1 /* $NetBSD: kern_exec.c,v 1.435 2016/07/07 06:55:43 msaitoh Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /*- 30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou 31 * Copyright (C) 1992 Wolfgang Solfrank. 32 * Copyright (C) 1992 TooLs GmbH. 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by TooLs GmbH. 46 * 4. The name of TooLs GmbH may not be used to endorse or promote products 47 * derived from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.435 2016/07/07 06:55:43 msaitoh Exp $"); 63 64 #include "opt_exec.h" 65 #include "opt_execfmt.h" 66 #include "opt_ktrace.h" 67 #include "opt_modular.h" 68 #include "opt_syscall_debug.h" 69 #include "veriexec.h" 70 #include "opt_pax.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/filedesc.h> 75 #include <sys/kernel.h> 76 #include <sys/proc.h> 77 #include <sys/mount.h> 78 #include <sys/kmem.h> 79 #include <sys/namei.h> 80 #include <sys/vnode.h> 81 #include <sys/file.h> 82 #include <sys/filedesc.h> 83 #include <sys/acct.h> 84 #include <sys/atomic.h> 85 #include <sys/exec.h> 86 #include <sys/ktrace.h> 87 #include <sys/uidinfo.h> 88 #include <sys/wait.h> 89 #include <sys/mman.h> 90 #include <sys/ras.h> 91 #include <sys/signalvar.h> 92 #include <sys/stat.h> 93 #include <sys/syscall.h> 94 #include <sys/kauth.h> 95 #include <sys/lwpctl.h> 96 #include <sys/pax.h> 97 #include <sys/cpu.h> 98 #include <sys/module.h> 99 #include <sys/syscallvar.h> 100 #include <sys/syscallargs.h> 101 #if NVERIEXEC > 0 102 #include <sys/verified_exec.h> 103 #endif /* NVERIEXEC > 0 */ 104 #include <sys/sdt.h> 105 #include <sys/spawn.h> 106 #include <sys/prot.h> 107 #include <sys/cprng.h> 108 109 #include <uvm/uvm_extern.h> 110 111 #include <machine/reg.h> 112 113 #include <compat/common/compat_util.h> 114 115 #ifndef MD_TOPDOWN_INIT 116 #ifdef __USE_TOPDOWN_VM 117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM 118 #else 119 #define MD_TOPDOWN_INIT(epp) 120 #endif 121 #endif 122 123 struct execve_data; 124 125 static size_t calcargs(struct execve_data * restrict, const size_t); 126 static size_t calcstack(struct execve_data * restrict, const size_t); 127 static int copyoutargs(struct execve_data * restrict, struct lwp *, 128 char * const); 129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *); 130 static int copyinargs(struct execve_data * restrict, char * const *, 131 char * const *, execve_fetch_element_t, char **); 132 static int copyinargstrs(struct execve_data * restrict, char * const *, 133 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t)); 134 static int exec_sigcode_map(struct proc *, const struct emul *); 135 136 #if defined(DEBUG) && !defined(DEBUG_EXEC) 137 #define DEBUG_EXEC 138 #endif 139 #ifdef DEBUG_EXEC 140 #define DPRINTF(a) printf a 141 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ 142 __LINE__, (s), (a), (b)) 143 static void dump_vmcmds(const struct exec_package * const, size_t, int); 144 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0) 145 #else 146 #define DPRINTF(a) 147 #define COPYPRINTF(s, a, b) 148 #define DUMPVMCMDS(p, x, e) do {} while (0) 149 #endif /* DEBUG_EXEC */ 150 151 /* 152 * DTrace SDT provider definitions 153 */ 154 SDT_PROVIDER_DECLARE(proc); 155 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *"); 156 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *"); 157 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int"); 158 159 /* 160 * Exec function switch: 161 * 162 * Note that each makecmds function is responsible for loading the 163 * exec package with the necessary functions for any exec-type-specific 164 * handling. 165 * 166 * Functions for specific exec types should be defined in their own 167 * header file. 168 */ 169 static const struct execsw **execsw = NULL; 170 static int nexecs; 171 172 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ 173 174 /* list of dynamically loaded execsw entries */ 175 static LIST_HEAD(execlist_head, exec_entry) ex_head = 176 LIST_HEAD_INITIALIZER(ex_head); 177 struct exec_entry { 178 LIST_ENTRY(exec_entry) ex_list; 179 SLIST_ENTRY(exec_entry) ex_slist; 180 const struct execsw *ex_sw; 181 }; 182 183 #ifndef __HAVE_SYSCALL_INTERN 184 void syscall(void); 185 #endif 186 187 /* NetBSD autoloadable syscalls */ 188 #ifdef MODULAR 189 #include <kern/syscalls_autoload.c> 190 #endif 191 192 /* NetBSD emul struct */ 193 struct emul emul_netbsd = { 194 .e_name = "netbsd", 195 #ifdef EMUL_NATIVEROOT 196 .e_path = EMUL_NATIVEROOT, 197 #else 198 .e_path = NULL, 199 #endif 200 #ifndef __HAVE_MINIMAL_EMUL 201 .e_flags = EMUL_HAS_SYS___syscall, 202 .e_errno = NULL, 203 .e_nosys = SYS_syscall, 204 .e_nsysent = SYS_NSYSENT, 205 #endif 206 #ifdef MODULAR 207 .e_sc_autoload = netbsd_syscalls_autoload, 208 #endif 209 .e_sysent = sysent, 210 #ifdef SYSCALL_DEBUG 211 .e_syscallnames = syscallnames, 212 #else 213 .e_syscallnames = NULL, 214 #endif 215 .e_sendsig = sendsig, 216 .e_trapsignal = trapsignal, 217 .e_tracesig = NULL, 218 .e_sigcode = NULL, 219 .e_esigcode = NULL, 220 .e_sigobject = NULL, 221 .e_setregs = setregs, 222 .e_proc_exec = NULL, 223 .e_proc_fork = NULL, 224 .e_proc_exit = NULL, 225 .e_lwp_fork = NULL, 226 .e_lwp_exit = NULL, 227 #ifdef __HAVE_SYSCALL_INTERN 228 .e_syscall_intern = syscall_intern, 229 #else 230 .e_syscall = syscall, 231 #endif 232 .e_sysctlovly = NULL, 233 .e_fault = NULL, 234 .e_vm_default_addr = uvm_default_mapaddr, 235 .e_usertrap = NULL, 236 .e_ucsize = sizeof(ucontext_t), 237 .e_startlwp = startlwp 238 }; 239 240 /* 241 * Exec lock. Used to control access to execsw[] structures. 242 * This must not be static so that netbsd32 can access it, too. 243 */ 244 krwlock_t exec_lock; 245 246 static kmutex_t sigobject_lock; 247 248 /* 249 * Data used between a loadvm and execve part of an "exec" operation 250 */ 251 struct execve_data { 252 struct exec_package ed_pack; 253 struct pathbuf *ed_pathbuf; 254 struct vattr ed_attr; 255 struct ps_strings ed_arginfo; 256 char *ed_argp; 257 const char *ed_pathstring; 258 char *ed_resolvedpathbuf; 259 size_t ed_ps_strings_sz; 260 int ed_szsigcode; 261 size_t ed_argslen; 262 long ed_argc; 263 long ed_envc; 264 }; 265 266 /* 267 * data passed from parent lwp to child during a posix_spawn() 268 */ 269 struct spawn_exec_data { 270 struct execve_data sed_exec; 271 struct posix_spawn_file_actions 272 *sed_actions; 273 struct posix_spawnattr *sed_attrs; 274 struct proc *sed_parent; 275 kcondvar_t sed_cv_child_ready; 276 kmutex_t sed_mtx_child; 277 int sed_error; 278 volatile uint32_t sed_refcnt; 279 }; 280 281 static void * 282 exec_pool_alloc(struct pool *pp, int flags) 283 { 284 285 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0, 286 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 287 } 288 289 static void 290 exec_pool_free(struct pool *pp, void *addr) 291 { 292 293 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); 294 } 295 296 static struct pool exec_pool; 297 298 static struct pool_allocator exec_palloc = { 299 .pa_alloc = exec_pool_alloc, 300 .pa_free = exec_pool_free, 301 .pa_pagesz = NCARGS 302 }; 303 304 /* 305 * check exec: 306 * given an "executable" described in the exec package's namei info, 307 * see what we can do with it. 308 * 309 * ON ENTRY: 310 * exec package with appropriate namei info 311 * lwp pointer of exec'ing lwp 312 * NO SELF-LOCKED VNODES 313 * 314 * ON EXIT: 315 * error: nothing held, etc. exec header still allocated. 316 * ok: filled exec package, executable's vnode (unlocked). 317 * 318 * EXEC SWITCH ENTRY: 319 * Locked vnode to check, exec package, proc. 320 * 321 * EXEC SWITCH EXIT: 322 * ok: return 0, filled exec package, executable's vnode (unlocked). 323 * error: destructive: 324 * everything deallocated execept exec header. 325 * non-destructive: 326 * error code, executable's vnode (unlocked), 327 * exec header unmodified. 328 */ 329 int 330 /*ARGSUSED*/ 331 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) 332 { 333 int error, i; 334 struct vnode *vp; 335 struct nameidata nd; 336 size_t resid; 337 338 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 339 340 /* first get the vnode */ 341 if ((error = namei(&nd)) != 0) 342 return error; 343 epp->ep_vp = vp = nd.ni_vp; 344 /* normally this can't fail */ 345 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL); 346 KASSERT(error == 0); 347 348 #ifdef DIAGNOSTIC 349 /* paranoia (take this out once namei stuff stabilizes) */ 350 memset(nd.ni_pnbuf, '~', PATH_MAX); 351 #endif 352 353 /* check access and type */ 354 if (vp->v_type != VREG) { 355 error = EACCES; 356 goto bad1; 357 } 358 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) 359 goto bad1; 360 361 /* get attributes */ 362 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) 363 goto bad1; 364 365 /* Check mount point */ 366 if (vp->v_mount->mnt_flag & MNT_NOEXEC) { 367 error = EACCES; 368 goto bad1; 369 } 370 if (vp->v_mount->mnt_flag & MNT_NOSUID) 371 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); 372 373 /* try to open it */ 374 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) 375 goto bad1; 376 377 /* unlock vp, since we need it unlocked from here on out. */ 378 VOP_UNLOCK(vp); 379 380 #if NVERIEXEC > 0 381 error = veriexec_verify(l, vp, epp->ep_resolvedname, 382 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, 383 NULL); 384 if (error) 385 goto bad2; 386 #endif /* NVERIEXEC > 0 */ 387 388 #ifdef PAX_SEGVGUARD 389 error = pax_segvguard(l, vp, epp->ep_resolvedname, false); 390 if (error) 391 goto bad2; 392 #endif /* PAX_SEGVGUARD */ 393 394 /* now we have the file, get the exec header */ 395 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, 396 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); 397 if (error) 398 goto bad2; 399 epp->ep_hdrvalid = epp->ep_hdrlen - resid; 400 401 /* 402 * Set up default address space limits. Can be overridden 403 * by individual exec packages. 404 * 405 * XXX probably should be all done in the exec packages. 406 */ 407 epp->ep_vm_minaddr = VM_MIN_ADDRESS; 408 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; 409 /* 410 * set up the vmcmds for creation of the process 411 * address space 412 */ 413 error = ENOEXEC; 414 for (i = 0; i < nexecs; i++) { 415 int newerror; 416 417 epp->ep_esch = execsw[i]; 418 newerror = (*execsw[i]->es_makecmds)(l, epp); 419 420 if (!newerror) { 421 /* Seems ok: check that entry point is not too high */ 422 if (epp->ep_entry > epp->ep_vm_maxaddr) { 423 #ifdef DIAGNOSTIC 424 printf("%s: rejecting %p due to " 425 "too high entry address (> %p)\n", 426 __func__, (void *)epp->ep_entry, 427 (void *)epp->ep_vm_maxaddr); 428 #endif 429 error = ENOEXEC; 430 break; 431 } 432 /* Seems ok: check that entry point is not too low */ 433 if (epp->ep_entry < epp->ep_vm_minaddr) { 434 #ifdef DIAGNOSTIC 435 printf("%s: rejecting %p due to " 436 "too low entry address (< %p)\n", 437 __func__, (void *)epp->ep_entry, 438 (void *)epp->ep_vm_minaddr); 439 #endif 440 error = ENOEXEC; 441 break; 442 } 443 444 /* check limits */ 445 if ((epp->ep_tsize > MAXTSIZ) || 446 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit 447 [RLIMIT_DATA].rlim_cur)) { 448 #ifdef DIAGNOSTIC 449 printf("%s: rejecting due to " 450 "limits (t=%llu > %llu || d=%llu > %llu)\n", 451 __func__, 452 (unsigned long long)epp->ep_tsize, 453 (unsigned long long)MAXTSIZ, 454 (unsigned long long)epp->ep_dsize, 455 (unsigned long long) 456 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); 457 #endif 458 error = ENOMEM; 459 break; 460 } 461 return 0; 462 } 463 464 /* 465 * Reset all the fields that may have been modified by the 466 * loader. 467 */ 468 KASSERT(epp->ep_emul_arg == NULL); 469 if (epp->ep_emul_root != NULL) { 470 vrele(epp->ep_emul_root); 471 epp->ep_emul_root = NULL; 472 } 473 if (epp->ep_interp != NULL) { 474 vrele(epp->ep_interp); 475 epp->ep_interp = NULL; 476 } 477 epp->ep_pax_flags = 0; 478 479 /* make sure the first "interesting" error code is saved. */ 480 if (error == ENOEXEC) 481 error = newerror; 482 483 if (epp->ep_flags & EXEC_DESTR) 484 /* Error from "#!" code, tidied up by recursive call */ 485 return error; 486 } 487 488 /* not found, error */ 489 490 /* 491 * free any vmspace-creation commands, 492 * and release their references 493 */ 494 kill_vmcmds(&epp->ep_vmcmds); 495 496 bad2: 497 /* 498 * close and release the vnode, restore the old one, free the 499 * pathname buf, and punt. 500 */ 501 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 502 VOP_CLOSE(vp, FREAD, l->l_cred); 503 vput(vp); 504 return error; 505 506 bad1: 507 /* 508 * free the namei pathname buffer, and put the vnode 509 * (which we don't yet have open). 510 */ 511 vput(vp); /* was still locked */ 512 return error; 513 } 514 515 #ifdef __MACHINE_STACK_GROWS_UP 516 #define STACK_PTHREADSPACE NBPG 517 #else 518 #define STACK_PTHREADSPACE 0 519 #endif 520 521 static int 522 execve_fetch_element(char * const *array, size_t index, char **value) 523 { 524 return copyin(array + index, value, sizeof(*value)); 525 } 526 527 /* 528 * exec system call 529 */ 530 int 531 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) 532 { 533 /* { 534 syscallarg(const char *) path; 535 syscallarg(char * const *) argp; 536 syscallarg(char * const *) envp; 537 } */ 538 539 return execve1(l, SCARG(uap, path), SCARG(uap, argp), 540 SCARG(uap, envp), execve_fetch_element); 541 } 542 543 int 544 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, 545 register_t *retval) 546 { 547 /* { 548 syscallarg(int) fd; 549 syscallarg(char * const *) argp; 550 syscallarg(char * const *) envp; 551 } */ 552 553 return ENOSYS; 554 } 555 556 /* 557 * Load modules to try and execute an image that we do not understand. 558 * If no execsw entries are present, we load those likely to be needed 559 * in order to run native images only. Otherwise, we autoload all 560 * possible modules that could let us run the binary. XXX lame 561 */ 562 static void 563 exec_autoload(void) 564 { 565 #ifdef MODULAR 566 static const char * const native[] = { 567 "exec_elf32", 568 "exec_elf64", 569 "exec_script", 570 NULL 571 }; 572 static const char * const compat[] = { 573 "exec_elf32", 574 "exec_elf64", 575 "exec_script", 576 "exec_aout", 577 "exec_coff", 578 "exec_ecoff", 579 "compat_aoutm68k", 580 "compat_freebsd", 581 "compat_ibcs2", 582 "compat_linux", 583 "compat_linux32", 584 "compat_netbsd32", 585 "compat_sunos", 586 "compat_sunos32", 587 "compat_svr4", 588 "compat_svr4_32", 589 "compat_ultrix", 590 NULL 591 }; 592 char const * const *list; 593 int i; 594 595 list = (nexecs == 0 ? native : compat); 596 for (i = 0; list[i] != NULL; i++) { 597 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) { 598 continue; 599 } 600 yield(); 601 } 602 #endif 603 } 604 605 static int 606 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp, 607 size_t *offs) 608 { 609 char *path, *bp; 610 size_t len, tlen; 611 int error; 612 struct cwdinfo *cwdi; 613 614 path = PNBUF_GET(); 615 error = copyinstr(upath, path, MAXPATHLEN, &len); 616 if (error) { 617 PNBUF_PUT(path); 618 DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error)); 619 return error; 620 } 621 622 if (path[0] == '/') { 623 *offs = 0; 624 goto out; 625 } 626 627 len++; 628 if (len + 1 >= MAXPATHLEN) 629 goto out; 630 bp = path + MAXPATHLEN - len; 631 memmove(bp, path, len); 632 *(--bp) = '/'; 633 634 cwdi = l->l_proc->p_cwdi; 635 rw_enter(&cwdi->cwdi_lock, RW_READER); 636 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2, 637 GETCWD_CHECK_ACCESS, l); 638 rw_exit(&cwdi->cwdi_lock); 639 640 if (error) { 641 DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path, 642 error)); 643 goto out; 644 } 645 tlen = path + MAXPATHLEN - bp; 646 647 memmove(path, bp, tlen); 648 path[tlen] = '\0'; 649 *offs = tlen - len; 650 out: 651 *pbp = pathbuf_assimilate(path); 652 return 0; 653 } 654 655 static int 656 execve_loadvm(struct lwp *l, const char *path, char * const *args, 657 char * const *envs, execve_fetch_element_t fetch_element, 658 struct execve_data * restrict data) 659 { 660 struct exec_package * const epp = &data->ed_pack; 661 int error; 662 struct proc *p; 663 char *dp; 664 u_int modgen; 665 size_t offs = 0; // XXX: GCC 666 667 KASSERT(data != NULL); 668 669 p = l->l_proc; 670 modgen = 0; 671 672 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0); 673 674 /* 675 * Check if we have exceeded our number of processes limit. 676 * This is so that we handle the case where a root daemon 677 * forked, ran setuid to become the desired user and is trying 678 * to exec. The obvious place to do the reference counting check 679 * is setuid(), but we don't do the reference counting check there 680 * like other OS's do because then all the programs that use setuid() 681 * must be modified to check the return code of setuid() and exit(). 682 * It is dangerous to make setuid() fail, because it fails open and 683 * the program will continue to run as root. If we make it succeed 684 * and return an error code, again we are not enforcing the limit. 685 * The best place to enforce the limit is here, when the process tries 686 * to execute a new image, because eventually the process will need 687 * to call exec in order to do something useful. 688 */ 689 retry: 690 if (p->p_flag & PK_SUGID) { 691 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 692 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 693 &p->p_rlimit[RLIMIT_NPROC], 694 KAUTH_ARG(RLIMIT_NPROC)) != 0 && 695 chgproccnt(kauth_cred_getuid(l->l_cred), 0) > 696 p->p_rlimit[RLIMIT_NPROC].rlim_cur) 697 return EAGAIN; 698 } 699 700 /* 701 * Drain existing references and forbid new ones. The process 702 * should be left alone until we're done here. This is necessary 703 * to avoid race conditions - e.g. in ptrace() - that might allow 704 * a local user to illicitly obtain elevated privileges. 705 */ 706 rw_enter(&p->p_reflock, RW_WRITER); 707 708 /* 709 * Init the namei data to point the file user's program name. 710 * This is done here rather than in check_exec(), so that it's 711 * possible to override this settings if any of makecmd/probe 712 * functions call check_exec() recursively - for example, 713 * see exec_script_makecmds(). 714 */ 715 if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0) 716 goto clrflg; 717 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); 718 data->ed_resolvedpathbuf = PNBUF_GET(); 719 720 /* 721 * initialize the fields of the exec package. 722 */ 723 epp->ep_kname = data->ed_pathstring + offs; 724 epp->ep_resolvedname = data->ed_resolvedpathbuf; 725 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); 726 epp->ep_hdrlen = exec_maxhdrsz; 727 epp->ep_hdrvalid = 0; 728 epp->ep_emul_arg = NULL; 729 epp->ep_emul_arg_free = NULL; 730 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds)); 731 epp->ep_vap = &data->ed_attr; 732 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0; 733 MD_TOPDOWN_INIT(epp); 734 epp->ep_emul_root = NULL; 735 epp->ep_interp = NULL; 736 epp->ep_esch = NULL; 737 epp->ep_pax_flags = 0; 738 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch)); 739 740 rw_enter(&exec_lock, RW_READER); 741 742 /* see if we can run it. */ 743 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) { 744 if (error != ENOENT && error != EACCES) { 745 DPRINTF(("%s: check exec failed %d\n", 746 __func__, error)); 747 } 748 goto freehdr; 749 } 750 751 /* allocate an argument buffer */ 752 data->ed_argp = pool_get(&exec_pool, PR_WAITOK); 753 KASSERT(data->ed_argp != NULL); 754 dp = data->ed_argp; 755 756 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) { 757 goto bad; 758 } 759 760 /* 761 * Calculate the new stack size. 762 */ 763 764 #ifdef __MACHINE_STACK_GROWS_UP 765 /* 766 * copyargs() fills argc/argv/envp from the lower address even on 767 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP 768 * so that _rtld() use it. 769 */ 770 #define RTLD_GAP 32 771 #else 772 #define RTLD_GAP 0 773 #endif 774 775 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp; 776 777 data->ed_argslen = calcargs(data, argenvstrlen); 778 779 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP); 780 781 if (len > epp->ep_ssize) { 782 /* in effect, compare to initial limit */ 783 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len)); 784 error = ENOMEM; 785 goto bad; 786 } 787 /* adjust "active stack depth" for process VSZ */ 788 epp->ep_ssize = len; 789 790 return 0; 791 792 bad: 793 /* free the vmspace-creation commands, and release their references */ 794 kill_vmcmds(&epp->ep_vmcmds); 795 /* kill any opened file descriptor, if necessary */ 796 if (epp->ep_flags & EXEC_HASFD) { 797 epp->ep_flags &= ~EXEC_HASFD; 798 fd_close(epp->ep_fd); 799 } 800 /* close and put the exec'd file */ 801 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 802 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 803 vput(epp->ep_vp); 804 pool_put(&exec_pool, data->ed_argp); 805 806 freehdr: 807 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 808 if (epp->ep_emul_root != NULL) 809 vrele(epp->ep_emul_root); 810 if (epp->ep_interp != NULL) 811 vrele(epp->ep_interp); 812 813 rw_exit(&exec_lock); 814 815 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 816 pathbuf_destroy(data->ed_pathbuf); 817 PNBUF_PUT(data->ed_resolvedpathbuf); 818 819 clrflg: 820 rw_exit(&p->p_reflock); 821 822 if (modgen != module_gen && error == ENOEXEC) { 823 modgen = module_gen; 824 exec_autoload(); 825 goto retry; 826 } 827 828 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0); 829 return error; 830 } 831 832 static int 833 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data) 834 { 835 struct exec_package * const epp = &data->ed_pack; 836 struct proc *p = l->l_proc; 837 struct exec_vmcmd *base_vcp; 838 int error = 0; 839 size_t i; 840 841 /* record proc's vnode, for use by procfs and others */ 842 if (p->p_textvp) 843 vrele(p->p_textvp); 844 vref(epp->ep_vp); 845 p->p_textvp = epp->ep_vp; 846 847 /* create the new process's VM space by running the vmcmds */ 848 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__); 849 850 #ifdef TRACE_EXEC 851 DUMPVMCMDS(epp, 0, 0); 852 #endif 853 854 base_vcp = NULL; 855 856 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) { 857 struct exec_vmcmd *vcp; 858 859 vcp = &epp->ep_vmcmds.evs_cmds[i]; 860 if (vcp->ev_flags & VMCMD_RELATIVE) { 861 KASSERTMSG(base_vcp != NULL, 862 "%s: relative vmcmd with no base", __func__); 863 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0, 864 "%s: illegal base & relative vmcmd", __func__); 865 vcp->ev_addr += base_vcp->ev_addr; 866 } 867 error = (*vcp->ev_proc)(l, vcp); 868 if (error) 869 DUMPVMCMDS(epp, i, error); 870 if (vcp->ev_flags & VMCMD_BASE) 871 base_vcp = vcp; 872 } 873 874 /* free the vmspace-creation commands, and release their references */ 875 kill_vmcmds(&epp->ep_vmcmds); 876 877 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 878 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 879 vput(epp->ep_vp); 880 881 /* if an error happened, deallocate and punt */ 882 if (error != 0) { 883 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error)); 884 } 885 return error; 886 } 887 888 static void 889 execve_free_data(struct execve_data *data) 890 { 891 struct exec_package * const epp = &data->ed_pack; 892 893 /* free the vmspace-creation commands, and release their references */ 894 kill_vmcmds(&epp->ep_vmcmds); 895 /* kill any opened file descriptor, if necessary */ 896 if (epp->ep_flags & EXEC_HASFD) { 897 epp->ep_flags &= ~EXEC_HASFD; 898 fd_close(epp->ep_fd); 899 } 900 901 /* close and put the exec'd file */ 902 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 903 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred); 904 vput(epp->ep_vp); 905 pool_put(&exec_pool, data->ed_argp); 906 907 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 908 if (epp->ep_emul_root != NULL) 909 vrele(epp->ep_emul_root); 910 if (epp->ep_interp != NULL) 911 vrele(epp->ep_interp); 912 913 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 914 pathbuf_destroy(data->ed_pathbuf); 915 PNBUF_PUT(data->ed_resolvedpathbuf); 916 } 917 918 static void 919 pathexec(struct exec_package *epp, struct lwp *l, const char *pathstring) 920 { 921 const char *commandname; 922 size_t commandlen; 923 char *path; 924 struct proc *p = l->l_proc; 925 926 /* set command name & other accounting info */ 927 commandname = strrchr(epp->ep_resolvedname, '/'); 928 if (commandname != NULL) { 929 commandname++; 930 } else { 931 commandname = epp->ep_resolvedname; 932 } 933 commandlen = min(strlen(commandname), MAXCOMLEN); 934 (void)memcpy(p->p_comm, commandname, commandlen); 935 p->p_comm[commandlen] = '\0'; 936 937 938 /* 939 * If the path starts with /, we don't need to do any work. 940 * This handles the majority of the cases. 941 * In the future perhaps we could canonicalize it? 942 */ 943 path = PNBUF_GET(); 944 if (pathstring[0] == '/') { 945 (void)strlcpy(path, pathstring, MAXPATHLEN); 946 epp->ep_path = path; 947 } 948 #ifdef notyet 949 /* 950 * Although this works most of the time [since the entry was just 951 * entered in the cache] we don't use it because it will fail for 952 * entries that are not placed in the cache because their name is 953 * longer than NCHNAMLEN and it is not the cleanest interface, 954 * because there could be races. When the namei cache is re-written, 955 * this can be changed to use the appropriate function. 956 */ 957 else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p))) 958 epp->ep_path = path; 959 #endif 960 else { 961 #ifdef notyet 962 printf("Cannot get path for pid %d [%s] (error %d)\n", 963 (int)p->p_pid, p->p_comm, error); 964 #endif 965 PNBUF_PUT(path); 966 epp->ep_path = NULL; 967 } 968 } 969 970 /* XXX elsewhere */ 971 static int 972 credexec(struct lwp *l, struct vattr *attr) 973 { 974 struct proc *p = l->l_proc; 975 int error; 976 977 /* 978 * Deal with set[ug]id. MNT_NOSUID has already been used to disable 979 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked 980 * out additional references on the process for the moment. 981 */ 982 if ((p->p_slflag & PSL_TRACED) == 0 && 983 984 (((attr->va_mode & S_ISUID) != 0 && 985 kauth_cred_geteuid(l->l_cred) != attr->va_uid) || 986 987 ((attr->va_mode & S_ISGID) != 0 && 988 kauth_cred_getegid(l->l_cred) != attr->va_gid))) { 989 /* 990 * Mark the process as SUGID before we do 991 * anything that might block. 992 */ 993 proc_crmod_enter(); 994 proc_crmod_leave(NULL, NULL, true); 995 996 /* Make sure file descriptors 0..2 are in use. */ 997 if ((error = fd_checkstd()) != 0) { 998 DPRINTF(("%s: fdcheckstd failed %d\n", 999 __func__, error)); 1000 return error; 1001 } 1002 1003 /* 1004 * Copy the credential so other references don't see our 1005 * changes. 1006 */ 1007 l->l_cred = kauth_cred_copy(l->l_cred); 1008 #ifdef KTRACE 1009 /* 1010 * If the persistent trace flag isn't set, turn off. 1011 */ 1012 if (p->p_tracep) { 1013 mutex_enter(&ktrace_lock); 1014 if (!(p->p_traceflag & KTRFAC_PERSISTENT)) 1015 ktrderef(p); 1016 mutex_exit(&ktrace_lock); 1017 } 1018 #endif 1019 if (attr->va_mode & S_ISUID) 1020 kauth_cred_seteuid(l->l_cred, attr->va_uid); 1021 if (attr->va_mode & S_ISGID) 1022 kauth_cred_setegid(l->l_cred, attr->va_gid); 1023 } else { 1024 if (kauth_cred_geteuid(l->l_cred) == 1025 kauth_cred_getuid(l->l_cred) && 1026 kauth_cred_getegid(l->l_cred) == 1027 kauth_cred_getgid(l->l_cred)) 1028 p->p_flag &= ~PK_SUGID; 1029 } 1030 1031 /* 1032 * Copy the credential so other references don't see our changes. 1033 * Test to see if this is necessary first, since in the common case 1034 * we won't need a private reference. 1035 */ 1036 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || 1037 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { 1038 l->l_cred = kauth_cred_copy(l->l_cred); 1039 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); 1040 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); 1041 } 1042 1043 /* Update the master credentials. */ 1044 if (l->l_cred != p->p_cred) { 1045 kauth_cred_t ocred; 1046 1047 kauth_cred_hold(l->l_cred); 1048 mutex_enter(p->p_lock); 1049 ocred = p->p_cred; 1050 p->p_cred = l->l_cred; 1051 mutex_exit(p->p_lock); 1052 kauth_cred_free(ocred); 1053 } 1054 1055 return 0; 1056 } 1057 1058 static void 1059 emulexec(struct lwp *l, struct exec_package *epp) 1060 { 1061 struct proc *p = l->l_proc; 1062 1063 /* The emulation root will usually have been found when we looked 1064 * for the elf interpreter (or similar), if not look now. */ 1065 if (epp->ep_esch->es_emul->e_path != NULL && 1066 epp->ep_emul_root == NULL) 1067 emul_find_root(l, epp); 1068 1069 /* Any old emulation root got removed by fdcloseexec */ 1070 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); 1071 p->p_cwdi->cwdi_edir = epp->ep_emul_root; 1072 rw_exit(&p->p_cwdi->cwdi_lock); 1073 epp->ep_emul_root = NULL; 1074 if (epp->ep_interp != NULL) 1075 vrele(epp->ep_interp); 1076 1077 /* 1078 * Call emulation specific exec hook. This can setup per-process 1079 * p->p_emuldata or do any other per-process stuff an emulation needs. 1080 * 1081 * If we are executing process of different emulation than the 1082 * original forked process, call e_proc_exit() of the old emulation 1083 * first, then e_proc_exec() of new emulation. If the emulation is 1084 * same, the exec hook code should deallocate any old emulation 1085 * resources held previously by this process. 1086 */ 1087 if (p->p_emul && p->p_emul->e_proc_exit 1088 && p->p_emul != epp->ep_esch->es_emul) 1089 (*p->p_emul->e_proc_exit)(p); 1090 1091 /* 1092 * This is now LWP 1. 1093 */ 1094 /* XXX elsewhere */ 1095 mutex_enter(p->p_lock); 1096 p->p_nlwpid = 1; 1097 l->l_lid = 1; 1098 mutex_exit(p->p_lock); 1099 1100 /* 1101 * Call exec hook. Emulation code may NOT store reference to anything 1102 * from &pack. 1103 */ 1104 if (epp->ep_esch->es_emul->e_proc_exec) 1105 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp); 1106 1107 /* update p_emul, the old value is no longer needed */ 1108 p->p_emul = epp->ep_esch->es_emul; 1109 1110 /* ...and the same for p_execsw */ 1111 p->p_execsw = epp->ep_esch; 1112 1113 #ifdef __HAVE_SYSCALL_INTERN 1114 (*p->p_emul->e_syscall_intern)(p); 1115 #endif 1116 ktremul(); 1117 } 1118 1119 static int 1120 execve_runproc(struct lwp *l, struct execve_data * restrict data, 1121 bool no_local_exec_lock, bool is_spawn) 1122 { 1123 struct exec_package * const epp = &data->ed_pack; 1124 int error = 0; 1125 struct proc *p; 1126 1127 /* 1128 * In case of a posix_spawn operation, the child doing the exec 1129 * might not hold the reader lock on exec_lock, but the parent 1130 * will do this instead. 1131 */ 1132 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock)); 1133 KASSERT(!no_local_exec_lock || is_spawn); 1134 KASSERT(data != NULL); 1135 1136 p = l->l_proc; 1137 1138 /* Get rid of other LWPs. */ 1139 if (p->p_nlwps > 1) { 1140 mutex_enter(p->p_lock); 1141 exit_lwps(l); 1142 mutex_exit(p->p_lock); 1143 } 1144 KDASSERT(p->p_nlwps == 1); 1145 1146 /* Destroy any lwpctl info. */ 1147 if (p->p_lwpctl != NULL) 1148 lwp_ctl_exit(); 1149 1150 /* Remove POSIX timers */ 1151 timers_free(p, TIMERS_POSIX); 1152 1153 /* Set the PaX flags. */ 1154 pax_set_flags(epp, p); 1155 1156 /* 1157 * Do whatever is necessary to prepare the address space 1158 * for remapping. Note that this might replace the current 1159 * vmspace with another! 1160 */ 1161 if (is_spawn) 1162 uvmspace_spawn(l, epp->ep_vm_minaddr, 1163 epp->ep_vm_maxaddr, 1164 epp->ep_flags & EXEC_TOPDOWN_VM); 1165 else 1166 uvmspace_exec(l, epp->ep_vm_minaddr, 1167 epp->ep_vm_maxaddr, 1168 epp->ep_flags & EXEC_TOPDOWN_VM); 1169 1170 struct vmspace *vm; 1171 vm = p->p_vmspace; 1172 vm->vm_taddr = (void *)epp->ep_taddr; 1173 vm->vm_tsize = btoc(epp->ep_tsize); 1174 vm->vm_daddr = (void*)epp->ep_daddr; 1175 vm->vm_dsize = btoc(epp->ep_dsize); 1176 vm->vm_ssize = btoc(epp->ep_ssize); 1177 vm->vm_issize = 0; 1178 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr; 1179 vm->vm_minsaddr = (void *)epp->ep_minsaddr; 1180 1181 pax_aslr_init_vm(l, vm, epp); 1182 1183 /* Now map address space. */ 1184 error = execve_dovmcmds(l, data); 1185 if (error != 0) 1186 goto exec_abort; 1187 1188 pathexec(epp, l, data->ed_pathstring); 1189 1190 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize); 1191 1192 error = copyoutargs(data, l, newstack); 1193 if (error != 0) 1194 goto exec_abort; 1195 1196 cwdexec(p); 1197 fd_closeexec(); /* handle close on exec */ 1198 1199 if (__predict_false(ktrace_on)) 1200 fd_ktrexecfd(); 1201 1202 execsigs(p); /* reset catched signals */ 1203 1204 mutex_enter(p->p_lock); 1205 l->l_ctxlink = NULL; /* reset ucontext link */ 1206 p->p_acflag &= ~AFORK; 1207 p->p_flag |= PK_EXEC; 1208 mutex_exit(p->p_lock); 1209 1210 /* 1211 * Stop profiling. 1212 */ 1213 if ((p->p_stflag & PST_PROFIL) != 0) { 1214 mutex_spin_enter(&p->p_stmutex); 1215 stopprofclock(p); 1216 mutex_spin_exit(&p->p_stmutex); 1217 } 1218 1219 /* 1220 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have 1221 * exited and exec()/exit() are the only places it will be cleared. 1222 */ 1223 if ((p->p_lflag & PL_PPWAIT) != 0) { 1224 #if 0 1225 lwp_t *lp; 1226 1227 mutex_enter(proc_lock); 1228 lp = p->p_vforklwp; 1229 p->p_vforklwp = NULL; 1230 1231 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1232 p->p_lflag &= ~PL_PPWAIT; 1233 1234 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */ 1235 cv_broadcast(&lp->l_waitcv); 1236 mutex_exit(proc_lock); 1237 #else 1238 mutex_enter(proc_lock); 1239 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1240 p->p_lflag &= ~PL_PPWAIT; 1241 cv_broadcast(&p->p_pptr->p_waitcv); 1242 mutex_exit(proc_lock); 1243 #endif 1244 } 1245 1246 error = credexec(l, &data->ed_attr); 1247 if (error) 1248 goto exec_abort; 1249 1250 #if defined(__HAVE_RAS) 1251 /* 1252 * Remove all RASs from the address space. 1253 */ 1254 ras_purgeall(); 1255 #endif 1256 1257 doexechooks(p); 1258 1259 /* 1260 * Set initial SP at the top of the stack. 1261 * 1262 * Note that on machines where stack grows up (e.g. hppa), SP points to 1263 * the end of arg/env strings. Userland guesses the address of argc 1264 * via ps_strings::ps_argvstr. 1265 */ 1266 1267 /* Setup new registers and do misc. setup. */ 1268 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack); 1269 if (epp->ep_esch->es_setregs) 1270 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack); 1271 1272 /* Provide a consistent LWP private setting */ 1273 (void)lwp_setprivate(l, NULL); 1274 1275 /* Discard all PCU state; need to start fresh */ 1276 pcu_discard_all(l); 1277 1278 /* map the process's signal trampoline code */ 1279 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) { 1280 DPRINTF(("%s: map sigcode failed %d\n", __func__, error)); 1281 goto exec_abort; 1282 } 1283 1284 pool_put(&exec_pool, data->ed_argp); 1285 1286 /* notify others that we exec'd */ 1287 KNOTE(&p->p_klist, NOTE_EXEC); 1288 1289 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1290 1291 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0); 1292 1293 emulexec(l, epp); 1294 1295 /* Allow new references from the debugger/procfs. */ 1296 rw_exit(&p->p_reflock); 1297 if (!no_local_exec_lock) 1298 rw_exit(&exec_lock); 1299 1300 mutex_enter(proc_lock); 1301 1302 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) { 1303 ksiginfo_t ksi; 1304 1305 KSI_INIT_EMPTY(&ksi); 1306 ksi.ksi_signo = SIGTRAP; 1307 ksi.ksi_lid = l->l_lid; 1308 kpsignal(p, &ksi, NULL); 1309 } 1310 1311 if (p->p_sflag & PS_STOPEXEC) { 1312 ksiginfoq_t kq; 1313 1314 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 1315 p->p_pptr->p_nstopchild++; 1316 p->p_waited = 0; 1317 mutex_enter(p->p_lock); 1318 ksiginfo_queue_init(&kq); 1319 sigclearall(p, &contsigmask, &kq); 1320 lwp_lock(l); 1321 l->l_stat = LSSTOP; 1322 p->p_stat = SSTOP; 1323 p->p_nrlwps--; 1324 lwp_unlock(l); 1325 mutex_exit(p->p_lock); 1326 mutex_exit(proc_lock); 1327 lwp_lock(l); 1328 mi_switch(l); 1329 ksiginfo_queue_drain(&kq); 1330 KERNEL_LOCK(l->l_biglocks, l); 1331 } else { 1332 mutex_exit(proc_lock); 1333 } 1334 1335 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1336 pathbuf_destroy(data->ed_pathbuf); 1337 PNBUF_PUT(data->ed_resolvedpathbuf); 1338 #ifdef TRACE_EXEC 1339 DPRINTF(("%s finished\n", __func__)); 1340 #endif 1341 return EJUSTRETURN; 1342 1343 exec_abort: 1344 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0); 1345 rw_exit(&p->p_reflock); 1346 if (!no_local_exec_lock) 1347 rw_exit(&exec_lock); 1348 1349 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1350 pathbuf_destroy(data->ed_pathbuf); 1351 PNBUF_PUT(data->ed_resolvedpathbuf); 1352 1353 /* 1354 * the old process doesn't exist anymore. exit gracefully. 1355 * get rid of the (new) address space we have created, if any, get rid 1356 * of our namei data and vnode, and exit noting failure 1357 */ 1358 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, 1359 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); 1360 1361 exec_free_emul_arg(epp); 1362 pool_put(&exec_pool, data->ed_argp); 1363 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1364 if (epp->ep_emul_root != NULL) 1365 vrele(epp->ep_emul_root); 1366 if (epp->ep_interp != NULL) 1367 vrele(epp->ep_interp); 1368 1369 /* Acquire the sched-state mutex (exit1() will release it). */ 1370 if (!is_spawn) { 1371 mutex_enter(p->p_lock); 1372 exit1(l, error, SIGABRT); 1373 } 1374 1375 return error; 1376 } 1377 1378 int 1379 execve1(struct lwp *l, const char *path, char * const *args, 1380 char * const *envs, execve_fetch_element_t fetch_element) 1381 { 1382 struct execve_data data; 1383 int error; 1384 1385 error = execve_loadvm(l, path, args, envs, fetch_element, &data); 1386 if (error) 1387 return error; 1388 error = execve_runproc(l, &data, false, false); 1389 return error; 1390 } 1391 1392 static size_t 1393 fromptrsz(const struct exec_package *epp) 1394 { 1395 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *); 1396 } 1397 1398 static size_t 1399 ptrsz(const struct exec_package *epp) 1400 { 1401 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *); 1402 } 1403 1404 static size_t 1405 calcargs(struct execve_data * restrict data, const size_t argenvstrlen) 1406 { 1407 struct exec_package * const epp = &data->ed_pack; 1408 1409 const size_t nargenvptrs = 1410 1 + /* long argc */ 1411 data->ed_argc + /* char *argv[] */ 1412 1 + /* \0 */ 1413 data->ed_envc + /* char *env[] */ 1414 1 + /* \0 */ 1415 epp->ep_esch->es_arglen; /* auxinfo */ 1416 1417 return (nargenvptrs * ptrsz(epp)) + argenvstrlen; 1418 } 1419 1420 static size_t 1421 calcstack(struct execve_data * restrict data, const size_t gaplen) 1422 { 1423 struct exec_package * const epp = &data->ed_pack; 1424 1425 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode - 1426 epp->ep_esch->es_emul->e_sigcode; 1427 1428 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ? 1429 sizeof(struct ps_strings32) : sizeof(struct ps_strings); 1430 1431 const size_t sigcode_psstr_sz = 1432 data->ed_szsigcode + /* sigcode */ 1433 data->ed_ps_strings_sz + /* ps_strings */ 1434 STACK_PTHREADSPACE; /* pthread space */ 1435 1436 const size_t stacklen = 1437 data->ed_argslen + 1438 gaplen + 1439 sigcode_psstr_sz; 1440 1441 /* make the stack "safely" aligned */ 1442 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES); 1443 } 1444 1445 static int 1446 copyoutargs(struct execve_data * restrict data, struct lwp *l, 1447 char * const newstack) 1448 { 1449 struct exec_package * const epp = &data->ed_pack; 1450 struct proc *p = l->l_proc; 1451 int error; 1452 1453 /* remember information about the process */ 1454 data->ed_arginfo.ps_nargvstr = data->ed_argc; 1455 data->ed_arginfo.ps_nenvstr = data->ed_envc; 1456 1457 /* 1458 * Allocate the stack address passed to the newly execve()'ed process. 1459 * 1460 * The new stack address will be set to the SP (stack pointer) register 1461 * in setregs(). 1462 */ 1463 1464 char *newargs = STACK_ALLOC( 1465 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen); 1466 1467 error = (*epp->ep_esch->es_copyargs)(l, epp, 1468 &data->ed_arginfo, &newargs, data->ed_argp); 1469 1470 if (epp->ep_path) { 1471 PNBUF_PUT(epp->ep_path); 1472 epp->ep_path = NULL; 1473 } 1474 if (error) { 1475 DPRINTF(("%s: copyargs failed %d\n", __func__, error)); 1476 return error; 1477 } 1478 1479 error = copyoutpsstrs(data, p); 1480 if (error != 0) 1481 return error; 1482 1483 return 0; 1484 } 1485 1486 static int 1487 copyoutpsstrs(struct execve_data * restrict data, struct proc *p) 1488 { 1489 struct exec_package * const epp = &data->ed_pack; 1490 struct ps_strings32 arginfo32; 1491 void *aip; 1492 int error; 1493 1494 /* fill process ps_strings info */ 1495 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr, 1496 STACK_PTHREADSPACE), data->ed_ps_strings_sz); 1497 1498 if (epp->ep_flags & EXEC_32) { 1499 aip = &arginfo32; 1500 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; 1501 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; 1502 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; 1503 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; 1504 } else 1505 aip = &data->ed_arginfo; 1506 1507 /* copy out the process's ps_strings structure */ 1508 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) 1509 != 0) { 1510 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n", 1511 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); 1512 return error; 1513 } 1514 1515 return 0; 1516 } 1517 1518 static int 1519 copyinargs(struct execve_data * restrict data, char * const *args, 1520 char * const *envs, execve_fetch_element_t fetch_element, char **dpp) 1521 { 1522 struct exec_package * const epp = &data->ed_pack; 1523 char *dp; 1524 size_t i; 1525 int error; 1526 1527 dp = *dpp; 1528 1529 data->ed_argc = 0; 1530 1531 /* copy the fake args list, if there's one, freeing it as we go */ 1532 if (epp->ep_flags & EXEC_HASARGL) { 1533 struct exec_fakearg *fa = epp->ep_fa; 1534 1535 while (fa->fa_arg != NULL) { 1536 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1537 size_t len; 1538 1539 len = strlcpy(dp, fa->fa_arg, maxlen); 1540 /* Count NUL into len. */ 1541 if (len < maxlen) 1542 len++; 1543 else { 1544 while (fa->fa_arg != NULL) { 1545 kmem_free(fa->fa_arg, fa->fa_len); 1546 fa++; 1547 } 1548 kmem_free(epp->ep_fa, epp->ep_fa_len); 1549 epp->ep_flags &= ~EXEC_HASARGL; 1550 return E2BIG; 1551 } 1552 ktrexecarg(fa->fa_arg, len - 1); 1553 dp += len; 1554 1555 kmem_free(fa->fa_arg, fa->fa_len); 1556 fa++; 1557 data->ed_argc++; 1558 } 1559 kmem_free(epp->ep_fa, epp->ep_fa_len); 1560 epp->ep_flags &= ~EXEC_HASARGL; 1561 } 1562 1563 /* 1564 * Read and count argument strings from user. 1565 */ 1566 1567 if (args == NULL) { 1568 DPRINTF(("%s: null args\n", __func__)); 1569 return EINVAL; 1570 } 1571 if (epp->ep_flags & EXEC_SKIPARG) 1572 args = (const void *)((const char *)args + fromptrsz(epp)); 1573 i = 0; 1574 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg); 1575 if (error != 0) { 1576 DPRINTF(("%s: copyin arg %d\n", __func__, error)); 1577 return error; 1578 } 1579 data->ed_argc += i; 1580 1581 /* 1582 * Read and count environment strings from user. 1583 */ 1584 1585 data->ed_envc = 0; 1586 /* environment need not be there */ 1587 if (envs == NULL) 1588 goto done; 1589 i = 0; 1590 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv); 1591 if (error != 0) { 1592 DPRINTF(("%s: copyin env %d\n", __func__, error)); 1593 return error; 1594 } 1595 data->ed_envc += i; 1596 1597 done: 1598 *dpp = dp; 1599 1600 return 0; 1601 } 1602 1603 static int 1604 copyinargstrs(struct execve_data * restrict data, char * const *strs, 1605 execve_fetch_element_t fetch_element, char **dpp, size_t *ip, 1606 void (*ktr)(const void *, size_t)) 1607 { 1608 char *dp, *sp; 1609 size_t i; 1610 int error; 1611 1612 dp = *dpp; 1613 1614 i = 0; 1615 while (1) { 1616 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1617 size_t len; 1618 1619 if ((error = (*fetch_element)(strs, i, &sp)) != 0) { 1620 return error; 1621 } 1622 if (!sp) 1623 break; 1624 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) { 1625 if (error == ENAMETOOLONG) 1626 error = E2BIG; 1627 return error; 1628 } 1629 if (__predict_false(ktrace_on)) 1630 (*ktr)(dp, len - 1); 1631 dp += len; 1632 i++; 1633 } 1634 1635 *dpp = dp; 1636 *ip = i; 1637 1638 return 0; 1639 } 1640 1641 /* 1642 * Copy argv and env strings from kernel buffer (argp) to the new stack. 1643 * Those strings are located just after auxinfo. 1644 */ 1645 int 1646 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, 1647 char **stackp, void *argp) 1648 { 1649 char **cpp, *dp, *sp; 1650 size_t len; 1651 void *nullp; 1652 long argc, envc; 1653 int error; 1654 1655 cpp = (char **)*stackp; 1656 nullp = NULL; 1657 argc = arginfo->ps_nargvstr; 1658 envc = arginfo->ps_nenvstr; 1659 1660 /* argc on stack is long */ 1661 CTASSERT(sizeof(*cpp) == sizeof(argc)); 1662 1663 dp = (char *)(cpp + 1664 1 + /* long argc */ 1665 argc + /* char *argv[] */ 1666 1 + /* \0 */ 1667 envc + /* char *env[] */ 1668 1 + /* \0 */ 1669 /* XXX auxinfo multiplied by ptr size? */ 1670 pack->ep_esch->es_arglen); /* auxinfo */ 1671 sp = argp; 1672 1673 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { 1674 COPYPRINTF("", cpp - 1, sizeof(argc)); 1675 return error; 1676 } 1677 1678 /* XXX don't copy them out, remap them! */ 1679 arginfo->ps_argvstr = cpp; /* remember location of argv for later */ 1680 1681 for (; --argc >= 0; sp += len, dp += len) { 1682 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1683 COPYPRINTF("", cpp - 1, sizeof(dp)); 1684 return error; 1685 } 1686 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1687 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1688 return error; 1689 } 1690 } 1691 1692 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1693 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1694 return error; 1695 } 1696 1697 arginfo->ps_envstr = cpp; /* remember location of envp for later */ 1698 1699 for (; --envc >= 0; sp += len, dp += len) { 1700 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1701 COPYPRINTF("", cpp - 1, sizeof(dp)); 1702 return error; 1703 } 1704 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1705 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1706 return error; 1707 } 1708 1709 } 1710 1711 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1712 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1713 return error; 1714 } 1715 1716 *stackp = (char *)cpp; 1717 return 0; 1718 } 1719 1720 1721 /* 1722 * Add execsw[] entries. 1723 */ 1724 int 1725 exec_add(struct execsw *esp, int count) 1726 { 1727 struct exec_entry *it; 1728 int i; 1729 1730 if (count == 0) { 1731 return 0; 1732 } 1733 1734 /* Check for duplicates. */ 1735 rw_enter(&exec_lock, RW_WRITER); 1736 for (i = 0; i < count; i++) { 1737 LIST_FOREACH(it, &ex_head, ex_list) { 1738 /* assume unique (makecmds, probe_func, emulation) */ 1739 if (it->ex_sw->es_makecmds == esp[i].es_makecmds && 1740 it->ex_sw->u.elf_probe_func == 1741 esp[i].u.elf_probe_func && 1742 it->ex_sw->es_emul == esp[i].es_emul) { 1743 rw_exit(&exec_lock); 1744 return EEXIST; 1745 } 1746 } 1747 } 1748 1749 /* Allocate new entries. */ 1750 for (i = 0; i < count; i++) { 1751 it = kmem_alloc(sizeof(*it), KM_SLEEP); 1752 it->ex_sw = &esp[i]; 1753 LIST_INSERT_HEAD(&ex_head, it, ex_list); 1754 } 1755 1756 /* update execsw[] */ 1757 exec_init(0); 1758 rw_exit(&exec_lock); 1759 return 0; 1760 } 1761 1762 /* 1763 * Remove execsw[] entry. 1764 */ 1765 int 1766 exec_remove(struct execsw *esp, int count) 1767 { 1768 struct exec_entry *it, *next; 1769 int i; 1770 const struct proclist_desc *pd; 1771 proc_t *p; 1772 1773 if (count == 0) { 1774 return 0; 1775 } 1776 1777 /* Abort if any are busy. */ 1778 rw_enter(&exec_lock, RW_WRITER); 1779 for (i = 0; i < count; i++) { 1780 mutex_enter(proc_lock); 1781 for (pd = proclists; pd->pd_list != NULL; pd++) { 1782 PROCLIST_FOREACH(p, pd->pd_list) { 1783 if (p->p_execsw == &esp[i]) { 1784 mutex_exit(proc_lock); 1785 rw_exit(&exec_lock); 1786 return EBUSY; 1787 } 1788 } 1789 } 1790 mutex_exit(proc_lock); 1791 } 1792 1793 /* None are busy, so remove them all. */ 1794 for (i = 0; i < count; i++) { 1795 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { 1796 next = LIST_NEXT(it, ex_list); 1797 if (it->ex_sw == &esp[i]) { 1798 LIST_REMOVE(it, ex_list); 1799 kmem_free(it, sizeof(*it)); 1800 break; 1801 } 1802 } 1803 } 1804 1805 /* update execsw[] */ 1806 exec_init(0); 1807 rw_exit(&exec_lock); 1808 return 0; 1809 } 1810 1811 /* 1812 * Initialize exec structures. If init_boot is true, also does necessary 1813 * one-time initialization (it's called from main() that way). 1814 * Once system is multiuser, this should be called with exec_lock held, 1815 * i.e. via exec_{add|remove}(). 1816 */ 1817 int 1818 exec_init(int init_boot) 1819 { 1820 const struct execsw **sw; 1821 struct exec_entry *ex; 1822 SLIST_HEAD(,exec_entry) first; 1823 SLIST_HEAD(,exec_entry) any; 1824 SLIST_HEAD(,exec_entry) last; 1825 int i, sz; 1826 1827 if (init_boot) { 1828 /* do one-time initializations */ 1829 rw_init(&exec_lock); 1830 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); 1831 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, 1832 "execargs", &exec_palloc, IPL_NONE); 1833 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0); 1834 } else { 1835 KASSERT(rw_write_held(&exec_lock)); 1836 } 1837 1838 /* Sort each entry onto the appropriate queue. */ 1839 SLIST_INIT(&first); 1840 SLIST_INIT(&any); 1841 SLIST_INIT(&last); 1842 sz = 0; 1843 LIST_FOREACH(ex, &ex_head, ex_list) { 1844 switch(ex->ex_sw->es_prio) { 1845 case EXECSW_PRIO_FIRST: 1846 SLIST_INSERT_HEAD(&first, ex, ex_slist); 1847 break; 1848 case EXECSW_PRIO_ANY: 1849 SLIST_INSERT_HEAD(&any, ex, ex_slist); 1850 break; 1851 case EXECSW_PRIO_LAST: 1852 SLIST_INSERT_HEAD(&last, ex, ex_slist); 1853 break; 1854 default: 1855 panic("%s", __func__); 1856 break; 1857 } 1858 sz++; 1859 } 1860 1861 /* 1862 * Create new execsw[]. Ensure we do not try a zero-sized 1863 * allocation. 1864 */ 1865 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); 1866 i = 0; 1867 SLIST_FOREACH(ex, &first, ex_slist) { 1868 sw[i++] = ex->ex_sw; 1869 } 1870 SLIST_FOREACH(ex, &any, ex_slist) { 1871 sw[i++] = ex->ex_sw; 1872 } 1873 SLIST_FOREACH(ex, &last, ex_slist) { 1874 sw[i++] = ex->ex_sw; 1875 } 1876 1877 /* Replace old execsw[] and free used memory. */ 1878 if (execsw != NULL) { 1879 kmem_free(__UNCONST(execsw), 1880 nexecs * sizeof(struct execsw *) + 1); 1881 } 1882 execsw = sw; 1883 nexecs = sz; 1884 1885 /* Figure out the maximum size of an exec header. */ 1886 exec_maxhdrsz = sizeof(int); 1887 for (i = 0; i < nexecs; i++) { 1888 if (execsw[i]->es_hdrsz > exec_maxhdrsz) 1889 exec_maxhdrsz = execsw[i]->es_hdrsz; 1890 } 1891 1892 return 0; 1893 } 1894 1895 static int 1896 exec_sigcode_map(struct proc *p, const struct emul *e) 1897 { 1898 vaddr_t va; 1899 vsize_t sz; 1900 int error; 1901 struct uvm_object *uobj; 1902 1903 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; 1904 1905 if (e->e_sigobject == NULL || sz == 0) { 1906 return 0; 1907 } 1908 1909 /* 1910 * If we don't have a sigobject for this emulation, create one. 1911 * 1912 * sigobject is an anonymous memory object (just like SYSV shared 1913 * memory) that we keep a permanent reference to and that we map 1914 * in all processes that need this sigcode. The creation is simple, 1915 * we create an object, add a permanent reference to it, map it in 1916 * kernel space, copy out the sigcode to it and unmap it. 1917 * We map it with PROT_READ|PROT_EXEC into the process just 1918 * the way sys_mmap() would map it. 1919 */ 1920 1921 uobj = *e->e_sigobject; 1922 if (uobj == NULL) { 1923 mutex_enter(&sigobject_lock); 1924 if ((uobj = *e->e_sigobject) == NULL) { 1925 uobj = uao_create(sz, 0); 1926 (*uobj->pgops->pgo_reference)(uobj); 1927 va = vm_map_min(kernel_map); 1928 if ((error = uvm_map(kernel_map, &va, round_page(sz), 1929 uobj, 0, 0, 1930 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1931 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { 1932 printf("kernel mapping failed %d\n", error); 1933 (*uobj->pgops->pgo_detach)(uobj); 1934 mutex_exit(&sigobject_lock); 1935 return error; 1936 } 1937 memcpy((void *)va, e->e_sigcode, sz); 1938 #ifdef PMAP_NEED_PROCWR 1939 pmap_procwr(&proc0, va, sz); 1940 #endif 1941 uvm_unmap(kernel_map, va, va + round_page(sz)); 1942 *e->e_sigobject = uobj; 1943 } 1944 mutex_exit(&sigobject_lock); 1945 } 1946 1947 /* Just a hint to uvm_map where to put it. */ 1948 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, 1949 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1950 1951 #ifdef __alpha__ 1952 /* 1953 * Tru64 puts /sbin/loader at the end of user virtual memory, 1954 * which causes the above calculation to put the sigcode at 1955 * an invalid address. Put it just below the text instead. 1956 */ 1957 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { 1958 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); 1959 } 1960 #endif 1961 1962 (*uobj->pgops->pgo_reference)(uobj); 1963 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), 1964 uobj, 0, 0, 1965 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, 1966 UVM_ADV_RANDOM, 0)); 1967 if (error) { 1968 DPRINTF(("%s, %d: map %p " 1969 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n", 1970 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), 1971 va, error)); 1972 (*uobj->pgops->pgo_detach)(uobj); 1973 return error; 1974 } 1975 p->p_sigctx.ps_sigcode = (void *)va; 1976 return 0; 1977 } 1978 1979 /* 1980 * Release a refcount on spawn_exec_data and destroy memory, if this 1981 * was the last one. 1982 */ 1983 static void 1984 spawn_exec_data_release(struct spawn_exec_data *data) 1985 { 1986 if (atomic_dec_32_nv(&data->sed_refcnt) != 0) 1987 return; 1988 1989 cv_destroy(&data->sed_cv_child_ready); 1990 mutex_destroy(&data->sed_mtx_child); 1991 1992 if (data->sed_actions) 1993 posix_spawn_fa_free(data->sed_actions, 1994 data->sed_actions->len); 1995 if (data->sed_attrs) 1996 kmem_free(data->sed_attrs, 1997 sizeof(*data->sed_attrs)); 1998 kmem_free(data, sizeof(*data)); 1999 } 2000 2001 /* 2002 * A child lwp of a posix_spawn operation starts here and ends up in 2003 * cpu_spawn_return, dealing with all filedescriptor and scheduler 2004 * manipulations in between. 2005 * The parent waits for the child, as it is not clear whether the child 2006 * will be able to acquire its own exec_lock. If it can, the parent can 2007 * be released early and continue running in parallel. If not (or if the 2008 * magic debug flag is passed in the scheduler attribute struct), the 2009 * child rides on the parent's exec lock until it is ready to return to 2010 * to userland - and only then releases the parent. This method loses 2011 * concurrency, but improves error reporting. 2012 */ 2013 static void 2014 spawn_return(void *arg) 2015 { 2016 struct spawn_exec_data *spawn_data = arg; 2017 struct lwp *l = curlwp; 2018 int error, newfd; 2019 int ostat; 2020 size_t i; 2021 const struct posix_spawn_file_actions_entry *fae; 2022 pid_t ppid; 2023 register_t retval; 2024 bool have_reflock; 2025 bool parent_is_waiting = true; 2026 2027 /* 2028 * Check if we can release parent early. 2029 * We either need to have no sed_attrs, or sed_attrs does not 2030 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require 2031 * safe access to the parent proc (passed in sed_parent). 2032 * We then try to get the exec_lock, and only if that works, we can 2033 * release the parent here already. 2034 */ 2035 ppid = spawn_data->sed_parent->p_pid; 2036 if ((!spawn_data->sed_attrs 2037 || (spawn_data->sed_attrs->sa_flags 2038 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0) 2039 && rw_tryenter(&exec_lock, RW_READER)) { 2040 parent_is_waiting = false; 2041 mutex_enter(&spawn_data->sed_mtx_child); 2042 cv_signal(&spawn_data->sed_cv_child_ready); 2043 mutex_exit(&spawn_data->sed_mtx_child); 2044 } 2045 2046 /* don't allow debugger access yet */ 2047 rw_enter(&l->l_proc->p_reflock, RW_WRITER); 2048 have_reflock = true; 2049 2050 error = 0; 2051 /* handle posix_spawn_file_actions */ 2052 if (spawn_data->sed_actions != NULL) { 2053 for (i = 0; i < spawn_data->sed_actions->len; i++) { 2054 fae = &spawn_data->sed_actions->fae[i]; 2055 switch (fae->fae_action) { 2056 case FAE_OPEN: 2057 if (fd_getfile(fae->fae_fildes) != NULL) { 2058 error = fd_close(fae->fae_fildes); 2059 if (error) 2060 break; 2061 } 2062 error = fd_open(fae->fae_path, fae->fae_oflag, 2063 fae->fae_mode, &newfd); 2064 if (error) 2065 break; 2066 if (newfd != fae->fae_fildes) { 2067 error = dodup(l, newfd, 2068 fae->fae_fildes, 0, &retval); 2069 if (fd_getfile(newfd) != NULL) 2070 fd_close(newfd); 2071 } 2072 break; 2073 case FAE_DUP2: 2074 error = dodup(l, fae->fae_fildes, 2075 fae->fae_newfildes, 0, &retval); 2076 break; 2077 case FAE_CLOSE: 2078 if (fd_getfile(fae->fae_fildes) == NULL) { 2079 error = EBADF; 2080 break; 2081 } 2082 error = fd_close(fae->fae_fildes); 2083 break; 2084 } 2085 if (error) 2086 goto report_error; 2087 } 2088 } 2089 2090 /* handle posix_spawnattr */ 2091 if (spawn_data->sed_attrs != NULL) { 2092 struct sigaction sigact; 2093 sigact._sa_u._sa_handler = SIG_DFL; 2094 sigact.sa_flags = 0; 2095 2096 /* 2097 * set state to SSTOP so that this proc can be found by pid. 2098 * see proc_enterprp, do_sched_setparam below 2099 */ 2100 mutex_enter(proc_lock); 2101 /* 2102 * p_stat should be SACTIVE, so we need to adjust the 2103 * parent's p_nstopchild here. For safety, just make 2104 * we're on the good side of SDEAD before we adjust. 2105 */ 2106 ostat = l->l_proc->p_stat; 2107 KASSERT(ostat < SSTOP); 2108 l->l_proc->p_stat = SSTOP; 2109 l->l_proc->p_waited = 0; 2110 l->l_proc->p_pptr->p_nstopchild++; 2111 mutex_exit(proc_lock); 2112 2113 /* Set process group */ 2114 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { 2115 pid_t mypid = l->l_proc->p_pid, 2116 pgrp = spawn_data->sed_attrs->sa_pgroup; 2117 2118 if (pgrp == 0) 2119 pgrp = mypid; 2120 2121 error = proc_enterpgrp(spawn_data->sed_parent, 2122 mypid, pgrp, false); 2123 if (error) 2124 goto report_error_stopped; 2125 } 2126 2127 /* Set scheduler policy */ 2128 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) 2129 error = do_sched_setparam(l->l_proc->p_pid, 0, 2130 spawn_data->sed_attrs->sa_schedpolicy, 2131 &spawn_data->sed_attrs->sa_schedparam); 2132 else if (spawn_data->sed_attrs->sa_flags 2133 & POSIX_SPAWN_SETSCHEDPARAM) { 2134 error = do_sched_setparam(ppid, 0, 2135 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); 2136 } 2137 if (error) 2138 goto report_error_stopped; 2139 2140 /* Reset user ID's */ 2141 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { 2142 error = do_setresuid(l, -1, 2143 kauth_cred_getgid(l->l_cred), -1, 2144 ID_E_EQ_R | ID_E_EQ_S); 2145 if (error) 2146 goto report_error_stopped; 2147 error = do_setresuid(l, -1, 2148 kauth_cred_getuid(l->l_cred), -1, 2149 ID_E_EQ_R | ID_E_EQ_S); 2150 if (error) 2151 goto report_error_stopped; 2152 } 2153 2154 /* Set signal masks/defaults */ 2155 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { 2156 mutex_enter(l->l_proc->p_lock); 2157 error = sigprocmask1(l, SIG_SETMASK, 2158 &spawn_data->sed_attrs->sa_sigmask, NULL); 2159 mutex_exit(l->l_proc->p_lock); 2160 if (error) 2161 goto report_error_stopped; 2162 } 2163 2164 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { 2165 /* 2166 * The following sigaction call is using a sigaction 2167 * version 0 trampoline which is in the compatibility 2168 * code only. This is not a problem because for SIG_DFL 2169 * and SIG_IGN, the trampolines are now ignored. If they 2170 * were not, this would be a problem because we are 2171 * holding the exec_lock, and the compat code needs 2172 * to do the same in order to replace the trampoline 2173 * code of the process. 2174 */ 2175 for (i = 1; i <= NSIG; i++) { 2176 if (sigismember( 2177 &spawn_data->sed_attrs->sa_sigdefault, i)) 2178 sigaction1(l, i, &sigact, NULL, NULL, 2179 0); 2180 } 2181 } 2182 mutex_enter(proc_lock); 2183 l->l_proc->p_stat = ostat; 2184 l->l_proc->p_pptr->p_nstopchild--; 2185 mutex_exit(proc_lock); 2186 } 2187 2188 /* now do the real exec */ 2189 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting, 2190 true); 2191 have_reflock = false; 2192 if (error == EJUSTRETURN) 2193 error = 0; 2194 else if (error) 2195 goto report_error; 2196 2197 if (parent_is_waiting) { 2198 mutex_enter(&spawn_data->sed_mtx_child); 2199 cv_signal(&spawn_data->sed_cv_child_ready); 2200 mutex_exit(&spawn_data->sed_mtx_child); 2201 } 2202 2203 /* release our refcount on the data */ 2204 spawn_exec_data_release(spawn_data); 2205 2206 /* and finally: leave to userland for the first time */ 2207 cpu_spawn_return(l); 2208 2209 /* NOTREACHED */ 2210 return; 2211 2212 report_error_stopped: 2213 mutex_enter(proc_lock); 2214 l->l_proc->p_stat = ostat; 2215 l->l_proc->p_pptr->p_nstopchild--; 2216 mutex_exit(proc_lock); 2217 report_error: 2218 if (have_reflock) { 2219 /* 2220 * We have not passed through execve_runproc(), 2221 * which would have released the p_reflock and also 2222 * taken ownership of the sed_exec part of spawn_data, 2223 * so release/free both here. 2224 */ 2225 rw_exit(&l->l_proc->p_reflock); 2226 execve_free_data(&spawn_data->sed_exec); 2227 } 2228 2229 if (parent_is_waiting) { 2230 /* pass error to parent */ 2231 mutex_enter(&spawn_data->sed_mtx_child); 2232 spawn_data->sed_error = error; 2233 cv_signal(&spawn_data->sed_cv_child_ready); 2234 mutex_exit(&spawn_data->sed_mtx_child); 2235 } else { 2236 rw_exit(&exec_lock); 2237 } 2238 2239 /* release our refcount on the data */ 2240 spawn_exec_data_release(spawn_data); 2241 2242 /* done, exit */ 2243 mutex_enter(l->l_proc->p_lock); 2244 /* 2245 * Posix explicitly asks for an exit code of 127 if we report 2246 * errors from the child process - so, unfortunately, there 2247 * is no way to report a more exact error code. 2248 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as 2249 * flag bit in the attrp argument to posix_spawn(2), see above. 2250 */ 2251 exit1(l, 127, 0); 2252 } 2253 2254 void 2255 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) 2256 { 2257 2258 for (size_t i = 0; i < len; i++) { 2259 struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; 2260 if (fae->fae_action != FAE_OPEN) 2261 continue; 2262 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1); 2263 } 2264 if (fa->len > 0) 2265 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); 2266 kmem_free(fa, sizeof(*fa)); 2267 } 2268 2269 static int 2270 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, 2271 const struct posix_spawn_file_actions *ufa, rlim_t lim) 2272 { 2273 struct posix_spawn_file_actions *fa; 2274 struct posix_spawn_file_actions_entry *fae; 2275 char *pbuf = NULL; 2276 int error; 2277 size_t i = 0; 2278 2279 fa = kmem_alloc(sizeof(*fa), KM_SLEEP); 2280 error = copyin(ufa, fa, sizeof(*fa)); 2281 if (error || fa->len == 0) { 2282 kmem_free(fa, sizeof(*fa)); 2283 return error; /* 0 if not an error, and len == 0 */ 2284 } 2285 2286 if (fa->len > lim) { 2287 kmem_free(fa, sizeof(*fa)); 2288 return EINVAL; 2289 } 2290 2291 fa->size = fa->len; 2292 size_t fal = fa->len * sizeof(*fae); 2293 fae = fa->fae; 2294 fa->fae = kmem_alloc(fal, KM_SLEEP); 2295 error = copyin(fae, fa->fae, fal); 2296 if (error) 2297 goto out; 2298 2299 pbuf = PNBUF_GET(); 2300 for (; i < fa->len; i++) { 2301 fae = &fa->fae[i]; 2302 if (fae->fae_action != FAE_OPEN) 2303 continue; 2304 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); 2305 if (error) 2306 goto out; 2307 fae->fae_path = kmem_alloc(fal, KM_SLEEP); 2308 memcpy(fae->fae_path, pbuf, fal); 2309 } 2310 PNBUF_PUT(pbuf); 2311 2312 *fap = fa; 2313 return 0; 2314 out: 2315 if (pbuf) 2316 PNBUF_PUT(pbuf); 2317 posix_spawn_fa_free(fa, i); 2318 return error; 2319 } 2320 2321 int 2322 check_posix_spawn(struct lwp *l1) 2323 { 2324 int error, tnprocs, count; 2325 uid_t uid; 2326 struct proc *p1; 2327 2328 p1 = l1->l_proc; 2329 uid = kauth_cred_getuid(l1->l_cred); 2330 tnprocs = atomic_inc_uint_nv(&nprocs); 2331 2332 /* 2333 * Although process entries are dynamically created, we still keep 2334 * a global limit on the maximum number we will create. 2335 */ 2336 if (__predict_false(tnprocs >= maxproc)) 2337 error = -1; 2338 else 2339 error = kauth_authorize_process(l1->l_cred, 2340 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 2341 2342 if (error) { 2343 atomic_dec_uint(&nprocs); 2344 return EAGAIN; 2345 } 2346 2347 /* 2348 * Enforce limits. 2349 */ 2350 count = chgproccnt(uid, 1); 2351 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, 2352 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 2353 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 && 2354 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 2355 (void)chgproccnt(uid, -1); 2356 atomic_dec_uint(&nprocs); 2357 return EAGAIN; 2358 } 2359 2360 return 0; 2361 } 2362 2363 int 2364 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path, 2365 struct posix_spawn_file_actions *fa, 2366 struct posix_spawnattr *sa, 2367 char *const *argv, char *const *envp, 2368 execve_fetch_element_t fetch) 2369 { 2370 2371 struct proc *p1, *p2; 2372 struct lwp *l2; 2373 int error; 2374 struct spawn_exec_data *spawn_data; 2375 vaddr_t uaddr; 2376 pid_t pid; 2377 bool have_exec_lock = false; 2378 2379 p1 = l1->l_proc; 2380 2381 /* Allocate and init spawn_data */ 2382 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); 2383 spawn_data->sed_refcnt = 1; /* only parent so far */ 2384 cv_init(&spawn_data->sed_cv_child_ready, "pspawn"); 2385 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); 2386 mutex_enter(&spawn_data->sed_mtx_child); 2387 2388 /* 2389 * Do the first part of the exec now, collect state 2390 * in spawn_data. 2391 */ 2392 error = execve_loadvm(l1, path, argv, 2393 envp, fetch, &spawn_data->sed_exec); 2394 if (error == EJUSTRETURN) 2395 error = 0; 2396 else if (error) 2397 goto error_exit; 2398 2399 have_exec_lock = true; 2400 2401 /* 2402 * Allocate virtual address space for the U-area now, while it 2403 * is still easy to abort the fork operation if we're out of 2404 * kernel virtual address space. 2405 */ 2406 uaddr = uvm_uarea_alloc(); 2407 if (__predict_false(uaddr == 0)) { 2408 error = ENOMEM; 2409 goto error_exit; 2410 } 2411 2412 /* 2413 * Allocate new proc. Borrow proc0 vmspace for it, we will 2414 * replace it with its own before returning to userland 2415 * in the child. 2416 * This is a point of no return, we will have to go through 2417 * the child proc to properly clean it up past this point. 2418 */ 2419 p2 = proc_alloc(); 2420 pid = p2->p_pid; 2421 2422 /* 2423 * Make a proc table entry for the new process. 2424 * Start by zeroing the section of proc that is zero-initialized, 2425 * then copy the section that is copied directly from the parent. 2426 */ 2427 memset(&p2->p_startzero, 0, 2428 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 2429 memcpy(&p2->p_startcopy, &p1->p_startcopy, 2430 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 2431 p2->p_vmspace = proc0.p_vmspace; 2432 2433 TAILQ_INIT(&p2->p_sigpend.sp_info); 2434 2435 LIST_INIT(&p2->p_lwps); 2436 LIST_INIT(&p2->p_sigwaiters); 2437 2438 /* 2439 * Duplicate sub-structures as needed. 2440 * Increase reference counts on shared objects. 2441 * Inherit flags we want to keep. The flags related to SIGCHLD 2442 * handling are important in order to keep a consistent behaviour 2443 * for the child after the fork. If we are a 32-bit process, the 2444 * child will be too. 2445 */ 2446 p2->p_flag = 2447 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 2448 p2->p_emul = p1->p_emul; 2449 p2->p_execsw = p1->p_execsw; 2450 2451 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 2452 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 2453 rw_init(&p2->p_reflock); 2454 cv_init(&p2->p_waitcv, "wait"); 2455 cv_init(&p2->p_lwpcv, "lwpwait"); 2456 2457 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2458 2459 kauth_proc_fork(p1, p2); 2460 2461 p2->p_raslist = NULL; 2462 p2->p_fd = fd_copy(); 2463 2464 /* XXX racy */ 2465 p2->p_mqueue_cnt = p1->p_mqueue_cnt; 2466 2467 p2->p_cwdi = cwdinit(); 2468 2469 /* 2470 * Note: p_limit (rlimit stuff) is copy-on-write, so normally 2471 * we just need increase pl_refcnt. 2472 */ 2473 if (!p1->p_limit->pl_writeable) { 2474 lim_addref(p1->p_limit); 2475 p2->p_limit = p1->p_limit; 2476 } else { 2477 p2->p_limit = lim_copy(p1->p_limit); 2478 } 2479 2480 p2->p_lflag = 0; 2481 p2->p_sflag = 0; 2482 p2->p_slflag = 0; 2483 p2->p_pptr = p1; 2484 p2->p_ppid = p1->p_pid; 2485 LIST_INIT(&p2->p_children); 2486 2487 p2->p_aio = NULL; 2488 2489 #ifdef KTRACE 2490 /* 2491 * Copy traceflag and tracefile if enabled. 2492 * If not inherited, these were zeroed above. 2493 */ 2494 if (p1->p_traceflag & KTRFAC_INHERIT) { 2495 mutex_enter(&ktrace_lock); 2496 p2->p_traceflag = p1->p_traceflag; 2497 if ((p2->p_tracep = p1->p_tracep) != NULL) 2498 ktradref(p2); 2499 mutex_exit(&ktrace_lock); 2500 } 2501 #endif 2502 2503 /* 2504 * Create signal actions for the child process. 2505 */ 2506 p2->p_sigacts = sigactsinit(p1, 0); 2507 mutex_enter(p1->p_lock); 2508 p2->p_sflag |= 2509 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 2510 sched_proc_fork(p1, p2); 2511 mutex_exit(p1->p_lock); 2512 2513 p2->p_stflag = p1->p_stflag; 2514 2515 /* 2516 * p_stats. 2517 * Copy parts of p_stats, and zero out the rest. 2518 */ 2519 p2->p_stats = pstatscopy(p1->p_stats); 2520 2521 /* copy over machdep flags to the new proc */ 2522 cpu_proc_fork(p1, p2); 2523 2524 /* 2525 * Prepare remaining parts of spawn data 2526 */ 2527 spawn_data->sed_actions = fa; 2528 spawn_data->sed_attrs = sa; 2529 2530 spawn_data->sed_parent = p1; 2531 2532 /* create LWP */ 2533 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, 2534 &l2, l1->l_class); 2535 l2->l_ctxlink = NULL; /* reset ucontext link */ 2536 2537 /* 2538 * Copy the credential so other references don't see our changes. 2539 * Test to see if this is necessary first, since in the common case 2540 * we won't need a private reference. 2541 */ 2542 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || 2543 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { 2544 l2->l_cred = kauth_cred_copy(l2->l_cred); 2545 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); 2546 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); 2547 } 2548 2549 /* Update the master credentials. */ 2550 if (l2->l_cred != p2->p_cred) { 2551 kauth_cred_t ocred; 2552 2553 kauth_cred_hold(l2->l_cred); 2554 mutex_enter(p2->p_lock); 2555 ocred = p2->p_cred; 2556 p2->p_cred = l2->l_cred; 2557 mutex_exit(p2->p_lock); 2558 kauth_cred_free(ocred); 2559 } 2560 2561 *child_ok = true; 2562 spawn_data->sed_refcnt = 2; /* child gets it as well */ 2563 #if 0 2564 l2->l_nopreempt = 1; /* start it non-preemptable */ 2565 #endif 2566 2567 /* 2568 * It's now safe for the scheduler and other processes to see the 2569 * child process. 2570 */ 2571 mutex_enter(proc_lock); 2572 2573 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 2574 p2->p_lflag |= PL_CONTROLT; 2575 2576 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); 2577 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ 2578 2579 LIST_INSERT_AFTER(p1, p2, p_pglist); 2580 LIST_INSERT_HEAD(&allproc, p2, p_list); 2581 2582 p2->p_trace_enabled = trace_is_enabled(p2); 2583 #ifdef __HAVE_SYSCALL_INTERN 2584 (*p2->p_emul->e_syscall_intern)(p2); 2585 #endif 2586 2587 /* 2588 * Make child runnable, set start time, and add to run queue except 2589 * if the parent requested the child to start in SSTOP state. 2590 */ 2591 mutex_enter(p2->p_lock); 2592 2593 getmicrotime(&p2->p_stats->p_start); 2594 2595 lwp_lock(l2); 2596 KASSERT(p2->p_nrlwps == 1); 2597 p2->p_nrlwps = 1; 2598 p2->p_stat = SACTIVE; 2599 l2->l_stat = LSRUN; 2600 sched_enqueue(l2, false); 2601 lwp_unlock(l2); 2602 2603 mutex_exit(p2->p_lock); 2604 mutex_exit(proc_lock); 2605 2606 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); 2607 error = spawn_data->sed_error; 2608 mutex_exit(&spawn_data->sed_mtx_child); 2609 spawn_exec_data_release(spawn_data); 2610 2611 rw_exit(&p1->p_reflock); 2612 rw_exit(&exec_lock); 2613 have_exec_lock = false; 2614 2615 *pid_res = pid; 2616 return error; 2617 2618 error_exit: 2619 if (have_exec_lock) { 2620 execve_free_data(&spawn_data->sed_exec); 2621 rw_exit(&p1->p_reflock); 2622 rw_exit(&exec_lock); 2623 } 2624 mutex_exit(&spawn_data->sed_mtx_child); 2625 spawn_exec_data_release(spawn_data); 2626 2627 return error; 2628 } 2629 2630 int 2631 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, 2632 register_t *retval) 2633 { 2634 /* { 2635 syscallarg(pid_t *) pid; 2636 syscallarg(const char *) path; 2637 syscallarg(const struct posix_spawn_file_actions *) file_actions; 2638 syscallarg(const struct posix_spawnattr *) attrp; 2639 syscallarg(char *const *) argv; 2640 syscallarg(char *const *) envp; 2641 } */ 2642 2643 int error; 2644 struct posix_spawn_file_actions *fa = NULL; 2645 struct posix_spawnattr *sa = NULL; 2646 pid_t pid; 2647 bool child_ok = false; 2648 rlim_t max_fileactions; 2649 proc_t *p = l1->l_proc; 2650 2651 error = check_posix_spawn(l1); 2652 if (error) { 2653 *retval = error; 2654 return 0; 2655 } 2656 2657 /* copy in file_actions struct */ 2658 if (SCARG(uap, file_actions) != NULL) { 2659 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur, 2660 maxfiles); 2661 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions), 2662 max_fileactions); 2663 if (error) 2664 goto error_exit; 2665 } 2666 2667 /* copyin posix_spawnattr struct */ 2668 if (SCARG(uap, attrp) != NULL) { 2669 sa = kmem_alloc(sizeof(*sa), KM_SLEEP); 2670 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); 2671 if (error) 2672 goto error_exit; 2673 } 2674 2675 /* 2676 * Do the spawn 2677 */ 2678 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa, 2679 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element); 2680 if (error) 2681 goto error_exit; 2682 2683 if (error == 0 && SCARG(uap, pid) != NULL) 2684 error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); 2685 2686 *retval = error; 2687 return 0; 2688 2689 error_exit: 2690 if (!child_ok) { 2691 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1); 2692 atomic_dec_uint(&nprocs); 2693 2694 if (sa) 2695 kmem_free(sa, sizeof(*sa)); 2696 if (fa) 2697 posix_spawn_fa_free(fa, fa->len); 2698 } 2699 2700 *retval = error; 2701 return 0; 2702 } 2703 2704 void 2705 exec_free_emul_arg(struct exec_package *epp) 2706 { 2707 if (epp->ep_emul_arg_free != NULL) { 2708 KASSERT(epp->ep_emul_arg != NULL); 2709 (*epp->ep_emul_arg_free)(epp->ep_emul_arg); 2710 epp->ep_emul_arg_free = NULL; 2711 epp->ep_emul_arg = NULL; 2712 } else { 2713 KASSERT(epp->ep_emul_arg == NULL); 2714 } 2715 } 2716 2717 #ifdef DEBUG_EXEC 2718 static void 2719 dump_vmcmds(const struct exec_package * const epp, size_t x, int error) 2720 { 2721 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0]; 2722 size_t j; 2723 2724 if (error == 0) 2725 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used)); 2726 else 2727 DPRINTF(("vmcmds %zu/%u, error %d\n", x, 2728 epp->ep_vmcmds.evs_used, error)); 2729 2730 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) { 2731 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 2732 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 2733 PRIxVSIZE" prot=0%o flags=%d\n", j, 2734 vp[j].ev_proc == vmcmd_map_pagedvn ? 2735 "pagedvn" : 2736 vp[j].ev_proc == vmcmd_map_readvn ? 2737 "readvn" : 2738 vp[j].ev_proc == vmcmd_map_zero ? 2739 "zero" : "*unknown*", 2740 vp[j].ev_addr, vp[j].ev_len, 2741 vp[j].ev_offset, vp[j].ev_prot, 2742 vp[j].ev_flags)); 2743 if (error != 0 && j == x) 2744 DPRINTF((" ^--- failed\n")); 2745 } 2746 } 2747 #endif 2748