xref: /netbsd-src/sys/kern/kern_exec.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /*	$NetBSD: kern_exec.c,v 1.433 2016/06/09 00:17:45 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31  * Copyright (C) 1992 Wolfgang Solfrank.
32  * Copyright (C) 1992 TooLs GmbH.
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by TooLs GmbH.
46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.433 2016/06/09 00:17:45 christos Exp $");
63 
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/kmem.h>
79 #include <sys/namei.h>
80 #include <sys/vnode.h>
81 #include <sys/file.h>
82 #include <sys/filedesc.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108 
109 #include <uvm/uvm_extern.h>
110 
111 #include <machine/reg.h>
112 
113 #include <compat/common/compat_util.h>
114 
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USE_TOPDOWN_VM
117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define	MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122 
123 struct execve_data;
124 
125 static size_t calcargs(struct execve_data * restrict, const size_t);
126 static size_t calcstack(struct execve_data * restrict, const size_t);
127 static int copyoutargs(struct execve_data * restrict, struct lwp *,
128     char * const);
129 static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
130 static int copyinargs(struct execve_data * restrict, char * const *,
131     char * const *, execve_fetch_element_t, char **);
132 static int copyinargstrs(struct execve_data * restrict, char * const *,
133     execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
134 static int exec_sigcode_map(struct proc *, const struct emul *);
135 
136 #if defined(DEBUG) && !defined(DEBUG_EXEC)
137 #define DEBUG_EXEC
138 #endif
139 #ifdef DEBUG_EXEC
140 #define DPRINTF(a) printf a
141 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
142     __LINE__, (s), (a), (b))
143 static void dump_vmcmds(const struct exec_package * const, size_t, int);
144 #define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
145 #else
146 #define DPRINTF(a)
147 #define COPYPRINTF(s, a, b)
148 #define DUMPVMCMDS(p, x, e) do {} while (0)
149 #endif /* DEBUG_EXEC */
150 
151 /*
152  * DTrace SDT provider definitions
153  */
154 SDT_PROVIDER_DECLARE(proc);
155 SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
156 SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
157 SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
158 
159 /*
160  * Exec function switch:
161  *
162  * Note that each makecmds function is responsible for loading the
163  * exec package with the necessary functions for any exec-type-specific
164  * handling.
165  *
166  * Functions for specific exec types should be defined in their own
167  * header file.
168  */
169 static const struct execsw	**execsw = NULL;
170 static int			nexecs;
171 
172 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
173 
174 /* list of dynamically loaded execsw entries */
175 static LIST_HEAD(execlist_head, exec_entry) ex_head =
176     LIST_HEAD_INITIALIZER(ex_head);
177 struct exec_entry {
178 	LIST_ENTRY(exec_entry)	ex_list;
179 	SLIST_ENTRY(exec_entry)	ex_slist;
180 	const struct execsw	*ex_sw;
181 };
182 
183 #ifndef __HAVE_SYSCALL_INTERN
184 void	syscall(void);
185 #endif
186 
187 /* NetBSD autoloadable syscalls */
188 #ifdef MODULAR
189 #include <kern/syscalls_autoload.c>
190 #endif
191 
192 /* NetBSD emul struct */
193 struct emul emul_netbsd = {
194 	.e_name =		"netbsd",
195 #ifdef EMUL_NATIVEROOT
196 	.e_path =		EMUL_NATIVEROOT,
197 #else
198 	.e_path =		NULL,
199 #endif
200 #ifndef __HAVE_MINIMAL_EMUL
201 	.e_flags =		EMUL_HAS_SYS___syscall,
202 	.e_errno =		NULL,
203 	.e_nosys =		SYS_syscall,
204 	.e_nsysent =		SYS_NSYSENT,
205 #endif
206 #ifdef MODULAR
207 	.e_sc_autoload =	netbsd_syscalls_autoload,
208 #endif
209 	.e_sysent =		sysent,
210 #ifdef SYSCALL_DEBUG
211 	.e_syscallnames =	syscallnames,
212 #else
213 	.e_syscallnames =	NULL,
214 #endif
215 	.e_sendsig =		sendsig,
216 	.e_trapsignal =		trapsignal,
217 	.e_tracesig =		NULL,
218 	.e_sigcode =		NULL,
219 	.e_esigcode =		NULL,
220 	.e_sigobject =		NULL,
221 	.e_setregs =		setregs,
222 	.e_proc_exec =		NULL,
223 	.e_proc_fork =		NULL,
224 	.e_proc_exit =		NULL,
225 	.e_lwp_fork =		NULL,
226 	.e_lwp_exit =		NULL,
227 #ifdef __HAVE_SYSCALL_INTERN
228 	.e_syscall_intern =	syscall_intern,
229 #else
230 	.e_syscall =		syscall,
231 #endif
232 	.e_sysctlovly =		NULL,
233 	.e_fault =		NULL,
234 	.e_vm_default_addr =	uvm_default_mapaddr,
235 	.e_usertrap =		NULL,
236 	.e_ucsize =		sizeof(ucontext_t),
237 	.e_startlwp =		startlwp
238 };
239 
240 /*
241  * Exec lock. Used to control access to execsw[] structures.
242  * This must not be static so that netbsd32 can access it, too.
243  */
244 krwlock_t exec_lock;
245 
246 static kmutex_t sigobject_lock;
247 
248 /*
249  * Data used between a loadvm and execve part of an "exec" operation
250  */
251 struct execve_data {
252 	struct exec_package	ed_pack;
253 	struct pathbuf		*ed_pathbuf;
254 	struct vattr		ed_attr;
255 	struct ps_strings	ed_arginfo;
256 	char			*ed_argp;
257 	const char		*ed_pathstring;
258 	char			*ed_resolvedpathbuf;
259 	size_t			ed_ps_strings_sz;
260 	int			ed_szsigcode;
261 	size_t			ed_argslen;
262 	long			ed_argc;
263 	long			ed_envc;
264 };
265 
266 /*
267  * data passed from parent lwp to child during a posix_spawn()
268  */
269 struct spawn_exec_data {
270 	struct execve_data	sed_exec;
271 	struct posix_spawn_file_actions
272 				*sed_actions;
273 	struct posix_spawnattr	*sed_attrs;
274 	struct proc		*sed_parent;
275 	kcondvar_t		sed_cv_child_ready;
276 	kmutex_t		sed_mtx_child;
277 	int			sed_error;
278 	volatile uint32_t	sed_refcnt;
279 };
280 
281 static void *
282 exec_pool_alloc(struct pool *pp, int flags)
283 {
284 
285 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
286 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
287 }
288 
289 static void
290 exec_pool_free(struct pool *pp, void *addr)
291 {
292 
293 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
294 }
295 
296 static struct pool exec_pool;
297 
298 static struct pool_allocator exec_palloc = {
299 	.pa_alloc = exec_pool_alloc,
300 	.pa_free = exec_pool_free,
301 	.pa_pagesz = NCARGS
302 };
303 
304 /*
305  * check exec:
306  * given an "executable" described in the exec package's namei info,
307  * see what we can do with it.
308  *
309  * ON ENTRY:
310  *	exec package with appropriate namei info
311  *	lwp pointer of exec'ing lwp
312  *	NO SELF-LOCKED VNODES
313  *
314  * ON EXIT:
315  *	error:	nothing held, etc.  exec header still allocated.
316  *	ok:	filled exec package, executable's vnode (unlocked).
317  *
318  * EXEC SWITCH ENTRY:
319  * 	Locked vnode to check, exec package, proc.
320  *
321  * EXEC SWITCH EXIT:
322  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
323  *	error:	destructive:
324  *			everything deallocated execept exec header.
325  *		non-destructive:
326  *			error code, executable's vnode (unlocked),
327  *			exec header unmodified.
328  */
329 int
330 /*ARGSUSED*/
331 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
332 {
333 	int		error, i;
334 	struct vnode	*vp;
335 	struct nameidata nd;
336 	size_t		resid;
337 
338 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
339 
340 	/* first get the vnode */
341 	if ((error = namei(&nd)) != 0)
342 		return error;
343 	epp->ep_vp = vp = nd.ni_vp;
344 	/* normally this can't fail */
345 	error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
346 	KASSERT(error == 0);
347 
348 #ifdef DIAGNOSTIC
349 	/* paranoia (take this out once namei stuff stabilizes) */
350 	memset(nd.ni_pnbuf, '~', PATH_MAX);
351 #endif
352 
353 	/* check access and type */
354 	if (vp->v_type != VREG) {
355 		error = EACCES;
356 		goto bad1;
357 	}
358 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
359 		goto bad1;
360 
361 	/* get attributes */
362 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
363 		goto bad1;
364 
365 	/* Check mount point */
366 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
367 		error = EACCES;
368 		goto bad1;
369 	}
370 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
371 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
372 
373 	/* try to open it */
374 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
375 		goto bad1;
376 
377 	/* unlock vp, since we need it unlocked from here on out. */
378 	VOP_UNLOCK(vp);
379 
380 #if NVERIEXEC > 0
381 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
382 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
383 	    NULL);
384 	if (error)
385 		goto bad2;
386 #endif /* NVERIEXEC > 0 */
387 
388 #ifdef PAX_SEGVGUARD
389 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
390 	if (error)
391 		goto bad2;
392 #endif /* PAX_SEGVGUARD */
393 
394 	/* now we have the file, get the exec header */
395 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
396 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
397 	if (error)
398 		goto bad2;
399 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
400 
401 	/*
402 	 * Set up default address space limits.  Can be overridden
403 	 * by individual exec packages.
404 	 *
405 	 * XXX probably should be all done in the exec packages.
406 	 */
407 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
408 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
409 	/*
410 	 * set up the vmcmds for creation of the process
411 	 * address space
412 	 */
413 	error = ENOEXEC;
414 	for (i = 0; i < nexecs; i++) {
415 		int newerror;
416 
417 		epp->ep_esch = execsw[i];
418 		newerror = (*execsw[i]->es_makecmds)(l, epp);
419 
420 		if (!newerror) {
421 			/* Seems ok: check that entry point is not too high */
422 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
423 #ifdef DIAGNOSTIC
424 				printf("%s: rejecting %p due to "
425 				    "too high entry address (> %p)\n",
426 					 __func__, (void *)epp->ep_entry,
427 					 (void *)epp->ep_vm_maxaddr);
428 #endif
429 				error = ENOEXEC;
430 				break;
431 			}
432 			/* Seems ok: check that entry point is not too low */
433 			if (epp->ep_entry < epp->ep_vm_minaddr) {
434 #ifdef DIAGNOSTIC
435 				printf("%s: rejecting %p due to "
436 				    "too low entry address (< %p)\n",
437 				     __func__, (void *)epp->ep_entry,
438 				     (void *)epp->ep_vm_minaddr);
439 #endif
440 				error = ENOEXEC;
441 				break;
442 			}
443 
444 			/* check limits */
445 			if ((epp->ep_tsize > MAXTSIZ) ||
446 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
447 						    [RLIMIT_DATA].rlim_cur)) {
448 #ifdef DIAGNOSTIC
449 				printf("%s: rejecting due to "
450 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
451 				    __func__,
452 				    (unsigned long long)epp->ep_tsize,
453 				    (unsigned long long)MAXTSIZ,
454 				    (unsigned long long)epp->ep_dsize,
455 				    (unsigned long long)
456 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
457 #endif
458 				error = ENOMEM;
459 				break;
460 			}
461 			return 0;
462 		}
463 
464 		/*
465 		 * Reset all the fields that may have been modified by the
466 		 * loader.
467 		 */
468 		KASSERT(epp->ep_emul_arg == NULL);
469 		if (epp->ep_emul_root != NULL) {
470 			vrele(epp->ep_emul_root);
471 			epp->ep_emul_root = NULL;
472 		}
473 		if (epp->ep_interp != NULL) {
474 			vrele(epp->ep_interp);
475 			epp->ep_interp = NULL;
476 		}
477 		epp->ep_pax_flags = 0;
478 
479 		/* make sure the first "interesting" error code is saved. */
480 		if (error == ENOEXEC)
481 			error = newerror;
482 
483 		if (epp->ep_flags & EXEC_DESTR)
484 			/* Error from "#!" code, tidied up by recursive call */
485 			return error;
486 	}
487 
488 	/* not found, error */
489 
490 	/*
491 	 * free any vmspace-creation commands,
492 	 * and release their references
493 	 */
494 	kill_vmcmds(&epp->ep_vmcmds);
495 
496 bad2:
497 	/*
498 	 * close and release the vnode, restore the old one, free the
499 	 * pathname buf, and punt.
500 	 */
501 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
502 	VOP_CLOSE(vp, FREAD, l->l_cred);
503 	vput(vp);
504 	return error;
505 
506 bad1:
507 	/*
508 	 * free the namei pathname buffer, and put the vnode
509 	 * (which we don't yet have open).
510 	 */
511 	vput(vp);				/* was still locked */
512 	return error;
513 }
514 
515 #ifdef __MACHINE_STACK_GROWS_UP
516 #define STACK_PTHREADSPACE NBPG
517 #else
518 #define STACK_PTHREADSPACE 0
519 #endif
520 
521 static int
522 execve_fetch_element(char * const *array, size_t index, char **value)
523 {
524 	return copyin(array + index, value, sizeof(*value));
525 }
526 
527 /*
528  * exec system call
529  */
530 int
531 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
532 {
533 	/* {
534 		syscallarg(const char *)	path;
535 		syscallarg(char * const *)	argp;
536 		syscallarg(char * const *)	envp;
537 	} */
538 
539 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
540 	    SCARG(uap, envp), execve_fetch_element);
541 }
542 
543 int
544 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
545     register_t *retval)
546 {
547 	/* {
548 		syscallarg(int)			fd;
549 		syscallarg(char * const *)	argp;
550 		syscallarg(char * const *)	envp;
551 	} */
552 
553 	return ENOSYS;
554 }
555 
556 /*
557  * Load modules to try and execute an image that we do not understand.
558  * If no execsw entries are present, we load those likely to be needed
559  * in order to run native images only.  Otherwise, we autoload all
560  * possible modules that could let us run the binary.  XXX lame
561  */
562 static void
563 exec_autoload(void)
564 {
565 #ifdef MODULAR
566 	static const char * const native[] = {
567 		"exec_elf32",
568 		"exec_elf64",
569 		"exec_script",
570 		NULL
571 	};
572 	static const char * const compat[] = {
573 		"exec_elf32",
574 		"exec_elf64",
575 		"exec_script",
576 		"exec_aout",
577 		"exec_coff",
578 		"exec_ecoff",
579 		"compat_aoutm68k",
580 		"compat_freebsd",
581 		"compat_ibcs2",
582 		"compat_linux",
583 		"compat_linux32",
584 		"compat_netbsd32",
585 		"compat_sunos",
586 		"compat_sunos32",
587 		"compat_svr4",
588 		"compat_svr4_32",
589 		"compat_ultrix",
590 		NULL
591 	};
592 	char const * const *list;
593 	int i;
594 
595 	list = (nexecs == 0 ? native : compat);
596 	for (i = 0; list[i] != NULL; i++) {
597 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
598 			continue;
599 		}
600 		yield();
601 	}
602 #endif
603 }
604 
605 static int
606 makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp,
607     size_t *offs)
608 {
609 	char *path, *bp;
610 	size_t len, tlen;
611 	int error;
612 	struct cwdinfo *cwdi;
613 
614 	path = PNBUF_GET();
615 	error = copyinstr(upath, path, MAXPATHLEN, &len);
616 	if (error) {
617 		PNBUF_PUT(path);
618 		DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
619 		return error;
620 	}
621 
622 	if (path[0] == '/') {
623 		*offs = 0;
624 		goto out;
625 	}
626 
627 	len++;
628 	if (len + 1 >= MAXPATHLEN)
629 		goto out;
630 	bp = path + MAXPATHLEN - len;
631 	memmove(bp, path, len);
632 	*(--bp) = '/';
633 
634 	cwdi = l->l_proc->p_cwdi;
635 	rw_enter(&cwdi->cwdi_lock, RW_READER);
636 	error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
637 	    GETCWD_CHECK_ACCESS, l);
638 	rw_exit(&cwdi->cwdi_lock);
639 
640 	if (error) {
641 		DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
642 		    error));
643 		goto out;
644 	}
645 	tlen = path + MAXPATHLEN - bp;
646 
647 	memmove(path, bp, tlen);
648 	path[tlen] = '\0';
649 	*offs = tlen - len;
650 out:
651 	*pbp = pathbuf_assimilate(path);
652 	return 0;
653 }
654 
655 static int
656 execve_loadvm(struct lwp *l, const char *path, char * const *args,
657 	char * const *envs, execve_fetch_element_t fetch_element,
658 	struct execve_data * restrict data)
659 {
660 	struct exec_package	* const epp = &data->ed_pack;
661 	int			error;
662 	struct proc		*p;
663 	char			*dp;
664 	u_int			modgen;
665 	size_t			offs = 0;	// XXX: GCC
666 
667 	KASSERT(data != NULL);
668 
669 	p = l->l_proc;
670 	modgen = 0;
671 
672 	SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
673 
674 	/*
675 	 * Check if we have exceeded our number of processes limit.
676 	 * This is so that we handle the case where a root daemon
677 	 * forked, ran setuid to become the desired user and is trying
678 	 * to exec. The obvious place to do the reference counting check
679 	 * is setuid(), but we don't do the reference counting check there
680 	 * like other OS's do because then all the programs that use setuid()
681 	 * must be modified to check the return code of setuid() and exit().
682 	 * It is dangerous to make setuid() fail, because it fails open and
683 	 * the program will continue to run as root. If we make it succeed
684 	 * and return an error code, again we are not enforcing the limit.
685 	 * The best place to enforce the limit is here, when the process tries
686 	 * to execute a new image, because eventually the process will need
687 	 * to call exec in order to do something useful.
688 	 */
689  retry:
690 	if (p->p_flag & PK_SUGID) {
691 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
692 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
693 		     &p->p_rlimit[RLIMIT_NPROC],
694 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
695 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
696 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
697 		return EAGAIN;
698 	}
699 
700 	/*
701 	 * Drain existing references and forbid new ones.  The process
702 	 * should be left alone until we're done here.  This is necessary
703 	 * to avoid race conditions - e.g. in ptrace() - that might allow
704 	 * a local user to illicitly obtain elevated privileges.
705 	 */
706 	rw_enter(&p->p_reflock, RW_WRITER);
707 
708 	/*
709 	 * Init the namei data to point the file user's program name.
710 	 * This is done here rather than in check_exec(), so that it's
711 	 * possible to override this settings if any of makecmd/probe
712 	 * functions call check_exec() recursively - for example,
713 	 * see exec_script_makecmds().
714 	 */
715 	if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0)
716 		goto clrflg;
717 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
718 	data->ed_resolvedpathbuf = PNBUF_GET();
719 
720 	/*
721 	 * initialize the fields of the exec package.
722 	 */
723 	epp->ep_kname = data->ed_pathstring + offs;
724 	epp->ep_resolvedname = data->ed_resolvedpathbuf;
725 	epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
726 	epp->ep_hdrlen = exec_maxhdrsz;
727 	epp->ep_hdrvalid = 0;
728 	epp->ep_emul_arg = NULL;
729 	epp->ep_emul_arg_free = NULL;
730 	memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
731 	epp->ep_vap = &data->ed_attr;
732 	epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
733 	MD_TOPDOWN_INIT(epp);
734 	epp->ep_emul_root = NULL;
735 	epp->ep_interp = NULL;
736 	epp->ep_esch = NULL;
737 	epp->ep_pax_flags = 0;
738 	memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
739 
740 	rw_enter(&exec_lock, RW_READER);
741 
742 	/* see if we can run it. */
743 	if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
744 		if (error != ENOENT && error != EACCES) {
745 			DPRINTF(("%s: check exec failed %d\n",
746 			    __func__, error));
747 		}
748 		goto freehdr;
749 	}
750 
751 	/* allocate an argument buffer */
752 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
753 	KASSERT(data->ed_argp != NULL);
754 	dp = data->ed_argp;
755 
756 	if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
757 		goto bad;
758 	}
759 
760 	/*
761 	 * Calculate the new stack size.
762 	 */
763 
764 #ifdef __MACHINE_STACK_GROWS_UP
765 /*
766  * copyargs() fills argc/argv/envp from the lower address even on
767  * __MACHINE_STACK_GROWS_UP machines.  Reserve a few words just below the SP
768  * so that _rtld() use it.
769  */
770 #define	RTLD_GAP	32
771 #else
772 #define	RTLD_GAP	0
773 #endif
774 
775 	const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
776 
777 	data->ed_argslen = calcargs(data, argenvstrlen);
778 
779 	const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
780 
781 	if (len > epp->ep_ssize) {
782 		/* in effect, compare to initial limit */
783 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
784 		error = ENOMEM;
785 		goto bad;
786 	}
787 	/* adjust "active stack depth" for process VSZ */
788 	epp->ep_ssize = len;
789 
790 	return 0;
791 
792  bad:
793 	/* free the vmspace-creation commands, and release their references */
794 	kill_vmcmds(&epp->ep_vmcmds);
795 	/* kill any opened file descriptor, if necessary */
796 	if (epp->ep_flags & EXEC_HASFD) {
797 		epp->ep_flags &= ~EXEC_HASFD;
798 		fd_close(epp->ep_fd);
799 	}
800 	/* close and put the exec'd file */
801 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
802 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
803 	vput(epp->ep_vp);
804 	pool_put(&exec_pool, data->ed_argp);
805 
806  freehdr:
807 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
808 	if (epp->ep_emul_root != NULL)
809 		vrele(epp->ep_emul_root);
810 	if (epp->ep_interp != NULL)
811 		vrele(epp->ep_interp);
812 
813 	rw_exit(&exec_lock);
814 
815 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
816 	pathbuf_destroy(data->ed_pathbuf);
817 	PNBUF_PUT(data->ed_resolvedpathbuf);
818 
819  clrflg:
820 	rw_exit(&p->p_reflock);
821 
822 	if (modgen != module_gen && error == ENOEXEC) {
823 		modgen = module_gen;
824 		exec_autoload();
825 		goto retry;
826 	}
827 
828 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
829 	return error;
830 }
831 
832 static int
833 execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
834 {
835 	struct exec_package	* const epp = &data->ed_pack;
836 	struct proc		*p = l->l_proc;
837 	struct exec_vmcmd	*base_vcp;
838 	int			error = 0;
839 	size_t			i;
840 
841 	/* record proc's vnode, for use by procfs and others */
842 	if (p->p_textvp)
843 		vrele(p->p_textvp);
844 	vref(epp->ep_vp);
845 	p->p_textvp = epp->ep_vp;
846 
847 	/* create the new process's VM space by running the vmcmds */
848 	KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
849 
850 #ifdef TRACE_EXEC
851 	DUMPVMCMDS(epp, 0, 0);
852 #endif
853 
854 	base_vcp = NULL;
855 
856 	for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
857 		struct exec_vmcmd *vcp;
858 
859 		vcp = &epp->ep_vmcmds.evs_cmds[i];
860 		if (vcp->ev_flags & VMCMD_RELATIVE) {
861 			KASSERTMSG(base_vcp != NULL,
862 			    "%s: relative vmcmd with no base", __func__);
863 			KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
864 			    "%s: illegal base & relative vmcmd", __func__);
865 			vcp->ev_addr += base_vcp->ev_addr;
866 		}
867 		error = (*vcp->ev_proc)(l, vcp);
868 		if (error)
869 			DUMPVMCMDS(epp, i, error);
870 		if (vcp->ev_flags & VMCMD_BASE)
871 			base_vcp = vcp;
872 	}
873 
874 	/* free the vmspace-creation commands, and release their references */
875 	kill_vmcmds(&epp->ep_vmcmds);
876 
877 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
878 	VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
879 	vput(epp->ep_vp);
880 
881 	/* if an error happened, deallocate and punt */
882 	if (error != 0) {
883 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
884 	}
885 	return error;
886 }
887 
888 static void
889 execve_free_data(struct execve_data *data)
890 {
891 	struct exec_package	* const epp = &data->ed_pack;
892 
893 	/* free the vmspace-creation commands, and release their references */
894 	kill_vmcmds(&epp->ep_vmcmds);
895 	/* kill any opened file descriptor, if necessary */
896 	if (epp->ep_flags & EXEC_HASFD) {
897 		epp->ep_flags &= ~EXEC_HASFD;
898 		fd_close(epp->ep_fd);
899 	}
900 
901 	/* close and put the exec'd file */
902 	vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
903 	VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
904 	vput(epp->ep_vp);
905 	pool_put(&exec_pool, data->ed_argp);
906 
907 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
908 	if (epp->ep_emul_root != NULL)
909 		vrele(epp->ep_emul_root);
910 	if (epp->ep_interp != NULL)
911 		vrele(epp->ep_interp);
912 
913 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
914 	pathbuf_destroy(data->ed_pathbuf);
915 	PNBUF_PUT(data->ed_resolvedpathbuf);
916 }
917 
918 static void
919 pathexec(struct exec_package *epp, struct proc *p, const char *pathstring)
920 {
921 	const char		*commandname;
922 	size_t			commandlen;
923 	char			*path;
924 
925 	/* set command name & other accounting info */
926 	commandname = strrchr(epp->ep_resolvedname, '/');
927 	if (commandname != NULL) {
928 		commandname++;
929 	} else {
930 		commandname = epp->ep_resolvedname;
931 	}
932 	commandlen = min(strlen(commandname), MAXCOMLEN);
933 	(void)memcpy(p->p_comm, commandname, commandlen);
934 	p->p_comm[commandlen] = '\0';
935 
936 
937 	/*
938 	 * If the path starts with /, we don't need to do any work.
939 	 * This handles the majority of the cases.
940 	 * In the future perhaps we could canonicalize it?
941 	 */
942 	if (pathstring[0] == '/') {
943 		path = PNBUF_GET();
944 		(void)strlcpy(path, pathstring, MAXPATHLEN);
945 		epp->ep_path = path;
946 	} else
947 		epp->ep_path = NULL;
948 }
949 
950 /* XXX elsewhere */
951 static int
952 credexec(struct lwp *l, struct vattr *attr)
953 {
954 	struct proc *p = l->l_proc;
955 	int error;
956 
957 	/*
958 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
959 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
960 	 * out additional references on the process for the moment.
961 	 */
962 	if ((p->p_slflag & PSL_TRACED) == 0 &&
963 
964 	    (((attr->va_mode & S_ISUID) != 0 &&
965 	      kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
966 
967 	     ((attr->va_mode & S_ISGID) != 0 &&
968 	      kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
969 		/*
970 		 * Mark the process as SUGID before we do
971 		 * anything that might block.
972 		 */
973 		proc_crmod_enter();
974 		proc_crmod_leave(NULL, NULL, true);
975 
976 		/* Make sure file descriptors 0..2 are in use. */
977 		if ((error = fd_checkstd()) != 0) {
978 			DPRINTF(("%s: fdcheckstd failed %d\n",
979 			    __func__, error));
980 			return error;
981 		}
982 
983 		/*
984 		 * Copy the credential so other references don't see our
985 		 * changes.
986 		 */
987 		l->l_cred = kauth_cred_copy(l->l_cred);
988 #ifdef KTRACE
989 		/*
990 		 * If the persistent trace flag isn't set, turn off.
991 		 */
992 		if (p->p_tracep) {
993 			mutex_enter(&ktrace_lock);
994 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
995 				ktrderef(p);
996 			mutex_exit(&ktrace_lock);
997 		}
998 #endif
999 		if (attr->va_mode & S_ISUID)
1000 			kauth_cred_seteuid(l->l_cred, attr->va_uid);
1001 		if (attr->va_mode & S_ISGID)
1002 			kauth_cred_setegid(l->l_cred, attr->va_gid);
1003 	} else {
1004 		if (kauth_cred_geteuid(l->l_cred) ==
1005 		    kauth_cred_getuid(l->l_cred) &&
1006 		    kauth_cred_getegid(l->l_cred) ==
1007 		    kauth_cred_getgid(l->l_cred))
1008 			p->p_flag &= ~PK_SUGID;
1009 	}
1010 
1011 	/*
1012 	 * Copy the credential so other references don't see our changes.
1013 	 * Test to see if this is necessary first, since in the common case
1014 	 * we won't need a private reference.
1015 	 */
1016 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1017 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1018 		l->l_cred = kauth_cred_copy(l->l_cred);
1019 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1020 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1021 	}
1022 
1023 	/* Update the master credentials. */
1024 	if (l->l_cred != p->p_cred) {
1025 		kauth_cred_t ocred;
1026 
1027 		kauth_cred_hold(l->l_cred);
1028 		mutex_enter(p->p_lock);
1029 		ocred = p->p_cred;
1030 		p->p_cred = l->l_cred;
1031 		mutex_exit(p->p_lock);
1032 		kauth_cred_free(ocred);
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 static void
1039 emulexec(struct lwp *l, struct exec_package *epp)
1040 {
1041 	struct proc		*p = l->l_proc;
1042 
1043 	/* The emulation root will usually have been found when we looked
1044 	 * for the elf interpreter (or similar), if not look now. */
1045 	if (epp->ep_esch->es_emul->e_path != NULL &&
1046 	    epp->ep_emul_root == NULL)
1047 		emul_find_root(l, epp);
1048 
1049 	/* Any old emulation root got removed by fdcloseexec */
1050 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1051 	p->p_cwdi->cwdi_edir = epp->ep_emul_root;
1052 	rw_exit(&p->p_cwdi->cwdi_lock);
1053 	epp->ep_emul_root = NULL;
1054 	if (epp->ep_interp != NULL)
1055 		vrele(epp->ep_interp);
1056 
1057 	/*
1058 	 * Call emulation specific exec hook. This can setup per-process
1059 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1060 	 *
1061 	 * If we are executing process of different emulation than the
1062 	 * original forked process, call e_proc_exit() of the old emulation
1063 	 * first, then e_proc_exec() of new emulation. If the emulation is
1064 	 * same, the exec hook code should deallocate any old emulation
1065 	 * resources held previously by this process.
1066 	 */
1067 	if (p->p_emul && p->p_emul->e_proc_exit
1068 	    && p->p_emul != epp->ep_esch->es_emul)
1069 		(*p->p_emul->e_proc_exit)(p);
1070 
1071 	/*
1072 	 * This is now LWP 1.
1073 	 */
1074 	/* XXX elsewhere */
1075 	mutex_enter(p->p_lock);
1076 	p->p_nlwpid = 1;
1077 	l->l_lid = 1;
1078 	mutex_exit(p->p_lock);
1079 
1080 	/*
1081 	 * Call exec hook. Emulation code may NOT store reference to anything
1082 	 * from &pack.
1083 	 */
1084 	if (epp->ep_esch->es_emul->e_proc_exec)
1085 		(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
1086 
1087 	/* update p_emul, the old value is no longer needed */
1088 	p->p_emul = epp->ep_esch->es_emul;
1089 
1090 	/* ...and the same for p_execsw */
1091 	p->p_execsw = epp->ep_esch;
1092 
1093 #ifdef __HAVE_SYSCALL_INTERN
1094 	(*p->p_emul->e_syscall_intern)(p);
1095 #endif
1096 	ktremul();
1097 }
1098 
1099 static int
1100 execve_runproc(struct lwp *l, struct execve_data * restrict data,
1101 	bool no_local_exec_lock, bool is_spawn)
1102 {
1103 	struct exec_package	* const epp = &data->ed_pack;
1104 	int error = 0;
1105 	struct proc		*p;
1106 
1107 	/*
1108 	 * In case of a posix_spawn operation, the child doing the exec
1109 	 * might not hold the reader lock on exec_lock, but the parent
1110 	 * will do this instead.
1111 	 */
1112 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
1113 	KASSERT(!no_local_exec_lock || is_spawn);
1114 	KASSERT(data != NULL);
1115 
1116 	p = l->l_proc;
1117 
1118 	/* Get rid of other LWPs. */
1119 	if (p->p_nlwps > 1) {
1120 		mutex_enter(p->p_lock);
1121 		exit_lwps(l);
1122 		mutex_exit(p->p_lock);
1123 	}
1124 	KDASSERT(p->p_nlwps == 1);
1125 
1126 	/* Destroy any lwpctl info. */
1127 	if (p->p_lwpctl != NULL)
1128 		lwp_ctl_exit();
1129 
1130 	/* Remove POSIX timers */
1131 	timers_free(p, TIMERS_POSIX);
1132 
1133 	/* Set the PaX flags. */
1134 	pax_set_flags(epp, p);
1135 
1136 	/*
1137 	 * Do whatever is necessary to prepare the address space
1138 	 * for remapping.  Note that this might replace the current
1139 	 * vmspace with another!
1140 	 */
1141 	if (is_spawn)
1142 		uvmspace_spawn(l, epp->ep_vm_minaddr,
1143 		    epp->ep_vm_maxaddr,
1144 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1145 	else
1146 		uvmspace_exec(l, epp->ep_vm_minaddr,
1147 		    epp->ep_vm_maxaddr,
1148 		    epp->ep_flags & EXEC_TOPDOWN_VM);
1149 
1150 	struct vmspace		*vm;
1151 	vm = p->p_vmspace;
1152 	vm->vm_taddr = (void *)epp->ep_taddr;
1153 	vm->vm_tsize = btoc(epp->ep_tsize);
1154 	vm->vm_daddr = (void*)epp->ep_daddr;
1155 	vm->vm_dsize = btoc(epp->ep_dsize);
1156 	vm->vm_ssize = btoc(epp->ep_ssize);
1157 	vm->vm_issize = 0;
1158 	vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
1159 	vm->vm_minsaddr = (void *)epp->ep_minsaddr;
1160 
1161 	pax_aslr_init_vm(l, vm, epp);
1162 
1163 	/* Now map address space. */
1164 	error = execve_dovmcmds(l, data);
1165 	if (error != 0)
1166 		goto exec_abort;
1167 
1168 	pathexec(epp, p, data->ed_pathstring);
1169 
1170 	char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
1171 
1172 	error = copyoutargs(data, l, newstack);
1173 	if (error != 0)
1174 		goto exec_abort;
1175 
1176 	cwdexec(p);
1177 	fd_closeexec();		/* handle close on exec */
1178 
1179 	if (__predict_false(ktrace_on))
1180 		fd_ktrexecfd();
1181 
1182 	execsigs(p);		/* reset catched signals */
1183 
1184 	mutex_enter(p->p_lock);
1185 	l->l_ctxlink = NULL;	/* reset ucontext link */
1186 	p->p_acflag &= ~AFORK;
1187 	p->p_flag |= PK_EXEC;
1188 	mutex_exit(p->p_lock);
1189 
1190 	/*
1191 	 * Stop profiling.
1192 	 */
1193 	if ((p->p_stflag & PST_PROFIL) != 0) {
1194 		mutex_spin_enter(&p->p_stmutex);
1195 		stopprofclock(p);
1196 		mutex_spin_exit(&p->p_stmutex);
1197 	}
1198 
1199 	/*
1200 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1201 	 * exited and exec()/exit() are the only places it will be cleared.
1202 	 */
1203 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1204 #if 0
1205 		lwp_t *lp;
1206 
1207 		mutex_enter(proc_lock);
1208 		lp = p->p_vforklwp;
1209 		p->p_vforklwp = NULL;
1210 
1211 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1212 		p->p_lflag &= ~PL_PPWAIT;
1213 
1214 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1215 		cv_broadcast(&lp->l_waitcv);
1216 		mutex_exit(proc_lock);
1217 #else
1218 		mutex_enter(proc_lock);
1219 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1220 		p->p_lflag &= ~PL_PPWAIT;
1221 		cv_broadcast(&p->p_pptr->p_waitcv);
1222 		mutex_exit(proc_lock);
1223 #endif
1224 	}
1225 
1226 	error = credexec(l, &data->ed_attr);
1227 	if (error)
1228 		goto exec_abort;
1229 
1230 #if defined(__HAVE_RAS)
1231 	/*
1232 	 * Remove all RASs from the address space.
1233 	 */
1234 	ras_purgeall();
1235 #endif
1236 
1237 	doexechooks(p);
1238 
1239 	/*
1240 	 * Set initial SP at the top of the stack.
1241 	 *
1242 	 * Note that on machines where stack grows up (e.g. hppa), SP points to
1243 	 * the end of arg/env strings.  Userland guesses the address of argc
1244 	 * via ps_strings::ps_argvstr.
1245 	 */
1246 
1247 	/* Setup new registers and do misc. setup. */
1248 	(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
1249 	if (epp->ep_esch->es_setregs)
1250 		(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
1251 
1252 	/* Provide a consistent LWP private setting */
1253 	(void)lwp_setprivate(l, NULL);
1254 
1255 	/* Discard all PCU state; need to start fresh */
1256 	pcu_discard_all(l);
1257 
1258 	/* map the process's signal trampoline code */
1259 	if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
1260 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1261 		goto exec_abort;
1262 	}
1263 
1264 	pool_put(&exec_pool, data->ed_argp);
1265 
1266 	/* notify others that we exec'd */
1267 	KNOTE(&p->p_klist, NOTE_EXEC);
1268 
1269 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1270 
1271 	SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
1272 
1273 	emulexec(l, epp);
1274 
1275 	/* Allow new references from the debugger/procfs. */
1276 	rw_exit(&p->p_reflock);
1277 	if (!no_local_exec_lock)
1278 		rw_exit(&exec_lock);
1279 
1280 	mutex_enter(proc_lock);
1281 
1282 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1283 		ksiginfo_t ksi;
1284 
1285 		KSI_INIT_EMPTY(&ksi);
1286 		ksi.ksi_signo = SIGTRAP;
1287 		ksi.ksi_lid = l->l_lid;
1288 		kpsignal(p, &ksi, NULL);
1289 	}
1290 
1291 	if (p->p_sflag & PS_STOPEXEC) {
1292 		ksiginfoq_t kq;
1293 
1294 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1295 		p->p_pptr->p_nstopchild++;
1296 		p->p_waited = 0;
1297 		mutex_enter(p->p_lock);
1298 		ksiginfo_queue_init(&kq);
1299 		sigclearall(p, &contsigmask, &kq);
1300 		lwp_lock(l);
1301 		l->l_stat = LSSTOP;
1302 		p->p_stat = SSTOP;
1303 		p->p_nrlwps--;
1304 		lwp_unlock(l);
1305 		mutex_exit(p->p_lock);
1306 		mutex_exit(proc_lock);
1307 		lwp_lock(l);
1308 		mi_switch(l);
1309 		ksiginfo_queue_drain(&kq);
1310 		KERNEL_LOCK(l->l_biglocks, l);
1311 	} else {
1312 		mutex_exit(proc_lock);
1313 	}
1314 
1315 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1316 	pathbuf_destroy(data->ed_pathbuf);
1317 	PNBUF_PUT(data->ed_resolvedpathbuf);
1318 #ifdef TRACE_EXEC
1319 	DPRINTF(("%s finished\n", __func__));
1320 #endif
1321 	return EJUSTRETURN;
1322 
1323  exec_abort:
1324 	SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
1325 	rw_exit(&p->p_reflock);
1326 	if (!no_local_exec_lock)
1327 		rw_exit(&exec_lock);
1328 
1329 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1330 	pathbuf_destroy(data->ed_pathbuf);
1331 	PNBUF_PUT(data->ed_resolvedpathbuf);
1332 
1333 	/*
1334 	 * the old process doesn't exist anymore.  exit gracefully.
1335 	 * get rid of the (new) address space we have created, if any, get rid
1336 	 * of our namei data and vnode, and exit noting failure
1337 	 */
1338 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1339 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1340 
1341 	exec_free_emul_arg(epp);
1342 	pool_put(&exec_pool, data->ed_argp);
1343 	kmem_free(epp->ep_hdr, epp->ep_hdrlen);
1344 	if (epp->ep_emul_root != NULL)
1345 		vrele(epp->ep_emul_root);
1346 	if (epp->ep_interp != NULL)
1347 		vrele(epp->ep_interp);
1348 
1349 	/* Acquire the sched-state mutex (exit1() will release it). */
1350 	if (!is_spawn) {
1351 		mutex_enter(p->p_lock);
1352 		exit1(l, error, SIGABRT);
1353 	}
1354 
1355 	return error;
1356 }
1357 
1358 int
1359 execve1(struct lwp *l, const char *path, char * const *args,
1360     char * const *envs, execve_fetch_element_t fetch_element)
1361 {
1362 	struct execve_data data;
1363 	int error;
1364 
1365 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1366 	if (error)
1367 		return error;
1368 	error = execve_runproc(l, &data, false, false);
1369 	return error;
1370 }
1371 
1372 static size_t
1373 fromptrsz(const struct exec_package *epp)
1374 {
1375 	return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
1376 }
1377 
1378 static size_t
1379 ptrsz(const struct exec_package *epp)
1380 {
1381 	return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
1382 }
1383 
1384 static size_t
1385 calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
1386 {
1387 	struct exec_package	* const epp = &data->ed_pack;
1388 
1389 	const size_t nargenvptrs =
1390 	    1 +				/* long argc */
1391 	    data->ed_argc +		/* char *argv[] */
1392 	    1 +				/* \0 */
1393 	    data->ed_envc +		/* char *env[] */
1394 	    1 +				/* \0 */
1395 	    epp->ep_esch->es_arglen;	/* auxinfo */
1396 
1397 	return (nargenvptrs * ptrsz(epp)) + argenvstrlen;
1398 }
1399 
1400 static size_t
1401 calcstack(struct execve_data * restrict data, const size_t gaplen)
1402 {
1403 	struct exec_package	* const epp = &data->ed_pack;
1404 
1405 	data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
1406 	    epp->ep_esch->es_emul->e_sigcode;
1407 
1408 	data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
1409 	    sizeof(struct ps_strings32) : sizeof(struct ps_strings);
1410 
1411 	const size_t sigcode_psstr_sz =
1412 	    data->ed_szsigcode +	/* sigcode */
1413 	    data->ed_ps_strings_sz +	/* ps_strings */
1414 	    STACK_PTHREADSPACE;		/* pthread space */
1415 
1416 	const size_t stacklen =
1417 	    data->ed_argslen +
1418 	    gaplen +
1419 	    sigcode_psstr_sz;
1420 
1421 	/* make the stack "safely" aligned */
1422 	return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
1423 }
1424 
1425 static int
1426 copyoutargs(struct execve_data * restrict data, struct lwp *l,
1427     char * const newstack)
1428 {
1429 	struct exec_package	* const epp = &data->ed_pack;
1430 	struct proc		*p = l->l_proc;
1431 	int			error;
1432 
1433 	/* remember information about the process */
1434 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
1435 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
1436 
1437 	/*
1438 	 * Allocate the stack address passed to the newly execve()'ed process.
1439 	 *
1440 	 * The new stack address will be set to the SP (stack pointer) register
1441 	 * in setregs().
1442 	 */
1443 
1444 	char *newargs = STACK_ALLOC(
1445 	    STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
1446 
1447 	error = (*epp->ep_esch->es_copyargs)(l, epp,
1448 	    &data->ed_arginfo, &newargs, data->ed_argp);
1449 
1450 	if (epp->ep_path) {
1451 		PNBUF_PUT(epp->ep_path);
1452 		epp->ep_path = NULL;
1453 	}
1454 	if (error) {
1455 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1456 		return error;
1457 	}
1458 
1459 	error = copyoutpsstrs(data, p);
1460 	if (error != 0)
1461 		return error;
1462 
1463 	return 0;
1464 }
1465 
1466 static int
1467 copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
1468 {
1469 	struct exec_package	* const epp = &data->ed_pack;
1470 	struct ps_strings32	arginfo32;
1471 	void			*aip;
1472 	int			error;
1473 
1474 	/* fill process ps_strings info */
1475 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
1476 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1477 
1478 	if (epp->ep_flags & EXEC_32) {
1479 		aip = &arginfo32;
1480 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1481 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1482 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1483 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1484 	} else
1485 		aip = &data->ed_arginfo;
1486 
1487 	/* copy out the process's ps_strings structure */
1488 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1489 	    != 0) {
1490 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1491 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1492 		return error;
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 static int
1499 copyinargs(struct execve_data * restrict data, char * const *args,
1500     char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
1501 {
1502 	struct exec_package	* const epp = &data->ed_pack;
1503 	char			*dp;
1504 	size_t			i;
1505 	int			error;
1506 
1507 	dp = *dpp;
1508 
1509 	data->ed_argc = 0;
1510 
1511 	/* copy the fake args list, if there's one, freeing it as we go */
1512 	if (epp->ep_flags & EXEC_HASARGL) {
1513 		struct exec_fakearg	*fa = epp->ep_fa;
1514 
1515 		while (fa->fa_arg != NULL) {
1516 			const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1517 			size_t len;
1518 
1519 			len = strlcpy(dp, fa->fa_arg, maxlen);
1520 			/* Count NUL into len. */
1521 			if (len < maxlen)
1522 				len++;
1523 			else {
1524 				while (fa->fa_arg != NULL) {
1525 					kmem_free(fa->fa_arg, fa->fa_len);
1526 					fa++;
1527 				}
1528 				kmem_free(epp->ep_fa, epp->ep_fa_len);
1529 				epp->ep_flags &= ~EXEC_HASARGL;
1530 				return E2BIG;
1531 			}
1532 			ktrexecarg(fa->fa_arg, len - 1);
1533 			dp += len;
1534 
1535 			kmem_free(fa->fa_arg, fa->fa_len);
1536 			fa++;
1537 			data->ed_argc++;
1538 		}
1539 		kmem_free(epp->ep_fa, epp->ep_fa_len);
1540 		epp->ep_flags &= ~EXEC_HASARGL;
1541 	}
1542 
1543 	/*
1544 	 * Read and count argument strings from user.
1545 	 */
1546 
1547 	if (args == NULL) {
1548 		DPRINTF(("%s: null args\n", __func__));
1549 		return EINVAL;
1550 	}
1551 	if (epp->ep_flags & EXEC_SKIPARG)
1552 		args = (const void *)((const char *)args + fromptrsz(epp));
1553 	i = 0;
1554 	error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
1555 	if (error != 0) {
1556 		DPRINTF(("%s: copyin arg %d\n", __func__, error));
1557 		return error;
1558 	}
1559 	data->ed_argc += i;
1560 
1561 	/*
1562 	 * Read and count environment strings from user.
1563 	 */
1564 
1565 	data->ed_envc = 0;
1566 	/* environment need not be there */
1567 	if (envs == NULL)
1568 		goto done;
1569 	i = 0;
1570 	error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
1571 	if (error != 0) {
1572 		DPRINTF(("%s: copyin env %d\n", __func__, error));
1573 		return error;
1574 	}
1575 	data->ed_envc += i;
1576 
1577 done:
1578 	*dpp = dp;
1579 
1580 	return 0;
1581 }
1582 
1583 static int
1584 copyinargstrs(struct execve_data * restrict data, char * const *strs,
1585     execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
1586     void (*ktr)(const void *, size_t))
1587 {
1588 	char			*dp, *sp;
1589 	size_t			i;
1590 	int			error;
1591 
1592 	dp = *dpp;
1593 
1594 	i = 0;
1595 	while (1) {
1596 		const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
1597 		size_t len;
1598 
1599 		if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
1600 			return error;
1601 		}
1602 		if (!sp)
1603 			break;
1604 		if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
1605 			if (error == ENAMETOOLONG)
1606 				error = E2BIG;
1607 			return error;
1608 		}
1609 		if (__predict_false(ktrace_on))
1610 			(*ktr)(dp, len - 1);
1611 		dp += len;
1612 		i++;
1613 	}
1614 
1615 	*dpp = dp;
1616 	*ip = i;
1617 
1618 	return 0;
1619 }
1620 
1621 /*
1622  * Copy argv and env strings from kernel buffer (argp) to the new stack.
1623  * Those strings are located just after auxinfo.
1624  */
1625 int
1626 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1627     char **stackp, void *argp)
1628 {
1629 	char	**cpp, *dp, *sp;
1630 	size_t	len;
1631 	void	*nullp;
1632 	long	argc, envc;
1633 	int	error;
1634 
1635 	cpp = (char **)*stackp;
1636 	nullp = NULL;
1637 	argc = arginfo->ps_nargvstr;
1638 	envc = arginfo->ps_nenvstr;
1639 
1640 	/* argc on stack is long */
1641 	CTASSERT(sizeof(*cpp) == sizeof(argc));
1642 
1643 	dp = (char *)(cpp +
1644 	    1 +				/* long argc */
1645 	    argc +			/* char *argv[] */
1646 	    1 +				/* \0 */
1647 	    envc +			/* char *env[] */
1648 	    1 +				/* \0 */
1649 	    /* XXX auxinfo multiplied by ptr size? */
1650 	    pack->ep_esch->es_arglen);	/* auxinfo */
1651 	sp = argp;
1652 
1653 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1654 		COPYPRINTF("", cpp - 1, sizeof(argc));
1655 		return error;
1656 	}
1657 
1658 	/* XXX don't copy them out, remap them! */
1659 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1660 
1661 	for (; --argc >= 0; sp += len, dp += len) {
1662 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1663 			COPYPRINTF("", cpp - 1, sizeof(dp));
1664 			return error;
1665 		}
1666 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1667 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1668 			return error;
1669 		}
1670 	}
1671 
1672 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1673 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1674 		return error;
1675 	}
1676 
1677 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1678 
1679 	for (; --envc >= 0; sp += len, dp += len) {
1680 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1681 			COPYPRINTF("", cpp - 1, sizeof(dp));
1682 			return error;
1683 		}
1684 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1685 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1686 			return error;
1687 		}
1688 
1689 	}
1690 
1691 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1692 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1693 		return error;
1694 	}
1695 
1696 	*stackp = (char *)cpp;
1697 	return 0;
1698 }
1699 
1700 
1701 /*
1702  * Add execsw[] entries.
1703  */
1704 int
1705 exec_add(struct execsw *esp, int count)
1706 {
1707 	struct exec_entry	*it;
1708 	int			i;
1709 
1710 	if (count == 0) {
1711 		return 0;
1712 	}
1713 
1714 	/* Check for duplicates. */
1715 	rw_enter(&exec_lock, RW_WRITER);
1716 	for (i = 0; i < count; i++) {
1717 		LIST_FOREACH(it, &ex_head, ex_list) {
1718 			/* assume unique (makecmds, probe_func, emulation) */
1719 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1720 			    it->ex_sw->u.elf_probe_func ==
1721 			    esp[i].u.elf_probe_func &&
1722 			    it->ex_sw->es_emul == esp[i].es_emul) {
1723 				rw_exit(&exec_lock);
1724 				return EEXIST;
1725 			}
1726 		}
1727 	}
1728 
1729 	/* Allocate new entries. */
1730 	for (i = 0; i < count; i++) {
1731 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1732 		it->ex_sw = &esp[i];
1733 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1734 	}
1735 
1736 	/* update execsw[] */
1737 	exec_init(0);
1738 	rw_exit(&exec_lock);
1739 	return 0;
1740 }
1741 
1742 /*
1743  * Remove execsw[] entry.
1744  */
1745 int
1746 exec_remove(struct execsw *esp, int count)
1747 {
1748 	struct exec_entry	*it, *next;
1749 	int			i;
1750 	const struct proclist_desc *pd;
1751 	proc_t			*p;
1752 
1753 	if (count == 0) {
1754 		return 0;
1755 	}
1756 
1757 	/* Abort if any are busy. */
1758 	rw_enter(&exec_lock, RW_WRITER);
1759 	for (i = 0; i < count; i++) {
1760 		mutex_enter(proc_lock);
1761 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1762 			PROCLIST_FOREACH(p, pd->pd_list) {
1763 				if (p->p_execsw == &esp[i]) {
1764 					mutex_exit(proc_lock);
1765 					rw_exit(&exec_lock);
1766 					return EBUSY;
1767 				}
1768 			}
1769 		}
1770 		mutex_exit(proc_lock);
1771 	}
1772 
1773 	/* None are busy, so remove them all. */
1774 	for (i = 0; i < count; i++) {
1775 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1776 			next = LIST_NEXT(it, ex_list);
1777 			if (it->ex_sw == &esp[i]) {
1778 				LIST_REMOVE(it, ex_list);
1779 				kmem_free(it, sizeof(*it));
1780 				break;
1781 			}
1782 		}
1783 	}
1784 
1785 	/* update execsw[] */
1786 	exec_init(0);
1787 	rw_exit(&exec_lock);
1788 	return 0;
1789 }
1790 
1791 /*
1792  * Initialize exec structures. If init_boot is true, also does necessary
1793  * one-time initialization (it's called from main() that way).
1794  * Once system is multiuser, this should be called with exec_lock held,
1795  * i.e. via exec_{add|remove}().
1796  */
1797 int
1798 exec_init(int init_boot)
1799 {
1800 	const struct execsw 	**sw;
1801 	struct exec_entry	*ex;
1802 	SLIST_HEAD(,exec_entry)	first;
1803 	SLIST_HEAD(,exec_entry)	any;
1804 	SLIST_HEAD(,exec_entry)	last;
1805 	int			i, sz;
1806 
1807 	if (init_boot) {
1808 		/* do one-time initializations */
1809 		rw_init(&exec_lock);
1810 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1811 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1812 		    "execargs", &exec_palloc, IPL_NONE);
1813 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1814 	} else {
1815 		KASSERT(rw_write_held(&exec_lock));
1816 	}
1817 
1818 	/* Sort each entry onto the appropriate queue. */
1819 	SLIST_INIT(&first);
1820 	SLIST_INIT(&any);
1821 	SLIST_INIT(&last);
1822 	sz = 0;
1823 	LIST_FOREACH(ex, &ex_head, ex_list) {
1824 		switch(ex->ex_sw->es_prio) {
1825 		case EXECSW_PRIO_FIRST:
1826 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1827 			break;
1828 		case EXECSW_PRIO_ANY:
1829 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1830 			break;
1831 		case EXECSW_PRIO_LAST:
1832 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1833 			break;
1834 		default:
1835 			panic("%s", __func__);
1836 			break;
1837 		}
1838 		sz++;
1839 	}
1840 
1841 	/*
1842 	 * Create new execsw[].  Ensure we do not try a zero-sized
1843 	 * allocation.
1844 	 */
1845 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1846 	i = 0;
1847 	SLIST_FOREACH(ex, &first, ex_slist) {
1848 		sw[i++] = ex->ex_sw;
1849 	}
1850 	SLIST_FOREACH(ex, &any, ex_slist) {
1851 		sw[i++] = ex->ex_sw;
1852 	}
1853 	SLIST_FOREACH(ex, &last, ex_slist) {
1854 		sw[i++] = ex->ex_sw;
1855 	}
1856 
1857 	/* Replace old execsw[] and free used memory. */
1858 	if (execsw != NULL) {
1859 		kmem_free(__UNCONST(execsw),
1860 		    nexecs * sizeof(struct execsw *) + 1);
1861 	}
1862 	execsw = sw;
1863 	nexecs = sz;
1864 
1865 	/* Figure out the maximum size of an exec header. */
1866 	exec_maxhdrsz = sizeof(int);
1867 	for (i = 0; i < nexecs; i++) {
1868 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1869 			exec_maxhdrsz = execsw[i]->es_hdrsz;
1870 	}
1871 
1872 	return 0;
1873 }
1874 
1875 static int
1876 exec_sigcode_map(struct proc *p, const struct emul *e)
1877 {
1878 	vaddr_t va;
1879 	vsize_t sz;
1880 	int error;
1881 	struct uvm_object *uobj;
1882 
1883 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1884 
1885 	if (e->e_sigobject == NULL || sz == 0) {
1886 		return 0;
1887 	}
1888 
1889 	/*
1890 	 * If we don't have a sigobject for this emulation, create one.
1891 	 *
1892 	 * sigobject is an anonymous memory object (just like SYSV shared
1893 	 * memory) that we keep a permanent reference to and that we map
1894 	 * in all processes that need this sigcode. The creation is simple,
1895 	 * we create an object, add a permanent reference to it, map it in
1896 	 * kernel space, copy out the sigcode to it and unmap it.
1897 	 * We map it with PROT_READ|PROT_EXEC into the process just
1898 	 * the way sys_mmap() would map it.
1899 	 */
1900 
1901 	uobj = *e->e_sigobject;
1902 	if (uobj == NULL) {
1903 		mutex_enter(&sigobject_lock);
1904 		if ((uobj = *e->e_sigobject) == NULL) {
1905 			uobj = uao_create(sz, 0);
1906 			(*uobj->pgops->pgo_reference)(uobj);
1907 			va = vm_map_min(kernel_map);
1908 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
1909 			    uobj, 0, 0,
1910 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1911 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1912 				printf("kernel mapping failed %d\n", error);
1913 				(*uobj->pgops->pgo_detach)(uobj);
1914 				mutex_exit(&sigobject_lock);
1915 				return error;
1916 			}
1917 			memcpy((void *)va, e->e_sigcode, sz);
1918 #ifdef PMAP_NEED_PROCWR
1919 			pmap_procwr(&proc0, va, sz);
1920 #endif
1921 			uvm_unmap(kernel_map, va, va + round_page(sz));
1922 			*e->e_sigobject = uobj;
1923 		}
1924 		mutex_exit(&sigobject_lock);
1925 	}
1926 
1927 	/* Just a hint to uvm_map where to put it. */
1928 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1929 	    round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
1930 
1931 #ifdef __alpha__
1932 	/*
1933 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
1934 	 * which causes the above calculation to put the sigcode at
1935 	 * an invalid address.  Put it just below the text instead.
1936 	 */
1937 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1938 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1939 	}
1940 #endif
1941 
1942 	(*uobj->pgops->pgo_reference)(uobj);
1943 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1944 			uobj, 0, 0,
1945 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1946 				    UVM_ADV_RANDOM, 0));
1947 	if (error) {
1948 		DPRINTF(("%s, %d: map %p "
1949 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1950 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1951 		    va, error));
1952 		(*uobj->pgops->pgo_detach)(uobj);
1953 		return error;
1954 	}
1955 	p->p_sigctx.ps_sigcode = (void *)va;
1956 	return 0;
1957 }
1958 
1959 /*
1960  * Release a refcount on spawn_exec_data and destroy memory, if this
1961  * was the last one.
1962  */
1963 static void
1964 spawn_exec_data_release(struct spawn_exec_data *data)
1965 {
1966 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1967 		return;
1968 
1969 	cv_destroy(&data->sed_cv_child_ready);
1970 	mutex_destroy(&data->sed_mtx_child);
1971 
1972 	if (data->sed_actions)
1973 		posix_spawn_fa_free(data->sed_actions,
1974 		    data->sed_actions->len);
1975 	if (data->sed_attrs)
1976 		kmem_free(data->sed_attrs,
1977 		    sizeof(*data->sed_attrs));
1978 	kmem_free(data, sizeof(*data));
1979 }
1980 
1981 /*
1982  * A child lwp of a posix_spawn operation starts here and ends up in
1983  * cpu_spawn_return, dealing with all filedescriptor and scheduler
1984  * manipulations in between.
1985  * The parent waits for the child, as it is not clear whether the child
1986  * will be able to acquire its own exec_lock. If it can, the parent can
1987  * be released early and continue running in parallel. If not (or if the
1988  * magic debug flag is passed in the scheduler attribute struct), the
1989  * child rides on the parent's exec lock until it is ready to return to
1990  * to userland - and only then releases the parent. This method loses
1991  * concurrency, but improves error reporting.
1992  */
1993 static void
1994 spawn_return(void *arg)
1995 {
1996 	struct spawn_exec_data *spawn_data = arg;
1997 	struct lwp *l = curlwp;
1998 	int error, newfd;
1999 	int ostat;
2000 	size_t i;
2001 	const struct posix_spawn_file_actions_entry *fae;
2002 	pid_t ppid;
2003 	register_t retval;
2004 	bool have_reflock;
2005 	bool parent_is_waiting = true;
2006 
2007 	/*
2008 	 * Check if we can release parent early.
2009 	 * We either need to have no sed_attrs, or sed_attrs does not
2010 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
2011 	 * safe access to the parent proc (passed in sed_parent).
2012 	 * We then try to get the exec_lock, and only if that works, we can
2013 	 * release the parent here already.
2014 	 */
2015 	ppid = spawn_data->sed_parent->p_pid;
2016 	if ((!spawn_data->sed_attrs
2017 	    || (spawn_data->sed_attrs->sa_flags
2018 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
2019 	    && rw_tryenter(&exec_lock, RW_READER)) {
2020 		parent_is_waiting = false;
2021 		mutex_enter(&spawn_data->sed_mtx_child);
2022 		cv_signal(&spawn_data->sed_cv_child_ready);
2023 		mutex_exit(&spawn_data->sed_mtx_child);
2024 	}
2025 
2026 	/* don't allow debugger access yet */
2027 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
2028 	have_reflock = true;
2029 
2030 	error = 0;
2031 	/* handle posix_spawn_file_actions */
2032 	if (spawn_data->sed_actions != NULL) {
2033 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
2034 			fae = &spawn_data->sed_actions->fae[i];
2035 			switch (fae->fae_action) {
2036 			case FAE_OPEN:
2037 				if (fd_getfile(fae->fae_fildes) != NULL) {
2038 					error = fd_close(fae->fae_fildes);
2039 					if (error)
2040 						break;
2041 				}
2042 				error = fd_open(fae->fae_path, fae->fae_oflag,
2043 				    fae->fae_mode, &newfd);
2044 				if (error)
2045 					break;
2046 				if (newfd != fae->fae_fildes) {
2047 					error = dodup(l, newfd,
2048 					    fae->fae_fildes, 0, &retval);
2049 					if (fd_getfile(newfd) != NULL)
2050 						fd_close(newfd);
2051 				}
2052 				break;
2053 			case FAE_DUP2:
2054 				error = dodup(l, fae->fae_fildes,
2055 				    fae->fae_newfildes, 0, &retval);
2056 				break;
2057 			case FAE_CLOSE:
2058 				if (fd_getfile(fae->fae_fildes) == NULL) {
2059 					error = EBADF;
2060 					break;
2061 				}
2062 				error = fd_close(fae->fae_fildes);
2063 				break;
2064 			}
2065 			if (error)
2066 				goto report_error;
2067 		}
2068 	}
2069 
2070 	/* handle posix_spawnattr */
2071 	if (spawn_data->sed_attrs != NULL) {
2072 		struct sigaction sigact;
2073 		sigact._sa_u._sa_handler = SIG_DFL;
2074 		sigact.sa_flags = 0;
2075 
2076 		/*
2077 		 * set state to SSTOP so that this proc can be found by pid.
2078 		 * see proc_enterprp, do_sched_setparam below
2079 		 */
2080 		mutex_enter(proc_lock);
2081 		/*
2082 		 * p_stat should be SACTIVE, so we need to adjust the
2083 		 * parent's p_nstopchild here.  For safety, just make
2084 		 * we're on the good side of SDEAD before we adjust.
2085 		 */
2086 		ostat = l->l_proc->p_stat;
2087 		KASSERT(ostat < SSTOP);
2088 		l->l_proc->p_stat = SSTOP;
2089 		l->l_proc->p_waited = 0;
2090 		l->l_proc->p_pptr->p_nstopchild++;
2091 		mutex_exit(proc_lock);
2092 
2093 		/* Set process group */
2094 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
2095 			pid_t mypid = l->l_proc->p_pid,
2096 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
2097 
2098 			if (pgrp == 0)
2099 				pgrp = mypid;
2100 
2101 			error = proc_enterpgrp(spawn_data->sed_parent,
2102 			    mypid, pgrp, false);
2103 			if (error)
2104 				goto report_error_stopped;
2105 		}
2106 
2107 		/* Set scheduler policy */
2108 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
2109 			error = do_sched_setparam(l->l_proc->p_pid, 0,
2110 			    spawn_data->sed_attrs->sa_schedpolicy,
2111 			    &spawn_data->sed_attrs->sa_schedparam);
2112 		else if (spawn_data->sed_attrs->sa_flags
2113 		    & POSIX_SPAWN_SETSCHEDPARAM) {
2114 			error = do_sched_setparam(ppid, 0,
2115 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
2116 		}
2117 		if (error)
2118 			goto report_error_stopped;
2119 
2120 		/* Reset user ID's */
2121 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
2122 			error = do_setresuid(l, -1,
2123 			     kauth_cred_getgid(l->l_cred), -1,
2124 			     ID_E_EQ_R | ID_E_EQ_S);
2125 			if (error)
2126 				goto report_error_stopped;
2127 			error = do_setresuid(l, -1,
2128 			    kauth_cred_getuid(l->l_cred), -1,
2129 			    ID_E_EQ_R | ID_E_EQ_S);
2130 			if (error)
2131 				goto report_error_stopped;
2132 		}
2133 
2134 		/* Set signal masks/defaults */
2135 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
2136 			mutex_enter(l->l_proc->p_lock);
2137 			error = sigprocmask1(l, SIG_SETMASK,
2138 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
2139 			mutex_exit(l->l_proc->p_lock);
2140 			if (error)
2141 				goto report_error_stopped;
2142 		}
2143 
2144 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
2145 			/*
2146 			 * The following sigaction call is using a sigaction
2147 			 * version 0 trampoline which is in the compatibility
2148 			 * code only. This is not a problem because for SIG_DFL
2149 			 * and SIG_IGN, the trampolines are now ignored. If they
2150 			 * were not, this would be a problem because we are
2151 			 * holding the exec_lock, and the compat code needs
2152 			 * to do the same in order to replace the trampoline
2153 			 * code of the process.
2154 			 */
2155 			for (i = 1; i <= NSIG; i++) {
2156 				if (sigismember(
2157 				    &spawn_data->sed_attrs->sa_sigdefault, i))
2158 					sigaction1(l, i, &sigact, NULL, NULL,
2159 					    0);
2160 			}
2161 		}
2162 		mutex_enter(proc_lock);
2163 		l->l_proc->p_stat = ostat;
2164 		l->l_proc->p_pptr->p_nstopchild--;
2165 		mutex_exit(proc_lock);
2166 	}
2167 
2168 	/* now do the real exec */
2169 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
2170 	    true);
2171 	have_reflock = false;
2172 	if (error == EJUSTRETURN)
2173 		error = 0;
2174 	else if (error)
2175 		goto report_error;
2176 
2177 	if (parent_is_waiting) {
2178 		mutex_enter(&spawn_data->sed_mtx_child);
2179 		cv_signal(&spawn_data->sed_cv_child_ready);
2180 		mutex_exit(&spawn_data->sed_mtx_child);
2181 	}
2182 
2183 	/* release our refcount on the data */
2184 	spawn_exec_data_release(spawn_data);
2185 
2186 	/* and finally: leave to userland for the first time */
2187 	cpu_spawn_return(l);
2188 
2189 	/* NOTREACHED */
2190 	return;
2191 
2192  report_error_stopped:
2193 	mutex_enter(proc_lock);
2194 	l->l_proc->p_stat = ostat;
2195 	l->l_proc->p_pptr->p_nstopchild--;
2196 	mutex_exit(proc_lock);
2197  report_error:
2198 	if (have_reflock) {
2199 		/*
2200 		 * We have not passed through execve_runproc(),
2201 		 * which would have released the p_reflock and also
2202 		 * taken ownership of the sed_exec part of spawn_data,
2203 		 * so release/free both here.
2204 		 */
2205 		rw_exit(&l->l_proc->p_reflock);
2206 		execve_free_data(&spawn_data->sed_exec);
2207 	}
2208 
2209 	if (parent_is_waiting) {
2210 		/* pass error to parent */
2211 		mutex_enter(&spawn_data->sed_mtx_child);
2212 		spawn_data->sed_error = error;
2213 		cv_signal(&spawn_data->sed_cv_child_ready);
2214 		mutex_exit(&spawn_data->sed_mtx_child);
2215 	} else {
2216 		rw_exit(&exec_lock);
2217 	}
2218 
2219 	/* release our refcount on the data */
2220 	spawn_exec_data_release(spawn_data);
2221 
2222 	/* done, exit */
2223 	mutex_enter(l->l_proc->p_lock);
2224 	/*
2225 	 * Posix explicitly asks for an exit code of 127 if we report
2226 	 * errors from the child process - so, unfortunately, there
2227 	 * is no way to report a more exact error code.
2228 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2229 	 * flag bit in the attrp argument to posix_spawn(2), see above.
2230 	 */
2231 	exit1(l, 127, 0);
2232 }
2233 
2234 void
2235 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2236 {
2237 
2238 	for (size_t i = 0; i < len; i++) {
2239 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2240 		if (fae->fae_action != FAE_OPEN)
2241 			continue;
2242 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2243 	}
2244 	if (fa->len > 0)
2245 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2246 	kmem_free(fa, sizeof(*fa));
2247 }
2248 
2249 static int
2250 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2251     const struct posix_spawn_file_actions *ufa, rlim_t lim)
2252 {
2253 	struct posix_spawn_file_actions *fa;
2254 	struct posix_spawn_file_actions_entry *fae;
2255 	char *pbuf = NULL;
2256 	int error;
2257 	size_t i = 0;
2258 
2259 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2260 	error = copyin(ufa, fa, sizeof(*fa));
2261 	if (error || fa->len == 0) {
2262 		kmem_free(fa, sizeof(*fa));
2263 		return error;	/* 0 if not an error, and len == 0 */
2264 	}
2265 
2266 	if (fa->len > lim) {
2267 		kmem_free(fa, sizeof(*fa));
2268 		return EINVAL;
2269 	}
2270 
2271 	fa->size = fa->len;
2272 	size_t fal = fa->len * sizeof(*fae);
2273 	fae = fa->fae;
2274 	fa->fae = kmem_alloc(fal, KM_SLEEP);
2275 	error = copyin(fae, fa->fae, fal);
2276 	if (error)
2277 		goto out;
2278 
2279 	pbuf = PNBUF_GET();
2280 	for (; i < fa->len; i++) {
2281 		fae = &fa->fae[i];
2282 		if (fae->fae_action != FAE_OPEN)
2283 			continue;
2284 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2285 		if (error)
2286 			goto out;
2287 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2288 		memcpy(fae->fae_path, pbuf, fal);
2289 	}
2290 	PNBUF_PUT(pbuf);
2291 
2292 	*fap = fa;
2293 	return 0;
2294 out:
2295 	if (pbuf)
2296 		PNBUF_PUT(pbuf);
2297 	posix_spawn_fa_free(fa, i);
2298 	return error;
2299 }
2300 
2301 int
2302 check_posix_spawn(struct lwp *l1)
2303 {
2304 	int error, tnprocs, count;
2305 	uid_t uid;
2306 	struct proc *p1;
2307 
2308 	p1 = l1->l_proc;
2309 	uid = kauth_cred_getuid(l1->l_cred);
2310 	tnprocs = atomic_inc_uint_nv(&nprocs);
2311 
2312 	/*
2313 	 * Although process entries are dynamically created, we still keep
2314 	 * a global limit on the maximum number we will create.
2315 	 */
2316 	if (__predict_false(tnprocs >= maxproc))
2317 		error = -1;
2318 	else
2319 		error = kauth_authorize_process(l1->l_cred,
2320 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2321 
2322 	if (error) {
2323 		atomic_dec_uint(&nprocs);
2324 		return EAGAIN;
2325 	}
2326 
2327 	/*
2328 	 * Enforce limits.
2329 	 */
2330 	count = chgproccnt(uid, 1);
2331 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2332 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2333 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2334 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2335 		(void)chgproccnt(uid, -1);
2336 		atomic_dec_uint(&nprocs);
2337 		return EAGAIN;
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 int
2344 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2345 	struct posix_spawn_file_actions *fa,
2346 	struct posix_spawnattr *sa,
2347 	char *const *argv, char *const *envp,
2348 	execve_fetch_element_t fetch)
2349 {
2350 
2351 	struct proc *p1, *p2;
2352 	struct lwp *l2;
2353 	int error;
2354 	struct spawn_exec_data *spawn_data;
2355 	vaddr_t uaddr;
2356 	pid_t pid;
2357 	bool have_exec_lock = false;
2358 
2359 	p1 = l1->l_proc;
2360 
2361 	/* Allocate and init spawn_data */
2362 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2363 	spawn_data->sed_refcnt = 1; /* only parent so far */
2364 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2365 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2366 	mutex_enter(&spawn_data->sed_mtx_child);
2367 
2368 	/*
2369 	 * Do the first part of the exec now, collect state
2370 	 * in spawn_data.
2371 	 */
2372 	error = execve_loadvm(l1, path, argv,
2373 	    envp, fetch, &spawn_data->sed_exec);
2374 	if (error == EJUSTRETURN)
2375 		error = 0;
2376 	else if (error)
2377 		goto error_exit;
2378 
2379 	have_exec_lock = true;
2380 
2381 	/*
2382 	 * Allocate virtual address space for the U-area now, while it
2383 	 * is still easy to abort the fork operation if we're out of
2384 	 * kernel virtual address space.
2385 	 */
2386 	uaddr = uvm_uarea_alloc();
2387 	if (__predict_false(uaddr == 0)) {
2388 		error = ENOMEM;
2389 		goto error_exit;
2390 	}
2391 
2392 	/*
2393 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
2394 	 * replace it with its own before returning to userland
2395 	 * in the child.
2396 	 * This is a point of no return, we will have to go through
2397 	 * the child proc to properly clean it up past this point.
2398 	 */
2399 	p2 = proc_alloc();
2400 	pid = p2->p_pid;
2401 
2402 	/*
2403 	 * Make a proc table entry for the new process.
2404 	 * Start by zeroing the section of proc that is zero-initialized,
2405 	 * then copy the section that is copied directly from the parent.
2406 	 */
2407 	memset(&p2->p_startzero, 0,
2408 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2409 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
2410 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2411 	p2->p_vmspace = proc0.p_vmspace;
2412 
2413 	TAILQ_INIT(&p2->p_sigpend.sp_info);
2414 
2415 	LIST_INIT(&p2->p_lwps);
2416 	LIST_INIT(&p2->p_sigwaiters);
2417 
2418 	/*
2419 	 * Duplicate sub-structures as needed.
2420 	 * Increase reference counts on shared objects.
2421 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
2422 	 * handling are important in order to keep a consistent behaviour
2423 	 * for the child after the fork.  If we are a 32-bit process, the
2424 	 * child will be too.
2425 	 */
2426 	p2->p_flag =
2427 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2428 	p2->p_emul = p1->p_emul;
2429 	p2->p_execsw = p1->p_execsw;
2430 
2431 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2432 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2433 	rw_init(&p2->p_reflock);
2434 	cv_init(&p2->p_waitcv, "wait");
2435 	cv_init(&p2->p_lwpcv, "lwpwait");
2436 
2437 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2438 
2439 	kauth_proc_fork(p1, p2);
2440 
2441 	p2->p_raslist = NULL;
2442 	p2->p_fd = fd_copy();
2443 
2444 	/* XXX racy */
2445 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2446 
2447 	p2->p_cwdi = cwdinit();
2448 
2449 	/*
2450 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2451 	 * we just need increase pl_refcnt.
2452 	 */
2453 	if (!p1->p_limit->pl_writeable) {
2454 		lim_addref(p1->p_limit);
2455 		p2->p_limit = p1->p_limit;
2456 	} else {
2457 		p2->p_limit = lim_copy(p1->p_limit);
2458 	}
2459 
2460 	p2->p_lflag = 0;
2461 	p2->p_sflag = 0;
2462 	p2->p_slflag = 0;
2463 	p2->p_pptr = p1;
2464 	p2->p_ppid = p1->p_pid;
2465 	LIST_INIT(&p2->p_children);
2466 
2467 	p2->p_aio = NULL;
2468 
2469 #ifdef KTRACE
2470 	/*
2471 	 * Copy traceflag and tracefile if enabled.
2472 	 * If not inherited, these were zeroed above.
2473 	 */
2474 	if (p1->p_traceflag & KTRFAC_INHERIT) {
2475 		mutex_enter(&ktrace_lock);
2476 		p2->p_traceflag = p1->p_traceflag;
2477 		if ((p2->p_tracep = p1->p_tracep) != NULL)
2478 			ktradref(p2);
2479 		mutex_exit(&ktrace_lock);
2480 	}
2481 #endif
2482 
2483 	/*
2484 	 * Create signal actions for the child process.
2485 	 */
2486 	p2->p_sigacts = sigactsinit(p1, 0);
2487 	mutex_enter(p1->p_lock);
2488 	p2->p_sflag |=
2489 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2490 	sched_proc_fork(p1, p2);
2491 	mutex_exit(p1->p_lock);
2492 
2493 	p2->p_stflag = p1->p_stflag;
2494 
2495 	/*
2496 	 * p_stats.
2497 	 * Copy parts of p_stats, and zero out the rest.
2498 	 */
2499 	p2->p_stats = pstatscopy(p1->p_stats);
2500 
2501 	/* copy over machdep flags to the new proc */
2502 	cpu_proc_fork(p1, p2);
2503 
2504 	/*
2505 	 * Prepare remaining parts of spawn data
2506 	 */
2507 	spawn_data->sed_actions = fa;
2508 	spawn_data->sed_attrs = sa;
2509 
2510 	spawn_data->sed_parent = p1;
2511 
2512 	/* create LWP */
2513 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2514 	    &l2, l1->l_class);
2515 	l2->l_ctxlink = NULL;	/* reset ucontext link */
2516 
2517 	/*
2518 	 * Copy the credential so other references don't see our changes.
2519 	 * Test to see if this is necessary first, since in the common case
2520 	 * we won't need a private reference.
2521 	 */
2522 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2523 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2524 		l2->l_cred = kauth_cred_copy(l2->l_cred);
2525 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2526 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2527 	}
2528 
2529 	/* Update the master credentials. */
2530 	if (l2->l_cred != p2->p_cred) {
2531 		kauth_cred_t ocred;
2532 
2533 		kauth_cred_hold(l2->l_cred);
2534 		mutex_enter(p2->p_lock);
2535 		ocred = p2->p_cred;
2536 		p2->p_cred = l2->l_cred;
2537 		mutex_exit(p2->p_lock);
2538 		kauth_cred_free(ocred);
2539 	}
2540 
2541 	*child_ok = true;
2542 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
2543 #if 0
2544 	l2->l_nopreempt = 1; /* start it non-preemptable */
2545 #endif
2546 
2547 	/*
2548 	 * It's now safe for the scheduler and other processes to see the
2549 	 * child process.
2550 	 */
2551 	mutex_enter(proc_lock);
2552 
2553 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2554 		p2->p_lflag |= PL_CONTROLT;
2555 
2556 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2557 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
2558 
2559 	LIST_INSERT_AFTER(p1, p2, p_pglist);
2560 	LIST_INSERT_HEAD(&allproc, p2, p_list);
2561 
2562 	p2->p_trace_enabled = trace_is_enabled(p2);
2563 #ifdef __HAVE_SYSCALL_INTERN
2564 	(*p2->p_emul->e_syscall_intern)(p2);
2565 #endif
2566 
2567 	/*
2568 	 * Make child runnable, set start time, and add to run queue except
2569 	 * if the parent requested the child to start in SSTOP state.
2570 	 */
2571 	mutex_enter(p2->p_lock);
2572 
2573 	getmicrotime(&p2->p_stats->p_start);
2574 
2575 	lwp_lock(l2);
2576 	KASSERT(p2->p_nrlwps == 1);
2577 	p2->p_nrlwps = 1;
2578 	p2->p_stat = SACTIVE;
2579 	l2->l_stat = LSRUN;
2580 	sched_enqueue(l2, false);
2581 	lwp_unlock(l2);
2582 
2583 	mutex_exit(p2->p_lock);
2584 	mutex_exit(proc_lock);
2585 
2586 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2587 	error = spawn_data->sed_error;
2588 	mutex_exit(&spawn_data->sed_mtx_child);
2589 	spawn_exec_data_release(spawn_data);
2590 
2591 	rw_exit(&p1->p_reflock);
2592 	rw_exit(&exec_lock);
2593 	have_exec_lock = false;
2594 
2595 	*pid_res = pid;
2596 	return error;
2597 
2598  error_exit:
2599 	if (have_exec_lock) {
2600 		execve_free_data(&spawn_data->sed_exec);
2601 		rw_exit(&p1->p_reflock);
2602 		rw_exit(&exec_lock);
2603 	}
2604 	mutex_exit(&spawn_data->sed_mtx_child);
2605 	spawn_exec_data_release(spawn_data);
2606 
2607 	return error;
2608 }
2609 
2610 int
2611 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2612     register_t *retval)
2613 {
2614 	/* {
2615 		syscallarg(pid_t *) pid;
2616 		syscallarg(const char *) path;
2617 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
2618 		syscallarg(const struct posix_spawnattr *) attrp;
2619 		syscallarg(char *const *) argv;
2620 		syscallarg(char *const *) envp;
2621 	} */
2622 
2623 	int error;
2624 	struct posix_spawn_file_actions *fa = NULL;
2625 	struct posix_spawnattr *sa = NULL;
2626 	pid_t pid;
2627 	bool child_ok = false;
2628 	rlim_t max_fileactions;
2629 	proc_t *p = l1->l_proc;
2630 
2631 	error = check_posix_spawn(l1);
2632 	if (error) {
2633 		*retval = error;
2634 		return 0;
2635 	}
2636 
2637 	/* copy in file_actions struct */
2638 	if (SCARG(uap, file_actions) != NULL) {
2639 		max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
2640 		    maxfiles);
2641 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
2642 		    max_fileactions);
2643 		if (error)
2644 			goto error_exit;
2645 	}
2646 
2647 	/* copyin posix_spawnattr struct */
2648 	if (SCARG(uap, attrp) != NULL) {
2649 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2650 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2651 		if (error)
2652 			goto error_exit;
2653 	}
2654 
2655 	/*
2656 	 * Do the spawn
2657 	 */
2658 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2659 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2660 	if (error)
2661 		goto error_exit;
2662 
2663 	if (error == 0 && SCARG(uap, pid) != NULL)
2664 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2665 
2666 	*retval = error;
2667 	return 0;
2668 
2669  error_exit:
2670 	if (!child_ok) {
2671 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2672 		atomic_dec_uint(&nprocs);
2673 
2674 		if (sa)
2675 			kmem_free(sa, sizeof(*sa));
2676 		if (fa)
2677 			posix_spawn_fa_free(fa, fa->len);
2678 	}
2679 
2680 	*retval = error;
2681 	return 0;
2682 }
2683 
2684 void
2685 exec_free_emul_arg(struct exec_package *epp)
2686 {
2687 	if (epp->ep_emul_arg_free != NULL) {
2688 		KASSERT(epp->ep_emul_arg != NULL);
2689 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2690 		epp->ep_emul_arg_free = NULL;
2691 		epp->ep_emul_arg = NULL;
2692 	} else {
2693 		KASSERT(epp->ep_emul_arg == NULL);
2694 	}
2695 }
2696 
2697 #ifdef DEBUG_EXEC
2698 static void
2699 dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
2700 {
2701 	struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
2702 	size_t j;
2703 
2704 	if (error == 0)
2705 		DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
2706 	else
2707 		DPRINTF(("vmcmds %zu/%u, error %d\n", x,
2708 		    epp->ep_vmcmds.evs_used, error));
2709 
2710 	for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
2711 		DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
2712 		    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
2713 		    PRIxVSIZE" prot=0%o flags=%d\n", j,
2714 		    vp[j].ev_proc == vmcmd_map_pagedvn ?
2715 		    "pagedvn" :
2716 		    vp[j].ev_proc == vmcmd_map_readvn ?
2717 		    "readvn" :
2718 		    vp[j].ev_proc == vmcmd_map_zero ?
2719 		    "zero" : "*unknown*",
2720 		    vp[j].ev_addr, vp[j].ev_len,
2721 		    vp[j].ev_offset, vp[j].ev_prot,
2722 		    vp[j].ev_flags));
2723 		if (error != 0 && j == x)
2724 			DPRINTF(("     ^--- failed\n"));
2725 	}
2726 }
2727 #endif
2728