1 /* $NetBSD: kern_exec.c,v 1.377 2014/02/19 15:23:20 maxv Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /*- 30 * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou 31 * Copyright (C) 1992 Wolfgang Solfrank. 32 * Copyright (C) 1992 TooLs GmbH. 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. All advertising materials mentioning features or use of this software 44 * must display the following acknowledgement: 45 * This product includes software developed by TooLs GmbH. 46 * 4. The name of TooLs GmbH may not be used to endorse or promote products 47 * derived from this software without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 50 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 51 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 52 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 54 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 55 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 56 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 57 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 58 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 */ 60 61 #include <sys/cdefs.h> 62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.377 2014/02/19 15:23:20 maxv Exp $"); 63 64 #include "opt_exec.h" 65 #include "opt_execfmt.h" 66 #include "opt_ktrace.h" 67 #include "opt_modular.h" 68 #include "opt_syscall_debug.h" 69 #include "veriexec.h" 70 #include "opt_pax.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/filedesc.h> 75 #include <sys/kernel.h> 76 #include <sys/proc.h> 77 #include <sys/mount.h> 78 #include <sys/malloc.h> 79 #include <sys/kmem.h> 80 #include <sys/namei.h> 81 #include <sys/vnode.h> 82 #include <sys/file.h> 83 #include <sys/acct.h> 84 #include <sys/atomic.h> 85 #include <sys/exec.h> 86 #include <sys/ktrace.h> 87 #include <sys/uidinfo.h> 88 #include <sys/wait.h> 89 #include <sys/mman.h> 90 #include <sys/ras.h> 91 #include <sys/signalvar.h> 92 #include <sys/stat.h> 93 #include <sys/syscall.h> 94 #include <sys/kauth.h> 95 #include <sys/lwpctl.h> 96 #include <sys/pax.h> 97 #include <sys/cpu.h> 98 #include <sys/module.h> 99 #include <sys/syscallvar.h> 100 #include <sys/syscallargs.h> 101 #if NVERIEXEC > 0 102 #include <sys/verified_exec.h> 103 #endif /* NVERIEXEC > 0 */ 104 #include <sys/sdt.h> 105 #include <sys/spawn.h> 106 #include <sys/prot.h> 107 #include <sys/cprng.h> 108 109 #include <uvm/uvm_extern.h> 110 111 #include <machine/reg.h> 112 113 #include <compat/common/compat_util.h> 114 115 #ifndef MD_TOPDOWN_INIT 116 #ifdef __USE_TOPDOWN_VM 117 #define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM 118 #else 119 #define MD_TOPDOWN_INIT(epp) 120 #endif 121 #endif 122 123 static int exec_sigcode_map(struct proc *, const struct emul *); 124 125 #ifdef DEBUG_EXEC 126 #define DPRINTF(a) printf a 127 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \ 128 __LINE__, (s), (a), (b)) 129 #else 130 #define DPRINTF(a) 131 #define COPYPRINTF(s, a, b) 132 #endif /* DEBUG_EXEC */ 133 134 /* 135 * DTrace SDT provider definitions 136 */ 137 SDT_PROBE_DEFINE(proc,,,exec,exec, 138 "char *", NULL, 139 NULL, NULL, NULL, NULL, 140 NULL, NULL, NULL, NULL); 141 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success, 142 "char *", NULL, 143 NULL, NULL, NULL, NULL, 144 NULL, NULL, NULL, NULL); 145 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure, 146 "int", NULL, 147 NULL, NULL, NULL, NULL, 148 NULL, NULL, NULL, NULL); 149 150 /* 151 * Exec function switch: 152 * 153 * Note that each makecmds function is responsible for loading the 154 * exec package with the necessary functions for any exec-type-specific 155 * handling. 156 * 157 * Functions for specific exec types should be defined in their own 158 * header file. 159 */ 160 static const struct execsw **execsw = NULL; 161 static int nexecs; 162 163 u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */ 164 165 /* list of dynamically loaded execsw entries */ 166 static LIST_HEAD(execlist_head, exec_entry) ex_head = 167 LIST_HEAD_INITIALIZER(ex_head); 168 struct exec_entry { 169 LIST_ENTRY(exec_entry) ex_list; 170 SLIST_ENTRY(exec_entry) ex_slist; 171 const struct execsw *ex_sw; 172 }; 173 174 #ifndef __HAVE_SYSCALL_INTERN 175 void syscall(void); 176 #endif 177 178 /* NetBSD emul struct */ 179 struct emul emul_netbsd = { 180 .e_name = "netbsd", 181 #ifdef EMUL_NATIVEROOT 182 .e_path = EMUL_NATIVEROOT, 183 #else 184 .e_path = NULL, 185 #endif 186 #ifndef __HAVE_MINIMAL_EMUL 187 .e_flags = EMUL_HAS_SYS___syscall, 188 .e_errno = NULL, 189 .e_nosys = SYS_syscall, 190 .e_nsysent = SYS_NSYSENT, 191 #endif 192 .e_sysent = sysent, 193 #ifdef SYSCALL_DEBUG 194 .e_syscallnames = syscallnames, 195 #else 196 .e_syscallnames = NULL, 197 #endif 198 .e_sendsig = sendsig, 199 .e_trapsignal = trapsignal, 200 .e_tracesig = NULL, 201 .e_sigcode = NULL, 202 .e_esigcode = NULL, 203 .e_sigobject = NULL, 204 .e_setregs = setregs, 205 .e_proc_exec = NULL, 206 .e_proc_fork = NULL, 207 .e_proc_exit = NULL, 208 .e_lwp_fork = NULL, 209 .e_lwp_exit = NULL, 210 #ifdef __HAVE_SYSCALL_INTERN 211 .e_syscall_intern = syscall_intern, 212 #else 213 .e_syscall = syscall, 214 #endif 215 .e_sysctlovly = NULL, 216 .e_fault = NULL, 217 .e_vm_default_addr = uvm_default_mapaddr, 218 .e_usertrap = NULL, 219 .e_ucsize = sizeof(ucontext_t), 220 .e_startlwp = startlwp 221 }; 222 223 /* 224 * Exec lock. Used to control access to execsw[] structures. 225 * This must not be static so that netbsd32 can access it, too. 226 */ 227 krwlock_t exec_lock; 228 229 static kmutex_t sigobject_lock; 230 231 /* 232 * Data used between a loadvm and execve part of an "exec" operation 233 */ 234 struct execve_data { 235 struct exec_package ed_pack; 236 struct pathbuf *ed_pathbuf; 237 struct vattr ed_attr; 238 struct ps_strings ed_arginfo; 239 char *ed_argp; 240 const char *ed_pathstring; 241 char *ed_resolvedpathbuf; 242 size_t ed_ps_strings_sz; 243 int ed_szsigcode; 244 long ed_argc; 245 long ed_envc; 246 }; 247 248 /* 249 * data passed from parent lwp to child during a posix_spawn() 250 */ 251 struct spawn_exec_data { 252 struct execve_data sed_exec; 253 struct posix_spawn_file_actions 254 *sed_actions; 255 struct posix_spawnattr *sed_attrs; 256 struct proc *sed_parent; 257 kcondvar_t sed_cv_child_ready; 258 kmutex_t sed_mtx_child; 259 int sed_error; 260 volatile uint32_t sed_refcnt; 261 }; 262 263 static void * 264 exec_pool_alloc(struct pool *pp, int flags) 265 { 266 267 return (void *)uvm_km_alloc(kernel_map, NCARGS, 0, 268 UVM_KMF_PAGEABLE | UVM_KMF_WAITVA); 269 } 270 271 static void 272 exec_pool_free(struct pool *pp, void *addr) 273 { 274 275 uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE); 276 } 277 278 static struct pool exec_pool; 279 280 static struct pool_allocator exec_palloc = { 281 .pa_alloc = exec_pool_alloc, 282 .pa_free = exec_pool_free, 283 .pa_pagesz = NCARGS 284 }; 285 286 /* 287 * check exec: 288 * given an "executable" described in the exec package's namei info, 289 * see what we can do with it. 290 * 291 * ON ENTRY: 292 * exec package with appropriate namei info 293 * lwp pointer of exec'ing lwp 294 * NO SELF-LOCKED VNODES 295 * 296 * ON EXIT: 297 * error: nothing held, etc. exec header still allocated. 298 * ok: filled exec package, executable's vnode (unlocked). 299 * 300 * EXEC SWITCH ENTRY: 301 * Locked vnode to check, exec package, proc. 302 * 303 * EXEC SWITCH EXIT: 304 * ok: return 0, filled exec package, executable's vnode (unlocked). 305 * error: destructive: 306 * everything deallocated execept exec header. 307 * non-destructive: 308 * error code, executable's vnode (unlocked), 309 * exec header unmodified. 310 */ 311 int 312 /*ARGSUSED*/ 313 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb) 314 { 315 int error, i; 316 struct vnode *vp; 317 struct nameidata nd; 318 size_t resid; 319 320 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 321 322 /* first get the vnode */ 323 if ((error = namei(&nd)) != 0) 324 return error; 325 epp->ep_vp = vp = nd.ni_vp; 326 /* normally this can't fail */ 327 if ((error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL))) 328 goto bad1; 329 330 #ifdef DIAGNOSTIC 331 /* paranoia (take this out once namei stuff stabilizes) */ 332 memset(nd.ni_pnbuf, '~', PATH_MAX); 333 #endif 334 335 /* check access and type */ 336 if (vp->v_type != VREG) { 337 error = EACCES; 338 goto bad1; 339 } 340 if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0) 341 goto bad1; 342 343 /* get attributes */ 344 if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0) 345 goto bad1; 346 347 /* Check mount point */ 348 if (vp->v_mount->mnt_flag & MNT_NOEXEC) { 349 error = EACCES; 350 goto bad1; 351 } 352 if (vp->v_mount->mnt_flag & MNT_NOSUID) 353 epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID); 354 355 /* try to open it */ 356 if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0) 357 goto bad1; 358 359 /* unlock vp, since we need it unlocked from here on out. */ 360 VOP_UNLOCK(vp); 361 362 #if NVERIEXEC > 0 363 error = veriexec_verify(l, vp, epp->ep_resolvedname, 364 epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT, 365 NULL); 366 if (error) 367 goto bad2; 368 #endif /* NVERIEXEC > 0 */ 369 370 #ifdef PAX_SEGVGUARD 371 error = pax_segvguard(l, vp, epp->ep_resolvedname, false); 372 if (error) 373 goto bad2; 374 #endif /* PAX_SEGVGUARD */ 375 376 /* now we have the file, get the exec header */ 377 error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0, 378 UIO_SYSSPACE, 0, l->l_cred, &resid, NULL); 379 if (error) 380 goto bad2; 381 epp->ep_hdrvalid = epp->ep_hdrlen - resid; 382 383 /* 384 * Set up default address space limits. Can be overridden 385 * by individual exec packages. 386 * 387 * XXX probably should be all done in the exec packages. 388 */ 389 epp->ep_vm_minaddr = VM_MIN_ADDRESS; 390 epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS; 391 /* 392 * set up the vmcmds for creation of the process 393 * address space 394 */ 395 error = ENOEXEC; 396 for (i = 0; i < nexecs; i++) { 397 int newerror; 398 399 epp->ep_esch = execsw[i]; 400 newerror = (*execsw[i]->es_makecmds)(l, epp); 401 402 if (!newerror) { 403 /* Seems ok: check that entry point is not too high */ 404 if (epp->ep_entry > epp->ep_vm_maxaddr) { 405 #ifdef DIAGNOSTIC 406 printf("%s: rejecting %p due to " 407 "too high entry address (> %p)\n", 408 __func__, (void *)epp->ep_entry, 409 (void *)epp->ep_vm_maxaddr); 410 #endif 411 error = ENOEXEC; 412 break; 413 } 414 /* Seems ok: check that entry point is not too low */ 415 if (epp->ep_entry < epp->ep_vm_minaddr) { 416 #ifdef DIAGNOSTIC 417 printf("%s: rejecting %p due to " 418 "too low entry address (< %p)\n", 419 __func__, (void *)epp->ep_entry, 420 (void *)epp->ep_vm_minaddr); 421 #endif 422 error = ENOEXEC; 423 break; 424 } 425 426 /* check limits */ 427 if ((epp->ep_tsize > MAXTSIZ) || 428 (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit 429 [RLIMIT_DATA].rlim_cur)) { 430 #ifdef DIAGNOSTIC 431 printf("%s: rejecting due to " 432 "limits (t=%llu > %llu || d=%llu > %llu)\n", 433 __func__, 434 (unsigned long long)epp->ep_tsize, 435 (unsigned long long)MAXTSIZ, 436 (unsigned long long)epp->ep_dsize, 437 (unsigned long long) 438 l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur); 439 #endif 440 error = ENOMEM; 441 break; 442 } 443 return 0; 444 } 445 446 if (epp->ep_emul_root != NULL) { 447 vrele(epp->ep_emul_root); 448 epp->ep_emul_root = NULL; 449 } 450 if (epp->ep_interp != NULL) { 451 vrele(epp->ep_interp); 452 epp->ep_interp = NULL; 453 } 454 455 /* make sure the first "interesting" error code is saved. */ 456 if (error == ENOEXEC) 457 error = newerror; 458 459 if (epp->ep_flags & EXEC_DESTR) 460 /* Error from "#!" code, tidied up by recursive call */ 461 return error; 462 } 463 464 /* not found, error */ 465 466 /* 467 * free any vmspace-creation commands, 468 * and release their references 469 */ 470 kill_vmcmds(&epp->ep_vmcmds); 471 472 bad2: 473 /* 474 * close and release the vnode, restore the old one, free the 475 * pathname buf, and punt. 476 */ 477 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 478 VOP_CLOSE(vp, FREAD, l->l_cred); 479 vput(vp); 480 return error; 481 482 bad1: 483 /* 484 * free the namei pathname buffer, and put the vnode 485 * (which we don't yet have open). 486 */ 487 vput(vp); /* was still locked */ 488 return error; 489 } 490 491 #ifdef __MACHINE_STACK_GROWS_UP 492 #define STACK_PTHREADSPACE NBPG 493 #else 494 #define STACK_PTHREADSPACE 0 495 #endif 496 497 static int 498 execve_fetch_element(char * const *array, size_t index, char **value) 499 { 500 return copyin(array + index, value, sizeof(*value)); 501 } 502 503 /* 504 * exec system call 505 */ 506 int 507 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval) 508 { 509 /* { 510 syscallarg(const char *) path; 511 syscallarg(char * const *) argp; 512 syscallarg(char * const *) envp; 513 } */ 514 515 return execve1(l, SCARG(uap, path), SCARG(uap, argp), 516 SCARG(uap, envp), execve_fetch_element); 517 } 518 519 int 520 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap, 521 register_t *retval) 522 { 523 /* { 524 syscallarg(int) fd; 525 syscallarg(char * const *) argp; 526 syscallarg(char * const *) envp; 527 } */ 528 529 return ENOSYS; 530 } 531 532 /* 533 * Load modules to try and execute an image that we do not understand. 534 * If no execsw entries are present, we load those likely to be needed 535 * in order to run native images only. Otherwise, we autoload all 536 * possible modules that could let us run the binary. XXX lame 537 */ 538 static void 539 exec_autoload(void) 540 { 541 #ifdef MODULAR 542 static const char * const native[] = { 543 "exec_elf32", 544 "exec_elf64", 545 "exec_script", 546 NULL 547 }; 548 static const char * const compat[] = { 549 "exec_elf32", 550 "exec_elf64", 551 "exec_script", 552 "exec_aout", 553 "exec_coff", 554 "exec_ecoff", 555 "compat_aoutm68k", 556 "compat_freebsd", 557 "compat_ibcs2", 558 "compat_linux", 559 "compat_linux32", 560 "compat_netbsd32", 561 "compat_sunos", 562 "compat_sunos32", 563 "compat_svr4", 564 "compat_svr4_32", 565 "compat_ultrix", 566 NULL 567 }; 568 char const * const *list; 569 int i; 570 571 list = (nexecs == 0 ? native : compat); 572 for (i = 0; list[i] != NULL; i++) { 573 if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) { 574 continue; 575 } 576 yield(); 577 } 578 #endif 579 } 580 581 static int 582 execve_loadvm(struct lwp *l, const char *path, char * const *args, 583 char * const *envs, execve_fetch_element_t fetch_element, 584 struct execve_data * restrict data) 585 { 586 int error; 587 struct proc *p; 588 char *dp, *sp; 589 size_t i, len; 590 struct exec_fakearg *tmpfap; 591 u_int modgen; 592 593 KASSERT(data != NULL); 594 595 p = l->l_proc; 596 modgen = 0; 597 598 SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0); 599 600 /* 601 * Check if we have exceeded our number of processes limit. 602 * This is so that we handle the case where a root daemon 603 * forked, ran setuid to become the desired user and is trying 604 * to exec. The obvious place to do the reference counting check 605 * is setuid(), but we don't do the reference counting check there 606 * like other OS's do because then all the programs that use setuid() 607 * must be modified to check the return code of setuid() and exit(). 608 * It is dangerous to make setuid() fail, because it fails open and 609 * the program will continue to run as root. If we make it succeed 610 * and return an error code, again we are not enforcing the limit. 611 * The best place to enforce the limit is here, when the process tries 612 * to execute a new image, because eventually the process will need 613 * to call exec in order to do something useful. 614 */ 615 retry: 616 if (p->p_flag & PK_SUGID) { 617 if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT, 618 p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 619 &p->p_rlimit[RLIMIT_NPROC], 620 KAUTH_ARG(RLIMIT_NPROC)) != 0 && 621 chgproccnt(kauth_cred_getuid(l->l_cred), 0) > 622 p->p_rlimit[RLIMIT_NPROC].rlim_cur) 623 return EAGAIN; 624 } 625 626 /* 627 * Drain existing references and forbid new ones. The process 628 * should be left alone until we're done here. This is necessary 629 * to avoid race conditions - e.g. in ptrace() - that might allow 630 * a local user to illicitly obtain elevated privileges. 631 */ 632 rw_enter(&p->p_reflock, RW_WRITER); 633 634 /* 635 * Init the namei data to point the file user's program name. 636 * This is done here rather than in check_exec(), so that it's 637 * possible to override this settings if any of makecmd/probe 638 * functions call check_exec() recursively - for example, 639 * see exec_script_makecmds(). 640 */ 641 error = pathbuf_copyin(path, &data->ed_pathbuf); 642 if (error) { 643 DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__, 644 path, error)); 645 goto clrflg; 646 } 647 data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf); 648 data->ed_resolvedpathbuf = PNBUF_GET(); 649 650 /* 651 * initialize the fields of the exec package. 652 */ 653 data->ed_pack.ep_name = path; 654 data->ed_pack.ep_kname = data->ed_pathstring; 655 data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf; 656 data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP); 657 data->ed_pack.ep_hdrlen = exec_maxhdrsz; 658 data->ed_pack.ep_hdrvalid = 0; 659 data->ed_pack.ep_emul_arg = NULL; 660 data->ed_pack.ep_emul_arg_free = NULL; 661 memset(&data->ed_pack.ep_vmcmds, 0, sizeof(data->ed_pack.ep_vmcmds)); 662 data->ed_pack.ep_vap = &data->ed_attr; 663 data->ed_pack.ep_flags = 0; 664 MD_TOPDOWN_INIT(&data->ed_pack); 665 data->ed_pack.ep_emul_root = NULL; 666 data->ed_pack.ep_interp = NULL; 667 data->ed_pack.ep_esch = NULL; 668 data->ed_pack.ep_pax_flags = 0; 669 memset(data->ed_pack.ep_machine_arch, 0, 670 sizeof(data->ed_pack.ep_machine_arch)); 671 672 rw_enter(&exec_lock, RW_READER); 673 674 /* see if we can run it. */ 675 if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) { 676 if (error != ENOENT) { 677 DPRINTF(("%s: check exec failed %d\n", 678 __func__, error)); 679 } 680 goto freehdr; 681 } 682 683 /* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */ 684 685 /* allocate an argument buffer */ 686 data->ed_argp = pool_get(&exec_pool, PR_WAITOK); 687 KASSERT(data->ed_argp != NULL); 688 dp = data->ed_argp; 689 data->ed_argc = 0; 690 691 /* copy the fake args list, if there's one, freeing it as we go */ 692 if (data->ed_pack.ep_flags & EXEC_HASARGL) { 693 tmpfap = data->ed_pack.ep_fa; 694 while (tmpfap->fa_arg != NULL) { 695 const char *cp; 696 697 cp = tmpfap->fa_arg; 698 while (*cp) 699 *dp++ = *cp++; 700 *dp++ = '\0'; 701 ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg); 702 703 kmem_free(tmpfap->fa_arg, tmpfap->fa_len); 704 tmpfap++; data->ed_argc++; 705 } 706 kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len); 707 data->ed_pack.ep_flags &= ~EXEC_HASARGL; 708 } 709 710 /* Now get argv & environment */ 711 if (args == NULL) { 712 DPRINTF(("%s: null args\n", __func__)); 713 error = EINVAL; 714 goto bad; 715 } 716 /* 'i' will index the argp/envp element to be retrieved */ 717 i = 0; 718 if (data->ed_pack.ep_flags & EXEC_SKIPARG) 719 i++; 720 721 while (1) { 722 len = data->ed_argp + ARG_MAX - dp; 723 if ((error = (*fetch_element)(args, i, &sp)) != 0) { 724 DPRINTF(("%s: fetch_element args %d\n", 725 __func__, error)); 726 goto bad; 727 } 728 if (!sp) 729 break; 730 if ((error = copyinstr(sp, dp, len, &len)) != 0) { 731 DPRINTF(("%s: copyinstr args %d\n", __func__, error)); 732 if (error == ENAMETOOLONG) 733 error = E2BIG; 734 goto bad; 735 } 736 ktrexecarg(dp, len - 1); 737 dp += len; 738 i++; 739 data->ed_argc++; 740 } 741 742 data->ed_envc = 0; 743 /* environment need not be there */ 744 if (envs != NULL) { 745 i = 0; 746 while (1) { 747 len = data->ed_argp + ARG_MAX - dp; 748 if ((error = (*fetch_element)(envs, i, &sp)) != 0) { 749 DPRINTF(("%s: fetch_element env %d\n", 750 __func__, error)); 751 goto bad; 752 } 753 if (!sp) 754 break; 755 if ((error = copyinstr(sp, dp, len, &len)) != 0) { 756 DPRINTF(("%s: copyinstr env %d\n", 757 __func__, error)); 758 if (error == ENAMETOOLONG) 759 error = E2BIG; 760 goto bad; 761 } 762 763 ktrexecenv(dp, len - 1); 764 dp += len; 765 i++; 766 data->ed_envc++; 767 } 768 } 769 770 dp = (char *) ALIGN(dp); 771 772 data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode - 773 data->ed_pack.ep_esch->es_emul->e_sigcode; 774 775 #ifdef __MACHINE_STACK_GROWS_UP 776 /* See big comment lower down */ 777 #define RTLD_GAP 32 778 #else 779 #define RTLD_GAP 0 780 #endif 781 782 /* Now check if args & environ fit into new stack */ 783 if (data->ed_pack.ep_flags & EXEC_32) { 784 data->ed_ps_strings_sz = sizeof(struct ps_strings32); 785 len = ((data->ed_argc + data->ed_envc + 2 + 786 data->ed_pack.ep_esch->es_arglen) * 787 sizeof(int) + sizeof(int) + dp + RTLD_GAP + 788 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE) 789 - data->ed_argp; 790 } else { 791 data->ed_ps_strings_sz = sizeof(struct ps_strings); 792 len = ((data->ed_argc + data->ed_envc + 2 + 793 data->ed_pack.ep_esch->es_arglen) * 794 sizeof(char *) + sizeof(int) + dp + RTLD_GAP + 795 data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE) 796 - data->ed_argp; 797 } 798 799 #ifdef PAX_ASLR 800 if (pax_aslr_active(l)) 801 len += (cprng_fast32() % PAGE_SIZE); 802 #endif /* PAX_ASLR */ 803 804 /* make the stack "safely" aligned */ 805 len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES); 806 807 if (len > data->ed_pack.ep_ssize) { 808 /* in effect, compare to initial limit */ 809 DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len)); 810 goto bad; 811 } 812 /* adjust "active stack depth" for process VSZ */ 813 data->ed_pack.ep_ssize = len; 814 815 return 0; 816 817 bad: 818 /* free the vmspace-creation commands, and release their references */ 819 kill_vmcmds(&data->ed_pack.ep_vmcmds); 820 /* kill any opened file descriptor, if necessary */ 821 if (data->ed_pack.ep_flags & EXEC_HASFD) { 822 data->ed_pack.ep_flags &= ~EXEC_HASFD; 823 fd_close(data->ed_pack.ep_fd); 824 } 825 /* close and put the exec'd file */ 826 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY); 827 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred); 828 vput(data->ed_pack.ep_vp); 829 pool_put(&exec_pool, data->ed_argp); 830 831 freehdr: 832 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 833 if (data->ed_pack.ep_emul_root != NULL) 834 vrele(data->ed_pack.ep_emul_root); 835 if (data->ed_pack.ep_interp != NULL) 836 vrele(data->ed_pack.ep_interp); 837 838 rw_exit(&exec_lock); 839 840 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 841 pathbuf_destroy(data->ed_pathbuf); 842 PNBUF_PUT(data->ed_resolvedpathbuf); 843 844 clrflg: 845 rw_exit(&p->p_reflock); 846 847 if (modgen != module_gen && error == ENOEXEC) { 848 modgen = module_gen; 849 exec_autoload(); 850 goto retry; 851 } 852 853 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 854 return error; 855 } 856 857 static void 858 execve_free_data(struct execve_data *data) 859 { 860 861 /* free the vmspace-creation commands, and release their references */ 862 kill_vmcmds(&data->ed_pack.ep_vmcmds); 863 /* kill any opened file descriptor, if necessary */ 864 if (data->ed_pack.ep_flags & EXEC_HASFD) { 865 data->ed_pack.ep_flags &= ~EXEC_HASFD; 866 fd_close(data->ed_pack.ep_fd); 867 } 868 869 /* close and put the exec'd file */ 870 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY); 871 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, curlwp->l_cred); 872 vput(data->ed_pack.ep_vp); 873 pool_put(&exec_pool, data->ed_argp); 874 875 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 876 if (data->ed_pack.ep_emul_root != NULL) 877 vrele(data->ed_pack.ep_emul_root); 878 if (data->ed_pack.ep_interp != NULL) 879 vrele(data->ed_pack.ep_interp); 880 881 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 882 pathbuf_destroy(data->ed_pathbuf); 883 PNBUF_PUT(data->ed_resolvedpathbuf); 884 } 885 886 static int 887 execve_runproc(struct lwp *l, struct execve_data * restrict data, 888 bool no_local_exec_lock, bool is_spawn) 889 { 890 int error = 0; 891 struct proc *p; 892 size_t i; 893 char *stack, *dp; 894 const char *commandname; 895 struct ps_strings32 arginfo32; 896 struct exec_vmcmd *base_vcp; 897 void *aip; 898 struct vmspace *vm; 899 ksiginfo_t ksi; 900 ksiginfoq_t kq; 901 902 /* 903 * In case of a posix_spawn operation, the child doing the exec 904 * might not hold the reader lock on exec_lock, but the parent 905 * will do this instead. 906 */ 907 KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock)); 908 KASSERT(data != NULL); 909 if (data == NULL) 910 return EINVAL; 911 912 p = l->l_proc; 913 if (no_local_exec_lock) 914 KASSERT(is_spawn); 915 916 base_vcp = NULL; 917 918 if (data->ed_pack.ep_flags & EXEC_32) 919 aip = &arginfo32; 920 else 921 aip = &data->ed_arginfo; 922 923 /* Get rid of other LWPs. */ 924 if (p->p_nlwps > 1) { 925 mutex_enter(p->p_lock); 926 exit_lwps(l); 927 mutex_exit(p->p_lock); 928 } 929 KDASSERT(p->p_nlwps == 1); 930 931 /* Destroy any lwpctl info. */ 932 if (p->p_lwpctl != NULL) 933 lwp_ctl_exit(); 934 935 /* Remove POSIX timers */ 936 timers_free(p, TIMERS_POSIX); 937 938 /* 939 * Do whatever is necessary to prepare the address space 940 * for remapping. Note that this might replace the current 941 * vmspace with another! 942 */ 943 if (is_spawn) 944 uvmspace_spawn(l, data->ed_pack.ep_vm_minaddr, 945 data->ed_pack.ep_vm_maxaddr, 946 data->ed_pack.ep_flags & EXEC_TOPDOWN_VM); 947 else 948 uvmspace_exec(l, data->ed_pack.ep_vm_minaddr, 949 data->ed_pack.ep_vm_maxaddr, 950 data->ed_pack.ep_flags & EXEC_TOPDOWN_VM); 951 952 /* record proc's vnode, for use by procfs and others */ 953 if (p->p_textvp) 954 vrele(p->p_textvp); 955 vref(data->ed_pack.ep_vp); 956 p->p_textvp = data->ed_pack.ep_vp; 957 958 /* Now map address space */ 959 vm = p->p_vmspace; 960 vm->vm_taddr = (void *)data->ed_pack.ep_taddr; 961 vm->vm_tsize = btoc(data->ed_pack.ep_tsize); 962 vm->vm_daddr = (void*)data->ed_pack.ep_daddr; 963 vm->vm_dsize = btoc(data->ed_pack.ep_dsize); 964 vm->vm_ssize = btoc(data->ed_pack.ep_ssize); 965 vm->vm_issize = 0; 966 vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr; 967 vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr; 968 969 #ifdef PAX_ASLR 970 pax_aslr_init(l, vm); 971 #endif /* PAX_ASLR */ 972 973 /* create the new process's VM space by running the vmcmds */ 974 #ifdef DIAGNOSTIC 975 if (data->ed_pack.ep_vmcmds.evs_used == 0) 976 panic("%s: no vmcmds", __func__); 977 #endif 978 979 #ifdef DEBUG_EXEC 980 { 981 size_t j; 982 struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0]; 983 DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used)); 984 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) { 985 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 986 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 987 PRIxVSIZE" prot=0%o flags=%d\n", j, 988 vp[j].ev_proc == vmcmd_map_pagedvn ? 989 "pagedvn" : 990 vp[j].ev_proc == vmcmd_map_readvn ? 991 "readvn" : 992 vp[j].ev_proc == vmcmd_map_zero ? 993 "zero" : "*unknown*", 994 vp[j].ev_addr, vp[j].ev_len, 995 vp[j].ev_offset, vp[j].ev_prot, 996 vp[j].ev_flags)); 997 } 998 } 999 #endif /* DEBUG_EXEC */ 1000 1001 for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) { 1002 struct exec_vmcmd *vcp; 1003 1004 vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i]; 1005 if (vcp->ev_flags & VMCMD_RELATIVE) { 1006 #ifdef DIAGNOSTIC 1007 if (base_vcp == NULL) 1008 panic("%s: relative vmcmd with no base", 1009 __func__); 1010 if (vcp->ev_flags & VMCMD_BASE) 1011 panic("%s: illegal base & relative vmcmd", 1012 __func__); 1013 #endif 1014 vcp->ev_addr += base_vcp->ev_addr; 1015 } 1016 error = (*vcp->ev_proc)(l, vcp); 1017 #ifdef DEBUG_EXEC 1018 if (error) { 1019 size_t j; 1020 struct exec_vmcmd *vp = 1021 &data->ed_pack.ep_vmcmds.evs_cmds[0]; 1022 DPRINTF(("vmcmds %zu/%u, error %d\n", i, 1023 data->ed_pack.ep_vmcmds.evs_used, error)); 1024 for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) { 1025 DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#" 1026 PRIxVADDR"/%#"PRIxVSIZE" fd@%#" 1027 PRIxVSIZE" prot=0%o flags=%d\n", j, 1028 vp[j].ev_proc == vmcmd_map_pagedvn ? 1029 "pagedvn" : 1030 vp[j].ev_proc == vmcmd_map_readvn ? 1031 "readvn" : 1032 vp[j].ev_proc == vmcmd_map_zero ? 1033 "zero" : "*unknown*", 1034 vp[j].ev_addr, vp[j].ev_len, 1035 vp[j].ev_offset, vp[j].ev_prot, 1036 vp[j].ev_flags)); 1037 if (j == i) 1038 DPRINTF((" ^--- failed\n")); 1039 } 1040 } 1041 #endif /* DEBUG_EXEC */ 1042 if (vcp->ev_flags & VMCMD_BASE) 1043 base_vcp = vcp; 1044 } 1045 1046 /* free the vmspace-creation commands, and release their references */ 1047 kill_vmcmds(&data->ed_pack.ep_vmcmds); 1048 1049 vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY); 1050 VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred); 1051 vput(data->ed_pack.ep_vp); 1052 1053 /* if an error happened, deallocate and punt */ 1054 if (error) { 1055 DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error)); 1056 goto exec_abort; 1057 } 1058 1059 /* remember information about the process */ 1060 data->ed_arginfo.ps_nargvstr = data->ed_argc; 1061 data->ed_arginfo.ps_nenvstr = data->ed_envc; 1062 1063 /* set command name & other accounting info */ 1064 commandname = strrchr(data->ed_pack.ep_resolvedname, '/'); 1065 if (commandname != NULL) { 1066 commandname++; 1067 } else { 1068 commandname = data->ed_pack.ep_resolvedname; 1069 } 1070 i = min(strlen(commandname), MAXCOMLEN); 1071 (void)memcpy(p->p_comm, commandname, i); 1072 p->p_comm[i] = '\0'; 1073 1074 dp = PNBUF_GET(); 1075 /* 1076 * If the path starts with /, we don't need to do any work. 1077 * This handles the majority of the cases. 1078 * In the future perhaps we could canonicalize it? 1079 */ 1080 if (data->ed_pathstring[0] == '/') 1081 (void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring, 1082 MAXPATHLEN); 1083 #ifdef notyet 1084 /* 1085 * Although this works most of the time [since the entry was just 1086 * entered in the cache] we don't use it because it will fail for 1087 * entries that are not placed in the cache because their name is 1088 * longer than NCHNAMLEN and it is not the cleanest interface, 1089 * because there could be races. When the namei cache is re-written, 1090 * this can be changed to use the appropriate function. 1091 */ 1092 else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p))) 1093 data->ed_pack.ep_path = dp; 1094 #endif 1095 else { 1096 #ifdef notyet 1097 printf("Cannot get path for pid %d [%s] (error %d)\n", 1098 (int)p->p_pid, p->p_comm, error); 1099 #endif 1100 data->ed_pack.ep_path = NULL; 1101 PNBUF_PUT(dp); 1102 } 1103 1104 stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr, 1105 STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode), 1106 data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode)); 1107 1108 #ifdef __MACHINE_STACK_GROWS_UP 1109 /* 1110 * The copyargs call always copies into lower addresses 1111 * first, moving towards higher addresses, starting with 1112 * the stack pointer that we give. When the stack grows 1113 * down, this puts argc/argv/envp very shallow on the 1114 * stack, right at the first user stack pointer. 1115 * When the stack grows up, the situation is reversed. 1116 * 1117 * Normally, this is no big deal. But the ld_elf.so _rtld() 1118 * function expects to be called with a single pointer to 1119 * a region that has a few words it can stash values into, 1120 * followed by argc/argv/envp. When the stack grows down, 1121 * it's easy to decrement the stack pointer a little bit to 1122 * allocate the space for these few words and pass the new 1123 * stack pointer to _rtld. When the stack grows up, however, 1124 * a few words before argc is part of the signal trampoline, XXX 1125 * so we have a problem. 1126 * 1127 * Instead of changing how _rtld works, we take the easy way 1128 * out and steal 32 bytes before we call copyargs. 1129 * This extra space was allowed for when 'pack.ep_ssize' was calculated. 1130 */ 1131 stack += RTLD_GAP; 1132 #endif /* __MACHINE_STACK_GROWS_UP */ 1133 1134 /* Now copy argc, args & environ to new stack */ 1135 error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack, 1136 &data->ed_arginfo, &stack, data->ed_argp); 1137 1138 if (data->ed_pack.ep_path) { 1139 PNBUF_PUT(data->ed_pack.ep_path); 1140 data->ed_pack.ep_path = NULL; 1141 } 1142 if (error) { 1143 DPRINTF(("%s: copyargs failed %d\n", __func__, error)); 1144 goto exec_abort; 1145 } 1146 /* Move the stack back to original point */ 1147 stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize); 1148 1149 /* fill process ps_strings info */ 1150 p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr, 1151 STACK_PTHREADSPACE), data->ed_ps_strings_sz); 1152 1153 if (data->ed_pack.ep_flags & EXEC_32) { 1154 arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr; 1155 arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr; 1156 arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr; 1157 arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr; 1158 } 1159 1160 /* copy out the process's ps_strings structure */ 1161 if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)) 1162 != 0) { 1163 DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n", 1164 __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz)); 1165 goto exec_abort; 1166 } 1167 1168 cwdexec(p); 1169 fd_closeexec(); /* handle close on exec */ 1170 1171 if (__predict_false(ktrace_on)) 1172 fd_ktrexecfd(); 1173 1174 execsigs(p); /* reset catched signals */ 1175 1176 l->l_ctxlink = NULL; /* reset ucontext link */ 1177 1178 1179 p->p_acflag &= ~AFORK; 1180 mutex_enter(p->p_lock); 1181 p->p_flag |= PK_EXEC; 1182 mutex_exit(p->p_lock); 1183 1184 /* 1185 * Stop profiling. 1186 */ 1187 if ((p->p_stflag & PST_PROFIL) != 0) { 1188 mutex_spin_enter(&p->p_stmutex); 1189 stopprofclock(p); 1190 mutex_spin_exit(&p->p_stmutex); 1191 } 1192 1193 /* 1194 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have 1195 * exited and exec()/exit() are the only places it will be cleared. 1196 */ 1197 if ((p->p_lflag & PL_PPWAIT) != 0) { 1198 #if 0 1199 lwp_t *lp; 1200 1201 mutex_enter(proc_lock); 1202 lp = p->p_vforklwp; 1203 p->p_vforklwp = NULL; 1204 1205 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1206 p->p_lflag &= ~PL_PPWAIT; 1207 1208 lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */ 1209 cv_broadcast(&lp->l_waitcv); 1210 mutex_exit(proc_lock); 1211 #else 1212 mutex_enter(proc_lock); 1213 l->l_lwpctl = NULL; /* was on loan from blocked parent */ 1214 p->p_lflag &= ~PL_PPWAIT; 1215 cv_broadcast(&p->p_pptr->p_waitcv); 1216 mutex_exit(proc_lock); 1217 #endif 1218 } 1219 1220 /* 1221 * Deal with set[ug]id. MNT_NOSUID has already been used to disable 1222 * s[ug]id. It's OK to check for PSL_TRACED here as we have blocked 1223 * out additional references on the process for the moment. 1224 */ 1225 if ((p->p_slflag & PSL_TRACED) == 0 && 1226 1227 (((data->ed_attr.va_mode & S_ISUID) != 0 && 1228 kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) || 1229 1230 ((data->ed_attr.va_mode & S_ISGID) != 0 && 1231 kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) { 1232 /* 1233 * Mark the process as SUGID before we do 1234 * anything that might block. 1235 */ 1236 proc_crmod_enter(); 1237 proc_crmod_leave(NULL, NULL, true); 1238 1239 /* Make sure file descriptors 0..2 are in use. */ 1240 if ((error = fd_checkstd()) != 0) { 1241 DPRINTF(("%s: fdcheckstd failed %d\n", 1242 __func__, error)); 1243 goto exec_abort; 1244 } 1245 1246 /* 1247 * Copy the credential so other references don't see our 1248 * changes. 1249 */ 1250 l->l_cred = kauth_cred_copy(l->l_cred); 1251 #ifdef KTRACE 1252 /* 1253 * If the persistent trace flag isn't set, turn off. 1254 */ 1255 if (p->p_tracep) { 1256 mutex_enter(&ktrace_lock); 1257 if (!(p->p_traceflag & KTRFAC_PERSISTENT)) 1258 ktrderef(p); 1259 mutex_exit(&ktrace_lock); 1260 } 1261 #endif 1262 if (data->ed_attr.va_mode & S_ISUID) 1263 kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid); 1264 if (data->ed_attr.va_mode & S_ISGID) 1265 kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid); 1266 } else { 1267 if (kauth_cred_geteuid(l->l_cred) == 1268 kauth_cred_getuid(l->l_cred) && 1269 kauth_cred_getegid(l->l_cred) == 1270 kauth_cred_getgid(l->l_cred)) 1271 p->p_flag &= ~PK_SUGID; 1272 } 1273 1274 /* 1275 * Copy the credential so other references don't see our changes. 1276 * Test to see if this is necessary first, since in the common case 1277 * we won't need a private reference. 1278 */ 1279 if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) || 1280 kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) { 1281 l->l_cred = kauth_cred_copy(l->l_cred); 1282 kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred)); 1283 kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred)); 1284 } 1285 1286 /* Update the master credentials. */ 1287 if (l->l_cred != p->p_cred) { 1288 kauth_cred_t ocred; 1289 1290 kauth_cred_hold(l->l_cred); 1291 mutex_enter(p->p_lock); 1292 ocred = p->p_cred; 1293 p->p_cred = l->l_cred; 1294 mutex_exit(p->p_lock); 1295 kauth_cred_free(ocred); 1296 } 1297 1298 #if defined(__HAVE_RAS) 1299 /* 1300 * Remove all RASs from the address space. 1301 */ 1302 ras_purgeall(); 1303 #endif 1304 1305 doexechooks(p); 1306 1307 /* setup new registers and do misc. setup. */ 1308 (*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack, 1309 (vaddr_t)stack); 1310 if (data->ed_pack.ep_esch->es_setregs) 1311 (*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack, 1312 (vaddr_t)stack); 1313 1314 /* Provide a consistent LWP private setting */ 1315 (void)lwp_setprivate(l, NULL); 1316 1317 /* Discard all PCU state; need to start fresh */ 1318 pcu_discard_all(l); 1319 1320 /* map the process's signal trampoline code */ 1321 if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) { 1322 DPRINTF(("%s: map sigcode failed %d\n", __func__, error)); 1323 goto exec_abort; 1324 } 1325 1326 pool_put(&exec_pool, data->ed_argp); 1327 1328 /* notify others that we exec'd */ 1329 KNOTE(&p->p_klist, NOTE_EXEC); 1330 1331 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 1332 1333 SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0); 1334 1335 /* The emulation root will usually have been found when we looked 1336 * for the elf interpreter (or similar), if not look now. */ 1337 if (data->ed_pack.ep_esch->es_emul->e_path != NULL && 1338 data->ed_pack.ep_emul_root == NULL) 1339 emul_find_root(l, &data->ed_pack); 1340 1341 /* Any old emulation root got removed by fdcloseexec */ 1342 rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER); 1343 p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root; 1344 rw_exit(&p->p_cwdi->cwdi_lock); 1345 data->ed_pack.ep_emul_root = NULL; 1346 if (data->ed_pack.ep_interp != NULL) 1347 vrele(data->ed_pack.ep_interp); 1348 1349 /* 1350 * Call emulation specific exec hook. This can setup per-process 1351 * p->p_emuldata or do any other per-process stuff an emulation needs. 1352 * 1353 * If we are executing process of different emulation than the 1354 * original forked process, call e_proc_exit() of the old emulation 1355 * first, then e_proc_exec() of new emulation. If the emulation is 1356 * same, the exec hook code should deallocate any old emulation 1357 * resources held previously by this process. 1358 */ 1359 if (p->p_emul && p->p_emul->e_proc_exit 1360 && p->p_emul != data->ed_pack.ep_esch->es_emul) 1361 (*p->p_emul->e_proc_exit)(p); 1362 1363 /* 1364 * This is now LWP 1. 1365 */ 1366 mutex_enter(p->p_lock); 1367 p->p_nlwpid = 1; 1368 l->l_lid = 1; 1369 mutex_exit(p->p_lock); 1370 1371 /* 1372 * Call exec hook. Emulation code may NOT store reference to anything 1373 * from &pack. 1374 */ 1375 if (data->ed_pack.ep_esch->es_emul->e_proc_exec) 1376 (*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack); 1377 1378 /* update p_emul, the old value is no longer needed */ 1379 p->p_emul = data->ed_pack.ep_esch->es_emul; 1380 1381 /* ...and the same for p_execsw */ 1382 p->p_execsw = data->ed_pack.ep_esch; 1383 1384 #ifdef __HAVE_SYSCALL_INTERN 1385 (*p->p_emul->e_syscall_intern)(p); 1386 #endif 1387 ktremul(); 1388 1389 /* Allow new references from the debugger/procfs. */ 1390 rw_exit(&p->p_reflock); 1391 if (!no_local_exec_lock) 1392 rw_exit(&exec_lock); 1393 1394 mutex_enter(proc_lock); 1395 1396 if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) { 1397 KSI_INIT_EMPTY(&ksi); 1398 ksi.ksi_signo = SIGTRAP; 1399 ksi.ksi_lid = l->l_lid; 1400 kpsignal(p, &ksi, NULL); 1401 } 1402 1403 if (p->p_sflag & PS_STOPEXEC) { 1404 KERNEL_UNLOCK_ALL(l, &l->l_biglocks); 1405 p->p_pptr->p_nstopchild++; 1406 p->p_pptr->p_waited = 0; 1407 mutex_enter(p->p_lock); 1408 ksiginfo_queue_init(&kq); 1409 sigclearall(p, &contsigmask, &kq); 1410 lwp_lock(l); 1411 l->l_stat = LSSTOP; 1412 p->p_stat = SSTOP; 1413 p->p_nrlwps--; 1414 lwp_unlock(l); 1415 mutex_exit(p->p_lock); 1416 mutex_exit(proc_lock); 1417 lwp_lock(l); 1418 mi_switch(l); 1419 ksiginfo_queue_drain(&kq); 1420 KERNEL_LOCK(l->l_biglocks, l); 1421 } else { 1422 mutex_exit(proc_lock); 1423 } 1424 1425 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1426 pathbuf_destroy(data->ed_pathbuf); 1427 PNBUF_PUT(data->ed_resolvedpathbuf); 1428 DPRINTF(("%s finished\n", __func__)); 1429 return EJUSTRETURN; 1430 1431 exec_abort: 1432 SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0); 1433 rw_exit(&p->p_reflock); 1434 if (!no_local_exec_lock) 1435 rw_exit(&exec_lock); 1436 1437 pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring); 1438 pathbuf_destroy(data->ed_pathbuf); 1439 PNBUF_PUT(data->ed_resolvedpathbuf); 1440 1441 /* 1442 * the old process doesn't exist anymore. exit gracefully. 1443 * get rid of the (new) address space we have created, if any, get rid 1444 * of our namei data and vnode, and exit noting failure 1445 */ 1446 uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS, 1447 VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS); 1448 1449 exec_free_emul_arg(&data->ed_pack); 1450 pool_put(&exec_pool, data->ed_argp); 1451 kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen); 1452 if (data->ed_pack.ep_emul_root != NULL) 1453 vrele(data->ed_pack.ep_emul_root); 1454 if (data->ed_pack.ep_interp != NULL) 1455 vrele(data->ed_pack.ep_interp); 1456 1457 /* Acquire the sched-state mutex (exit1() will release it). */ 1458 if (!is_spawn) { 1459 mutex_enter(p->p_lock); 1460 exit1(l, W_EXITCODE(error, SIGABRT)); 1461 } 1462 1463 return error; 1464 } 1465 1466 int 1467 execve1(struct lwp *l, const char *path, char * const *args, 1468 char * const *envs, execve_fetch_element_t fetch_element) 1469 { 1470 struct execve_data data; 1471 int error; 1472 1473 error = execve_loadvm(l, path, args, envs, fetch_element, &data); 1474 if (error) 1475 return error; 1476 error = execve_runproc(l, &data, false, false); 1477 return error; 1478 } 1479 1480 int 1481 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo, 1482 char **stackp, void *argp) 1483 { 1484 char **cpp, *dp, *sp; 1485 size_t len; 1486 void *nullp; 1487 long argc, envc; 1488 int error; 1489 1490 cpp = (char **)*stackp; 1491 nullp = NULL; 1492 argc = arginfo->ps_nargvstr; 1493 envc = arginfo->ps_nenvstr; 1494 if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) { 1495 COPYPRINTF("", cpp - 1, sizeof(argc)); 1496 return error; 1497 } 1498 1499 dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen); 1500 sp = argp; 1501 1502 /* XXX don't copy them out, remap them! */ 1503 arginfo->ps_argvstr = cpp; /* remember location of argv for later */ 1504 1505 for (; --argc >= 0; sp += len, dp += len) { 1506 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1507 COPYPRINTF("", cpp - 1, sizeof(dp)); 1508 return error; 1509 } 1510 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1511 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1512 return error; 1513 } 1514 } 1515 1516 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1517 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1518 return error; 1519 } 1520 1521 arginfo->ps_envstr = cpp; /* remember location of envp for later */ 1522 1523 for (; --envc >= 0; sp += len, dp += len) { 1524 if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) { 1525 COPYPRINTF("", cpp - 1, sizeof(dp)); 1526 return error; 1527 } 1528 if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) { 1529 COPYPRINTF("str", dp, (size_t)ARG_MAX); 1530 return error; 1531 } 1532 1533 } 1534 1535 if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) { 1536 COPYPRINTF("", cpp - 1, sizeof(nullp)); 1537 return error; 1538 } 1539 1540 *stackp = (char *)cpp; 1541 return 0; 1542 } 1543 1544 1545 /* 1546 * Add execsw[] entries. 1547 */ 1548 int 1549 exec_add(struct execsw *esp, int count) 1550 { 1551 struct exec_entry *it; 1552 int i; 1553 1554 if (count == 0) { 1555 return 0; 1556 } 1557 1558 /* Check for duplicates. */ 1559 rw_enter(&exec_lock, RW_WRITER); 1560 for (i = 0; i < count; i++) { 1561 LIST_FOREACH(it, &ex_head, ex_list) { 1562 /* assume unique (makecmds, probe_func, emulation) */ 1563 if (it->ex_sw->es_makecmds == esp[i].es_makecmds && 1564 it->ex_sw->u.elf_probe_func == 1565 esp[i].u.elf_probe_func && 1566 it->ex_sw->es_emul == esp[i].es_emul) { 1567 rw_exit(&exec_lock); 1568 return EEXIST; 1569 } 1570 } 1571 } 1572 1573 /* Allocate new entries. */ 1574 for (i = 0; i < count; i++) { 1575 it = kmem_alloc(sizeof(*it), KM_SLEEP); 1576 it->ex_sw = &esp[i]; 1577 LIST_INSERT_HEAD(&ex_head, it, ex_list); 1578 } 1579 1580 /* update execsw[] */ 1581 exec_init(0); 1582 rw_exit(&exec_lock); 1583 return 0; 1584 } 1585 1586 /* 1587 * Remove execsw[] entry. 1588 */ 1589 int 1590 exec_remove(struct execsw *esp, int count) 1591 { 1592 struct exec_entry *it, *next; 1593 int i; 1594 const struct proclist_desc *pd; 1595 proc_t *p; 1596 1597 if (count == 0) { 1598 return 0; 1599 } 1600 1601 /* Abort if any are busy. */ 1602 rw_enter(&exec_lock, RW_WRITER); 1603 for (i = 0; i < count; i++) { 1604 mutex_enter(proc_lock); 1605 for (pd = proclists; pd->pd_list != NULL; pd++) { 1606 PROCLIST_FOREACH(p, pd->pd_list) { 1607 if (p->p_execsw == &esp[i]) { 1608 mutex_exit(proc_lock); 1609 rw_exit(&exec_lock); 1610 return EBUSY; 1611 } 1612 } 1613 } 1614 mutex_exit(proc_lock); 1615 } 1616 1617 /* None are busy, so remove them all. */ 1618 for (i = 0; i < count; i++) { 1619 for (it = LIST_FIRST(&ex_head); it != NULL; it = next) { 1620 next = LIST_NEXT(it, ex_list); 1621 if (it->ex_sw == &esp[i]) { 1622 LIST_REMOVE(it, ex_list); 1623 kmem_free(it, sizeof(*it)); 1624 break; 1625 } 1626 } 1627 } 1628 1629 /* update execsw[] */ 1630 exec_init(0); 1631 rw_exit(&exec_lock); 1632 return 0; 1633 } 1634 1635 /* 1636 * Initialize exec structures. If init_boot is true, also does necessary 1637 * one-time initialization (it's called from main() that way). 1638 * Once system is multiuser, this should be called with exec_lock held, 1639 * i.e. via exec_{add|remove}(). 1640 */ 1641 int 1642 exec_init(int init_boot) 1643 { 1644 const struct execsw **sw; 1645 struct exec_entry *ex; 1646 SLIST_HEAD(,exec_entry) first; 1647 SLIST_HEAD(,exec_entry) any; 1648 SLIST_HEAD(,exec_entry) last; 1649 int i, sz; 1650 1651 if (init_boot) { 1652 /* do one-time initializations */ 1653 rw_init(&exec_lock); 1654 mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE); 1655 pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH, 1656 "execargs", &exec_palloc, IPL_NONE); 1657 pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0); 1658 } else { 1659 KASSERT(rw_write_held(&exec_lock)); 1660 } 1661 1662 /* Sort each entry onto the appropriate queue. */ 1663 SLIST_INIT(&first); 1664 SLIST_INIT(&any); 1665 SLIST_INIT(&last); 1666 sz = 0; 1667 LIST_FOREACH(ex, &ex_head, ex_list) { 1668 switch(ex->ex_sw->es_prio) { 1669 case EXECSW_PRIO_FIRST: 1670 SLIST_INSERT_HEAD(&first, ex, ex_slist); 1671 break; 1672 case EXECSW_PRIO_ANY: 1673 SLIST_INSERT_HEAD(&any, ex, ex_slist); 1674 break; 1675 case EXECSW_PRIO_LAST: 1676 SLIST_INSERT_HEAD(&last, ex, ex_slist); 1677 break; 1678 default: 1679 panic("%s", __func__); 1680 break; 1681 } 1682 sz++; 1683 } 1684 1685 /* 1686 * Create new execsw[]. Ensure we do not try a zero-sized 1687 * allocation. 1688 */ 1689 sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP); 1690 i = 0; 1691 SLIST_FOREACH(ex, &first, ex_slist) { 1692 sw[i++] = ex->ex_sw; 1693 } 1694 SLIST_FOREACH(ex, &any, ex_slist) { 1695 sw[i++] = ex->ex_sw; 1696 } 1697 SLIST_FOREACH(ex, &last, ex_slist) { 1698 sw[i++] = ex->ex_sw; 1699 } 1700 1701 /* Replace old execsw[] and free used memory. */ 1702 if (execsw != NULL) { 1703 kmem_free(__UNCONST(execsw), 1704 nexecs * sizeof(struct execsw *) + 1); 1705 } 1706 execsw = sw; 1707 nexecs = sz; 1708 1709 /* Figure out the maximum size of an exec header. */ 1710 exec_maxhdrsz = sizeof(int); 1711 for (i = 0; i < nexecs; i++) { 1712 if (execsw[i]->es_hdrsz > exec_maxhdrsz) 1713 exec_maxhdrsz = execsw[i]->es_hdrsz; 1714 } 1715 1716 return 0; 1717 } 1718 1719 static int 1720 exec_sigcode_map(struct proc *p, const struct emul *e) 1721 { 1722 vaddr_t va; 1723 vsize_t sz; 1724 int error; 1725 struct uvm_object *uobj; 1726 1727 sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode; 1728 1729 if (e->e_sigobject == NULL || sz == 0) { 1730 return 0; 1731 } 1732 1733 /* 1734 * If we don't have a sigobject for this emulation, create one. 1735 * 1736 * sigobject is an anonymous memory object (just like SYSV shared 1737 * memory) that we keep a permanent reference to and that we map 1738 * in all processes that need this sigcode. The creation is simple, 1739 * we create an object, add a permanent reference to it, map it in 1740 * kernel space, copy out the sigcode to it and unmap it. 1741 * We map it with PROT_READ|PROT_EXEC into the process just 1742 * the way sys_mmap() would map it. 1743 */ 1744 1745 uobj = *e->e_sigobject; 1746 if (uobj == NULL) { 1747 mutex_enter(&sigobject_lock); 1748 if ((uobj = *e->e_sigobject) == NULL) { 1749 uobj = uao_create(sz, 0); 1750 (*uobj->pgops->pgo_reference)(uobj); 1751 va = vm_map_min(kernel_map); 1752 if ((error = uvm_map(kernel_map, &va, round_page(sz), 1753 uobj, 0, 0, 1754 UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, 1755 UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) { 1756 printf("kernel mapping failed %d\n", error); 1757 (*uobj->pgops->pgo_detach)(uobj); 1758 mutex_exit(&sigobject_lock); 1759 return error; 1760 } 1761 memcpy((void *)va, e->e_sigcode, sz); 1762 #ifdef PMAP_NEED_PROCWR 1763 pmap_procwr(&proc0, va, sz); 1764 #endif 1765 uvm_unmap(kernel_map, va, va + round_page(sz)); 1766 *e->e_sigobject = uobj; 1767 } 1768 mutex_exit(&sigobject_lock); 1769 } 1770 1771 /* Just a hint to uvm_map where to put it. */ 1772 va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr, 1773 round_page(sz)); 1774 1775 #ifdef __alpha__ 1776 /* 1777 * Tru64 puts /sbin/loader at the end of user virtual memory, 1778 * which causes the above calculation to put the sigcode at 1779 * an invalid address. Put it just below the text instead. 1780 */ 1781 if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) { 1782 va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz); 1783 } 1784 #endif 1785 1786 (*uobj->pgops->pgo_reference)(uobj); 1787 error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz), 1788 uobj, 0, 0, 1789 UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE, 1790 UVM_ADV_RANDOM, 0)); 1791 if (error) { 1792 DPRINTF(("%s, %d: map %p " 1793 "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n", 1794 __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz), 1795 va, error)); 1796 (*uobj->pgops->pgo_detach)(uobj); 1797 return error; 1798 } 1799 p->p_sigctx.ps_sigcode = (void *)va; 1800 return 0; 1801 } 1802 1803 /* 1804 * Release a refcount on spawn_exec_data and destroy memory, if this 1805 * was the last one. 1806 */ 1807 static void 1808 spawn_exec_data_release(struct spawn_exec_data *data) 1809 { 1810 if (atomic_dec_32_nv(&data->sed_refcnt) != 0) 1811 return; 1812 1813 cv_destroy(&data->sed_cv_child_ready); 1814 mutex_destroy(&data->sed_mtx_child); 1815 1816 if (data->sed_actions) 1817 posix_spawn_fa_free(data->sed_actions, 1818 data->sed_actions->len); 1819 if (data->sed_attrs) 1820 kmem_free(data->sed_attrs, 1821 sizeof(*data->sed_attrs)); 1822 kmem_free(data, sizeof(*data)); 1823 } 1824 1825 /* 1826 * A child lwp of a posix_spawn operation starts here and ends up in 1827 * cpu_spawn_return, dealing with all filedescriptor and scheduler 1828 * manipulations in between. 1829 * The parent waits for the child, as it is not clear whether the child 1830 * will be able to acquire its own exec_lock. If it can, the parent can 1831 * be released early and continue running in parallel. If not (or if the 1832 * magic debug flag is passed in the scheduler attribute struct), the 1833 * child rides on the parent's exec lock until it is ready to return to 1834 * to userland - and only then releases the parent. This method loses 1835 * concurrency, but improves error reporting. 1836 */ 1837 static void 1838 spawn_return(void *arg) 1839 { 1840 struct spawn_exec_data *spawn_data = arg; 1841 struct lwp *l = curlwp; 1842 int error, newfd; 1843 size_t i; 1844 const struct posix_spawn_file_actions_entry *fae; 1845 pid_t ppid; 1846 register_t retval; 1847 bool have_reflock; 1848 bool parent_is_waiting = true; 1849 1850 /* 1851 * Check if we can release parent early. 1852 * We either need to have no sed_attrs, or sed_attrs does not 1853 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require 1854 * safe access to the parent proc (passed in sed_parent). 1855 * We then try to get the exec_lock, and only if that works, we can 1856 * release the parent here already. 1857 */ 1858 ppid = spawn_data->sed_parent->p_pid; 1859 if ((!spawn_data->sed_attrs 1860 || (spawn_data->sed_attrs->sa_flags 1861 & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0) 1862 && rw_tryenter(&exec_lock, RW_READER)) { 1863 parent_is_waiting = false; 1864 mutex_enter(&spawn_data->sed_mtx_child); 1865 cv_signal(&spawn_data->sed_cv_child_ready); 1866 mutex_exit(&spawn_data->sed_mtx_child); 1867 } 1868 1869 /* don't allow debugger access yet */ 1870 rw_enter(&l->l_proc->p_reflock, RW_WRITER); 1871 have_reflock = true; 1872 1873 error = 0; 1874 /* handle posix_spawn_file_actions */ 1875 if (spawn_data->sed_actions != NULL) { 1876 for (i = 0; i < spawn_data->sed_actions->len; i++) { 1877 fae = &spawn_data->sed_actions->fae[i]; 1878 switch (fae->fae_action) { 1879 case FAE_OPEN: 1880 if (fd_getfile(fae->fae_fildes) != NULL) { 1881 error = fd_close(fae->fae_fildes); 1882 if (error) 1883 break; 1884 } 1885 error = fd_open(fae->fae_path, fae->fae_oflag, 1886 fae->fae_mode, &newfd); 1887 if (error) 1888 break; 1889 if (newfd != fae->fae_fildes) { 1890 error = dodup(l, newfd, 1891 fae->fae_fildes, 0, &retval); 1892 if (fd_getfile(newfd) != NULL) 1893 fd_close(newfd); 1894 } 1895 break; 1896 case FAE_DUP2: 1897 error = dodup(l, fae->fae_fildes, 1898 fae->fae_newfildes, 0, &retval); 1899 break; 1900 case FAE_CLOSE: 1901 if (fd_getfile(fae->fae_fildes) == NULL) { 1902 error = EBADF; 1903 break; 1904 } 1905 error = fd_close(fae->fae_fildes); 1906 break; 1907 } 1908 if (error) 1909 goto report_error; 1910 } 1911 } 1912 1913 /* handle posix_spawnattr */ 1914 if (spawn_data->sed_attrs != NULL) { 1915 int ostat; 1916 struct sigaction sigact; 1917 sigact._sa_u._sa_handler = SIG_DFL; 1918 sigact.sa_flags = 0; 1919 1920 /* 1921 * set state to SSTOP so that this proc can be found by pid. 1922 * see proc_enterprp, do_sched_setparam below 1923 */ 1924 ostat = l->l_proc->p_stat; 1925 l->l_proc->p_stat = SSTOP; 1926 1927 /* Set process group */ 1928 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) { 1929 pid_t mypid = l->l_proc->p_pid, 1930 pgrp = spawn_data->sed_attrs->sa_pgroup; 1931 1932 if (pgrp == 0) 1933 pgrp = mypid; 1934 1935 error = proc_enterpgrp(spawn_data->sed_parent, 1936 mypid, pgrp, false); 1937 if (error) 1938 goto report_error; 1939 } 1940 1941 /* Set scheduler policy */ 1942 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER) 1943 error = do_sched_setparam(l->l_proc->p_pid, 0, 1944 spawn_data->sed_attrs->sa_schedpolicy, 1945 &spawn_data->sed_attrs->sa_schedparam); 1946 else if (spawn_data->sed_attrs->sa_flags 1947 & POSIX_SPAWN_SETSCHEDPARAM) { 1948 error = do_sched_setparam(ppid, 0, 1949 SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam); 1950 } 1951 if (error) 1952 goto report_error; 1953 1954 /* Reset user ID's */ 1955 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) { 1956 error = do_setresuid(l, -1, 1957 kauth_cred_getgid(l->l_cred), -1, 1958 ID_E_EQ_R | ID_E_EQ_S); 1959 if (error) 1960 goto report_error; 1961 error = do_setresuid(l, -1, 1962 kauth_cred_getuid(l->l_cred), -1, 1963 ID_E_EQ_R | ID_E_EQ_S); 1964 if (error) 1965 goto report_error; 1966 } 1967 1968 /* Set signal masks/defaults */ 1969 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) { 1970 mutex_enter(l->l_proc->p_lock); 1971 error = sigprocmask1(l, SIG_SETMASK, 1972 &spawn_data->sed_attrs->sa_sigmask, NULL); 1973 mutex_exit(l->l_proc->p_lock); 1974 if (error) 1975 goto report_error; 1976 } 1977 1978 if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) { 1979 /* 1980 * The following sigaction call is using a sigaction 1981 * version 0 trampoline which is in the compatibility 1982 * code only. This is not a problem because for SIG_DFL 1983 * and SIG_IGN, the trampolines are now ignored. If they 1984 * were not, this would be a problem because we are 1985 * holding the exec_lock, and the compat code needs 1986 * to do the same in order to replace the trampoline 1987 * code of the process. 1988 */ 1989 for (i = 1; i <= NSIG; i++) { 1990 if (sigismember( 1991 &spawn_data->sed_attrs->sa_sigdefault, i)) 1992 sigaction1(l, i, &sigact, NULL, NULL, 1993 0); 1994 } 1995 } 1996 l->l_proc->p_stat = ostat; 1997 } 1998 1999 /* now do the real exec */ 2000 error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting, 2001 true); 2002 have_reflock = false; 2003 if (error == EJUSTRETURN) 2004 error = 0; 2005 else if (error) 2006 goto report_error; 2007 2008 if (parent_is_waiting) { 2009 mutex_enter(&spawn_data->sed_mtx_child); 2010 cv_signal(&spawn_data->sed_cv_child_ready); 2011 mutex_exit(&spawn_data->sed_mtx_child); 2012 } 2013 2014 /* release our refcount on the data */ 2015 spawn_exec_data_release(spawn_data); 2016 2017 /* and finally: leave to userland for the first time */ 2018 cpu_spawn_return(l); 2019 2020 /* NOTREACHED */ 2021 return; 2022 2023 report_error: 2024 if (have_reflock) { 2025 /* 2026 * We have not passed through execve_runproc(), 2027 * which would have released the p_reflock and also 2028 * taken ownership of the sed_exec part of spawn_data, 2029 * so release/free both here. 2030 */ 2031 rw_exit(&l->l_proc->p_reflock); 2032 execve_free_data(&spawn_data->sed_exec); 2033 } 2034 2035 if (parent_is_waiting) { 2036 /* pass error to parent */ 2037 mutex_enter(&spawn_data->sed_mtx_child); 2038 spawn_data->sed_error = error; 2039 cv_signal(&spawn_data->sed_cv_child_ready); 2040 mutex_exit(&spawn_data->sed_mtx_child); 2041 } else { 2042 rw_exit(&exec_lock); 2043 } 2044 2045 /* release our refcount on the data */ 2046 spawn_exec_data_release(spawn_data); 2047 2048 /* done, exit */ 2049 mutex_enter(l->l_proc->p_lock); 2050 /* 2051 * Posix explicitly asks for an exit code of 127 if we report 2052 * errors from the child process - so, unfortunately, there 2053 * is no way to report a more exact error code. 2054 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as 2055 * flag bit in the attrp argument to posix_spawn(2), see above. 2056 */ 2057 exit1(l, W_EXITCODE(127, 0)); 2058 } 2059 2060 void 2061 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len) 2062 { 2063 2064 for (size_t i = 0; i < len; i++) { 2065 struct posix_spawn_file_actions_entry *fae = &fa->fae[i]; 2066 if (fae->fae_action != FAE_OPEN) 2067 continue; 2068 kmem_free(fae->fae_path, strlen(fae->fae_path) + 1); 2069 } 2070 if (fa->len > 0) 2071 kmem_free(fa->fae, sizeof(*fa->fae) * fa->len); 2072 kmem_free(fa, sizeof(*fa)); 2073 } 2074 2075 static int 2076 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap, 2077 const struct posix_spawn_file_actions *ufa, rlim_t lim) 2078 { 2079 struct posix_spawn_file_actions *fa; 2080 struct posix_spawn_file_actions_entry *fae; 2081 char *pbuf = NULL; 2082 int error; 2083 size_t i = 0; 2084 2085 fa = kmem_alloc(sizeof(*fa), KM_SLEEP); 2086 error = copyin(ufa, fa, sizeof(*fa)); 2087 if (error || fa->len == 0) { 2088 kmem_free(fa, sizeof(*fa)); 2089 return error; /* 0 if not an error, and len == 0 */ 2090 } 2091 2092 if (fa->len > lim) { 2093 kmem_free(fa, sizeof(*fa)); 2094 return EINVAL; 2095 } 2096 2097 fa->size = fa->len; 2098 size_t fal = fa->len * sizeof(*fae); 2099 fae = fa->fae; 2100 fa->fae = kmem_alloc(fal, KM_SLEEP); 2101 error = copyin(fae, fa->fae, fal); 2102 if (error) 2103 goto out; 2104 2105 pbuf = PNBUF_GET(); 2106 for (; i < fa->len; i++) { 2107 fae = &fa->fae[i]; 2108 if (fae->fae_action != FAE_OPEN) 2109 continue; 2110 error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal); 2111 if (error) 2112 goto out; 2113 fae->fae_path = kmem_alloc(fal, KM_SLEEP); 2114 memcpy(fae->fae_path, pbuf, fal); 2115 } 2116 PNBUF_PUT(pbuf); 2117 2118 *fap = fa; 2119 return 0; 2120 out: 2121 if (pbuf) 2122 PNBUF_PUT(pbuf); 2123 posix_spawn_fa_free(fa, i); 2124 return error; 2125 } 2126 2127 int 2128 check_posix_spawn(struct lwp *l1) 2129 { 2130 int error, tnprocs, count; 2131 uid_t uid; 2132 struct proc *p1; 2133 2134 p1 = l1->l_proc; 2135 uid = kauth_cred_getuid(l1->l_cred); 2136 tnprocs = atomic_inc_uint_nv(&nprocs); 2137 2138 /* 2139 * Although process entries are dynamically created, we still keep 2140 * a global limit on the maximum number we will create. 2141 */ 2142 if (__predict_false(tnprocs >= maxproc)) 2143 error = -1; 2144 else 2145 error = kauth_authorize_process(l1->l_cred, 2146 KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL); 2147 2148 if (error) { 2149 atomic_dec_uint(&nprocs); 2150 return EAGAIN; 2151 } 2152 2153 /* 2154 * Enforce limits. 2155 */ 2156 count = chgproccnt(uid, 1); 2157 if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT, 2158 p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS), 2159 &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 && 2160 __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) { 2161 (void)chgproccnt(uid, -1); 2162 atomic_dec_uint(&nprocs); 2163 return EAGAIN; 2164 } 2165 2166 return 0; 2167 } 2168 2169 int 2170 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path, 2171 struct posix_spawn_file_actions *fa, 2172 struct posix_spawnattr *sa, 2173 char *const *argv, char *const *envp, 2174 execve_fetch_element_t fetch) 2175 { 2176 2177 struct proc *p1, *p2; 2178 struct lwp *l2; 2179 int error; 2180 struct spawn_exec_data *spawn_data; 2181 vaddr_t uaddr; 2182 pid_t pid; 2183 bool have_exec_lock = false; 2184 2185 p1 = l1->l_proc; 2186 2187 /* Allocate and init spawn_data */ 2188 spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP); 2189 spawn_data->sed_refcnt = 1; /* only parent so far */ 2190 cv_init(&spawn_data->sed_cv_child_ready, "pspawn"); 2191 mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE); 2192 mutex_enter(&spawn_data->sed_mtx_child); 2193 2194 /* 2195 * Do the first part of the exec now, collect state 2196 * in spawn_data. 2197 */ 2198 error = execve_loadvm(l1, path, argv, 2199 envp, fetch, &spawn_data->sed_exec); 2200 if (error == EJUSTRETURN) 2201 error = 0; 2202 else if (error) 2203 goto error_exit; 2204 2205 have_exec_lock = true; 2206 2207 /* 2208 * Allocate virtual address space for the U-area now, while it 2209 * is still easy to abort the fork operation if we're out of 2210 * kernel virtual address space. 2211 */ 2212 uaddr = uvm_uarea_alloc(); 2213 if (__predict_false(uaddr == 0)) { 2214 error = ENOMEM; 2215 goto error_exit; 2216 } 2217 2218 /* 2219 * Allocate new proc. Borrow proc0 vmspace for it, we will 2220 * replace it with its own before returning to userland 2221 * in the child. 2222 * This is a point of no return, we will have to go through 2223 * the child proc to properly clean it up past this point. 2224 */ 2225 p2 = proc_alloc(); 2226 pid = p2->p_pid; 2227 2228 /* 2229 * Make a proc table entry for the new process. 2230 * Start by zeroing the section of proc that is zero-initialized, 2231 * then copy the section that is copied directly from the parent. 2232 */ 2233 memset(&p2->p_startzero, 0, 2234 (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero)); 2235 memcpy(&p2->p_startcopy, &p1->p_startcopy, 2236 (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy)); 2237 p2->p_vmspace = proc0.p_vmspace; 2238 2239 TAILQ_INIT(&p2->p_sigpend.sp_info); 2240 2241 LIST_INIT(&p2->p_lwps); 2242 LIST_INIT(&p2->p_sigwaiters); 2243 2244 /* 2245 * Duplicate sub-structures as needed. 2246 * Increase reference counts on shared objects. 2247 * Inherit flags we want to keep. The flags related to SIGCHLD 2248 * handling are important in order to keep a consistent behaviour 2249 * for the child after the fork. If we are a 32-bit process, the 2250 * child will be too. 2251 */ 2252 p2->p_flag = 2253 p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32); 2254 p2->p_emul = p1->p_emul; 2255 p2->p_execsw = p1->p_execsw; 2256 2257 mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH); 2258 mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE); 2259 rw_init(&p2->p_reflock); 2260 cv_init(&p2->p_waitcv, "wait"); 2261 cv_init(&p2->p_lwpcv, "lwpwait"); 2262 2263 p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 2264 2265 kauth_proc_fork(p1, p2); 2266 2267 p2->p_raslist = NULL; 2268 p2->p_fd = fd_copy(); 2269 2270 /* XXX racy */ 2271 p2->p_mqueue_cnt = p1->p_mqueue_cnt; 2272 2273 p2->p_cwdi = cwdinit(); 2274 2275 /* 2276 * Note: p_limit (rlimit stuff) is copy-on-write, so normally 2277 * we just need increase pl_refcnt. 2278 */ 2279 if (!p1->p_limit->pl_writeable) { 2280 lim_addref(p1->p_limit); 2281 p2->p_limit = p1->p_limit; 2282 } else { 2283 p2->p_limit = lim_copy(p1->p_limit); 2284 } 2285 2286 p2->p_lflag = 0; 2287 p2->p_sflag = 0; 2288 p2->p_slflag = 0; 2289 p2->p_pptr = p1; 2290 p2->p_ppid = p1->p_pid; 2291 LIST_INIT(&p2->p_children); 2292 2293 p2->p_aio = NULL; 2294 2295 #ifdef KTRACE 2296 /* 2297 * Copy traceflag and tracefile if enabled. 2298 * If not inherited, these were zeroed above. 2299 */ 2300 if (p1->p_traceflag & KTRFAC_INHERIT) { 2301 mutex_enter(&ktrace_lock); 2302 p2->p_traceflag = p1->p_traceflag; 2303 if ((p2->p_tracep = p1->p_tracep) != NULL) 2304 ktradref(p2); 2305 mutex_exit(&ktrace_lock); 2306 } 2307 #endif 2308 2309 /* 2310 * Create signal actions for the child process. 2311 */ 2312 p2->p_sigacts = sigactsinit(p1, 0); 2313 mutex_enter(p1->p_lock); 2314 p2->p_sflag |= 2315 (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP)); 2316 sched_proc_fork(p1, p2); 2317 mutex_exit(p1->p_lock); 2318 2319 p2->p_stflag = p1->p_stflag; 2320 2321 /* 2322 * p_stats. 2323 * Copy parts of p_stats, and zero out the rest. 2324 */ 2325 p2->p_stats = pstatscopy(p1->p_stats); 2326 2327 /* copy over machdep flags to the new proc */ 2328 cpu_proc_fork(p1, p2); 2329 2330 /* 2331 * Prepare remaining parts of spawn data 2332 */ 2333 spawn_data->sed_actions = fa; 2334 spawn_data->sed_attrs = sa; 2335 2336 spawn_data->sed_parent = p1; 2337 2338 /* create LWP */ 2339 lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data, 2340 &l2, l1->l_class); 2341 l2->l_ctxlink = NULL; /* reset ucontext link */ 2342 2343 /* 2344 * Copy the credential so other references don't see our changes. 2345 * Test to see if this is necessary first, since in the common case 2346 * we won't need a private reference. 2347 */ 2348 if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) || 2349 kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) { 2350 l2->l_cred = kauth_cred_copy(l2->l_cred); 2351 kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred)); 2352 kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred)); 2353 } 2354 2355 /* Update the master credentials. */ 2356 if (l2->l_cred != p2->p_cred) { 2357 kauth_cred_t ocred; 2358 2359 kauth_cred_hold(l2->l_cred); 2360 mutex_enter(p2->p_lock); 2361 ocred = p2->p_cred; 2362 p2->p_cred = l2->l_cred; 2363 mutex_exit(p2->p_lock); 2364 kauth_cred_free(ocred); 2365 } 2366 2367 *child_ok = true; 2368 spawn_data->sed_refcnt = 2; /* child gets it as well */ 2369 #if 0 2370 l2->l_nopreempt = 1; /* start it non-preemptable */ 2371 #endif 2372 2373 /* 2374 * It's now safe for the scheduler and other processes to see the 2375 * child process. 2376 */ 2377 mutex_enter(proc_lock); 2378 2379 if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT) 2380 p2->p_lflag |= PL_CONTROLT; 2381 2382 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling); 2383 p2->p_exitsig = SIGCHLD; /* signal for parent on exit */ 2384 2385 LIST_INSERT_AFTER(p1, p2, p_pglist); 2386 LIST_INSERT_HEAD(&allproc, p2, p_list); 2387 2388 p2->p_trace_enabled = trace_is_enabled(p2); 2389 #ifdef __HAVE_SYSCALL_INTERN 2390 (*p2->p_emul->e_syscall_intern)(p2); 2391 #endif 2392 2393 /* 2394 * Make child runnable, set start time, and add to run queue except 2395 * if the parent requested the child to start in SSTOP state. 2396 */ 2397 mutex_enter(p2->p_lock); 2398 2399 getmicrotime(&p2->p_stats->p_start); 2400 2401 lwp_lock(l2); 2402 KASSERT(p2->p_nrlwps == 1); 2403 p2->p_nrlwps = 1; 2404 p2->p_stat = SACTIVE; 2405 l2->l_stat = LSRUN; 2406 sched_enqueue(l2, false); 2407 lwp_unlock(l2); 2408 2409 mutex_exit(p2->p_lock); 2410 mutex_exit(proc_lock); 2411 2412 cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child); 2413 error = spawn_data->sed_error; 2414 mutex_exit(&spawn_data->sed_mtx_child); 2415 spawn_exec_data_release(spawn_data); 2416 2417 rw_exit(&p1->p_reflock); 2418 rw_exit(&exec_lock); 2419 have_exec_lock = false; 2420 2421 *pid_res = pid; 2422 return error; 2423 2424 error_exit: 2425 if (have_exec_lock) { 2426 execve_free_data(&spawn_data->sed_exec); 2427 rw_exit(&p1->p_reflock); 2428 rw_exit(&exec_lock); 2429 } 2430 mutex_exit(&spawn_data->sed_mtx_child); 2431 spawn_exec_data_release(spawn_data); 2432 2433 return error; 2434 } 2435 2436 int 2437 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap, 2438 register_t *retval) 2439 { 2440 /* { 2441 syscallarg(pid_t *) pid; 2442 syscallarg(const char *) path; 2443 syscallarg(const struct posix_spawn_file_actions *) file_actions; 2444 syscallarg(const struct posix_spawnattr *) attrp; 2445 syscallarg(char *const *) argv; 2446 syscallarg(char *const *) envp; 2447 } */ 2448 2449 int error; 2450 struct posix_spawn_file_actions *fa = NULL; 2451 struct posix_spawnattr *sa = NULL; 2452 pid_t pid; 2453 bool child_ok = false; 2454 rlim_t max_fileactions; 2455 proc_t *p = l1->l_proc; 2456 2457 error = check_posix_spawn(l1); 2458 if (error) { 2459 *retval = error; 2460 return 0; 2461 } 2462 2463 /* copy in file_actions struct */ 2464 if (SCARG(uap, file_actions) != NULL) { 2465 max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur, 2466 maxfiles); 2467 error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions), 2468 max_fileactions); 2469 if (error) 2470 goto error_exit; 2471 } 2472 2473 /* copyin posix_spawnattr struct */ 2474 if (SCARG(uap, attrp) != NULL) { 2475 sa = kmem_alloc(sizeof(*sa), KM_SLEEP); 2476 error = copyin(SCARG(uap, attrp), sa, sizeof(*sa)); 2477 if (error) 2478 goto error_exit; 2479 } 2480 2481 /* 2482 * Do the spawn 2483 */ 2484 error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa, 2485 SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element); 2486 if (error) 2487 goto error_exit; 2488 2489 if (error == 0 && SCARG(uap, pid) != NULL) 2490 error = copyout(&pid, SCARG(uap, pid), sizeof(pid)); 2491 2492 *retval = error; 2493 return 0; 2494 2495 error_exit: 2496 if (!child_ok) { 2497 (void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1); 2498 atomic_dec_uint(&nprocs); 2499 2500 if (sa) 2501 kmem_free(sa, sizeof(*sa)); 2502 if (fa) 2503 posix_spawn_fa_free(fa, fa->len); 2504 } 2505 2506 *retval = error; 2507 return 0; 2508 } 2509 2510 void 2511 exec_free_emul_arg(struct exec_package *epp) 2512 { 2513 if (epp->ep_emul_arg_free != NULL) { 2514 KASSERT(epp->ep_emul_arg != NULL); 2515 (*epp->ep_emul_arg_free)(epp->ep_emul_arg); 2516 epp->ep_emul_arg_free = NULL; 2517 epp->ep_emul_arg = NULL; 2518 } else { 2519 KASSERT(epp->ep_emul_arg == NULL); 2520 } 2521 } 2522