1 /* $NetBSD: kern_exec.c,v 1.408 2014/06/22 17:23:34 maxv Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /*- 30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou 31 * Copyright (C) 1992 Wolfgang Solfrank. 32 * Copyright (C) 1992 TooLs GmbH. 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by TooLs GmbH. 46 * 4. The name of TooLs GmbH may not be used to endorse or promote products 47 * derived from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.408 2014/06/22 17:23:34 maxv Exp $"); 63 64 #include "opt_exec.h" 65 #include "opt_execfmt.h" 66 #include "opt_ktrace.h" 67 #include "opt_modular.h" 68 #include "opt_syscall_debug.h" 69 #include "veriexec.h" 70 #include "opt_pax.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/filedesc.h> 75 #include <sys/kernel.h> 76 #include <sys/proc.h> 77 #include <sys/mount.h> 78 #include <sys/malloc.h> 79 #include <sys/kmem.h> 80 #include <sys/namei.h> 81 #include <sys/vnode.h> 82 #include <sys/file.h> 83 #include <sys/acct.h> 84 #include <sys/atomic.h> 85 #include <sys/exec.h> 86 #include <sys/ktrace.h> 87 #include <sys/uidinfo.h> 88 #include <sys/wait.h> 89 #include <sys/mman.h> 90 #include <sys/ras.h> 91 #include <sys/signalvar.h> 92 #include <sys/stat.h> 93 #include <sys/syscall.h> 94 #include <sys/kauth.h> 95 #include <sys/lwpctl.h> 96 #include <sys/pax.h> 97 #include <sys/cpu.h> 98 #include <sys/module.h> 99 #include <sys/syscallvar.h> 100 #include <sys/syscallargs.h> 101 #if NVERIEXEC > 0 102 #include <sys/verified_exec.h> 103 #endif /* NVERIEXEC > 0 */ 104 #include <sys/sdt.h> 105 #include <sys/spawn.h> 106 #include <sys/prot.h> 107 #include <sys/cprng.h> 108 109 #include <uvm/uvm_extern.h> 110 111 #include <machine/reg.h> 112 113 #include <compat/common/compat_util.h> 114 115 #ifndef MD_TOPDOWN_INIT 116 #ifdef __USE_TOPDOWN_VM 117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM 118 #else 119 #define MD_TOPDOWN_INIT(epp) 120 #endif 121 #endif 122 123 struct execve_data; 124 125 static size_t calcargs(struct execve_data * restrict, const size_t); 126 static size_t calcstack(struct execve_data * restrict, const size_t); 127 static int copyoutargs(struct execve_data * restrict, struct lwp *, 128 char * const); 129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *); 130 static int copyinargs(struct execve_data * restrict, char * const *, 131 char * const *, execve_fetch_element_t, char **); 132 static int copyinargstrs(struct execve_data * restrict, char * const *, 133 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t)); 134 static int exec_sigcode_map(struct proc *, const struct emul *); 135 136 #ifdef DEBUG_EXEC 137 #define DPRINTF(a) printf a 138 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ 139 __LINE__, (s), (a), (b)) 140 static void dump_vmcmds(const struct exec_package * const, size_t, int); 141 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0) 142 #else 143 #define DPRINTF(a) 144 #define COPYPRINTF(s, a, b) 145 #define DUMPVMCMDS(p, x, e) do {} while (0) 146 #endif /* DEBUG_EXEC */ 147 148 /* 149 * DTrace SDT provider definitions 150 */ 151 SDT_PROBE_DEFINE(proc,,,exec,exec, 152 "char *", NULL, 153 NULL, NULL, NULL, NULL, 154 NULL, NULL, NULL, NULL); 155 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success, 156 "char *", NULL, 157 NULL, NULL, NULL, NULL, 158 NULL, NULL, NULL, NULL); 159 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure, 160 "int", NULL, 161 NULL, NULL, NULL, NULL, 162 NULL, NULL, NULL, NULL); 163 164 /* 165 * Exec function switch: 166 * 167 * Note that each makecmds function is responsible for loading the 168 * exec package with the necessary functions for any exec-type-specific 169 * handling. 170 * 171 * Functions for specific exec types should be defined in their own 172 * header file. 173 */ 174 static const struct execsw **execsw = NULL; 175 static int nexecs; 176 177 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ 178 179 /* list of dynamically loaded execsw entries */ 180 static LIST_HEAD(execlist_head, exec_entry) ex_head = 181 LIST_HEAD_INITIALIZER(ex_head); 182 struct exec_entry { 183 LIST_ENTRY(exec_entry) ex_list; 184 SLIST_ENTRY(exec_entry) ex_slist; 185 const struct execsw *ex_sw; 186 }; 187 188 #ifndef __HAVE_SYSCALL_INTERN 189 void syscall(void); 190 #endif 191 192 /* NetBSD emul struct */ 193 struct emul emul_netbsd = { 194 .e_name = "netbsd", 195 #ifdef EMUL_NATIVEROOT 196 .e_path = EMUL_NATIVEROOT, 197 #else 198 .e_path = NULL, 199 #endif 200 #ifndef __HAVE_MINIMAL_EMUL 201 .e_flags = EMUL_HAS_SYS___syscall, 202 .e_errno = NULL, 203 .e_nosys = SYS_syscall, 204 .e_nsysent = SYS_NSYSENT, 205 #endif 206 .e_sysent = sysent, 207 #ifdef SYSCALL_DEBUG 208 .e_syscallnames = syscallnames, 209 #else 210 .e_syscallnames = NULL, 211 #endif 212 .e_sendsig = sendsig, 213 .e_trapsignal = trapsignal, 214 .e_tracesig = NULL, 215 .e_sigcode = NULL, 216 .e_esigcode = NULL, 217 .e_sigobject = NULL, 218 .e_setregs = setregs, 219 .e_proc_exec = NULL, 220 .e_proc_fork = NULL, 221 .e_proc_exit = NULL, 222 .e_lwp_fork = NULL, 223 .e_lwp_exit = NULL, 224 #ifdef __HAVE_SYSCALL_INTERN 225 .e_syscall_intern = syscall_intern, 226 #else 227 .e_syscall = syscall, 228 #endif 229 .e_sysctlovly = NULL, 230 .e_fault = NULL, 231 .e_vm_default_addr = uvm_default_mapaddr, 232 .e_usertrap = NULL, 233 .e_ucsize = sizeof(ucontext_t), 234 .e_startlwp = startlwp 235 }; 236 237 /* 238 * Exec lock. Used to control access to execsw[] structures. 239 * This must not be static so that netbsd32 can access it, too. 240 */ 241 krwlock_t exec_lock; 242 243 static kmutex_t sigobject_lock; 244 245 /* 246 * Data used between a loadvm and execve part of an "exec" operation 247 */ 248 struct execve_data { 249 struct exec_package ed_pack; 250 struct pathbuf *ed_pathbuf; 251 struct vattr ed_attr; 252 struct ps_strings ed_arginfo; 253 char *ed_argp; 254 const char *ed_pathstring; 255 char *ed_resolvedpathbuf; 256 size_t ed_ps_strings_sz; 257 int ed_szsigcode; 258 size_t ed_argslen; 259 long ed_argc; 260 long ed_envc; 261 }; 262 263 /* 264 * data passed from parent lwp to child during a posix_spawn() 265 */ 266 struct spawn_exec_data { 267 struct execve_data sed_exec; 268 struct posix_spawn_file_actions 269 *sed_actions; 270 struct posix_spawnattr *sed_attrs; 271 struct proc *sed_parent; 272 kcondvar_t sed_cv_child_ready; 273 kmutex_t sed_mtx_child; 274 int sed_error; 275 volatile uint32_t sed_refcnt; 276 }; 277 278 static void * 279 exec_pool_alloc(struct pool *pp, int flags) 280 { 281 282 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0, 283 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 284 } 285 286 static void 287 exec_pool_free(struct pool *pp, void *addr) 288 { 289 290 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); 291 } 292 293 static struct pool exec_pool; 294 295 static struct pool_allocator exec_palloc = { 296 .pa_alloc = exec_pool_alloc, 297 .pa_free = exec_pool_free, 298 .pa_pagesz = NCARGS 299 }; 300 301 /* 302 * check exec: 303 * given an "executable" described in the exec package's namei info, 304 * see what we can do with it. 305 * 306 * ON ENTRY: 307 * exec package with appropriate namei info 308 * lwp pointer of exec'ing lwp 309 * NO SELF-LOCKED VNODES 310 * 311 * ON EXIT: 312 * error: nothing held, etc. exec header still allocated. 313 * ok: filled exec package, executable's vnode (unlocked). 314 * 315 * EXEC SWITCH ENTRY: 316 * Locked vnode to check, exec package, proc. 317 * 318 * EXEC SWITCH EXIT: 319 * ok: return 0, filled exec package, executable's vnode (unlocked). 320 * error: destructive: 321 * everything deallocated execept exec header. 322 * non-destructive: 323 * error code, executable's vnode (unlocked), 324 * exec header unmodified. 325 */ 326 int 327 /*ARGSUSED*/ 328 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) 329 { 330 int error, i; 331 struct vnode *vp; 332 struct nameidata nd; 333 size_t resid; 334 335 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 336 337 /* first get the vnode */ 338 if ((error = namei(&nd)) != 0) 339 return error; 340 epp->ep_vp = vp = nd.ni_vp; 341 /* normally this can't fail */ 342 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL); 343 KASSERT(error == 0); 344 345 #ifdef DIAGNOSTIC 346 /* paranoia (take this out once namei stuff stabilizes) */ 347 memset(nd.ni_pnbuf, '~', PATH_MAX); 348 #endif 349 350 /* check access and type */ 351 if (vp->v_type != VREG) { 352 error = EACCES; 353 goto bad1; 354 } 355 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) 356 goto bad1; 357 358 /* get attributes */ 359 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) 360 goto bad1; 361 362 /* Check mount point */ 363 if (vp->v_mount->mnt_flag & MNT_NOEXEC) { 364 error = EACCES; 365 goto bad1; 366 } 367 if (vp->v_mount->mnt_flag & MNT_NOSUID) 368 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); 369 370 /* try to open it */ 371 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) 372 goto bad1; 373 374 /* unlock vp, since we need it unlocked from here on out. */ 375 VOP_UNLOCK(vp); 376 377 #if NVERIEXEC > 0 378 error = veriexec_verify(l, vp, epp->ep_resolvedname, 379 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, 380 NULL); 381 if (error) 382 goto bad2; 383 #endif /* NVERIEXEC > 0 */ 384 385 #ifdef PAX_SEGVGUARD 386 error = pax_segvguard(l, vp, epp->ep_resolvedname, false); 387 if (error) 388 goto bad2; 389 #endif /* PAX_SEGVGUARD */ 390 391 /* now we have the file, get the exec header */ 392 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, 393 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); 394 if (error) 395 goto bad2; 396 epp->ep_hdrvalid = epp->ep_hdrlen - resid; 397 398 /* 399 * Set up default address space limits. Can be overridden 400 * by individual exec packages. 401 * 402 * XXX probably should be all done in the exec packages. 403 */ 404 epp->ep_vm_minaddr = VM_MIN_ADDRESS; 405 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; 406 /* 407 * set up the vmcmds for creation of the process 408 * address space 409 */ 410 error = ENOEXEC; 411 for (i = 0; i < nexecs; i++) { 412 int newerror; 413 414 epp->ep_esch = execsw[i]; 415 newerror = (*execsw[i]->es_makecmds)(l, epp); 416 417 if (!newerror) { 418 /* Seems ok: check that entry point is not too high */ 419 if (epp->ep_entry > epp->ep_vm_maxaddr) { 420 #ifdef DIAGNOSTIC 421 printf("%s: rejecting %p due to " 422 "too high entry address (> %p)\n", 423 __func__, (void *)epp->ep_entry, 424 (void *)epp->ep_vm_maxaddr); 425 #endif 426 error = ENOEXEC; 427 break; 428 } 429 /* Seems ok: check that entry point is not too low */ 430 if (epp->ep_entry < epp->ep_vm_minaddr) { 431 #ifdef DIAGNOSTIC 432 printf("%s: rejecting %p due to " 433 "too low entry address (< %p)\n", 434 __func__, (void *)epp->ep_entry, 435 (void *)epp->ep_vm_minaddr); 436 #endif 437 error = ENOEXEC; 438 break; 439 } 440 441 /* check limits */ 442 if ((epp->ep_tsize > MAXTSIZ) || 443 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit 444 [RLIMIT_DATA].rlim_cur)) { 445 #ifdef DIAGNOSTIC 446 printf("%s: rejecting due to " 447 "limits (t=%llu > %llu || d=%llu > %llu)\n", 448 __func__, 449 (unsigned long long)epp->ep_tsize, 450 (unsigned long long)MAXTSIZ, 451 (unsigned long long)epp->ep_dsize, 452 (unsigned long long) 453 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); 454 #endif 455 error = ENOMEM; 456 break; 457 } 458 return 0; 459 } 460 461 if (epp->ep_emul_root != NULL) { 462 vrele(epp->ep_emul_root); 463 epp->ep_emul_root = NULL; 464 } 465 if (epp->ep_interp != NULL) { 466 vrele(epp->ep_interp); 467 epp->ep_interp = NULL; 468 } 469 470 /* make sure the first "interesting" error code is saved. */ 471 if (error == ENOEXEC) 472 error = newerror; 473 474 if (epp->ep_flags & EXEC_DESTR) 475 /* Error from "#!" code, tidied up by recursive call */ 476 return error; 477 } 478 479 /* not found, error */ 480 481 /* 482 * free any vmspace-creation commands, 483 * and release their references 484 */ 485 kill_vmcmds(&epp->ep_vmcmds); 486 487 bad2: 488 /* 489 * close and release the vnode, restore the old one, free the 490 * pathname buf, and punt. 491 */ 492 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 493 VOP_CLOSE(vp, FREAD, l->l_cred); 494 vput(vp); 495 return error; 496 497 bad1: 498 /* 499 * free the namei pathname buffer, and put the vnode 500 * (which we don't yet have open). 501 */ 502 vput(vp); /* was still locked */ 503 return error; 504 } 505 506 #ifdef __MACHINE_STACK_GROWS_UP 507 #define STACK_PTHREADSPACE NBPG 508 #else 509 #define STACK_PTHREADSPACE 0 510 #endif 511 512 static int 513 execve_fetch_element(char * const *array, size_t index, char **value) 514 { 515 return copyin(array + index, value, sizeof(*value)); 516 } 517 518 /* 519 * exec system call 520 */ 521 int 522 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) 523 { 524 /* { 525 syscallarg(const char *) path; 526 syscallarg(char * const *) argp; 527 syscallarg(char * const *) envp; 528 } */ 529 530 return execve1(l, SCARG(uap, path), SCARG(uap, argp), 531 SCARG(uap, envp), execve_fetch_element); 532 } 533 534 int 535 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, 536 register_t *retval) 537 { 538 /* { 539 syscallarg(int) fd; 540 syscallarg(char * const *) argp; 541 syscallarg(char * const *) envp; 542 } */ 543 544 return ENOSYS; 545 } 546 547 /* 548 * Load modules to try and execute an image that we do not understand. 549 * If no execsw entries are present, we load those likely to be needed 550 * in order to run native images only. Otherwise, we autoload all 551 * possible modules that could let us run the binary. XXX lame 552 */ 553 static void 554 exec_autoload(void) 555 { 556 #ifdef MODULAR 557 static const char * const native[] = { 558 "exec_elf32", 559 "exec_elf64", 560 "exec_script", 561 NULL 562 }; 563 static const char * const compat[] = { 564 "exec_elf32", 565 "exec_elf64", 566 "exec_script", 567 "exec_aout", 568 "exec_coff", 569 "exec_ecoff", 570 "compat_aoutm68k", 571 "compat_freebsd", 572 "compat_ibcs2", 573 "compat_linux", 574 "compat_linux32", 575 "compat_netbsd32", 576 "compat_sunos", 577 "compat_sunos32", 578 "compat_svr4", 579 "compat_svr4_32", 580 "compat_ultrix", 581 NULL 582 }; 583 char const * const *list; 584 int i; 585 586 list = (nexecs == 0 ? native : compat); 587 for (i = 0; list[i] != NULL; i++) { 588 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) { 589 continue; 590 } 591 yield(); 592 } 593 #endif 594 } 595 596 static int 597 execve_loadvm(struct lwp *l, const char *path, char * const *args, 598 char * const *envs, execve_fetch_element_t fetch_element, 599 struct execve_data * restrict data) 600 { 601 struct exec_package * const epp = &data->ed_pack; 602 int error; 603 struct proc *p; 604 char *dp; 605 u_int modgen; 606 607 KASSERT(data != NULL); 608 609 p = l->l_proc; 610 modgen = 0; 611 612 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0); 613 614 /* 615 * Check if we have exceeded our number of processes limit. 616 * This is so that we handle the case where a root daemon 617 * forked, ran setuid to become the desired user and is trying 618 * to exec. The obvious place to do the reference counting check 619 * is setuid(), but we don't do the reference counting check there 620 * like other OS's do because then all the programs that use setuid() 621 * must be modified to check the return code of setuid() and exit(). 622 * It is dangerous to make setuid() fail, because it fails open and 623 * the program will continue to run as root. If we make it succeed 624 * and return an error code, again we are not enforcing the limit. 625 * The best place to enforce the limit is here, when the process tries 626 * to execute a new image, because eventually the process will need 627 * to call exec in order to do something useful. 628 */ 629 retry: 630 if (p->p_flag & PK_SUGID) { 631 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 632 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 633 &p->p_rlimit[RLIMIT_NPROC], 634 KAUTH_ARG(RLIMIT_NPROC)) != 0 && 635 chgproccnt(kauth_cred_getuid(l->l_cred), 0) > 636 p->p_rlimit[RLIMIT_NPROC].rlim_cur) 637 return EAGAIN; 638 } 639 640 /* 641 * Drain existing references and forbid new ones. The process 642 * should be left alone until we're done here. This is necessary 643 * to avoid race conditions - e.g. in ptrace() - that might allow 644 * a local user to illicitly obtain elevated privileges. 645 */ 646 rw_enter(&p->p_reflock, RW_WRITER); 647 648 /* 649 * Init the namei data to point the file user's program name. 650 * This is done here rather than in check_exec(), so that it's 651 * possible to override this settings if any of makecmd/probe 652 * functions call check_exec() recursively - for example, 653 * see exec_script_makecmds(). 654 */ 655 error = pathbuf_copyin(path, &data->ed_pathbuf); 656 if (error) { 657 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__, 658 path, error)); 659 goto clrflg; 660 } 661 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); 662 data->ed_resolvedpathbuf = PNBUF_GET(); 663 664 /* 665 * initialize the fields of the exec package. 666 */ 667 epp->ep_name = path; 668 epp->ep_kname = data->ed_pathstring; 669 epp->ep_resolvedname = data->ed_resolvedpathbuf; 670 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); 671 epp->ep_hdrlen = exec_maxhdrsz; 672 epp->ep_hdrvalid = 0; 673 epp->ep_emul_arg = NULL; 674 epp->ep_emul_arg_free = NULL; 675 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds)); 676 epp->ep_vap = &data->ed_attr; 677 epp->ep_flags = 0; 678 MD_TOPDOWN_INIT(epp); 679 epp->ep_emul_root = NULL; 680 epp->ep_interp = NULL; 681 epp->ep_esch = NULL; 682 epp->ep_pax_flags = 0; 683 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch)); 684 685 rw_enter(&exec_lock, RW_READER); 686 687 /* see if we can run it. */ 688 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) { 689 if (error != ENOENT) { 690 DPRINTF(("%s: check exec failed %d\n", 691 __func__, error)); 692 } 693 goto freehdr; 694 } 695 696 /* allocate an argument buffer */ 697 data->ed_argp = pool_get(&exec_pool, PR_WAITOK); 698 KASSERT(data->ed_argp != NULL); 699 dp = data->ed_argp; 700 701 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) { 702 goto bad; 703 } 704 705 /* 706 * Calculate the new stack size. 707 */ 708 709 #ifdef PAX_ASLR 710 #define ASLR_GAP(l) (pax_aslr_active(l) ? (cprng_fast32() % PAGE_SIZE) : 0) 711 #else 712 #define ASLR_GAP(l) 0 713 #endif 714 715 #ifdef __MACHINE_STACK_GROWS_UP 716 /* 717 * copyargs() fills argc/argv/envp from the lower address even on 718 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP 719 * so that _rtld() use it. 720 */ 721 #define RTLD_GAP 32 722 #else 723 #define RTLD_GAP 0 724 #endif 725 726 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp; 727 728 data->ed_argslen = calcargs(data, argenvstrlen); 729 730 const size_t len = calcstack(data, ASLR_GAP(l) + RTLD_GAP); 731 732 if (len > epp->ep_ssize) { 733 /* in effect, compare to initial limit */ 734 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len)); 735 error = ENOMEM; 736 goto bad; 737 } 738 /* adjust "active stack depth" for process VSZ */ 739 epp->ep_ssize = len; 740 741 return 0; 742 743 bad: 744 /* free the vmspace-creation commands, and release their references */ 745 kill_vmcmds(&epp->ep_vmcmds); 746 /* kill any opened file descriptor, if necessary */ 747 if (epp->ep_flags & EXEC_HASFD) { 748 epp->ep_flags &= ~EXEC_HASFD; 749 fd_close(epp->ep_fd); 750 } 751 /* close and put the exec'd file */ 752 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 753 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 754 vput(epp->ep_vp); 755 pool_put(&exec_pool, data->ed_argp); 756 757 freehdr: 758 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 759 if (epp->ep_emul_root != NULL) 760 vrele(epp->ep_emul_root); 761 if (epp->ep_interp != NULL) 762 vrele(epp->ep_interp); 763 764 rw_exit(&exec_lock); 765 766 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 767 pathbuf_destroy(data->ed_pathbuf); 768 PNBUF_PUT(data->ed_resolvedpathbuf); 769 770 clrflg: 771 rw_exit(&p->p_reflock); 772 773 if (modgen != module_gen && error == ENOEXEC) { 774 modgen = module_gen; 775 exec_autoload(); 776 goto retry; 777 } 778 779 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 780 return error; 781 } 782 783 static int 784 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data) 785 { 786 struct exec_package * const epp = &data->ed_pack; 787 struct proc *p = l->l_proc; 788 struct exec_vmcmd *base_vcp; 789 int error = 0; 790 size_t i; 791 792 /* record proc's vnode, for use by procfs and others */ 793 if (p->p_textvp) 794 vrele(p->p_textvp); 795 vref(epp->ep_vp); 796 p->p_textvp = epp->ep_vp; 797 798 /* create the new process's VM space by running the vmcmds */ 799 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__); 800 801 DUMPVMCMDS(epp, 0, 0); 802 803 base_vcp = NULL; 804 805 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) { 806 struct exec_vmcmd *vcp; 807 808 vcp = &epp->ep_vmcmds.evs_cmds[i]; 809 if (vcp->ev_flags & VMCMD_RELATIVE) { 810 KASSERTMSG(base_vcp != NULL, 811 "%s: relative vmcmd with no base", __func__); 812 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0, 813 "%s: illegal base & relative vmcmd", __func__); 814 vcp->ev_addr += base_vcp->ev_addr; 815 } 816 error = (*vcp->ev_proc)(l, vcp); 817 if (error) 818 DUMPVMCMDS(epp, i, error); 819 if (vcp->ev_flags & VMCMD_BASE) 820 base_vcp = vcp; 821 } 822 823 /* free the vmspace-creation commands, and release their references */ 824 kill_vmcmds(&epp->ep_vmcmds); 825 826 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 827 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 828 vput(epp->ep_vp); 829 830 /* if an error happened, deallocate and punt */ 831 if (error != 0) { 832 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error)); 833 } 834 return error; 835 } 836 837 static void 838 execve_free_data(struct execve_data *data) 839 { 840 struct exec_package * const epp = &data->ed_pack; 841 842 /* free the vmspace-creation commands, and release their references */ 843 kill_vmcmds(&epp->ep_vmcmds); 844 /* kill any opened file descriptor, if necessary */ 845 if (epp->ep_flags & EXEC_HASFD) { 846 epp->ep_flags &= ~EXEC_HASFD; 847 fd_close(epp->ep_fd); 848 } 849 850 /* close and put the exec'd file */ 851 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 852 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred); 853 vput(epp->ep_vp); 854 pool_put(&exec_pool, data->ed_argp); 855 856 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 857 if (epp->ep_emul_root != NULL) 858 vrele(epp->ep_emul_root); 859 if (epp->ep_interp != NULL) 860 vrele(epp->ep_interp); 861 862 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 863 pathbuf_destroy(data->ed_pathbuf); 864 PNBUF_PUT(data->ed_resolvedpathbuf); 865 } 866 867 static void 868 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring) 869 { 870 const char *commandname; 871 size_t commandlen; 872 char *path; 873 874 /* set command name & other accounting info */ 875 commandname = strrchr(epp->ep_resolvedname, '/'); 876 if (commandname != NULL) { 877 commandname++; 878 } else { 879 commandname = epp->ep_resolvedname; 880 } 881 commandlen = min(strlen(commandname), MAXCOMLEN); 882 (void)memcpy(p->p_comm, commandname, commandlen); 883 p->p_comm[commandlen] = '\0'; 884 885 path = PNBUF_GET(); 886 887 /* 888 * If the path starts with /, we don't need to do any work. 889 * This handles the majority of the cases. 890 * In the future perhaps we could canonicalize it? 891 */ 892 if (pathstring[0] == '/') { 893 (void)strlcpy(path, pathstring, 894 MAXPATHLEN); 895 epp->ep_path = path; 896 } 897 #ifdef notyet 898 /* 899 * Although this works most of the time [since the entry was just 900 * entered in the cache] we don't use it because it will fail for 901 * entries that are not placed in the cache because their name is 902 * longer than NCHNAMLEN and it is not the cleanest interface, 903 * because there could be races. When the namei cache is re-written, 904 * this can be changed to use the appropriate function. 905 */ 906 else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p))) 907 epp->ep_path = path; 908 #endif 909 else { 910 #ifdef notyet 911 printf("Cannot get path for pid %d [%s] (error %d)\n", 912 (int)p->p_pid, p->p_comm, error); 913 #endif 914 epp->ep_path = NULL; 915 PNBUF_PUT(path); 916 } 917 } 918 919 /* XXX elsewhere */ 920 static int 921 credexec(struct lwp *l, struct vattr *attr) 922 { 923 struct proc *p = l->l_proc; 924 int error; 925 926 /* 927 * Deal with set[ug]id. MNT_NOSUID has already been used to disable 928 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked 929 * out additional references on the process for the moment. 930 */ 931 if ((p->p_slflag & PSL_TRACED) == 0 && 932 933 (((attr->va_mode & S_ISUID) != 0 && 934 kauth_cred_geteuid(l->l_cred) != attr->va_uid) || 935 936 ((attr->va_mode & S_ISGID) != 0 && 937 kauth_cred_getegid(l->l_cred) != attr->va_gid))) { 938 /* 939 * Mark the process as SUGID before we do 940 * anything that might block. 941 */ 942 proc_crmod_enter(); 943 proc_crmod_leave(NULL, NULL, true); 944 945 /* Make sure file descriptors 0..2 are in use. */ 946 if ((error = fd_checkstd()) != 0) { 947 DPRINTF(("%s: fdcheckstd failed %d\n", 948 __func__, error)); 949 return error; 950 } 951 952 /* 953 * Copy the credential so other references don't see our 954 * changes. 955 */ 956 l->l_cred = kauth_cred_copy(l->l_cred); 957 #ifdef KTRACE 958 /* 959 * If the persistent trace flag isn't set, turn off. 960 */ 961 if (p->p_tracep) { 962 mutex_enter(&ktrace_lock); 963 if (!(p->p_traceflag & KTRFAC_PERSISTENT)) 964 ktrderef(p); 965 mutex_exit(&ktrace_lock); 966 } 967 #endif 968 if (attr->va_mode & S_ISUID) 969 kauth_cred_seteuid(l->l_cred, attr->va_uid); 970 if (attr->va_mode & S_ISGID) 971 kauth_cred_setegid(l->l_cred, attr->va_gid); 972 } else { 973 if (kauth_cred_geteuid(l->l_cred) == 974 kauth_cred_getuid(l->l_cred) && 975 kauth_cred_getegid(l->l_cred) == 976 kauth_cred_getgid(l->l_cred)) 977 p->p_flag &= ~PK_SUGID; 978 } 979 980 /* 981 * Copy the credential so other references don't see our changes. 982 * Test to see if this is necessary first, since in the common case 983 * we won't need a private reference. 984 */ 985 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || 986 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { 987 l->l_cred = kauth_cred_copy(l->l_cred); 988 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); 989 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); 990 } 991 992 /* Update the master credentials. */ 993 if (l->l_cred != p->p_cred) { 994 kauth_cred_t ocred; 995 996 kauth_cred_hold(l->l_cred); 997 mutex_enter(p->p_lock); 998 ocred = p->p_cred; 999 p->p_cred = l->l_cred; 1000 mutex_exit(p->p_lock); 1001 kauth_cred_free(ocred); 1002 } 1003 1004 return 0; 1005 } 1006 1007 static void 1008 emulexec(struct lwp *l, struct exec_package *epp) 1009 { 1010 struct proc *p = l->l_proc; 1011 1012 /* The emulation root will usually have been found when we looked 1013 * for the elf interpreter (or similar), if not look now. */ 1014 if (epp->ep_esch->es_emul->e_path != NULL && 1015 epp->ep_emul_root == NULL) 1016 emul_find_root(l, epp); 1017 1018 /* Any old emulation root got removed by fdcloseexec */ 1019 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); 1020 p->p_cwdi->cwdi_edir = epp->ep_emul_root; 1021 rw_exit(&p->p_cwdi->cwdi_lock); 1022 epp->ep_emul_root = NULL; 1023 if (epp->ep_interp != NULL) 1024 vrele(epp->ep_interp); 1025 1026 /* 1027 * Call emulation specific exec hook. This can setup per-process 1028 * p->p_emuldata or do any other per-process stuff an emulation needs. 1029 * 1030 * If we are executing process of different emulation than the 1031 * original forked process, call e_proc_exit() of the old emulation 1032 * first, then e_proc_exec() of new emulation. If the emulation is 1033 * same, the exec hook code should deallocate any old emulation 1034 * resources held previously by this process. 1035 */ 1036 if (p->p_emul && p->p_emul->e_proc_exit 1037 && p->p_emul != epp->ep_esch->es_emul) 1038 (*p->p_emul->e_proc_exit)(p); 1039 1040 /* 1041 * This is now LWP 1. 1042 */ 1043 /* XXX elsewhere */ 1044 mutex_enter(p->p_lock); 1045 p->p_nlwpid = 1; 1046 l->l_lid = 1; 1047 mutex_exit(p->p_lock); 1048 1049 /* 1050 * Call exec hook. Emulation code may NOT store reference to anything 1051 * from &pack. 1052 */ 1053 if (epp->ep_esch->es_emul->e_proc_exec) 1054 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp); 1055 1056 /* update p_emul, the old value is no longer needed */ 1057 p->p_emul = epp->ep_esch->es_emul; 1058 1059 /* ...and the same for p_execsw */ 1060 p->p_execsw = epp->ep_esch; 1061 1062 #ifdef __HAVE_SYSCALL_INTERN 1063 (*p->p_emul->e_syscall_intern)(p); 1064 #endif 1065 ktremul(); 1066 } 1067 1068 static int 1069 execve_runproc(struct lwp *l, struct execve_data * restrict data, 1070 bool no_local_exec_lock, bool is_spawn) 1071 { 1072 struct exec_package * const epp = &data->ed_pack; 1073 int error = 0; 1074 struct proc *p; 1075 1076 /* 1077 * In case of a posix_spawn operation, the child doing the exec 1078 * might not hold the reader lock on exec_lock, but the parent 1079 * will do this instead. 1080 */ 1081 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock)); 1082 KASSERT(!no_local_exec_lock || is_spawn); 1083 KASSERT(data != NULL); 1084 1085 p = l->l_proc; 1086 1087 /* Get rid of other LWPs. */ 1088 if (p->p_nlwps > 1) { 1089 mutex_enter(p->p_lock); 1090 exit_lwps(l); 1091 mutex_exit(p->p_lock); 1092 } 1093 KDASSERT(p->p_nlwps == 1); 1094 1095 /* Destroy any lwpctl info. */ 1096 if (p->p_lwpctl != NULL) 1097 lwp_ctl_exit(); 1098 1099 /* Remove POSIX timers */ 1100 timers_free(p, TIMERS_POSIX); 1101 1102 /* 1103 * Do whatever is necessary to prepare the address space 1104 * for remapping. Note that this might replace the current 1105 * vmspace with another! 1106 */ 1107 if (is_spawn) 1108 uvmspace_spawn(l, epp->ep_vm_minaddr, 1109 epp->ep_vm_maxaddr, 1110 epp->ep_flags & EXEC_TOPDOWN_VM); 1111 else 1112 uvmspace_exec(l, epp->ep_vm_minaddr, 1113 epp->ep_vm_maxaddr, 1114 epp->ep_flags & EXEC_TOPDOWN_VM); 1115 1116 struct vmspace *vm; 1117 vm = p->p_vmspace; 1118 vm->vm_taddr = (void *)epp->ep_taddr; 1119 vm->vm_tsize = btoc(epp->ep_tsize); 1120 vm->vm_daddr = (void*)epp->ep_daddr; 1121 vm->vm_dsize = btoc(epp->ep_dsize); 1122 vm->vm_ssize = btoc(epp->ep_ssize); 1123 vm->vm_issize = 0; 1124 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr; 1125 vm->vm_minsaddr = (void *)epp->ep_minsaddr; 1126 1127 #ifdef PAX_ASLR 1128 pax_aslr_init(l, vm); 1129 #endif /* PAX_ASLR */ 1130 1131 /* Now map address space. */ 1132 error = execve_dovmcmds(l, data); 1133 if (error != 0) 1134 goto exec_abort; 1135 1136 pathexec(epp, p, data->ed_pathstring); 1137 1138 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize); 1139 1140 error = copyoutargs(data, l, newstack); 1141 if (error != 0) 1142 goto exec_abort; 1143 1144 cwdexec(p); 1145 fd_closeexec(); /* handle close on exec */ 1146 1147 if (__predict_false(ktrace_on)) 1148 fd_ktrexecfd(); 1149 1150 execsigs(p); /* reset catched signals */ 1151 1152 mutex_enter(p->p_lock); 1153 l->l_ctxlink = NULL; /* reset ucontext link */ 1154 p->p_acflag &= ~AFORK; 1155 p->p_flag |= PK_EXEC; 1156 mutex_exit(p->p_lock); 1157 1158 /* 1159 * Stop profiling. 1160 */ 1161 if ((p->p_stflag & PST_PROFIL) != 0) { 1162 mutex_spin_enter(&p->p_stmutex); 1163 stopprofclock(p); 1164 mutex_spin_exit(&p->p_stmutex); 1165 } 1166 1167 /* 1168 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have 1169 * exited and exec()/exit() are the only places it will be cleared. 1170 */ 1171 if ((p->p_lflag & PL_PPWAIT) != 0) { 1172 #if 0 1173 lwp_t *lp; 1174 1175 mutex_enter(proc_lock); 1176 lp = p->p_vforklwp; 1177 p->p_vforklwp = NULL; 1178 1179 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1180 p->p_lflag &= ~PL_PPWAIT; 1181 1182 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */ 1183 cv_broadcast(&lp->l_waitcv); 1184 mutex_exit(proc_lock); 1185 #else 1186 mutex_enter(proc_lock); 1187 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1188 p->p_lflag &= ~PL_PPWAIT; 1189 cv_broadcast(&p->p_pptr->p_waitcv); 1190 mutex_exit(proc_lock); 1191 #endif 1192 } 1193 1194 error = credexec(l, &data->ed_attr); 1195 if (error) 1196 goto exec_abort; 1197 1198 #if defined(__HAVE_RAS) 1199 /* 1200 * Remove all RASs from the address space. 1201 */ 1202 ras_purgeall(); 1203 #endif 1204 1205 doexechooks(p); 1206 1207 /* 1208 * Set initial SP at the top of the stack. 1209 * 1210 * Note that on machines where stack grows up (e.g. hppa), SP points to 1211 * the end of arg/env strings. Userland guesses the address of argc 1212 * via ps_strings::ps_argvstr. 1213 */ 1214 1215 /* Setup new registers and do misc. setup. */ 1216 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack); 1217 if (epp->ep_esch->es_setregs) 1218 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack); 1219 1220 /* Provide a consistent LWP private setting */ 1221 (void)lwp_setprivate(l, NULL); 1222 1223 /* Discard all PCU state; need to start fresh */ 1224 pcu_discard_all(l); 1225 1226 /* map the process's signal trampoline code */ 1227 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) { 1228 DPRINTF(("%s: map sigcode failed %d\n", __func__, error)); 1229 goto exec_abort; 1230 } 1231 1232 pool_put(&exec_pool, data->ed_argp); 1233 1234 /* notify others that we exec'd */ 1235 KNOTE(&p->p_klist, NOTE_EXEC); 1236 1237 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1238 1239 SDT_PROBE(proc,,,exec_success, epp->ep_name, 0, 0, 0, 0); 1240 1241 emulexec(l, epp); 1242 1243 /* Allow new references from the debugger/procfs. */ 1244 rw_exit(&p->p_reflock); 1245 if (!no_local_exec_lock) 1246 rw_exit(&exec_lock); 1247 1248 mutex_enter(proc_lock); 1249 1250 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) { 1251 ksiginfo_t ksi; 1252 1253 KSI_INIT_EMPTY(&ksi); 1254 ksi.ksi_signo = SIGTRAP; 1255 ksi.ksi_lid = l->l_lid; 1256 kpsignal(p, &ksi, NULL); 1257 } 1258 1259 if (p->p_sflag & PS_STOPEXEC) { 1260 ksiginfoq_t kq; 1261 1262 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 1263 p->p_pptr->p_nstopchild++; 1264 p->p_pptr->p_waited = 0; 1265 mutex_enter(p->p_lock); 1266 ksiginfo_queue_init(&kq); 1267 sigclearall(p, &contsigmask, &kq); 1268 lwp_lock(l); 1269 l->l_stat = LSSTOP; 1270 p->p_stat = SSTOP; 1271 p->p_nrlwps--; 1272 lwp_unlock(l); 1273 mutex_exit(p->p_lock); 1274 mutex_exit(proc_lock); 1275 lwp_lock(l); 1276 mi_switch(l); 1277 ksiginfo_queue_drain(&kq); 1278 KERNEL_LOCK(l->l_biglocks, l); 1279 } else { 1280 mutex_exit(proc_lock); 1281 } 1282 1283 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1284 pathbuf_destroy(data->ed_pathbuf); 1285 PNBUF_PUT(data->ed_resolvedpathbuf); 1286 DPRINTF(("%s finished\n", __func__)); 1287 return EJUSTRETURN; 1288 1289 exec_abort: 1290 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 1291 rw_exit(&p->p_reflock); 1292 if (!no_local_exec_lock) 1293 rw_exit(&exec_lock); 1294 1295 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1296 pathbuf_destroy(data->ed_pathbuf); 1297 PNBUF_PUT(data->ed_resolvedpathbuf); 1298 1299 /* 1300 * the old process doesn't exist anymore. exit gracefully. 1301 * get rid of the (new) address space we have created, if any, get rid 1302 * of our namei data and vnode, and exit noting failure 1303 */ 1304 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, 1305 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); 1306 1307 exec_free_emul_arg(epp); 1308 pool_put(&exec_pool, data->ed_argp); 1309 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1310 if (epp->ep_emul_root != NULL) 1311 vrele(epp->ep_emul_root); 1312 if (epp->ep_interp != NULL) 1313 vrele(epp->ep_interp); 1314 1315 /* Acquire the sched-state mutex (exit1() will release it). */ 1316 if (!is_spawn) { 1317 mutex_enter(p->p_lock); 1318 exit1(l, W_EXITCODE(error, SIGABRT)); 1319 } 1320 1321 return error; 1322 } 1323 1324 int 1325 execve1(struct lwp *l, const char *path, char * const *args, 1326 char * const *envs, execve_fetch_element_t fetch_element) 1327 { 1328 struct execve_data data; 1329 int error; 1330 1331 error = execve_loadvm(l, path, args, envs, fetch_element, &data); 1332 if (error) 1333 return error; 1334 error = execve_runproc(l, &data, false, false); 1335 return error; 1336 } 1337 1338 static size_t 1339 calcargs(struct execve_data * restrict data, const size_t argenvstrlen) 1340 { 1341 struct exec_package * const epp = &data->ed_pack; 1342 1343 const size_t nargenvptrs = 1344 1 + /* long argc */ 1345 data->ed_argc + /* char *argv[] */ 1346 1 + /* \0 */ 1347 data->ed_envc + /* char *env[] */ 1348 1 + /* \0 */ 1349 epp->ep_esch->es_arglen; /* auxinfo */ 1350 1351 const size_t ptrsz = (epp->ep_flags & EXEC_32) ? 1352 sizeof(int) : sizeof(char *); 1353 1354 return (nargenvptrs * ptrsz) + argenvstrlen; 1355 } 1356 1357 static size_t 1358 calcstack(struct execve_data * restrict data, const size_t gaplen) 1359 { 1360 struct exec_package * const epp = &data->ed_pack; 1361 1362 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode - 1363 epp->ep_esch->es_emul->e_sigcode; 1364 1365 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ? 1366 sizeof(struct ps_strings32) : sizeof(struct ps_strings); 1367 1368 const size_t sigcode_psstr_sz = 1369 data->ed_szsigcode + /* sigcode */ 1370 data->ed_ps_strings_sz + /* ps_strings */ 1371 STACK_PTHREADSPACE; /* pthread space */ 1372 1373 const size_t stacklen = 1374 data->ed_argslen + 1375 gaplen + 1376 sigcode_psstr_sz; 1377 1378 /* make the stack "safely" aligned */ 1379 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES); 1380 } 1381 1382 static int 1383 copyoutargs(struct execve_data * restrict data, struct lwp *l, 1384 char * const newstack) 1385 { 1386 struct exec_package * const epp = &data->ed_pack; 1387 struct proc *p = l->l_proc; 1388 int error; 1389 1390 /* remember information about the process */ 1391 data->ed_arginfo.ps_nargvstr = data->ed_argc; 1392 data->ed_arginfo.ps_nenvstr = data->ed_envc; 1393 1394 /* 1395 * Allocate the stack address passed to the newly execve()'ed process. 1396 * 1397 * The new stack address will be set to the SP (stack pointer) register 1398 * in setregs(). 1399 */ 1400 1401 char *newargs = STACK_ALLOC( 1402 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen); 1403 1404 error = (*epp->ep_esch->es_copyargs)(l, epp, 1405 &data->ed_arginfo, &newargs, data->ed_argp); 1406 1407 if (epp->ep_path) { 1408 PNBUF_PUT(epp->ep_path); 1409 epp->ep_path = NULL; 1410 } 1411 if (error) { 1412 DPRINTF(("%s: copyargs failed %d\n", __func__, error)); 1413 return error; 1414 } 1415 1416 error = copyoutpsstrs(data, p); 1417 if (error != 0) 1418 return error; 1419 1420 return 0; 1421 } 1422 1423 static int 1424 copyoutpsstrs(struct execve_data * restrict data, struct proc *p) 1425 { 1426 struct exec_package * const epp = &data->ed_pack; 1427 struct ps_strings32 arginfo32; 1428 void *aip; 1429 int error; 1430 1431 /* fill process ps_strings info */ 1432 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr, 1433 STACK_PTHREADSPACE), data->ed_ps_strings_sz); 1434 1435 if (epp->ep_flags & EXEC_32) { 1436 aip = &arginfo32; 1437 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; 1438 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; 1439 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; 1440 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; 1441 } else 1442 aip = &data->ed_arginfo; 1443 1444 /* copy out the process's ps_strings structure */ 1445 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) 1446 != 0) { 1447 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n", 1448 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); 1449 return error; 1450 } 1451 1452 return 0; 1453 } 1454 1455 static int 1456 copyinargs(struct execve_data * restrict data, char * const *args, 1457 char * const *envs, execve_fetch_element_t fetch_element, char **dpp) 1458 { 1459 struct exec_package * const epp = &data->ed_pack; 1460 char *dp; 1461 size_t i; 1462 int error; 1463 1464 dp = *dpp; 1465 1466 data->ed_argc = 0; 1467 1468 /* copy the fake args list, if there's one, freeing it as we go */ 1469 if (epp->ep_flags & EXEC_HASARGL) { 1470 struct exec_fakearg *fa = epp->ep_fa; 1471 1472 while (fa->fa_arg != NULL) { 1473 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1474 size_t len; 1475 1476 len = strlcpy(dp, fa->fa_arg, maxlen); 1477 /* Count NUL into len. */ 1478 if (len < maxlen) 1479 len++; 1480 else { 1481 while (fa->fa_arg != NULL) { 1482 kmem_free(fa->fa_arg, fa->fa_len); 1483 fa++; 1484 } 1485 kmem_free(epp->ep_fa, epp->ep_fa_len); 1486 epp->ep_flags &= ~EXEC_HASARGL; 1487 return E2BIG; 1488 } 1489 ktrexecarg(fa->fa_arg, len - 1); 1490 dp += len; 1491 1492 kmem_free(fa->fa_arg, fa->fa_len); 1493 fa++; 1494 data->ed_argc++; 1495 } 1496 kmem_free(epp->ep_fa, epp->ep_fa_len); 1497 epp->ep_flags &= ~EXEC_HASARGL; 1498 } 1499 1500 /* 1501 * Read and count argument strings from user. 1502 */ 1503 1504 if (args == NULL) { 1505 DPRINTF(("%s: null args\n", __func__)); 1506 return EINVAL; 1507 } 1508 if (epp->ep_flags & EXEC_SKIPARG) 1509 args++; 1510 i = 0; 1511 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg); 1512 if (error != 0) { 1513 DPRINTF(("%s: copyin arg %d\n", __func__, error)); 1514 return error; 1515 } 1516 data->ed_argc += i; 1517 1518 /* 1519 * Read and count environment strings from user. 1520 */ 1521 1522 data->ed_envc = 0; 1523 /* environment need not be there */ 1524 if (envs == NULL) 1525 goto done; 1526 i = 0; 1527 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv); 1528 if (error != 0) { 1529 DPRINTF(("%s: copyin env %d\n", __func__, error)); 1530 return error; 1531 } 1532 data->ed_envc += i; 1533 1534 done: 1535 *dpp = dp; 1536 1537 return 0; 1538 } 1539 1540 static int 1541 copyinargstrs(struct execve_data * restrict data, char * const *strs, 1542 execve_fetch_element_t fetch_element, char **dpp, size_t *ip, 1543 void (*ktr)(const void *, size_t)) 1544 { 1545 char *dp, *sp; 1546 size_t i; 1547 int error; 1548 1549 dp = *dpp; 1550 1551 i = 0; 1552 while (1) { 1553 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1554 size_t len; 1555 1556 if ((error = (*fetch_element)(strs, i, &sp)) != 0) { 1557 return error; 1558 } 1559 if (!sp) 1560 break; 1561 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) { 1562 if (error == ENAMETOOLONG) 1563 error = E2BIG; 1564 return error; 1565 } 1566 if (__predict_false(ktrace_on)) 1567 (*ktr)(dp, len - 1); 1568 dp += len; 1569 i++; 1570 } 1571 1572 *dpp = dp; 1573 *ip = i; 1574 1575 return 0; 1576 } 1577 1578 /* 1579 * Copy argv and env strings from kernel buffer (argp) to the new stack. 1580 * Those strings are located just after auxinfo. 1581 */ 1582 int 1583 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, 1584 char **stackp, void *argp) 1585 { 1586 char **cpp, *dp, *sp; 1587 size_t len; 1588 void *nullp; 1589 long argc, envc; 1590 int error; 1591 1592 cpp = (char **)*stackp; 1593 nullp = NULL; 1594 argc = arginfo->ps_nargvstr; 1595 envc = arginfo->ps_nenvstr; 1596 1597 /* argc on stack is long */ 1598 CTASSERT(sizeof(*cpp) == sizeof(argc)); 1599 1600 dp = (char *)(cpp + 1601 1 + /* long argc */ 1602 argc + /* char *argv[] */ 1603 1 + /* \0 */ 1604 envc + /* char *env[] */ 1605 1 + /* \0 */ 1606 /* XXX auxinfo multiplied by ptr size? */ 1607 pack->ep_esch->es_arglen); /* auxinfo */ 1608 sp = argp; 1609 1610 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { 1611 COPYPRINTF("", cpp - 1, sizeof(argc)); 1612 return error; 1613 } 1614 1615 /* XXX don't copy them out, remap them! */ 1616 arginfo->ps_argvstr = cpp; /* remember location of argv for later */ 1617 1618 for (; --argc >= 0; sp += len, dp += len) { 1619 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1620 COPYPRINTF("", cpp - 1, sizeof(dp)); 1621 return error; 1622 } 1623 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1624 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1625 return error; 1626 } 1627 } 1628 1629 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1630 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1631 return error; 1632 } 1633 1634 arginfo->ps_envstr = cpp; /* remember location of envp for later */ 1635 1636 for (; --envc >= 0; sp += len, dp += len) { 1637 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1638 COPYPRINTF("", cpp - 1, sizeof(dp)); 1639 return error; 1640 } 1641 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1642 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1643 return error; 1644 } 1645 1646 } 1647 1648 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1649 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1650 return error; 1651 } 1652 1653 *stackp = (char *)cpp; 1654 return 0; 1655 } 1656 1657 1658 /* 1659 * Add execsw[] entries. 1660 */ 1661 int 1662 exec_add(struct execsw *esp, int count) 1663 { 1664 struct exec_entry *it; 1665 int i; 1666 1667 if (count == 0) { 1668 return 0; 1669 } 1670 1671 /* Check for duplicates. */ 1672 rw_enter(&exec_lock, RW_WRITER); 1673 for (i = 0; i < count; i++) { 1674 LIST_FOREACH(it, &ex_head, ex_list) { 1675 /* assume unique (makecmds, probe_func, emulation) */ 1676 if (it->ex_sw->es_makecmds == esp[i].es_makecmds && 1677 it->ex_sw->u.elf_probe_func == 1678 esp[i].u.elf_probe_func && 1679 it->ex_sw->es_emul == esp[i].es_emul) { 1680 rw_exit(&exec_lock); 1681 return EEXIST; 1682 } 1683 } 1684 } 1685 1686 /* Allocate new entries. */ 1687 for (i = 0; i < count; i++) { 1688 it = kmem_alloc(sizeof(*it), KM_SLEEP); 1689 it->ex_sw = &esp[i]; 1690 LIST_INSERT_HEAD(&ex_head, it, ex_list); 1691 } 1692 1693 /* update execsw[] */ 1694 exec_init(0); 1695 rw_exit(&exec_lock); 1696 return 0; 1697 } 1698 1699 /* 1700 * Remove execsw[] entry. 1701 */ 1702 int 1703 exec_remove(struct execsw *esp, int count) 1704 { 1705 struct exec_entry *it, *next; 1706 int i; 1707 const struct proclist_desc *pd; 1708 proc_t *p; 1709 1710 if (count == 0) { 1711 return 0; 1712 } 1713 1714 /* Abort if any are busy. */ 1715 rw_enter(&exec_lock, RW_WRITER); 1716 for (i = 0; i < count; i++) { 1717 mutex_enter(proc_lock); 1718 for (pd = proclists; pd->pd_list != NULL; pd++) { 1719 PROCLIST_FOREACH(p, pd->pd_list) { 1720 if (p->p_execsw == &esp[i]) { 1721 mutex_exit(proc_lock); 1722 rw_exit(&exec_lock); 1723 return EBUSY; 1724 } 1725 } 1726 } 1727 mutex_exit(proc_lock); 1728 } 1729 1730 /* None are busy, so remove them all. */ 1731 for (i = 0; i < count; i++) { 1732 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { 1733 next = LIST_NEXT(it, ex_list); 1734 if (it->ex_sw == &esp[i]) { 1735 LIST_REMOVE(it, ex_list); 1736 kmem_free(it, sizeof(*it)); 1737 break; 1738 } 1739 } 1740 } 1741 1742 /* update execsw[] */ 1743 exec_init(0); 1744 rw_exit(&exec_lock); 1745 return 0; 1746 } 1747 1748 /* 1749 * Initialize exec structures. If init_boot is true, also does necessary 1750 * one-time initialization (it's called from main() that way). 1751 * Once system is multiuser, this should be called with exec_lock held, 1752 * i.e. via exec_{add|remove}(). 1753 */ 1754 int 1755 exec_init(int init_boot) 1756 { 1757 const struct execsw **sw; 1758 struct exec_entry *ex; 1759 SLIST_HEAD(,exec_entry) first; 1760 SLIST_HEAD(,exec_entry) any; 1761 SLIST_HEAD(,exec_entry) last; 1762 int i, sz; 1763 1764 if (init_boot) { 1765 /* do one-time initializations */ 1766 rw_init(&exec_lock); 1767 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); 1768 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, 1769 "execargs", &exec_palloc, IPL_NONE); 1770 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0); 1771 } else { 1772 KASSERT(rw_write_held(&exec_lock)); 1773 } 1774 1775 /* Sort each entry onto the appropriate queue. */ 1776 SLIST_INIT(&first); 1777 SLIST_INIT(&any); 1778 SLIST_INIT(&last); 1779 sz = 0; 1780 LIST_FOREACH(ex, &ex_head, ex_list) { 1781 switch(ex->ex_sw->es_prio) { 1782 case EXECSW_PRIO_FIRST: 1783 SLIST_INSERT_HEAD(&first, ex, ex_slist); 1784 break; 1785 case EXECSW_PRIO_ANY: 1786 SLIST_INSERT_HEAD(&any, ex, ex_slist); 1787 break; 1788 case EXECSW_PRIO_LAST: 1789 SLIST_INSERT_HEAD(&last, ex, ex_slist); 1790 break; 1791 default: 1792 panic("%s", __func__); 1793 break; 1794 } 1795 sz++; 1796 } 1797 1798 /* 1799 * Create new execsw[]. Ensure we do not try a zero-sized 1800 * allocation. 1801 */ 1802 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); 1803 i = 0; 1804 SLIST_FOREACH(ex, &first, ex_slist) { 1805 sw[i++] = ex->ex_sw; 1806 } 1807 SLIST_FOREACH(ex, &any, ex_slist) { 1808 sw[i++] = ex->ex_sw; 1809 } 1810 SLIST_FOREACH(ex, &last, ex_slist) { 1811 sw[i++] = ex->ex_sw; 1812 } 1813 1814 /* Replace old execsw[] and free used memory. */ 1815 if (execsw != NULL) { 1816 kmem_free(__UNCONST(execsw), 1817 nexecs * sizeof(struct execsw *) + 1); 1818 } 1819 execsw = sw; 1820 nexecs = sz; 1821 1822 /* Figure out the maximum size of an exec header. */ 1823 exec_maxhdrsz = sizeof(int); 1824 for (i = 0; i < nexecs; i++) { 1825 if (execsw[i]->es_hdrsz > exec_maxhdrsz) 1826 exec_maxhdrsz = execsw[i]->es_hdrsz; 1827 } 1828 1829 return 0; 1830 } 1831 1832 static int 1833 exec_sigcode_map(struct proc *p, const struct emul *e) 1834 { 1835 vaddr_t va; 1836 vsize_t sz; 1837 int error; 1838 struct uvm_object *uobj; 1839 1840 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; 1841 1842 if (e->e_sigobject == NULL || sz == 0) { 1843 return 0; 1844 } 1845 1846 /* 1847 * If we don't have a sigobject for this emulation, create one. 1848 * 1849 * sigobject is an anonymous memory object (just like SYSV shared 1850 * memory) that we keep a permanent reference to and that we map 1851 * in all processes that need this sigcode. The creation is simple, 1852 * we create an object, add a permanent reference to it, map it in 1853 * kernel space, copy out the sigcode to it and unmap it. 1854 * We map it with PROT_READ|PROT_EXEC into the process just 1855 * the way sys_mmap() would map it. 1856 */ 1857 1858 uobj = *e->e_sigobject; 1859 if (uobj == NULL) { 1860 mutex_enter(&sigobject_lock); 1861 if ((uobj = *e->e_sigobject) == NULL) { 1862 uobj = uao_create(sz, 0); 1863 (*uobj->pgops->pgo_reference)(uobj); 1864 va = vm_map_min(kernel_map); 1865 if ((error = uvm_map(kernel_map, &va, round_page(sz), 1866 uobj, 0, 0, 1867 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1868 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { 1869 printf("kernel mapping failed %d\n", error); 1870 (*uobj->pgops->pgo_detach)(uobj); 1871 mutex_exit(&sigobject_lock); 1872 return error; 1873 } 1874 memcpy((void *)va, e->e_sigcode, sz); 1875 #ifdef PMAP_NEED_PROCWR 1876 pmap_procwr(&proc0, va, sz); 1877 #endif 1878 uvm_unmap(kernel_map, va, va + round_page(sz)); 1879 *e->e_sigobject = uobj; 1880 } 1881 mutex_exit(&sigobject_lock); 1882 } 1883 1884 /* Just a hint to uvm_map where to put it. */ 1885 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, 1886 round_page(sz)); 1887 1888 #ifdef __alpha__ 1889 /* 1890 * Tru64 puts /sbin/loader at the end of user virtual memory, 1891 * which causes the above calculation to put the sigcode at 1892 * an invalid address. Put it just below the text instead. 1893 */ 1894 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { 1895 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); 1896 } 1897 #endif 1898 1899 (*uobj->pgops->pgo_reference)(uobj); 1900 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), 1901 uobj, 0, 0, 1902 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, 1903 UVM_ADV_RANDOM, 0)); 1904 if (error) { 1905 DPRINTF(("%s, %d: map %p " 1906 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n", 1907 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), 1908 va, error)); 1909 (*uobj->pgops->pgo_detach)(uobj); 1910 return error; 1911 } 1912 p->p_sigctx.ps_sigcode = (void *)va; 1913 return 0; 1914 } 1915 1916 /* 1917 * Release a refcount on spawn_exec_data and destroy memory, if this 1918 * was the last one. 1919 */ 1920 static void 1921 spawn_exec_data_release(struct spawn_exec_data *data) 1922 { 1923 if (atomic_dec_32_nv(&data->sed_refcnt) != 0) 1924 return; 1925 1926 cv_destroy(&data->sed_cv_child_ready); 1927 mutex_destroy(&data->sed_mtx_child); 1928 1929 if (data->sed_actions) 1930 posix_spawn_fa_free(data->sed_actions, 1931 data->sed_actions->len); 1932 if (data->sed_attrs) 1933 kmem_free(data->sed_attrs, 1934 sizeof(*data->sed_attrs)); 1935 kmem_free(data, sizeof(*data)); 1936 } 1937 1938 /* 1939 * A child lwp of a posix_spawn operation starts here and ends up in 1940 * cpu_spawn_return, dealing with all filedescriptor and scheduler 1941 * manipulations in between. 1942 * The parent waits for the child, as it is not clear whether the child 1943 * will be able to acquire its own exec_lock. If it can, the parent can 1944 * be released early and continue running in parallel. If not (or if the 1945 * magic debug flag is passed in the scheduler attribute struct), the 1946 * child rides on the parent's exec lock until it is ready to return to 1947 * to userland - and only then releases the parent. This method loses 1948 * concurrency, but improves error reporting. 1949 */ 1950 static void 1951 spawn_return(void *arg) 1952 { 1953 struct spawn_exec_data *spawn_data = arg; 1954 struct lwp *l = curlwp; 1955 int error, newfd; 1956 size_t i; 1957 const struct posix_spawn_file_actions_entry *fae; 1958 pid_t ppid; 1959 register_t retval; 1960 bool have_reflock; 1961 bool parent_is_waiting = true; 1962 1963 /* 1964 * Check if we can release parent early. 1965 * We either need to have no sed_attrs, or sed_attrs does not 1966 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require 1967 * safe access to the parent proc (passed in sed_parent). 1968 * We then try to get the exec_lock, and only if that works, we can 1969 * release the parent here already. 1970 */ 1971 ppid = spawn_data->sed_parent->p_pid; 1972 if ((!spawn_data->sed_attrs 1973 || (spawn_data->sed_attrs->sa_flags 1974 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0) 1975 && rw_tryenter(&exec_lock, RW_READER)) { 1976 parent_is_waiting = false; 1977 mutex_enter(&spawn_data->sed_mtx_child); 1978 cv_signal(&spawn_data->sed_cv_child_ready); 1979 mutex_exit(&spawn_data->sed_mtx_child); 1980 } 1981 1982 /* don't allow debugger access yet */ 1983 rw_enter(&l->l_proc->p_reflock, RW_WRITER); 1984 have_reflock = true; 1985 1986 error = 0; 1987 /* handle posix_spawn_file_actions */ 1988 if (spawn_data->sed_actions != NULL) { 1989 for (i = 0; i < spawn_data->sed_actions->len; i++) { 1990 fae = &spawn_data->sed_actions->fae[i]; 1991 switch (fae->fae_action) { 1992 case FAE_OPEN: 1993 if (fd_getfile(fae->fae_fildes) != NULL) { 1994 error = fd_close(fae->fae_fildes); 1995 if (error) 1996 break; 1997 } 1998 error = fd_open(fae->fae_path, fae->fae_oflag, 1999 fae->fae_mode, &newfd); 2000 if (error) 2001 break; 2002 if (newfd != fae->fae_fildes) { 2003 error = dodup(l, newfd, 2004 fae->fae_fildes, 0, &retval); 2005 if (fd_getfile(newfd) != NULL) 2006 fd_close(newfd); 2007 } 2008 break; 2009 case FAE_DUP2: 2010 error = dodup(l, fae->fae_fildes, 2011 fae->fae_newfildes, 0, &retval); 2012 break; 2013 case FAE_CLOSE: 2014 if (fd_getfile(fae->fae_fildes) == NULL) { 2015 error = EBADF; 2016 break; 2017 } 2018 error = fd_close(fae->fae_fildes); 2019 break; 2020 } 2021 if (error) 2022 goto report_error; 2023 } 2024 } 2025 2026 /* handle posix_spawnattr */ 2027 if (spawn_data->sed_attrs != NULL) { 2028 int ostat; 2029 struct sigaction sigact; 2030 sigact._sa_u._sa_handler = SIG_DFL; 2031 sigact.sa_flags = 0; 2032 2033 /* 2034 * set state to SSTOP so that this proc can be found by pid. 2035 * see proc_enterprp, do_sched_setparam below 2036 */ 2037 ostat = l->l_proc->p_stat; 2038 l->l_proc->p_stat = SSTOP; 2039 2040 /* Set process group */ 2041 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { 2042 pid_t mypid = l->l_proc->p_pid, 2043 pgrp = spawn_data->sed_attrs->sa_pgroup; 2044 2045 if (pgrp == 0) 2046 pgrp = mypid; 2047 2048 error = proc_enterpgrp(spawn_data->sed_parent, 2049 mypid, pgrp, false); 2050 if (error) 2051 goto report_error; 2052 } 2053 2054 /* Set scheduler policy */ 2055 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) 2056 error = do_sched_setparam(l->l_proc->p_pid, 0, 2057 spawn_data->sed_attrs->sa_schedpolicy, 2058 &spawn_data->sed_attrs->sa_schedparam); 2059 else if (spawn_data->sed_attrs->sa_flags 2060 & POSIX_SPAWN_SETSCHEDPARAM) { 2061 error = do_sched_setparam(ppid, 0, 2062 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); 2063 } 2064 if (error) 2065 goto report_error; 2066 2067 /* Reset user ID's */ 2068 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { 2069 error = do_setresuid(l, -1, 2070 kauth_cred_getgid(l->l_cred), -1, 2071 ID_E_EQ_R | ID_E_EQ_S); 2072 if (error) 2073 goto report_error; 2074 error = do_setresuid(l, -1, 2075 kauth_cred_getuid(l->l_cred), -1, 2076 ID_E_EQ_R | ID_E_EQ_S); 2077 if (error) 2078 goto report_error; 2079 } 2080 2081 /* Set signal masks/defaults */ 2082 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { 2083 mutex_enter(l->l_proc->p_lock); 2084 error = sigprocmask1(l, SIG_SETMASK, 2085 &spawn_data->sed_attrs->sa_sigmask, NULL); 2086 mutex_exit(l->l_proc->p_lock); 2087 if (error) 2088 goto report_error; 2089 } 2090 2091 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { 2092 /* 2093 * The following sigaction call is using a sigaction 2094 * version 0 trampoline which is in the compatibility 2095 * code only. This is not a problem because for SIG_DFL 2096 * and SIG_IGN, the trampolines are now ignored. If they 2097 * were not, this would be a problem because we are 2098 * holding the exec_lock, and the compat code needs 2099 * to do the same in order to replace the trampoline 2100 * code of the process. 2101 */ 2102 for (i = 1; i <= NSIG; i++) { 2103 if (sigismember( 2104 &spawn_data->sed_attrs->sa_sigdefault, i)) 2105 sigaction1(l, i, &sigact, NULL, NULL, 2106 0); 2107 } 2108 } 2109 l->l_proc->p_stat = ostat; 2110 } 2111 2112 /* now do the real exec */ 2113 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting, 2114 true); 2115 have_reflock = false; 2116 if (error == EJUSTRETURN) 2117 error = 0; 2118 else if (error) 2119 goto report_error; 2120 2121 if (parent_is_waiting) { 2122 mutex_enter(&spawn_data->sed_mtx_child); 2123 cv_signal(&spawn_data->sed_cv_child_ready); 2124 mutex_exit(&spawn_data->sed_mtx_child); 2125 } 2126 2127 /* release our refcount on the data */ 2128 spawn_exec_data_release(spawn_data); 2129 2130 /* and finally: leave to userland for the first time */ 2131 cpu_spawn_return(l); 2132 2133 /* NOTREACHED */ 2134 return; 2135 2136 report_error: 2137 if (have_reflock) { 2138 /* 2139 * We have not passed through execve_runproc(), 2140 * which would have released the p_reflock and also 2141 * taken ownership of the sed_exec part of spawn_data, 2142 * so release/free both here. 2143 */ 2144 rw_exit(&l->l_proc->p_reflock); 2145 execve_free_data(&spawn_data->sed_exec); 2146 } 2147 2148 if (parent_is_waiting) { 2149 /* pass error to parent */ 2150 mutex_enter(&spawn_data->sed_mtx_child); 2151 spawn_data->sed_error = error; 2152 cv_signal(&spawn_data->sed_cv_child_ready); 2153 mutex_exit(&spawn_data->sed_mtx_child); 2154 } else { 2155 rw_exit(&exec_lock); 2156 } 2157 2158 /* release our refcount on the data */ 2159 spawn_exec_data_release(spawn_data); 2160 2161 /* done, exit */ 2162 mutex_enter(l->l_proc->p_lock); 2163 /* 2164 * Posix explicitly asks for an exit code of 127 if we report 2165 * errors from the child process - so, unfortunately, there 2166 * is no way to report a more exact error code. 2167 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as 2168 * flag bit in the attrp argument to posix_spawn(2), see above. 2169 */ 2170 exit1(l, W_EXITCODE(127, 0)); 2171 } 2172 2173 void 2174 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) 2175 { 2176 2177 for (size_t i = 0; i < len; i++) { 2178 struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; 2179 if (fae->fae_action != FAE_OPEN) 2180 continue; 2181 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1); 2182 } 2183 if (fa->len > 0) 2184 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); 2185 kmem_free(fa, sizeof(*fa)); 2186 } 2187 2188 static int 2189 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, 2190 const struct posix_spawn_file_actions *ufa, rlim_t lim) 2191 { 2192 struct posix_spawn_file_actions *fa; 2193 struct posix_spawn_file_actions_entry *fae; 2194 char *pbuf = NULL; 2195 int error; 2196 size_t i = 0; 2197 2198 fa = kmem_alloc(sizeof(*fa), KM_SLEEP); 2199 error = copyin(ufa, fa, sizeof(*fa)); 2200 if (error || fa->len == 0) { 2201 kmem_free(fa, sizeof(*fa)); 2202 return error; /* 0 if not an error, and len == 0 */ 2203 } 2204 2205 if (fa->len > lim) { 2206 kmem_free(fa, sizeof(*fa)); 2207 return EINVAL; 2208 } 2209 2210 fa->size = fa->len; 2211 size_t fal = fa->len * sizeof(*fae); 2212 fae = fa->fae; 2213 fa->fae = kmem_alloc(fal, KM_SLEEP); 2214 error = copyin(fae, fa->fae, fal); 2215 if (error) 2216 goto out; 2217 2218 pbuf = PNBUF_GET(); 2219 for (; i < fa->len; i++) { 2220 fae = &fa->fae[i]; 2221 if (fae->fae_action != FAE_OPEN) 2222 continue; 2223 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); 2224 if (error) 2225 goto out; 2226 fae->fae_path = kmem_alloc(fal, KM_SLEEP); 2227 memcpy(fae->fae_path, pbuf, fal); 2228 } 2229 PNBUF_PUT(pbuf); 2230 2231 *fap = fa; 2232 return 0; 2233 out: 2234 if (pbuf) 2235 PNBUF_PUT(pbuf); 2236 posix_spawn_fa_free(fa, i); 2237 return error; 2238 } 2239 2240 int 2241 check_posix_spawn(struct lwp *l1) 2242 { 2243 int error, tnprocs, count; 2244 uid_t uid; 2245 struct proc *p1; 2246 2247 p1 = l1->l_proc; 2248 uid = kauth_cred_getuid(l1->l_cred); 2249 tnprocs = atomic_inc_uint_nv(&nprocs); 2250 2251 /* 2252 * Although process entries are dynamically created, we still keep 2253 * a global limit on the maximum number we will create. 2254 */ 2255 if (__predict_false(tnprocs >= maxproc)) 2256 error = -1; 2257 else 2258 error = kauth_authorize_process(l1->l_cred, 2259 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 2260 2261 if (error) { 2262 atomic_dec_uint(&nprocs); 2263 return EAGAIN; 2264 } 2265 2266 /* 2267 * Enforce limits. 2268 */ 2269 count = chgproccnt(uid, 1); 2270 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, 2271 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 2272 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 && 2273 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 2274 (void)chgproccnt(uid, -1); 2275 atomic_dec_uint(&nprocs); 2276 return EAGAIN; 2277 } 2278 2279 return 0; 2280 } 2281 2282 int 2283 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path, 2284 struct posix_spawn_file_actions *fa, 2285 struct posix_spawnattr *sa, 2286 char *const *argv, char *const *envp, 2287 execve_fetch_element_t fetch) 2288 { 2289 2290 struct proc *p1, *p2; 2291 struct lwp *l2; 2292 int error; 2293 struct spawn_exec_data *spawn_data; 2294 vaddr_t uaddr; 2295 pid_t pid; 2296 bool have_exec_lock = false; 2297 2298 p1 = l1->l_proc; 2299 2300 /* Allocate and init spawn_data */ 2301 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); 2302 spawn_data->sed_refcnt = 1; /* only parent so far */ 2303 cv_init(&spawn_data->sed_cv_child_ready, "pspawn"); 2304 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); 2305 mutex_enter(&spawn_data->sed_mtx_child); 2306 2307 /* 2308 * Do the first part of the exec now, collect state 2309 * in spawn_data. 2310 */ 2311 error = execve_loadvm(l1, path, argv, 2312 envp, fetch, &spawn_data->sed_exec); 2313 if (error == EJUSTRETURN) 2314 error = 0; 2315 else if (error) 2316 goto error_exit; 2317 2318 have_exec_lock = true; 2319 2320 /* 2321 * Allocate virtual address space for the U-area now, while it 2322 * is still easy to abort the fork operation if we're out of 2323 * kernel virtual address space. 2324 */ 2325 uaddr = uvm_uarea_alloc(); 2326 if (__predict_false(uaddr == 0)) { 2327 error = ENOMEM; 2328 goto error_exit; 2329 } 2330 2331 /* 2332 * Allocate new proc. Borrow proc0 vmspace for it, we will 2333 * replace it with its own before returning to userland 2334 * in the child. 2335 * This is a point of no return, we will have to go through 2336 * the child proc to properly clean it up past this point. 2337 */ 2338 p2 = proc_alloc(); 2339 pid = p2->p_pid; 2340 2341 /* 2342 * Make a proc table entry for the new process. 2343 * Start by zeroing the section of proc that is zero-initialized, 2344 * then copy the section that is copied directly from the parent. 2345 */ 2346 memset(&p2->p_startzero, 0, 2347 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 2348 memcpy(&p2->p_startcopy, &p1->p_startcopy, 2349 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 2350 p2->p_vmspace = proc0.p_vmspace; 2351 2352 TAILQ_INIT(&p2->p_sigpend.sp_info); 2353 2354 LIST_INIT(&p2->p_lwps); 2355 LIST_INIT(&p2->p_sigwaiters); 2356 2357 /* 2358 * Duplicate sub-structures as needed. 2359 * Increase reference counts on shared objects. 2360 * Inherit flags we want to keep. The flags related to SIGCHLD 2361 * handling are important in order to keep a consistent behaviour 2362 * for the child after the fork. If we are a 32-bit process, the 2363 * child will be too. 2364 */ 2365 p2->p_flag = 2366 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 2367 p2->p_emul = p1->p_emul; 2368 p2->p_execsw = p1->p_execsw; 2369 2370 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 2371 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 2372 rw_init(&p2->p_reflock); 2373 cv_init(&p2->p_waitcv, "wait"); 2374 cv_init(&p2->p_lwpcv, "lwpwait"); 2375 2376 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2377 2378 kauth_proc_fork(p1, p2); 2379 2380 p2->p_raslist = NULL; 2381 p2->p_fd = fd_copy(); 2382 2383 /* XXX racy */ 2384 p2->p_mqueue_cnt = p1->p_mqueue_cnt; 2385 2386 p2->p_cwdi = cwdinit(); 2387 2388 /* 2389 * Note: p_limit (rlimit stuff) is copy-on-write, so normally 2390 * we just need increase pl_refcnt. 2391 */ 2392 if (!p1->p_limit->pl_writeable) { 2393 lim_addref(p1->p_limit); 2394 p2->p_limit = p1->p_limit; 2395 } else { 2396 p2->p_limit = lim_copy(p1->p_limit); 2397 } 2398 2399 p2->p_lflag = 0; 2400 p2->p_sflag = 0; 2401 p2->p_slflag = 0; 2402 p2->p_pptr = p1; 2403 p2->p_ppid = p1->p_pid; 2404 LIST_INIT(&p2->p_children); 2405 2406 p2->p_aio = NULL; 2407 2408 #ifdef KTRACE 2409 /* 2410 * Copy traceflag and tracefile if enabled. 2411 * If not inherited, these were zeroed above. 2412 */ 2413 if (p1->p_traceflag & KTRFAC_INHERIT) { 2414 mutex_enter(&ktrace_lock); 2415 p2->p_traceflag = p1->p_traceflag; 2416 if ((p2->p_tracep = p1->p_tracep) != NULL) 2417 ktradref(p2); 2418 mutex_exit(&ktrace_lock); 2419 } 2420 #endif 2421 2422 /* 2423 * Create signal actions for the child process. 2424 */ 2425 p2->p_sigacts = sigactsinit(p1, 0); 2426 mutex_enter(p1->p_lock); 2427 p2->p_sflag |= 2428 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 2429 sched_proc_fork(p1, p2); 2430 mutex_exit(p1->p_lock); 2431 2432 p2->p_stflag = p1->p_stflag; 2433 2434 /* 2435 * p_stats. 2436 * Copy parts of p_stats, and zero out the rest. 2437 */ 2438 p2->p_stats = pstatscopy(p1->p_stats); 2439 2440 /* copy over machdep flags to the new proc */ 2441 cpu_proc_fork(p1, p2); 2442 2443 /* 2444 * Prepare remaining parts of spawn data 2445 */ 2446 spawn_data->sed_actions = fa; 2447 spawn_data->sed_attrs = sa; 2448 2449 spawn_data->sed_parent = p1; 2450 2451 /* create LWP */ 2452 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, 2453 &l2, l1->l_class); 2454 l2->l_ctxlink = NULL; /* reset ucontext link */ 2455 2456 /* 2457 * Copy the credential so other references don't see our changes. 2458 * Test to see if this is necessary first, since in the common case 2459 * we won't need a private reference. 2460 */ 2461 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || 2462 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { 2463 l2->l_cred = kauth_cred_copy(l2->l_cred); 2464 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); 2465 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); 2466 } 2467 2468 /* Update the master credentials. */ 2469 if (l2->l_cred != p2->p_cred) { 2470 kauth_cred_t ocred; 2471 2472 kauth_cred_hold(l2->l_cred); 2473 mutex_enter(p2->p_lock); 2474 ocred = p2->p_cred; 2475 p2->p_cred = l2->l_cred; 2476 mutex_exit(p2->p_lock); 2477 kauth_cred_free(ocred); 2478 } 2479 2480 *child_ok = true; 2481 spawn_data->sed_refcnt = 2; /* child gets it as well */ 2482 #if 0 2483 l2->l_nopreempt = 1; /* start it non-preemptable */ 2484 #endif 2485 2486 /* 2487 * It's now safe for the scheduler and other processes to see the 2488 * child process. 2489 */ 2490 mutex_enter(proc_lock); 2491 2492 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 2493 p2->p_lflag |= PL_CONTROLT; 2494 2495 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); 2496 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ 2497 2498 LIST_INSERT_AFTER(p1, p2, p_pglist); 2499 LIST_INSERT_HEAD(&allproc, p2, p_list); 2500 2501 p2->p_trace_enabled = trace_is_enabled(p2); 2502 #ifdef __HAVE_SYSCALL_INTERN 2503 (*p2->p_emul->e_syscall_intern)(p2); 2504 #endif 2505 2506 /* 2507 * Make child runnable, set start time, and add to run queue except 2508 * if the parent requested the child to start in SSTOP state. 2509 */ 2510 mutex_enter(p2->p_lock); 2511 2512 getmicrotime(&p2->p_stats->p_start); 2513 2514 lwp_lock(l2); 2515 KASSERT(p2->p_nrlwps == 1); 2516 p2->p_nrlwps = 1; 2517 p2->p_stat = SACTIVE; 2518 l2->l_stat = LSRUN; 2519 sched_enqueue(l2, false); 2520 lwp_unlock(l2); 2521 2522 mutex_exit(p2->p_lock); 2523 mutex_exit(proc_lock); 2524 2525 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); 2526 error = spawn_data->sed_error; 2527 mutex_exit(&spawn_data->sed_mtx_child); 2528 spawn_exec_data_release(spawn_data); 2529 2530 rw_exit(&p1->p_reflock); 2531 rw_exit(&exec_lock); 2532 have_exec_lock = false; 2533 2534 *pid_res = pid; 2535 return error; 2536 2537 error_exit: 2538 if (have_exec_lock) { 2539 execve_free_data(&spawn_data->sed_exec); 2540 rw_exit(&p1->p_reflock); 2541 rw_exit(&exec_lock); 2542 } 2543 mutex_exit(&spawn_data->sed_mtx_child); 2544 spawn_exec_data_release(spawn_data); 2545 2546 return error; 2547 } 2548 2549 int 2550 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, 2551 register_t *retval) 2552 { 2553 /* { 2554 syscallarg(pid_t *) pid; 2555 syscallarg(const char *) path; 2556 syscallarg(const struct posix_spawn_file_actions *) file_actions; 2557 syscallarg(const struct posix_spawnattr *) attrp; 2558 syscallarg(char *const *) argv; 2559 syscallarg(char *const *) envp; 2560 } */ 2561 2562 int error; 2563 struct posix_spawn_file_actions *fa = NULL; 2564 struct posix_spawnattr *sa = NULL; 2565 pid_t pid; 2566 bool child_ok = false; 2567 rlim_t max_fileactions; 2568 proc_t *p = l1->l_proc; 2569 2570 error = check_posix_spawn(l1); 2571 if (error) { 2572 *retval = error; 2573 return 0; 2574 } 2575 2576 /* copy in file_actions struct */ 2577 if (SCARG(uap, file_actions) != NULL) { 2578 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur, 2579 maxfiles); 2580 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions), 2581 max_fileactions); 2582 if (error) 2583 goto error_exit; 2584 } 2585 2586 /* copyin posix_spawnattr struct */ 2587 if (SCARG(uap, attrp) != NULL) { 2588 sa = kmem_alloc(sizeof(*sa), KM_SLEEP); 2589 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); 2590 if (error) 2591 goto error_exit; 2592 } 2593 2594 /* 2595 * Do the spawn 2596 */ 2597 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa, 2598 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element); 2599 if (error) 2600 goto error_exit; 2601 2602 if (error == 0 && SCARG(uap, pid) != NULL) 2603 error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); 2604 2605 *retval = error; 2606 return 0; 2607 2608 error_exit: 2609 if (!child_ok) { 2610 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1); 2611 atomic_dec_uint(&nprocs); 2612 2613 if (sa) 2614 kmem_free(sa, sizeof(*sa)); 2615 if (fa) 2616 posix_spawn_fa_free(fa, fa->len); 2617 } 2618 2619 *retval = error; 2620 return 0; 2621 } 2622 2623 void 2624 exec_free_emul_arg(struct exec_package *epp) 2625 { 2626 if (epp->ep_emul_arg_free != NULL) { 2627 KASSERT(epp->ep_emul_arg != NULL); 2628 (*epp->ep_emul_arg_free)(epp->ep_emul_arg); 2629 epp->ep_emul_arg_free = NULL; 2630 epp->ep_emul_arg = NULL; 2631 } else { 2632 KASSERT(epp->ep_emul_arg == NULL); 2633 } 2634 } 2635 2636 #ifdef DEBUG_EXEC 2637 static void 2638 dump_vmcmds(const struct exec_package * const epp, size_t x, int error) 2639 { 2640 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0]; 2641 size_t j; 2642 2643 if (error == 0) 2644 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used)); 2645 else 2646 DPRINTF(("vmcmds %zu/%u, error %d\n", x, 2647 epp->ep_vmcmds.evs_used, error)); 2648 2649 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) { 2650 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 2651 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 2652 PRIxVSIZE" prot=0%o flags=%d\n", j, 2653 vp[j].ev_proc == vmcmd_map_pagedvn ? 2654 "pagedvn" : 2655 vp[j].ev_proc == vmcmd_map_readvn ? 2656 "readvn" : 2657 vp[j].ev_proc == vmcmd_map_zero ? 2658 "zero" : "*unknown*", 2659 vp[j].ev_addr, vp[j].ev_len, 2660 vp[j].ev_offset, vp[j].ev_prot, 2661 vp[j].ev_flags)); 2662 if (error != 0 && j == x) 2663 DPRINTF((" ^--- failed\n")); 2664 } 2665 } 2666 #endif 2667