 		ocred = p2->p_cred;
2239 		p2->p_cred = l2->l_cred;
2240 		mutex_exit(p2->p_lock);
2241 		kauth_cred_free(ocred);
2242 	}
2243 
2244 	l2->l_nopreempt = 1; /* start it non-preemptable */
2245 
2246 	/*
2247 	 * It's now safe for the scheduler and other processes to see the
2248 	 * child process.
2249 	 */
2250 	mutex_enter(proc_lock);
2251 
2252 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2253 		p2->p_lflag |= PL_CONTROLT;
2254 
2255 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2256 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
2257 
2258 	LIST_INSERT_AFTER(p1, p2, p_pglist);
2259 	LIST_INSERT_HEAD(&allproc, p2, p_list);
2260 
2261 	p2->p_trace_enabled = trace_is_enabled(p2);
2262 #ifdef __HAVE_SYSCALL_INTERN
2263 	(*p2->p_emul->e_syscall_intern)(p2);
2264 #endif
2265 
2266 	/*
2267 	 * Make child runnable, set start time, and add to run queue except
2268 	 * if the parent requested the child to start in SSTOP state.
2269 	 */
2270 	mutex_enter(p2->p_lock);
2271 
2272 	getmicrotime(&p2->p_stats->p_start);
2273 
2274 	lwp_lock(l2);
2275 	KASSERT(p2->p_nrlwps == 1);
2276 	p2->p_nrlwps = 1;
2277 	p2->p_stat = SACTIVE;
2278 	l2->l_stat = LSRUN;
2279 	sched_enqueue(l2, false);
2280 	lwp_unlock(l2);
2281 
2282 	mutex_exit(p2->p_lock);
2283 	mutex_exit(proc_lock);
2284 
2285 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2286 	mutex_exit(&spawn_data->sed_mtx_child);
2287 	error = spawn_data->sed_error;
2288 
2289 	rw_exit(&p1->p_reflock);
2290 	rw_exit(&exec_lock);
2291 	have_exec_lock = false;
2292 
2293 	if (fa)
2294 		posix_spawn_fa_free(fa, fa->len);
2295 
2296 	if (sa)
2297 		kmem_free(sa, sizeof(*sa));
2298 
2299 	cv_destroy(&spawn_data->sed_cv_child_ready);
2300 	mutex_destroy(&spawn_data->sed_mtx_child);
2301 
2302 	kmem_free(spawn_data, sizeof(*spawn_data));
2303 
2304 	if (error == 0 && SCARG(uap, pid) != NULL)
2305 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2306 
2307 	*retval = error;
2308 	return 0;
2309 
2310  error_exit:
2311  	if (have_exec_lock)
2312  		rw_exit(&exec_lock);
2313 
2314 	if (fa)
2315 		posix_spawn_fa_free(fa, fa->len);
2316 
2317 	if (sa)
2318 		kmem_free(sa, sizeof(*sa));
2319 
2320 	(void)chgproccnt(uid, -1);
2321 	atomic_dec_uint(&nprocs);
2322 
2323 	*retval = error;
2324 	return 0;
2325 }
2326 
2327 void
2328 exec_free_emul_arg(struct exec_package *epp)
2329 {
2330 	if (epp->ep_emul_arg_free != NULL) {
2331 		KASSERT(epp->ep_emul_arg != NULL);
2332 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2333 		epp->ep_emul_arg_free = NULL;
2334 		epp->ep_emul_arg = NULL;
2335 	} else {
2336 		KASSERT(epp->ep_emul_arg == NULL);
2337 	}
2338 }
2339