1 /* $NetBSD: kern_exec.c,v 1.433 2016/06/09 00:17:45 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /*- 30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou 31 * Copyright (C) 1992 Wolfgang Solfrank. 32 * Copyright (C) 1992 TooLs GmbH. 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by TooLs GmbH. 46 * 4. The name of TooLs GmbH may not be used to endorse or promote products 47 * derived from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.433 2016/06/09 00:17:45 christos Exp $"); 63 64 #include "opt_exec.h" 65 #include "opt_execfmt.h" 66 #include "opt_ktrace.h" 67 #include "opt_modular.h" 68 #include "opt_syscall_debug.h" 69 #include "veriexec.h" 70 #include "opt_pax.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/filedesc.h> 75 #include <sys/kernel.h> 76 #include <sys/proc.h> 77 #include <sys/mount.h> 78 #include <sys/kmem.h> 79 #include <sys/namei.h> 80 #include <sys/vnode.h> 81 #include <sys/file.h> 82 #include <sys/filedesc.h> 83 #include <sys/acct.h> 84 #include <sys/atomic.h> 85 #include <sys/exec.h> 86 #include <sys/ktrace.h> 87 #include <sys/uidinfo.h> 88 #include <sys/wait.h> 89 #include <sys/mman.h> 90 #include <sys/ras.h> 91 #include <sys/signalvar.h> 92 #include <sys/stat.h> 93 #include <sys/syscall.h> 94 #include <sys/kauth.h> 95 #include <sys/lwpctl.h> 96 #include <sys/pax.h> 97 #include <sys/cpu.h> 98 #include <sys/module.h> 99 #include <sys/syscallvar.h> 100 #include <sys/syscallargs.h> 101 #if NVERIEXEC > 0 102 #include <sys/verified_exec.h> 103 #endif /* NVERIEXEC > 0 */ 104 #include <sys/sdt.h> 105 #include <sys/spawn.h> 106 #include <sys/prot.h> 107 #include <sys/cprng.h> 108 109 #include <uvm/uvm_extern.h> 110 111 #include <machine/reg.h> 112 113 #include <compat/common/compat_util.h> 114 115 #ifndef MD_TOPDOWN_INIT 116 #ifdef __USE_TOPDOWN_VM 117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM 118 #else 119 #define MD_TOPDOWN_INIT(epp) 120 #endif 121 #endif 122 123 struct execve_data; 124 125 static size_t calcargs(struct execve_data * restrict, const size_t); 126 static size_t calcstack(struct execve_data * restrict, const size_t); 127 static int copyoutargs(struct execve_data * restrict, struct lwp *, 128 char * const); 129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *); 130 static int copyinargs(struct execve_data * restrict, char * const *, 131 char * const *, execve_fetch_element_t, char **); 132 static int copyinargstrs(struct execve_data * restrict, char * const *, 133 execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t)); 134 static int exec_sigcode_map(struct proc *, const struct emul *); 135 136 #if defined(DEBUG) && !defined(DEBUG_EXEC) 137 #define DEBUG_EXEC 138 #endif 139 #ifdef DEBUG_EXEC 140 #define DPRINTF(a) printf a 141 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ 142 __LINE__, (s), (a), (b)) 143 static void dump_vmcmds(const struct exec_package * const, size_t, int); 144 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0) 145 #else 146 #define DPRINTF(a) 147 #define COPYPRINTF(s, a, b) 148 #define DUMPVMCMDS(p, x, e) do {} while (0) 149 #endif /* DEBUG_EXEC */ 150 151 /* 152 * DTrace SDT provider definitions 153 */ 154 SDT_PROVIDER_DECLARE(proc); 155 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *"); 156 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *"); 157 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int"); 158 159 /* 160 * Exec function switch: 161 * 162 * Note that each makecmds function is responsible for loading the 163 * exec package with the necessary functions for any exec-type-specific 164 * handling. 165 * 166 * Functions for specific exec types should be defined in their own 167 * header file. 168 */ 169 static const struct execsw **execsw = NULL; 170 static int nexecs; 171 172 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ 173 174 /* list of dynamically loaded execsw entries */ 175 static LIST_HEAD(execlist_head, exec_entry) ex_head = 176 LIST_HEAD_INITIALIZER(ex_head); 177 struct exec_entry { 178 LIST_ENTRY(exec_entry) ex_list; 179 SLIST_ENTRY(exec_entry) ex_slist; 180 const struct execsw *ex_sw; 181 }; 182 183 #ifndef __HAVE_SYSCALL_INTERN 184 void syscall(void); 185 #endif 186 187 /* NetBSD autoloadable syscalls */ 188 #ifdef MODULAR 189 #include <kern/syscalls_autoload.c> 190 #endif 191 192 /* NetBSD emul struct */ 193 struct emul emul_netbsd = { 194 .e_name = "netbsd", 195 #ifdef EMUL_NATIVEROOT 196 .e_path = EMUL_NATIVEROOT, 197 #else 198 .e_path = NULL, 199 #endif 200 #ifndef __HAVE_MINIMAL_EMUL 201 .e_flags = EMUL_HAS_SYS___syscall, 202 .e_errno = NULL, 203 .e_nosys = SYS_syscall, 204 .e_nsysent = SYS_NSYSENT, 205 #endif 206 #ifdef MODULAR 207 .e_sc_autoload = netbsd_syscalls_autoload, 208 #endif 209 .e_sysent = sysent, 210 #ifdef SYSCALL_DEBUG 211 .e_syscallnames = syscallnames, 212 #else 213 .e_syscallnames = NULL, 214 #endif 215 .e_sendsig = sendsig, 216 .e_trapsignal = trapsignal, 217 .e_tracesig = NULL, 218 .e_sigcode = NULL, 219 .e_esigcode = NULL, 220 .e_sigobject = NULL, 221 .e_setregs = setregs, 222 .e_proc_exec = NULL, 223 .e_proc_fork = NULL, 224 .e_proc_exit = NULL, 225 .e_lwp_fork = NULL, 226 .e_lwp_exit = NULL, 227 #ifdef __HAVE_SYSCALL_INTERN 228 .e_syscall_intern = syscall_intern, 229 #else 230 .e_syscall = syscall, 231 #endif 232 .e_sysctlovly = NULL, 233 .e_fault = NULL, 234 .e_vm_default_addr = uvm_default_mapaddr, 235 .e_usertrap = NULL, 236 .e_ucsize = sizeof(ucontext_t), 237 .e_startlwp = startlwp 238 }; 239 240 /* 241 * Exec lock. Used to control access to execsw[] structures. 242 * This must not be static so that netbsd32 can access it, too. 243 */ 244 krwlock_t exec_lock; 245 246 static kmutex_t sigobject_lock; 247 248 /* 249 * Data used between a loadvm and execve part of an "exec" operation 250 */ 251 struct execve_data { 252 struct exec_package ed_pack; 253 struct pathbuf *ed_pathbuf; 254 struct vattr ed_attr; 255 struct ps_strings ed_arginfo; 256 char *ed_argp; 257 const char *ed_pathstring; 258 char *ed_resolvedpathbuf; 259 size_t ed_ps_strings_sz; 260 int ed_szsigcode; 261 size_t ed_argslen; 262 long ed_argc; 263 long ed_envc; 264 }; 265 266 /* 267 * data passed from parent lwp to child during a posix_spawn() 268 */ 269 struct spawn_exec_data { 270 struct execve_data sed_exec; 271 struct posix_spawn_file_actions 272 *sed_actions; 273 struct posix_spawnattr *sed_attrs; 274 struct proc *sed_parent; 275 kcondvar_t sed_cv_child_ready; 276 kmutex_t sed_mtx_child; 277 int sed_error; 278 volatile uint32_t sed_refcnt; 279 }; 280 281 static void * 282 exec_pool_alloc(struct pool *pp, int flags) 283 { 284 285 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0, 286 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 287 } 288 289 static void 290 exec_pool_free(struct pool *pp, void *addr) 291 { 292 293 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); 294 } 295 296 static struct pool exec_pool; 297 298 static struct pool_allocator exec_palloc = { 299 .pa_alloc = exec_pool_alloc, 300 .pa_free = exec_pool_free, 301 .pa_pagesz = NCARGS 302 }; 303 304 /* 305 * check exec: 306 * given an "executable" described in the exec package's namei info, 307 * see what we can do with it. 308 * 309 * ON ENTRY: 310 * exec package with appropriate namei info 311 * lwp pointer of exec'ing lwp 312 * NO SELF-LOCKED VNODES 313 * 314 * ON EXIT: 315 * error: nothing held, etc. exec header still allocated. 316 * ok: filled exec package, executable's vnode (unlocked). 317 * 318 * EXEC SWITCH ENTRY: 319 * Locked vnode to check, exec package, proc. 320 * 321 * EXEC SWITCH EXIT: 322 * ok: return 0, filled exec package, executable's vnode (unlocked). 323 * error: destructive: 324 * everything deallocated execept exec header. 325 * non-destructive: 326 * error code, executable's vnode (unlocked), 327 * exec header unmodified. 328 */ 329 int 330 /*ARGSUSED*/ 331 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) 332 { 333 int error, i; 334 struct vnode *vp; 335 struct nameidata nd; 336 size_t resid; 337 338 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 339 340 /* first get the vnode */ 341 if ((error = namei(&nd)) != 0) 342 return error; 343 epp->ep_vp = vp = nd.ni_vp; 344 /* normally this can't fail */ 345 error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL); 346 KASSERT(error == 0); 347 348 #ifdef DIAGNOSTIC 349 /* paranoia (take this out once namei stuff stabilizes) */ 350 memset(nd.ni_pnbuf, '~', PATH_MAX); 351 #endif 352 353 /* check access and type */ 354 if (vp->v_type != VREG) { 355 error = EACCES; 356 goto bad1; 357 } 358 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) 359 goto bad1; 360 361 /* get attributes */ 362 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) 363 goto bad1; 364 365 /* Check mount point */ 366 if (vp->v_mount->mnt_flag & MNT_NOEXEC) { 367 error = EACCES; 368 goto bad1; 369 } 370 if (vp->v_mount->mnt_flag & MNT_NOSUID) 371 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); 372 373 /* try to open it */ 374 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) 375 goto bad1; 376 377 /* unlock vp, since we need it unlocked from here on out. */ 378 VOP_UNLOCK(vp); 379 380 #if NVERIEXEC > 0 381 error = veriexec_verify(l, vp, epp->ep_resolvedname, 382 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, 383 NULL); 384 if (error) 385 goto bad2; 386 #endif /* NVERIEXEC > 0 */ 387 388 #ifdef PAX_SEGVGUARD 389 error = pax_segvguard(l, vp, epp->ep_resolvedname, false); 390 if (error) 391 goto bad2; 392 #endif /* PAX_SEGVGUARD */ 393 394 /* now we have the file, get the exec header */ 395 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, 396 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); 397 if (error) 398 goto bad2; 399 epp->ep_hdrvalid = epp->ep_hdrlen - resid; 400 401 /* 402 * Set up default address space limits. Can be overridden 403 * by individual exec packages. 404 * 405 * XXX probably should be all done in the exec packages. 406 */ 407 epp->ep_vm_minaddr = VM_MIN_ADDRESS; 408 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; 409 /* 410 * set up the vmcmds for creation of the process 411 * address space 412 */ 413 error = ENOEXEC; 414 for (i = 0; i < nexecs; i++) { 415 int newerror; 416 417 epp->ep_esch = execsw[i]; 418 newerror = (*execsw[i]->es_makecmds)(l, epp); 419 420 if (!newerror) { 421 /* Seems ok: check that entry point is not too high */ 422 if (epp->ep_entry > epp->ep_vm_maxaddr) { 423 #ifdef DIAGNOSTIC 424 printf("%s: rejecting %p due to " 425 "too high entry address (> %p)\n", 426 __func__, (void *)epp->ep_entry, 427 (void *)epp->ep_vm_maxaddr); 428 #endif 429 error = ENOEXEC; 430 break; 431 } 432 /* Seems ok: check that entry point is not too low */ 433 if (epp->ep_entry < epp->ep_vm_minaddr) { 434 #ifdef DIAGNOSTIC 435 printf("%s: rejecting %p due to " 436 "too low entry address (< %p)\n", 437 __func__, (void *)epp->ep_entry, 438 (void *)epp->ep_vm_minaddr); 439 #endif 440 error = ENOEXEC; 441 break; 442 } 443 444 /* check limits */ 445 if ((epp->ep_tsize > MAXTSIZ) || 446 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit 447 [RLIMIT_DATA].rlim_cur)) { 448 #ifdef DIAGNOSTIC 449 printf("%s: rejecting due to " 450 "limits (t=%llu > %llu || d=%llu > %llu)\n", 451 __func__, 452 (unsigned long long)epp->ep_tsize, 453 (unsigned long long)MAXTSIZ, 454 (unsigned long long)epp->ep_dsize, 455 (unsigned long long) 456 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); 457 #endif 458 error = ENOMEM; 459 break; 460 } 461 return 0; 462 } 463 464 /* 465 * Reset all the fields that may have been modified by the 466 * loader. 467 */ 468 KASSERT(epp->ep_emul_arg == NULL); 469 if (epp->ep_emul_root != NULL) { 470 vrele(epp->ep_emul_root); 471 epp->ep_emul_root = NULL; 472 } 473 if (epp->ep_interp != NULL) { 474 vrele(epp->ep_interp); 475 epp->ep_interp = NULL; 476 } 477 epp->ep_pax_flags = 0; 478 479 /* make sure the first "interesting" error code is saved. */ 480 if (error == ENOEXEC) 481 error = newerror; 482 483 if (epp->ep_flags & EXEC_DESTR) 484 /* Error from "#!" code, tidied up by recursive call */ 485 return error; 486 } 487 488 /* not found, error */ 489 490 /* 491 * free any vmspace-creation commands, 492 * and release their references 493 */ 494 kill_vmcmds(&epp->ep_vmcmds); 495 496 bad2: 497 /* 498 * close and release the vnode, restore the old one, free the 499 * pathname buf, and punt. 500 */ 501 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 502 VOP_CLOSE(vp, FREAD, l->l_cred); 503 vput(vp); 504 return error; 505 506 bad1: 507 /* 508 * free the namei pathname buffer, and put the vnode 509 * (which we don't yet have open). 510 */ 511 vput(vp); /* was still locked */ 512 return error; 513 } 514 515 #ifdef __MACHINE_STACK_GROWS_UP 516 #define STACK_PTHREADSPACE NBPG 517 #else 518 #define STACK_PTHREADSPACE 0 519 #endif 520 521 static int 522 execve_fetch_element(char * const *array, size_t index, char **value) 523 { 524 return copyin(array + index, value, sizeof(*value)); 525 } 526 527 /* 528 * exec system call 529 */ 530 int 531 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) 532 { 533 /* { 534 syscallarg(const char *) path; 535 syscallarg(char * const *) argp; 536 syscallarg(char * const *) envp; 537 } */ 538 539 return execve1(l, SCARG(uap, path), SCARG(uap, argp), 540 SCARG(uap, envp), execve_fetch_element); 541 } 542 543 int 544 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, 545 register_t *retval) 546 { 547 /* { 548 syscallarg(int) fd; 549 syscallarg(char * const *) argp; 550 syscallarg(char * const *) envp; 551 } */ 552 553 return ENOSYS; 554 } 555 556 /* 557 * Load modules to try and execute an image that we do not understand. 558 * If no execsw entries are present, we load those likely to be needed 559 * in order to run native images only. Otherwise, we autoload all 560 * possible modules that could let us run the binary. XXX lame 561 */ 562 static void 563 exec_autoload(void) 564 { 565 #ifdef MODULAR 566 static const char * const native[] = { 567 "exec_elf32", 568 "exec_elf64", 569 "exec_script", 570 NULL 571 }; 572 static const char * const compat[] = { 573 "exec_elf32", 574 "exec_elf64", 575 "exec_script", 576 "exec_aout", 577 "exec_coff", 578 "exec_ecoff", 579 "compat_aoutm68k", 580 "compat_freebsd", 581 "compat_ibcs2", 582 "compat_linux", 583 "compat_linux32", 584 "compat_netbsd32", 585 "compat_sunos", 586 "compat_sunos32", 587 "compat_svr4", 588 "compat_svr4_32", 589 "compat_ultrix", 590 NULL 591 }; 592 char const * const *list; 593 int i; 594 595 list = (nexecs == 0 ? native : compat); 596 for (i = 0; list[i] != NULL; i++) { 597 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) { 598 continue; 599 } 600 yield(); 601 } 602 #endif 603 } 604 605 static int 606 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp, 607 size_t *offs) 608 { 609 char *path, *bp; 610 size_t len, tlen; 611 int error; 612 struct cwdinfo *cwdi; 613 614 path = PNBUF_GET(); 615 error = copyinstr(upath, path, MAXPATHLEN, &len); 616 if (error) { 617 PNBUF_PUT(path); 618 DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error)); 619 return error; 620 } 621 622 if (path[0] == '/') { 623 *offs = 0; 624 goto out; 625 } 626 627 len++; 628 if (len + 1 >= MAXPATHLEN) 629 goto out; 630 bp = path + MAXPATHLEN - len; 631 memmove(bp, path, len); 632 *(--bp) = '/'; 633 634 cwdi = l->l_proc->p_cwdi; 635 rw_enter(&cwdi->cwdi_lock, RW_READER); 636 error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2, 637 GETCWD_CHECK_ACCESS, l); 638 rw_exit(&cwdi->cwdi_lock); 639 640 if (error) { 641 DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path, 642 error)); 643 goto out; 644 } 645 tlen = path + MAXPATHLEN - bp; 646 647 memmove(path, bp, tlen); 648 path[tlen] = '\0'; 649 *offs = tlen - len; 650 out: 651 *pbp = pathbuf_assimilate(path); 652 return 0; 653 } 654 655 static int 656 execve_loadvm(struct lwp *l, const char *path, char * const *args, 657 char * const *envs, execve_fetch_element_t fetch_element, 658 struct execve_data * restrict data) 659 { 660 struct exec_package * const epp = &data->ed_pack; 661 int error; 662 struct proc *p; 663 char *dp; 664 u_int modgen; 665 size_t offs = 0; // XXX: GCC 666 667 KASSERT(data != NULL); 668 669 p = l->l_proc; 670 modgen = 0; 671 672 SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0); 673 674 /* 675 * Check if we have exceeded our number of processes limit. 676 * This is so that we handle the case where a root daemon 677 * forked, ran setuid to become the desired user and is trying 678 * to exec. The obvious place to do the reference counting check 679 * is setuid(), but we don't do the reference counting check there 680 * like other OS's do because then all the programs that use setuid() 681 * must be modified to check the return code of setuid() and exit(). 682 * It is dangerous to make setuid() fail, because it fails open and 683 * the program will continue to run as root. If we make it succeed 684 * and return an error code, again we are not enforcing the limit. 685 * The best place to enforce the limit is here, when the process tries 686 * to execute a new image, because eventually the process will need 687 * to call exec in order to do something useful. 688 */ 689 retry: 690 if (p->p_flag & PK_SUGID) { 691 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 692 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 693 &p->p_rlimit[RLIMIT_NPROC], 694 KAUTH_ARG(RLIMIT_NPROC)) != 0 && 695 chgproccnt(kauth_cred_getuid(l->l_cred), 0) > 696 p->p_rlimit[RLIMIT_NPROC].rlim_cur) 697 return EAGAIN; 698 } 699 700 /* 701 * Drain existing references and forbid new ones. The process 702 * should be left alone until we're done here. This is necessary 703 * to avoid race conditions - e.g. in ptrace() - that might allow 704 * a local user to illicitly obtain elevated privileges. 705 */ 706 rw_enter(&p->p_reflock, RW_WRITER); 707 708 /* 709 * Init the namei data to point the file user's program name. 710 * This is done here rather than in check_exec(), so that it's 711 * possible to override this settings if any of makecmd/probe 712 * functions call check_exec() recursively - for example, 713 * see exec_script_makecmds(). 714 */ 715 if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0) 716 goto clrflg; 717 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); 718 data->ed_resolvedpathbuf = PNBUF_GET(); 719 720 /* 721 * initialize the fields of the exec package. 722 */ 723 epp->ep_kname = data->ed_pathstring + offs; 724 epp->ep_resolvedname = data->ed_resolvedpathbuf; 725 epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); 726 epp->ep_hdrlen = exec_maxhdrsz; 727 epp->ep_hdrvalid = 0; 728 epp->ep_emul_arg = NULL; 729 epp->ep_emul_arg_free = NULL; 730 memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds)); 731 epp->ep_vap = &data->ed_attr; 732 epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0; 733 MD_TOPDOWN_INIT(epp); 734 epp->ep_emul_root = NULL; 735 epp->ep_interp = NULL; 736 epp->ep_esch = NULL; 737 epp->ep_pax_flags = 0; 738 memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch)); 739 740 rw_enter(&exec_lock, RW_READER); 741 742 /* see if we can run it. */ 743 if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) { 744 if (error != ENOENT && error != EACCES) { 745 DPRINTF(("%s: check exec failed %d\n", 746 __func__, error)); 747 } 748 goto freehdr; 749 } 750 751 /* allocate an argument buffer */ 752 data->ed_argp = pool_get(&exec_pool, PR_WAITOK); 753 KASSERT(data->ed_argp != NULL); 754 dp = data->ed_argp; 755 756 if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) { 757 goto bad; 758 } 759 760 /* 761 * Calculate the new stack size. 762 */ 763 764 #ifdef __MACHINE_STACK_GROWS_UP 765 /* 766 * copyargs() fills argc/argv/envp from the lower address even on 767 * __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP 768 * so that _rtld() use it. 769 */ 770 #define RTLD_GAP 32 771 #else 772 #define RTLD_GAP 0 773 #endif 774 775 const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp; 776 777 data->ed_argslen = calcargs(data, argenvstrlen); 778 779 const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP); 780 781 if (len > epp->ep_ssize) { 782 /* in effect, compare to initial limit */ 783 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len)); 784 error = ENOMEM; 785 goto bad; 786 } 787 /* adjust "active stack depth" for process VSZ */ 788 epp->ep_ssize = len; 789 790 return 0; 791 792 bad: 793 /* free the vmspace-creation commands, and release their references */ 794 kill_vmcmds(&epp->ep_vmcmds); 795 /* kill any opened file descriptor, if necessary */ 796 if (epp->ep_flags & EXEC_HASFD) { 797 epp->ep_flags &= ~EXEC_HASFD; 798 fd_close(epp->ep_fd); 799 } 800 /* close and put the exec'd file */ 801 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 802 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 803 vput(epp->ep_vp); 804 pool_put(&exec_pool, data->ed_argp); 805 806 freehdr: 807 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 808 if (epp->ep_emul_root != NULL) 809 vrele(epp->ep_emul_root); 810 if (epp->ep_interp != NULL) 811 vrele(epp->ep_interp); 812 813 rw_exit(&exec_lock); 814 815 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 816 pathbuf_destroy(data->ed_pathbuf); 817 PNBUF_PUT(data->ed_resolvedpathbuf); 818 819 clrflg: 820 rw_exit(&p->p_reflock); 821 822 if (modgen != module_gen && error == ENOEXEC) { 823 modgen = module_gen; 824 exec_autoload(); 825 goto retry; 826 } 827 828 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0); 829 return error; 830 } 831 832 static int 833 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data) 834 { 835 struct exec_package * const epp = &data->ed_pack; 836 struct proc *p = l->l_proc; 837 struct exec_vmcmd *base_vcp; 838 int error = 0; 839 size_t i; 840 841 /* record proc's vnode, for use by procfs and others */ 842 if (p->p_textvp) 843 vrele(p->p_textvp); 844 vref(epp->ep_vp); 845 p->p_textvp = epp->ep_vp; 846 847 /* create the new process's VM space by running the vmcmds */ 848 KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__); 849 850 #ifdef TRACE_EXEC 851 DUMPVMCMDS(epp, 0, 0); 852 #endif 853 854 base_vcp = NULL; 855 856 for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) { 857 struct exec_vmcmd *vcp; 858 859 vcp = &epp->ep_vmcmds.evs_cmds[i]; 860 if (vcp->ev_flags & VMCMD_RELATIVE) { 861 KASSERTMSG(base_vcp != NULL, 862 "%s: relative vmcmd with no base", __func__); 863 KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0, 864 "%s: illegal base & relative vmcmd", __func__); 865 vcp->ev_addr += base_vcp->ev_addr; 866 } 867 error = (*vcp->ev_proc)(l, vcp); 868 if (error) 869 DUMPVMCMDS(epp, i, error); 870 if (vcp->ev_flags & VMCMD_BASE) 871 base_vcp = vcp; 872 } 873 874 /* free the vmspace-creation commands, and release their references */ 875 kill_vmcmds(&epp->ep_vmcmds); 876 877 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 878 VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred); 879 vput(epp->ep_vp); 880 881 /* if an error happened, deallocate and punt */ 882 if (error != 0) { 883 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error)); 884 } 885 return error; 886 } 887 888 static void 889 execve_free_data(struct execve_data *data) 890 { 891 struct exec_package * const epp = &data->ed_pack; 892 893 /* free the vmspace-creation commands, and release their references */ 894 kill_vmcmds(&epp->ep_vmcmds); 895 /* kill any opened file descriptor, if necessary */ 896 if (epp->ep_flags & EXEC_HASFD) { 897 epp->ep_flags &= ~EXEC_HASFD; 898 fd_close(epp->ep_fd); 899 } 900 901 /* close and put the exec'd file */ 902 vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY); 903 VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred); 904 vput(epp->ep_vp); 905 pool_put(&exec_pool, data->ed_argp); 906 907 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 908 if (epp->ep_emul_root != NULL) 909 vrele(epp->ep_emul_root); 910 if (epp->ep_interp != NULL) 911 vrele(epp->ep_interp); 912 913 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 914 pathbuf_destroy(data->ed_pathbuf); 915 PNBUF_PUT(data->ed_resolvedpathbuf); 916 } 917 918 static void 919 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring) 920 { 921 const char *commandname; 922 size_t commandlen; 923 char *path; 924 925 /* set command name & other accounting info */ 926 commandname = strrchr(epp->ep_resolvedname, '/'); 927 if (commandname != NULL) { 928 commandname++; 929 } else { 930 commandname = epp->ep_resolvedname; 931 } 932 commandlen = min(strlen(commandname), MAXCOMLEN); 933 (void)memcpy(p->p_comm, commandname, commandlen); 934 p->p_comm[commandlen] = '\0'; 935 936 937 /* 938 * If the path starts with /, we don't need to do any work. 939 * This handles the majority of the cases. 940 * In the future perhaps we could canonicalize it? 941 */ 942 if (pathstring[0] == '/') { 943 path = PNBUF_GET(); 944 (void)strlcpy(path, pathstring, MAXPATHLEN); 945 epp->ep_path = path; 946 } else 947 epp->ep_path = NULL; 948 } 949 950 /* XXX elsewhere */ 951 static int 952 credexec(struct lwp *l, struct vattr *attr) 953 { 954 struct proc *p = l->l_proc; 955 int error; 956 957 /* 958 * Deal with set[ug]id. MNT_NOSUID has already been used to disable 959 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked 960 * out additional references on the process for the moment. 961 */ 962 if ((p->p_slflag & PSL_TRACED) == 0 && 963 964 (((attr->va_mode & S_ISUID) != 0 && 965 kauth_cred_geteuid(l->l_cred) != attr->va_uid) || 966 967 ((attr->va_mode & S_ISGID) != 0 && 968 kauth_cred_getegid(l->l_cred) != attr->va_gid))) { 969 /* 970 * Mark the process as SUGID before we do 971 * anything that might block. 972 */ 973 proc_crmod_enter(); 974 proc_crmod_leave(NULL, NULL, true); 975 976 /* Make sure file descriptors 0..2 are in use. */ 977 if ((error = fd_checkstd()) != 0) { 978 DPRINTF(("%s: fdcheckstd failed %d\n", 979 __func__, error)); 980 return error; 981 } 982 983 /* 984 * Copy the credential so other references don't see our 985 * changes. 986 */ 987 l->l_cred = kauth_cred_copy(l->l_cred); 988 #ifdef KTRACE 989 /* 990 * If the persistent trace flag isn't set, turn off. 991 */ 992 if (p->p_tracep) { 993 mutex_enter(&ktrace_lock); 994 if (!(p->p_traceflag & KTRFAC_PERSISTENT)) 995 ktrderef(p); 996 mutex_exit(&ktrace_lock); 997 } 998 #endif 999 if (attr->va_mode & S_ISUID) 1000 kauth_cred_seteuid(l->l_cred, attr->va_uid); 1001 if (attr->va_mode & S_ISGID) 1002 kauth_cred_setegid(l->l_cred, attr->va_gid); 1003 } else { 1004 if (kauth_cred_geteuid(l->l_cred) == 1005 kauth_cred_getuid(l->l_cred) && 1006 kauth_cred_getegid(l->l_cred) == 1007 kauth_cred_getgid(l->l_cred)) 1008 p->p_flag &= ~PK_SUGID; 1009 } 1010 1011 /* 1012 * Copy the credential so other references don't see our changes. 1013 * Test to see if this is necessary first, since in the common case 1014 * we won't need a private reference. 1015 */ 1016 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || 1017 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { 1018 l->l_cred = kauth_cred_copy(l->l_cred); 1019 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); 1020 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); 1021 } 1022 1023 /* Update the master credentials. */ 1024 if (l->l_cred != p->p_cred) { 1025 kauth_cred_t ocred; 1026 1027 kauth_cred_hold(l->l_cred); 1028 mutex_enter(p->p_lock); 1029 ocred = p->p_cred; 1030 p->p_cred = l->l_cred; 1031 mutex_exit(p->p_lock); 1032 kauth_cred_free(ocred); 1033 } 1034 1035 return 0; 1036 } 1037 1038 static void 1039 emulexec(struct lwp *l, struct exec_package *epp) 1040 { 1041 struct proc *p = l->l_proc; 1042 1043 /* The emulation root will usually have been found when we looked 1044 * for the elf interpreter (or similar), if not look now. */ 1045 if (epp->ep_esch->es_emul->e_path != NULL && 1046 epp->ep_emul_root == NULL) 1047 emul_find_root(l, epp); 1048 1049 /* Any old emulation root got removed by fdcloseexec */ 1050 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); 1051 p->p_cwdi->cwdi_edir = epp->ep_emul_root; 1052 rw_exit(&p->p_cwdi->cwdi_lock); 1053 epp->ep_emul_root = NULL; 1054 if (epp->ep_interp != NULL) 1055 vrele(epp->ep_interp); 1056 1057 /* 1058 * Call emulation specific exec hook. This can setup per-process 1059 * p->p_emuldata or do any other per-process stuff an emulation needs. 1060 * 1061 * If we are executing process of different emulation than the 1062 * original forked process, call e_proc_exit() of the old emulation 1063 * first, then e_proc_exec() of new emulation. If the emulation is 1064 * same, the exec hook code should deallocate any old emulation 1065 * resources held previously by this process. 1066 */ 1067 if (p->p_emul && p->p_emul->e_proc_exit 1068 && p->p_emul != epp->ep_esch->es_emul) 1069 (*p->p_emul->e_proc_exit)(p); 1070 1071 /* 1072 * This is now LWP 1. 1073 */ 1074 /* XXX elsewhere */ 1075 mutex_enter(p->p_lock); 1076 p->p_nlwpid = 1; 1077 l->l_lid = 1; 1078 mutex_exit(p->p_lock); 1079 1080 /* 1081 * Call exec hook. Emulation code may NOT store reference to anything 1082 * from &pack. 1083 */ 1084 if (epp->ep_esch->es_emul->e_proc_exec) 1085 (*epp->ep_esch->es_emul->e_proc_exec)(p, epp); 1086 1087 /* update p_emul, the old value is no longer needed */ 1088 p->p_emul = epp->ep_esch->es_emul; 1089 1090 /* ...and the same for p_execsw */ 1091 p->p_execsw = epp->ep_esch; 1092 1093 #ifdef __HAVE_SYSCALL_INTERN 1094 (*p->p_emul->e_syscall_intern)(p); 1095 #endif 1096 ktremul(); 1097 } 1098 1099 static int 1100 execve_runproc(struct lwp *l, struct execve_data * restrict data, 1101 bool no_local_exec_lock, bool is_spawn) 1102 { 1103 struct exec_package * const epp = &data->ed_pack; 1104 int error = 0; 1105 struct proc *p; 1106 1107 /* 1108 * In case of a posix_spawn operation, the child doing the exec 1109 * might not hold the reader lock on exec_lock, but the parent 1110 * will do this instead. 1111 */ 1112 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock)); 1113 KASSERT(!no_local_exec_lock || is_spawn); 1114 KASSERT(data != NULL); 1115 1116 p = l->l_proc; 1117 1118 /* Get rid of other LWPs. */ 1119 if (p->p_nlwps > 1) { 1120 mutex_enter(p->p_lock); 1121 exit_lwps(l); 1122 mutex_exit(p->p_lock); 1123 } 1124 KDASSERT(p->p_nlwps == 1); 1125 1126 /* Destroy any lwpctl info. */ 1127 if (p->p_lwpctl != NULL) 1128 lwp_ctl_exit(); 1129 1130 /* Remove POSIX timers */ 1131 timers_free(p, TIMERS_POSIX); 1132 1133 /* Set the PaX flags. */ 1134 pax_set_flags(epp, p); 1135 1136 /* 1137 * Do whatever is necessary to prepare the address space 1138 * for remapping. Note that this might replace the current 1139 * vmspace with another! 1140 */ 1141 if (is_spawn) 1142 uvmspace_spawn(l, epp->ep_vm_minaddr, 1143 epp->ep_vm_maxaddr, 1144 epp->ep_flags & EXEC_TOPDOWN_VM); 1145 else 1146 uvmspace_exec(l, epp->ep_vm_minaddr, 1147 epp->ep_vm_maxaddr, 1148 epp->ep_flags & EXEC_TOPDOWN_VM); 1149 1150 struct vmspace *vm; 1151 vm = p->p_vmspace; 1152 vm->vm_taddr = (void *)epp->ep_taddr; 1153 vm->vm_tsize = btoc(epp->ep_tsize); 1154 vm->vm_daddr = (void*)epp->ep_daddr; 1155 vm->vm_dsize = btoc(epp->ep_dsize); 1156 vm->vm_ssize = btoc(epp->ep_ssize); 1157 vm->vm_issize = 0; 1158 vm->vm_maxsaddr = (void *)epp->ep_maxsaddr; 1159 vm->vm_minsaddr = (void *)epp->ep_minsaddr; 1160 1161 pax_aslr_init_vm(l, vm, epp); 1162 1163 /* Now map address space. */ 1164 error = execve_dovmcmds(l, data); 1165 if (error != 0) 1166 goto exec_abort; 1167 1168 pathexec(epp, p, data->ed_pathstring); 1169 1170 char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize); 1171 1172 error = copyoutargs(data, l, newstack); 1173 if (error != 0) 1174 goto exec_abort; 1175 1176 cwdexec(p); 1177 fd_closeexec(); /* handle close on exec */ 1178 1179 if (__predict_false(ktrace_on)) 1180 fd_ktrexecfd(); 1181 1182 execsigs(p); /* reset catched signals */ 1183 1184 mutex_enter(p->p_lock); 1185 l->l_ctxlink = NULL; /* reset ucontext link */ 1186 p->p_acflag &= ~AFORK; 1187 p->p_flag |= PK_EXEC; 1188 mutex_exit(p->p_lock); 1189 1190 /* 1191 * Stop profiling. 1192 */ 1193 if ((p->p_stflag & PST_PROFIL) != 0) { 1194 mutex_spin_enter(&p->p_stmutex); 1195 stopprofclock(p); 1196 mutex_spin_exit(&p->p_stmutex); 1197 } 1198 1199 /* 1200 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have 1201 * exited and exec()/exit() are the only places it will be cleared. 1202 */ 1203 if ((p->p_lflag & PL_PPWAIT) != 0) { 1204 #if 0 1205 lwp_t *lp; 1206 1207 mutex_enter(proc_lock); 1208 lp = p->p_vforklwp; 1209 p->p_vforklwp = NULL; 1210 1211 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1212 p->p_lflag &= ~PL_PPWAIT; 1213 1214 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */ 1215 cv_broadcast(&lp->l_waitcv); 1216 mutex_exit(proc_lock); 1217 #else 1218 mutex_enter(proc_lock); 1219 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1220 p->p_lflag &= ~PL_PPWAIT; 1221 cv_broadcast(&p->p_pptr->p_waitcv); 1222 mutex_exit(proc_lock); 1223 #endif 1224 } 1225 1226 error = credexec(l, &data->ed_attr); 1227 if (error) 1228 goto exec_abort; 1229 1230 #if defined(__HAVE_RAS) 1231 /* 1232 * Remove all RASs from the address space. 1233 */ 1234 ras_purgeall(); 1235 #endif 1236 1237 doexechooks(p); 1238 1239 /* 1240 * Set initial SP at the top of the stack. 1241 * 1242 * Note that on machines where stack grows up (e.g. hppa), SP points to 1243 * the end of arg/env strings. Userland guesses the address of argc 1244 * via ps_strings::ps_argvstr. 1245 */ 1246 1247 /* Setup new registers and do misc. setup. */ 1248 (*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack); 1249 if (epp->ep_esch->es_setregs) 1250 (*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack); 1251 1252 /* Provide a consistent LWP private setting */ 1253 (void)lwp_setprivate(l, NULL); 1254 1255 /* Discard all PCU state; need to start fresh */ 1256 pcu_discard_all(l); 1257 1258 /* map the process's signal trampoline code */ 1259 if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) { 1260 DPRINTF(("%s: map sigcode failed %d\n", __func__, error)); 1261 goto exec_abort; 1262 } 1263 1264 pool_put(&exec_pool, data->ed_argp); 1265 1266 /* notify others that we exec'd */ 1267 KNOTE(&p->p_klist, NOTE_EXEC); 1268 1269 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1270 1271 SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0); 1272 1273 emulexec(l, epp); 1274 1275 /* Allow new references from the debugger/procfs. */ 1276 rw_exit(&p->p_reflock); 1277 if (!no_local_exec_lock) 1278 rw_exit(&exec_lock); 1279 1280 mutex_enter(proc_lock); 1281 1282 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) { 1283 ksiginfo_t ksi; 1284 1285 KSI_INIT_EMPTY(&ksi); 1286 ksi.ksi_signo = SIGTRAP; 1287 ksi.ksi_lid = l->l_lid; 1288 kpsignal(p, &ksi, NULL); 1289 } 1290 1291 if (p->p_sflag & PS_STOPEXEC) { 1292 ksiginfoq_t kq; 1293 1294 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 1295 p->p_pptr->p_nstopchild++; 1296 p->p_waited = 0; 1297 mutex_enter(p->p_lock); 1298 ksiginfo_queue_init(&kq); 1299 sigclearall(p, &contsigmask, &kq); 1300 lwp_lock(l); 1301 l->l_stat = LSSTOP; 1302 p->p_stat = SSTOP; 1303 p->p_nrlwps--; 1304 lwp_unlock(l); 1305 mutex_exit(p->p_lock); 1306 mutex_exit(proc_lock); 1307 lwp_lock(l); 1308 mi_switch(l); 1309 ksiginfo_queue_drain(&kq); 1310 KERNEL_LOCK(l->l_biglocks, l); 1311 } else { 1312 mutex_exit(proc_lock); 1313 } 1314 1315 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1316 pathbuf_destroy(data->ed_pathbuf); 1317 PNBUF_PUT(data->ed_resolvedpathbuf); 1318 #ifdef TRACE_EXEC 1319 DPRINTF(("%s finished\n", __func__)); 1320 #endif 1321 return EJUSTRETURN; 1322 1323 exec_abort: 1324 SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0); 1325 rw_exit(&p->p_reflock); 1326 if (!no_local_exec_lock) 1327 rw_exit(&exec_lock); 1328 1329 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1330 pathbuf_destroy(data->ed_pathbuf); 1331 PNBUF_PUT(data->ed_resolvedpathbuf); 1332 1333 /* 1334 * the old process doesn't exist anymore. exit gracefully. 1335 * get rid of the (new) address space we have created, if any, get rid 1336 * of our namei data and vnode, and exit noting failure 1337 */ 1338 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, 1339 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); 1340 1341 exec_free_emul_arg(epp); 1342 pool_put(&exec_pool, data->ed_argp); 1343 kmem_free(epp->ep_hdr, epp->ep_hdrlen); 1344 if (epp->ep_emul_root != NULL) 1345 vrele(epp->ep_emul_root); 1346 if (epp->ep_interp != NULL) 1347 vrele(epp->ep_interp); 1348 1349 /* Acquire the sched-state mutex (exit1() will release it). */ 1350 if (!is_spawn) { 1351 mutex_enter(p->p_lock); 1352 exit1(l, error, SIGABRT); 1353 } 1354 1355 return error; 1356 } 1357 1358 int 1359 execve1(struct lwp *l, const char *path, char * const *args, 1360 char * const *envs, execve_fetch_element_t fetch_element) 1361 { 1362 struct execve_data data; 1363 int error; 1364 1365 error = execve_loadvm(l, path, args, envs, fetch_element, &data); 1366 if (error) 1367 return error; 1368 error = execve_runproc(l, &data, false, false); 1369 return error; 1370 } 1371 1372 static size_t 1373 fromptrsz(const struct exec_package *epp) 1374 { 1375 return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *); 1376 } 1377 1378 static size_t 1379 ptrsz(const struct exec_package *epp) 1380 { 1381 return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *); 1382 } 1383 1384 static size_t 1385 calcargs(struct execve_data * restrict data, const size_t argenvstrlen) 1386 { 1387 struct exec_package * const epp = &data->ed_pack; 1388 1389 const size_t nargenvptrs = 1390 1 + /* long argc */ 1391 data->ed_argc + /* char *argv[] */ 1392 1 + /* \0 */ 1393 data->ed_envc + /* char *env[] */ 1394 1 + /* \0 */ 1395 epp->ep_esch->es_arglen; /* auxinfo */ 1396 1397 return (nargenvptrs * ptrsz(epp)) + argenvstrlen; 1398 } 1399 1400 static size_t 1401 calcstack(struct execve_data * restrict data, const size_t gaplen) 1402 { 1403 struct exec_package * const epp = &data->ed_pack; 1404 1405 data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode - 1406 epp->ep_esch->es_emul->e_sigcode; 1407 1408 data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ? 1409 sizeof(struct ps_strings32) : sizeof(struct ps_strings); 1410 1411 const size_t sigcode_psstr_sz = 1412 data->ed_szsigcode + /* sigcode */ 1413 data->ed_ps_strings_sz + /* ps_strings */ 1414 STACK_PTHREADSPACE; /* pthread space */ 1415 1416 const size_t stacklen = 1417 data->ed_argslen + 1418 gaplen + 1419 sigcode_psstr_sz; 1420 1421 /* make the stack "safely" aligned */ 1422 return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES); 1423 } 1424 1425 static int 1426 copyoutargs(struct execve_data * restrict data, struct lwp *l, 1427 char * const newstack) 1428 { 1429 struct exec_package * const epp = &data->ed_pack; 1430 struct proc *p = l->l_proc; 1431 int error; 1432 1433 /* remember information about the process */ 1434 data->ed_arginfo.ps_nargvstr = data->ed_argc; 1435 data->ed_arginfo.ps_nenvstr = data->ed_envc; 1436 1437 /* 1438 * Allocate the stack address passed to the newly execve()'ed process. 1439 * 1440 * The new stack address will be set to the SP (stack pointer) register 1441 * in setregs(). 1442 */ 1443 1444 char *newargs = STACK_ALLOC( 1445 STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen); 1446 1447 error = (*epp->ep_esch->es_copyargs)(l, epp, 1448 &data->ed_arginfo, &newargs, data->ed_argp); 1449 1450 if (epp->ep_path) { 1451 PNBUF_PUT(epp->ep_path); 1452 epp->ep_path = NULL; 1453 } 1454 if (error) { 1455 DPRINTF(("%s: copyargs failed %d\n", __func__, error)); 1456 return error; 1457 } 1458 1459 error = copyoutpsstrs(data, p); 1460 if (error != 0) 1461 return error; 1462 1463 return 0; 1464 } 1465 1466 static int 1467 copyoutpsstrs(struct execve_data * restrict data, struct proc *p) 1468 { 1469 struct exec_package * const epp = &data->ed_pack; 1470 struct ps_strings32 arginfo32; 1471 void *aip; 1472 int error; 1473 1474 /* fill process ps_strings info */ 1475 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr, 1476 STACK_PTHREADSPACE), data->ed_ps_strings_sz); 1477 1478 if (epp->ep_flags & EXEC_32) { 1479 aip = &arginfo32; 1480 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; 1481 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; 1482 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; 1483 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; 1484 } else 1485 aip = &data->ed_arginfo; 1486 1487 /* copy out the process's ps_strings structure */ 1488 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) 1489 != 0) { 1490 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n", 1491 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); 1492 return error; 1493 } 1494 1495 return 0; 1496 } 1497 1498 static int 1499 copyinargs(struct execve_data * restrict data, char * const *args, 1500 char * const *envs, execve_fetch_element_t fetch_element, char **dpp) 1501 { 1502 struct exec_package * const epp = &data->ed_pack; 1503 char *dp; 1504 size_t i; 1505 int error; 1506 1507 dp = *dpp; 1508 1509 data->ed_argc = 0; 1510 1511 /* copy the fake args list, if there's one, freeing it as we go */ 1512 if (epp->ep_flags & EXEC_HASARGL) { 1513 struct exec_fakearg *fa = epp->ep_fa; 1514 1515 while (fa->fa_arg != NULL) { 1516 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1517 size_t len; 1518 1519 len = strlcpy(dp, fa->fa_arg, maxlen); 1520 /* Count NUL into len. */ 1521 if (len < maxlen) 1522 len++; 1523 else { 1524 while (fa->fa_arg != NULL) { 1525 kmem_free(fa->fa_arg, fa->fa_len); 1526 fa++; 1527 } 1528 kmem_free(epp->ep_fa, epp->ep_fa_len); 1529 epp->ep_flags &= ~EXEC_HASARGL; 1530 return E2BIG; 1531 } 1532 ktrexecarg(fa->fa_arg, len - 1); 1533 dp += len; 1534 1535 kmem_free(fa->fa_arg, fa->fa_len); 1536 fa++; 1537 data->ed_argc++; 1538 } 1539 kmem_free(epp->ep_fa, epp->ep_fa_len); 1540 epp->ep_flags &= ~EXEC_HASARGL; 1541 } 1542 1543 /* 1544 * Read and count argument strings from user. 1545 */ 1546 1547 if (args == NULL) { 1548 DPRINTF(("%s: null args\n", __func__)); 1549 return EINVAL; 1550 } 1551 if (epp->ep_flags & EXEC_SKIPARG) 1552 args = (const void *)((const char *)args + fromptrsz(epp)); 1553 i = 0; 1554 error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg); 1555 if (error != 0) { 1556 DPRINTF(("%s: copyin arg %d\n", __func__, error)); 1557 return error; 1558 } 1559 data->ed_argc += i; 1560 1561 /* 1562 * Read and count environment strings from user. 1563 */ 1564 1565 data->ed_envc = 0; 1566 /* environment need not be there */ 1567 if (envs == NULL) 1568 goto done; 1569 i = 0; 1570 error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv); 1571 if (error != 0) { 1572 DPRINTF(("%s: copyin env %d\n", __func__, error)); 1573 return error; 1574 } 1575 data->ed_envc += i; 1576 1577 done: 1578 *dpp = dp; 1579 1580 return 0; 1581 } 1582 1583 static int 1584 copyinargstrs(struct execve_data * restrict data, char * const *strs, 1585 execve_fetch_element_t fetch_element, char **dpp, size_t *ip, 1586 void (*ktr)(const void *, size_t)) 1587 { 1588 char *dp, *sp; 1589 size_t i; 1590 int error; 1591 1592 dp = *dpp; 1593 1594 i = 0; 1595 while (1) { 1596 const size_t maxlen = ARG_MAX - (dp - data->ed_argp); 1597 size_t len; 1598 1599 if ((error = (*fetch_element)(strs, i, &sp)) != 0) { 1600 return error; 1601 } 1602 if (!sp) 1603 break; 1604 if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) { 1605 if (error == ENAMETOOLONG) 1606 error = E2BIG; 1607 return error; 1608 } 1609 if (__predict_false(ktrace_on)) 1610 (*ktr)(dp, len - 1); 1611 dp += len; 1612 i++; 1613 } 1614 1615 *dpp = dp; 1616 *ip = i; 1617 1618 return 0; 1619 } 1620 1621 /* 1622 * Copy argv and env strings from kernel buffer (argp) to the new stack. 1623 * Those strings are located just after auxinfo. 1624 */ 1625 int 1626 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, 1627 char **stackp, void *argp) 1628 { 1629 char **cpp, *dp, *sp; 1630 size_t len; 1631 void *nullp; 1632 long argc, envc; 1633 int error; 1634 1635 cpp = (char **)*stackp; 1636 nullp = NULL; 1637 argc = arginfo->ps_nargvstr; 1638 envc = arginfo->ps_nenvstr; 1639 1640 /* argc on stack is long */ 1641 CTASSERT(sizeof(*cpp) == sizeof(argc)); 1642 1643 dp = (char *)(cpp + 1644 1 + /* long argc */ 1645 argc + /* char *argv[] */ 1646 1 + /* \0 */ 1647 envc + /* char *env[] */ 1648 1 + /* \0 */ 1649 /* XXX auxinfo multiplied by ptr size? */ 1650 pack->ep_esch->es_arglen); /* auxinfo */ 1651 sp = argp; 1652 1653 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { 1654 COPYPRINTF("", cpp - 1, sizeof(argc)); 1655 return error; 1656 } 1657 1658 /* XXX don't copy them out, remap them! */ 1659 arginfo->ps_argvstr = cpp; /* remember location of argv for later */ 1660 1661 for (; --argc >= 0; sp += len, dp += len) { 1662 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1663 COPYPRINTF("", cpp - 1, sizeof(dp)); 1664 return error; 1665 } 1666 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1667 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1668 return error; 1669 } 1670 } 1671 1672 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1673 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1674 return error; 1675 } 1676 1677 arginfo->ps_envstr = cpp; /* remember location of envp for later */ 1678 1679 for (; --envc >= 0; sp += len, dp += len) { 1680 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1681 COPYPRINTF("", cpp - 1, sizeof(dp)); 1682 return error; 1683 } 1684 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1685 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1686 return error; 1687 } 1688 1689 } 1690 1691 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1692 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1693 return error; 1694 } 1695 1696 *stackp = (char *)cpp; 1697 return 0; 1698 } 1699 1700 1701 /* 1702 * Add execsw[] entries. 1703 */ 1704 int 1705 exec_add(struct execsw *esp, int count) 1706 { 1707 struct exec_entry *it; 1708 int i; 1709 1710 if (count == 0) { 1711 return 0; 1712 } 1713 1714 /* Check for duplicates. */ 1715 rw_enter(&exec_lock, RW_WRITER); 1716 for (i = 0; i < count; i++) { 1717 LIST_FOREACH(it, &ex_head, ex_list) { 1718 /* assume unique (makecmds, probe_func, emulation) */ 1719 if (it->ex_sw->es_makecmds == esp[i].es_makecmds && 1720 it->ex_sw->u.elf_probe_func == 1721 esp[i].u.elf_probe_func && 1722 it->ex_sw->es_emul == esp[i].es_emul) { 1723 rw_exit(&exec_lock); 1724 return EEXIST; 1725 } 1726 } 1727 } 1728 1729 /* Allocate new entries. */ 1730 for (i = 0; i < count; i++) { 1731 it = kmem_alloc(sizeof(*it), KM_SLEEP); 1732 it->ex_sw = &esp[i]; 1733 LIST_INSERT_HEAD(&ex_head, it, ex_list); 1734 } 1735 1736 /* update execsw[] */ 1737 exec_init(0); 1738 rw_exit(&exec_lock); 1739 return 0; 1740 } 1741 1742 /* 1743 * Remove execsw[] entry. 1744 */ 1745 int 1746 exec_remove(struct execsw *esp, int count) 1747 { 1748 struct exec_entry *it, *next; 1749 int i; 1750 const struct proclist_desc *pd; 1751 proc_t *p; 1752 1753 if (count == 0) { 1754 return 0; 1755 } 1756 1757 /* Abort if any are busy. */ 1758 rw_enter(&exec_lock, RW_WRITER); 1759 for (i = 0; i < count; i++) { 1760 mutex_enter(proc_lock); 1761 for (pd = proclists; pd->pd_list != NULL; pd++) { 1762 PROCLIST_FOREACH(p, pd->pd_list) { 1763 if (p->p_execsw == &esp[i]) { 1764 mutex_exit(proc_lock); 1765 rw_exit(&exec_lock); 1766 return EBUSY; 1767 } 1768 } 1769 } 1770 mutex_exit(proc_lock); 1771 } 1772 1773 /* None are busy, so remove them all. */ 1774 for (i = 0; i < count; i++) { 1775 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { 1776 next = LIST_NEXT(it, ex_list); 1777 if (it->ex_sw == &esp[i]) { 1778 LIST_REMOVE(it, ex_list); 1779 kmem_free(it, sizeof(*it)); 1780 break; 1781 } 1782 } 1783 } 1784 1785 /* update execsw[] */ 1786 exec_init(0); 1787 rw_exit(&exec_lock); 1788 return 0; 1789 } 1790 1791 /* 1792 * Initialize exec structures. If init_boot is true, also does necessary 1793 * one-time initialization (it's called from main() that way). 1794 * Once system is multiuser, this should be called with exec_lock held, 1795 * i.e. via exec_{add|remove}(). 1796 */ 1797 int 1798 exec_init(int init_boot) 1799 { 1800 const struct execsw **sw; 1801 struct exec_entry *ex; 1802 SLIST_HEAD(,exec_entry) first; 1803 SLIST_HEAD(,exec_entry) any; 1804 SLIST_HEAD(,exec_entry) last; 1805 int i, sz; 1806 1807 if (init_boot) { 1808 /* do one-time initializations */ 1809 rw_init(&exec_lock); 1810 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); 1811 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, 1812 "execargs", &exec_palloc, IPL_NONE); 1813 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0); 1814 } else { 1815 KASSERT(rw_write_held(&exec_lock)); 1816 } 1817 1818 /* Sort each entry onto the appropriate queue. */ 1819 SLIST_INIT(&first); 1820 SLIST_INIT(&any); 1821 SLIST_INIT(&last); 1822 sz = 0; 1823 LIST_FOREACH(ex, &ex_head, ex_list) { 1824 switch(ex->ex_sw->es_prio) { 1825 case EXECSW_PRIO_FIRST: 1826 SLIST_INSERT_HEAD(&first, ex, ex_slist); 1827 break; 1828 case EXECSW_PRIO_ANY: 1829 SLIST_INSERT_HEAD(&any, ex, ex_slist); 1830 break; 1831 case EXECSW_PRIO_LAST: 1832 SLIST_INSERT_HEAD(&last, ex, ex_slist); 1833 break; 1834 default: 1835 panic("%s", __func__); 1836 break; 1837 } 1838 sz++; 1839 } 1840 1841 /* 1842 * Create new execsw[]. Ensure we do not try a zero-sized 1843 * allocation. 1844 */ 1845 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); 1846 i = 0; 1847 SLIST_FOREACH(ex, &first, ex_slist) { 1848 sw[i++] = ex->ex_sw; 1849 } 1850 SLIST_FOREACH(ex, &any, ex_slist) { 1851 sw[i++] = ex->ex_sw; 1852 } 1853 SLIST_FOREACH(ex, &last, ex_slist) { 1854 sw[i++] = ex->ex_sw; 1855 } 1856 1857 /* Replace old execsw[] and free used memory. */ 1858 if (execsw != NULL) { 1859 kmem_free(__UNCONST(execsw), 1860 nexecs * sizeof(struct execsw *) + 1); 1861 } 1862 execsw = sw; 1863 nexecs = sz; 1864 1865 /* Figure out the maximum size of an exec header. */ 1866 exec_maxhdrsz = sizeof(int); 1867 for (i = 0; i < nexecs; i++) { 1868 if (execsw[i]->es_hdrsz > exec_maxhdrsz) 1869 exec_maxhdrsz = execsw[i]->es_hdrsz; 1870 } 1871 1872 return 0; 1873 } 1874 1875 static int 1876 exec_sigcode_map(struct proc *p, const struct emul *e) 1877 { 1878 vaddr_t va; 1879 vsize_t sz; 1880 int error; 1881 struct uvm_object *uobj; 1882 1883 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; 1884 1885 if (e->e_sigobject == NULL || sz == 0) { 1886 return 0; 1887 } 1888 1889 /* 1890 * If we don't have a sigobject for this emulation, create one. 1891 * 1892 * sigobject is an anonymous memory object (just like SYSV shared 1893 * memory) that we keep a permanent reference to and that we map 1894 * in all processes that need this sigcode. The creation is simple, 1895 * we create an object, add a permanent reference to it, map it in 1896 * kernel space, copy out the sigcode to it and unmap it. 1897 * We map it with PROT_READ|PROT_EXEC into the process just 1898 * the way sys_mmap() would map it. 1899 */ 1900 1901 uobj = *e->e_sigobject; 1902 if (uobj == NULL) { 1903 mutex_enter(&sigobject_lock); 1904 if ((uobj = *e->e_sigobject) == NULL) { 1905 uobj = uao_create(sz, 0); 1906 (*uobj->pgops->pgo_reference)(uobj); 1907 va = vm_map_min(kernel_map); 1908 if ((error = uvm_map(kernel_map, &va, round_page(sz), 1909 uobj, 0, 0, 1910 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1911 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { 1912 printf("kernel mapping failed %d\n", error); 1913 (*uobj->pgops->pgo_detach)(uobj); 1914 mutex_exit(&sigobject_lock); 1915 return error; 1916 } 1917 memcpy((void *)va, e->e_sigcode, sz); 1918 #ifdef PMAP_NEED_PROCWR 1919 pmap_procwr(&proc0, va, sz); 1920 #endif 1921 uvm_unmap(kernel_map, va, va + round_page(sz)); 1922 *e->e_sigobject = uobj; 1923 } 1924 mutex_exit(&sigobject_lock); 1925 } 1926 1927 /* Just a hint to uvm_map where to put it. */ 1928 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, 1929 round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN); 1930 1931 #ifdef __alpha__ 1932 /* 1933 * Tru64 puts /sbin/loader at the end of user virtual memory, 1934 * which causes the above calculation to put the sigcode at 1935 * an invalid address. Put it just below the text instead. 1936 */ 1937 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { 1938 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); 1939 } 1940 #endif 1941 1942 (*uobj->pgops->pgo_reference)(uobj); 1943 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), 1944 uobj, 0, 0, 1945 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, 1946 UVM_ADV_RANDOM, 0)); 1947 if (error) { 1948 DPRINTF(("%s, %d: map %p " 1949 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n", 1950 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), 1951 va, error)); 1952 (*uobj->pgops->pgo_detach)(uobj); 1953 return error; 1954 } 1955 p->p_sigctx.ps_sigcode = (void *)va; 1956 return 0; 1957 } 1958 1959 /* 1960 * Release a refcount on spawn_exec_data and destroy memory, if this 1961 * was the last one. 1962 */ 1963 static void 1964 spawn_exec_data_release(struct spawn_exec_data *data) 1965 { 1966 if (atomic_dec_32_nv(&data->sed_refcnt) != 0) 1967 return; 1968 1969 cv_destroy(&data->sed_cv_child_ready); 1970 mutex_destroy(&data->sed_mtx_child); 1971 1972 if (data->sed_actions) 1973 posix_spawn_fa_free(data->sed_actions, 1974 data->sed_actions->len); 1975 if (data->sed_attrs) 1976 kmem_free(data->sed_attrs, 1977 sizeof(*data->sed_attrs)); 1978 kmem_free(data, sizeof(*data)); 1979 } 1980 1981 /* 1982 * A child lwp of a posix_spawn operation starts here and ends up in 1983 * cpu_spawn_return, dealing with all filedescriptor and scheduler 1984 * manipulations in between. 1985 * The parent waits for the child, as it is not clear whether the child 1986 * will be able to acquire its own exec_lock. If it can, the parent can 1987 * be released early and continue running in parallel. If not (or if the 1988 * magic debug flag is passed in the scheduler attribute struct), the 1989 * child rides on the parent's exec lock until it is ready to return to 1990 * to userland - and only then releases the parent. This method loses 1991 * concurrency, but improves error reporting. 1992 */ 1993 static void 1994 spawn_return(void *arg) 1995 { 1996 struct spawn_exec_data *spawn_data = arg; 1997 struct lwp *l = curlwp; 1998 int error, newfd; 1999 int ostat; 2000 size_t i; 2001 const struct posix_spawn_file_actions_entry *fae; 2002 pid_t ppid; 2003 register_t retval; 2004 bool have_reflock; 2005 bool parent_is_waiting = true; 2006 2007 /* 2008 * Check if we can release parent early. 2009 * We either need to have no sed_attrs, or sed_attrs does not 2010 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require 2011 * safe access to the parent proc (passed in sed_parent). 2012 * We then try to get the exec_lock, and only if that works, we can 2013 * release the parent here already. 2014 */ 2015 ppid = spawn_data->sed_parent->p_pid; 2016 if ((!spawn_data->sed_attrs 2017 || (spawn_data->sed_attrs->sa_flags 2018 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0) 2019 && rw_tryenter(&exec_lock, RW_READER)) { 2020 parent_is_waiting = false; 2021 mutex_enter(&spawn_data->sed_mtx_child); 2022 cv_signal(&spawn_data->sed_cv_child_ready); 2023 mutex_exit(&spawn_data->sed_mtx_child); 2024 } 2025 2026 /* don't allow debugger access yet */ 2027 rw_enter(&l->l_proc->p_reflock, RW_WRITER); 2028 have_reflock = true; 2029 2030 error = 0; 2031 /* handle posix_spawn_file_actions */ 2032 if (spawn_data->sed_actions != NULL) { 2033 for (i = 0; i < spawn_data->sed_actions->len; i++) { 2034 fae = &spawn_data->sed_actions->fae[i]; 2035 switch (fae->fae_action) { 2036 case FAE_OPEN: 2037 if (fd_getfile(fae->fae_fildes) != NULL) { 2038 error = fd_close(fae->fae_fildes); 2039 if (error) 2040 break; 2041 } 2042 error = fd_open(fae->fae_path, fae->fae_oflag, 2043 fae->fae_mode, &newfd); 2044 if (error) 2045 break; 2046 if (newfd != fae->fae_fildes) { 2047 error = dodup(l, newfd, 2048 fae->fae_fildes, 0, &retval); 2049 if (fd_getfile(newfd) != NULL) 2050 fd_close(newfd); 2051 } 2052 break; 2053 case FAE_DUP2: 2054 error = dodup(l, fae->fae_fildes, 2055 fae->fae_newfildes, 0, &retval); 2056 break; 2057 case FAE_CLOSE: 2058 if (fd_getfile(fae->fae_fildes) == NULL) { 2059 error = EBADF; 2060 break; 2061 } 2062 error = fd_close(fae->fae_fildes); 2063 break; 2064 } 2065 if (error) 2066 goto report_error; 2067 } 2068 } 2069 2070 /* handle posix_spawnattr */ 2071 if (spawn_data->sed_attrs != NULL) { 2072 struct sigaction sigact; 2073 sigact._sa_u._sa_handler = SIG_DFL; 2074 sigact.sa_flags = 0; 2075 2076 /* 2077 * set state to SSTOP so that this proc can be found by pid. 2078 * see proc_enterprp, do_sched_setparam below 2079 */ 2080 mutex_enter(proc_lock); 2081 /* 2082 * p_stat should be SACTIVE, so we need to adjust the 2083 * parent's p_nstopchild here. For safety, just make 2084 * we're on the good side of SDEAD before we adjust. 2085 */ 2086 ostat = l->l_proc->p_stat; 2087 KASSERT(ostat < SSTOP); 2088 l->l_proc->p_stat = SSTOP; 2089 l->l_proc->p_waited = 0; 2090 l->l_proc->p_pptr->p_nstopchild++; 2091 mutex_exit(proc_lock); 2092 2093 /* Set process group */ 2094 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { 2095 pid_t mypid = l->l_proc->p_pid, 2096 pgrp = spawn_data->sed_attrs->sa_pgroup; 2097 2098 if (pgrp == 0) 2099 pgrp = mypid; 2100 2101 error = proc_enterpgrp(spawn_data->sed_parent, 2102 mypid, pgrp, false); 2103 if (error) 2104 goto report_error_stopped; 2105 } 2106 2107 /* Set scheduler policy */ 2108 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) 2109 error = do_sched_setparam(l->l_proc->p_pid, 0, 2110 spawn_data->sed_attrs->sa_schedpolicy, 2111 &spawn_data->sed_attrs->sa_schedparam); 2112 else if (spawn_data->sed_attrs->sa_flags 2113 & POSIX_SPAWN_SETSCHEDPARAM) { 2114 error = do_sched_setparam(ppid, 0, 2115 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); 2116 } 2117 if (error) 2118 goto report_error_stopped; 2119 2120 /* Reset user ID's */ 2121 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { 2122 error = do_setresuid(l, -1, 2123 kauth_cred_getgid(l->l_cred), -1, 2124 ID_E_EQ_R | ID_E_EQ_S); 2125 if (error) 2126 goto report_error_stopped; 2127 error = do_setresuid(l, -1, 2128 kauth_cred_getuid(l->l_cred), -1, 2129 ID_E_EQ_R | ID_E_EQ_S); 2130 if (error) 2131 goto report_error_stopped; 2132 } 2133 2134 /* Set signal masks/defaults */ 2135 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { 2136 mutex_enter(l->l_proc->p_lock); 2137 error = sigprocmask1(l, SIG_SETMASK, 2138 &spawn_data->sed_attrs->sa_sigmask, NULL); 2139 mutex_exit(l->l_proc->p_lock); 2140 if (error) 2141 goto report_error_stopped; 2142 } 2143 2144 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { 2145 /* 2146 * The following sigaction call is using a sigaction 2147 * version 0 trampoline which is in the compatibility 2148 * code only. This is not a problem because for SIG_DFL 2149 * and SIG_IGN, the trampolines are now ignored. If they 2150 * were not, this would be a problem because we are 2151 * holding the exec_lock, and the compat code needs 2152 * to do the same in order to replace the trampoline 2153 * code of the process. 2154 */ 2155 for (i = 1; i <= NSIG; i++) { 2156 if (sigismember( 2157 &spawn_data->sed_attrs->sa_sigdefault, i)) 2158 sigaction1(l, i, &sigact, NULL, NULL, 2159 0); 2160 } 2161 } 2162 mutex_enter(proc_lock); 2163 l->l_proc->p_stat = ostat; 2164 l->l_proc->p_pptr->p_nstopchild--; 2165 mutex_exit(proc_lock); 2166 } 2167 2168 /* now do the real exec */ 2169 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting, 2170 true); 2171 have_reflock = false; 2172 if (error == EJUSTRETURN) 2173 error = 0; 2174 else if (error) 2175 goto report_error; 2176 2177 if (parent_is_waiting) { 2178 mutex_enter(&spawn_data->sed_mtx_child); 2179 cv_signal(&spawn_data->sed_cv_child_ready); 2180 mutex_exit(&spawn_data->sed_mtx_child); 2181 } 2182 2183 /* release our refcount on the data */ 2184 spawn_exec_data_release(spawn_data); 2185 2186 /* and finally: leave to userland for the first time */ 2187 cpu_spawn_return(l); 2188 2189 /* NOTREACHED */ 2190 return; 2191 2192 report_error_stopped: 2193 mutex_enter(proc_lock); 2194 l->l_proc->p_stat = ostat; 2195 l->l_proc->p_pptr->p_nstopchild--; 2196 mutex_exit(proc_lock); 2197 report_error: 2198 if (have_reflock) { 2199 /* 2200 * We have not passed through execve_runproc(), 2201 * which would have released the p_reflock and also 2202 * taken ownership of the sed_exec part of spawn_data, 2203 * so release/free both here. 2204 */ 2205 rw_exit(&l->l_proc->p_reflock); 2206 execve_free_data(&spawn_data->sed_exec); 2207 } 2208 2209 if (parent_is_waiting) { 2210 /* pass error to parent */ 2211 mutex_enter(&spawn_data->sed_mtx_child); 2212 spawn_data->sed_error = error; 2213 cv_signal(&spawn_data->sed_cv_child_ready); 2214 mutex_exit(&spawn_data->sed_mtx_child); 2215 } else { 2216 rw_exit(&exec_lock); 2217 } 2218 2219 /* release our refcount on the data */ 2220 spawn_exec_data_release(spawn_data); 2221 2222 /* done, exit */ 2223 mutex_enter(l->l_proc->p_lock); 2224 /* 2225 * Posix explicitly asks for an exit code of 127 if we report 2226 * errors from the child process - so, unfortunately, there 2227 * is no way to report a more exact error code. 2228 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as 2229 * flag bit in the attrp argument to posix_spawn(2), see above. 2230 */ 2231 exit1(l, 127, 0); 2232 } 2233 2234 void 2235 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) 2236 { 2237 2238 for (size_t i = 0; i < len; i++) { 2239 struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; 2240 if (fae->fae_action != FAE_OPEN) 2241 continue; 2242 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1); 2243 } 2244 if (fa->len > 0) 2245 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); 2246 kmem_free(fa, sizeof(*fa)); 2247 } 2248 2249 static int 2250 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, 2251 const struct posix_spawn_file_actions *ufa, rlim_t lim) 2252 { 2253 struct posix_spawn_file_actions *fa; 2254 struct posix_spawn_file_actions_entry *fae; 2255 char *pbuf = NULL; 2256 int error; 2257 size_t i = 0; 2258 2259 fa = kmem_alloc(sizeof(*fa), KM_SLEEP); 2260 error = copyin(ufa, fa, sizeof(*fa)); 2261 if (error || fa->len == 0) { 2262 kmem_free(fa, sizeof(*fa)); 2263 return error; /* 0 if not an error, and len == 0 */ 2264 } 2265 2266 if (fa->len > lim) { 2267 kmem_free(fa, sizeof(*fa)); 2268 return EINVAL; 2269 } 2270 2271 fa->size = fa->len; 2272 size_t fal = fa->len * sizeof(*fae); 2273 fae = fa->fae; 2274 fa->fae = kmem_alloc(fal, KM_SLEEP); 2275 error = copyin(fae, fa->fae, fal); 2276 if (error) 2277 goto out; 2278 2279 pbuf = PNBUF_GET(); 2280 for (; i < fa->len; i++) { 2281 fae = &fa->fae[i]; 2282 if (fae->fae_action != FAE_OPEN) 2283 continue; 2284 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); 2285 if (error) 2286 goto out; 2287 fae->fae_path = kmem_alloc(fal, KM_SLEEP); 2288 memcpy(fae->fae_path, pbuf, fal); 2289 } 2290 PNBUF_PUT(pbuf); 2291 2292 *fap = fa; 2293 return 0; 2294 out: 2295 if (pbuf) 2296 PNBUF_PUT(pbuf); 2297 posix_spawn_fa_free(fa, i); 2298 return error; 2299 } 2300 2301 int 2302 check_posix_spawn(struct lwp *l1) 2303 { 2304 int error, tnprocs, count; 2305 uid_t uid; 2306 struct proc *p1; 2307 2308 p1 = l1->l_proc; 2309 uid = kauth_cred_getuid(l1->l_cred); 2310 tnprocs = atomic_inc_uint_nv(&nprocs); 2311 2312 /* 2313 * Although process entries are dynamically created, we still keep 2314 * a global limit on the maximum number we will create. 2315 */ 2316 if (__predict_false(tnprocs >= maxproc)) 2317 error = -1; 2318 else 2319 error = kauth_authorize_process(l1->l_cred, 2320 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 2321 2322 if (error) { 2323 atomic_dec_uint(&nprocs); 2324 return EAGAIN; 2325 } 2326 2327 /* 2328 * Enforce limits. 2329 */ 2330 count = chgproccnt(uid, 1); 2331 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, 2332 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 2333 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 && 2334 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 2335 (void)chgproccnt(uid, -1); 2336 atomic_dec_uint(&nprocs); 2337 return EAGAIN; 2338 } 2339 2340 return 0; 2341 } 2342 2343 int 2344 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path, 2345 struct posix_spawn_file_actions *fa, 2346 struct posix_spawnattr *sa, 2347 char *const *argv, char *const *envp, 2348 execve_fetch_element_t fetch) 2349 { 2350 2351 struct proc *p1, *p2; 2352 struct lwp *l2; 2353 int error; 2354 struct spawn_exec_data *spawn_data; 2355 vaddr_t uaddr; 2356 pid_t pid; 2357 bool have_exec_lock = false; 2358 2359 p1 = l1->l_proc; 2360 2361 /* Allocate and init spawn_data */ 2362 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); 2363 spawn_data->sed_refcnt = 1; /* only parent so far */ 2364 cv_init(&spawn_data->sed_cv_child_ready, "pspawn"); 2365 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); 2366 mutex_enter(&spawn_data->sed_mtx_child); 2367 2368 /* 2369 * Do the first part of the exec now, collect state 2370 * in spawn_data. 2371 */ 2372 error = execve_loadvm(l1, path, argv, 2373 envp, fetch, &spawn_data->sed_exec); 2374 if (error == EJUSTRETURN) 2375 error = 0; 2376 else if (error) 2377 goto error_exit; 2378 2379 have_exec_lock = true; 2380 2381 /* 2382 * Allocate virtual address space for the U-area now, while it 2383 * is still easy to abort the fork operation if we're out of 2384 * kernel virtual address space. 2385 */ 2386 uaddr = uvm_uarea_alloc(); 2387 if (__predict_false(uaddr == 0)) { 2388 error = ENOMEM; 2389 goto error_exit; 2390 } 2391 2392 /* 2393 * Allocate new proc. Borrow proc0 vmspace for it, we will 2394 * replace it with its own before returning to userland 2395 * in the child. 2396 * This is a point of no return, we will have to go through 2397 * the child proc to properly clean it up past this point. 2398 */ 2399 p2 = proc_alloc(); 2400 pid = p2->p_pid; 2401 2402 /* 2403 * Make a proc table entry for the new process. 2404 * Start by zeroing the section of proc that is zero-initialized, 2405 * then copy the section that is copied directly from the parent. 2406 */ 2407 memset(&p2->p_startzero, 0, 2408 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 2409 memcpy(&p2->p_startcopy, &p1->p_startcopy, 2410 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 2411 p2->p_vmspace = proc0.p_vmspace; 2412 2413 TAILQ_INIT(&p2->p_sigpend.sp_info); 2414 2415 LIST_INIT(&p2->p_lwps); 2416 LIST_INIT(&p2->p_sigwaiters); 2417 2418 /* 2419 * Duplicate sub-structures as needed. 2420 * Increase reference counts on shared objects. 2421 * Inherit flags we want to keep. The flags related to SIGCHLD 2422 * handling are important in order to keep a consistent behaviour 2423 * for the child after the fork. If we are a 32-bit process, the 2424 * child will be too. 2425 */ 2426 p2->p_flag = 2427 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 2428 p2->p_emul = p1->p_emul; 2429 p2->p_execsw = p1->p_execsw; 2430 2431 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 2432 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 2433 rw_init(&p2->p_reflock); 2434 cv_init(&p2->p_waitcv, "wait"); 2435 cv_init(&p2->p_lwpcv, "lwpwait"); 2436 2437 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2438 2439 kauth_proc_fork(p1, p2); 2440 2441 p2->p_raslist = NULL; 2442 p2->p_fd = fd_copy(); 2443 2444 /* XXX racy */ 2445 p2->p_mqueue_cnt = p1->p_mqueue_cnt; 2446 2447 p2->p_cwdi = cwdinit(); 2448 2449 /* 2450 * Note: p_limit (rlimit stuff) is copy-on-write, so normally 2451 * we just need increase pl_refcnt. 2452 */ 2453 if (!p1->p_limit->pl_writeable) { 2454 lim_addref(p1->p_limit); 2455 p2->p_limit = p1->p_limit; 2456 } else { 2457 p2->p_limit = lim_copy(p1->p_limit); 2458 } 2459 2460 p2->p_lflag = 0; 2461 p2->p_sflag = 0; 2462 p2->p_slflag = 0; 2463 p2->p_pptr = p1; 2464 p2->p_ppid = p1->p_pid; 2465 LIST_INIT(&p2->p_children); 2466 2467 p2->p_aio = NULL; 2468 2469 #ifdef KTRACE 2470 /* 2471 * Copy traceflag and tracefile if enabled. 2472 * If not inherited, these were zeroed above. 2473 */ 2474 if (p1->p_traceflag & KTRFAC_INHERIT) { 2475 mutex_enter(&ktrace_lock); 2476 p2->p_traceflag = p1->p_traceflag; 2477 if ((p2->p_tracep = p1->p_tracep) != NULL) 2478 ktradref(p2); 2479 mutex_exit(&ktrace_lock); 2480 } 2481 #endif 2482 2483 /* 2484 * Create signal actions for the child process. 2485 */ 2486 p2->p_sigacts = sigactsinit(p1, 0); 2487 mutex_enter(p1->p_lock); 2488 p2->p_sflag |= 2489 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 2490 sched_proc_fork(p1, p2); 2491 mutex_exit(p1->p_lock); 2492 2493 p2->p_stflag = p1->p_stflag; 2494 2495 /* 2496 * p_stats. 2497 * Copy parts of p_stats, and zero out the rest. 2498 */ 2499 p2->p_stats = pstatscopy(p1->p_stats); 2500 2501 /* copy over machdep flags to the new proc */ 2502 cpu_proc_fork(p1, p2); 2503 2504 /* 2505 * Prepare remaining parts of spawn data 2506 */ 2507 spawn_data->sed_actions = fa; 2508 spawn_data->sed_attrs = sa; 2509 2510 spawn_data->sed_parent = p1; 2511 2512 /* create LWP */ 2513 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, 2514 &l2, l1->l_class); 2515 l2->l_ctxlink = NULL; /* reset ucontext link */ 2516 2517 /* 2518 * Copy the credential so other references don't see our changes. 2519 * Test to see if this is necessary first, since in the common case 2520 * we won't need a private reference. 2521 */ 2522 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || 2523 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { 2524 l2->l_cred = kauth_cred_copy(l2->l_cred); 2525 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); 2526 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); 2527 } 2528 2529 /* Update the master credentials. */ 2530 if (l2->l_cred != p2->p_cred) { 2531 kauth_cred_t ocred; 2532 2533 kauth_cred_hold(l2->l_cred); 2534 mutex_enter(p2->p_lock); 2535 ocred = p2->p_cred; 2536 p2->p_cred = l2->l_cred; 2537 mutex_exit(p2->p_lock); 2538 kauth_cred_free(ocred); 2539 } 2540 2541 *child_ok = true; 2542 spawn_data->sed_refcnt = 2; /* child gets it as well */ 2543 #if 0 2544 l2->l_nopreempt = 1; /* start it non-preemptable */ 2545 #endif 2546 2547 /* 2548 * It's now safe for the scheduler and other processes to see the 2549 * child process. 2550 */ 2551 mutex_enter(proc_lock); 2552 2553 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 2554 p2->p_lflag |= PL_CONTROLT; 2555 2556 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); 2557 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ 2558 2559 LIST_INSERT_AFTER(p1, p2, p_pglist); 2560 LIST_INSERT_HEAD(&allproc, p2, p_list); 2561 2562 p2->p_trace_enabled = trace_is_enabled(p2); 2563 #ifdef __HAVE_SYSCALL_INTERN 2564 (*p2->p_emul->e_syscall_intern)(p2); 2565 #endif 2566 2567 /* 2568 * Make child runnable, set start time, and add to run queue except 2569 * if the parent requested the child to start in SSTOP state. 2570 */ 2571 mutex_enter(p2->p_lock); 2572 2573 getmicrotime(&p2->p_stats->p_start); 2574 2575 lwp_lock(l2); 2576 KASSERT(p2->p_nrlwps == 1); 2577 p2->p_nrlwps = 1; 2578 p2->p_stat = SACTIVE; 2579 l2->l_stat = LSRUN; 2580 sched_enqueue(l2, false); 2581 lwp_unlock(l2); 2582 2583 mutex_exit(p2->p_lock); 2584 mutex_exit(proc_lock); 2585 2586 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); 2587 error = spawn_data->sed_error; 2588 mutex_exit(&spawn_data->sed_mtx_child); 2589 spawn_exec_data_release(spawn_data); 2590 2591 rw_exit(&p1->p_reflock); 2592 rw_exit(&exec_lock); 2593 have_exec_lock = false; 2594 2595 *pid_res = pid; 2596 return error; 2597 2598 error_exit: 2599 if (have_exec_lock) { 2600 execve_free_data(&spawn_data->sed_exec); 2601 rw_exit(&p1->p_reflock); 2602 rw_exit(&exec_lock); 2603 } 2604 mutex_exit(&spawn_data->sed_mtx_child); 2605 spawn_exec_data_release(spawn_data); 2606 2607 return error; 2608 } 2609 2610 int 2611 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, 2612 register_t *retval) 2613 { 2614 /* { 2615 syscallarg(pid_t *) pid; 2616 syscallarg(const char *) path; 2617 syscallarg(const struct posix_spawn_file_actions *) file_actions; 2618 syscallarg(const struct posix_spawnattr *) attrp; 2619 syscallarg(char *const *) argv; 2620 syscallarg(char *const *) envp; 2621 } */ 2622 2623 int error; 2624 struct posix_spawn_file_actions *fa = NULL; 2625 struct posix_spawnattr *sa = NULL; 2626 pid_t pid; 2627 bool child_ok = false; 2628 rlim_t max_fileactions; 2629 proc_t *p = l1->l_proc; 2630 2631 error = check_posix_spawn(l1); 2632 if (error) { 2633 *retval = error; 2634 return 0; 2635 } 2636 2637 /* copy in file_actions struct */ 2638 if (SCARG(uap, file_actions) != NULL) { 2639 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur, 2640 maxfiles); 2641 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions), 2642 max_fileactions); 2643 if (error) 2644 goto error_exit; 2645 } 2646 2647 /* copyin posix_spawnattr struct */ 2648 if (SCARG(uap, attrp) != NULL) { 2649 sa = kmem_alloc(sizeof(*sa), KM_SLEEP); 2650 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); 2651 if (error) 2652 goto error_exit; 2653 } 2654 2655 /* 2656 * Do the spawn 2657 */ 2658 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa, 2659 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element); 2660 if (error) 2661 goto error_exit; 2662 2663 if (error == 0 && SCARG(uap, pid) != NULL) 2664 error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); 2665 2666 *retval = error; 2667 return 0; 2668 2669 error_exit: 2670 if (!child_ok) { 2671 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1); 2672 atomic_dec_uint(&nprocs); 2673 2674 if (sa) 2675 kmem_free(sa, sizeof(*sa)); 2676 if (fa) 2677 posix_spawn_fa_free(fa, fa->len); 2678 } 2679 2680 *retval = error; 2681 return 0; 2682 } 2683 2684 void 2685 exec_free_emul_arg(struct exec_package *epp) 2686 { 2687 if (epp->ep_emul_arg_free != NULL) { 2688 KASSERT(epp->ep_emul_arg != NULL); 2689 (*epp->ep_emul_arg_free)(epp->ep_emul_arg); 2690 epp->ep_emul_arg_free = NULL; 2691 epp->ep_emul_arg = NULL; 2692 } else { 2693 KASSERT(epp->ep_emul_arg == NULL); 2694 } 2695 } 2696 2697 #ifdef DEBUG_EXEC 2698 static void 2699 dump_vmcmds(const struct exec_package * const epp, size_t x, int error) 2700 { 2701 struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0]; 2702 size_t j; 2703 2704 if (error == 0) 2705 DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used)); 2706 else 2707 DPRINTF(("vmcmds %zu/%u, error %d\n", x, 2708 epp->ep_vmcmds.evs_used, error)); 2709 2710 for (j = 0; j < epp->ep_vmcmds.evs_used; j++) { 2711 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 2712 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 2713 PRIxVSIZE" prot=0%o flags=%d\n", j, 2714 vp[j].ev_proc == vmcmd_map_pagedvn ? 2715 "pagedvn" : 2716 vp[j].ev_proc == vmcmd_map_readvn ? 2717 "readvn" : 2718 vp[j].ev_proc == vmcmd_map_zero ? 2719 "zero" : "*unknown*", 2720 vp[j].ev_addr, vp[j].ev_len, 2721 vp[j].ev_offset, vp[j].ev_prot, 2722 vp[j].ev_flags)); 2723 if (error != 0 && j == x) 2724 DPRINTF((" ^--- failed\n")); 2725 } 2726 } 2727 #endif 2728