xref: /netbsd-src/sys/kern/kern_exec.c (revision 4391d5e9d4f291db41e3b3ba26a01b5e51364aae)
1 /*	$NetBSD: kern_exec.c,v 1.365 2013/11/14 16:53:51 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*-
30  * Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
31  * Copyright (C) 1992 Wolfgang Solfrank.
32  * Copyright (C) 1992 TooLs GmbH.
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. All advertising materials mentioning features or use of this software
44  *    must display the following acknowledgement:
45  *	This product includes software developed by TooLs GmbH.
46  * 4. The name of TooLs GmbH may not be used to endorse or promote products
47  *    derived from this software without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
50  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
51  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
52  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
54  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
55  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
56  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
57  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
58  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
59  */
60 
61 #include <sys/cdefs.h>
62 __KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.365 2013/11/14 16:53:51 martin Exp $");
63 
64 #include "opt_exec.h"
65 #include "opt_execfmt.h"
66 #include "opt_ktrace.h"
67 #include "opt_modular.h"
68 #include "opt_syscall_debug.h"
69 #include "veriexec.h"
70 #include "opt_pax.h"
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/filedesc.h>
75 #include <sys/kernel.h>
76 #include <sys/proc.h>
77 #include <sys/mount.h>
78 #include <sys/malloc.h>
79 #include <sys/kmem.h>
80 #include <sys/namei.h>
81 #include <sys/vnode.h>
82 #include <sys/file.h>
83 #include <sys/acct.h>
84 #include <sys/atomic.h>
85 #include <sys/exec.h>
86 #include <sys/ktrace.h>
87 #include <sys/uidinfo.h>
88 #include <sys/wait.h>
89 #include <sys/mman.h>
90 #include <sys/ras.h>
91 #include <sys/signalvar.h>
92 #include <sys/stat.h>
93 #include <sys/syscall.h>
94 #include <sys/kauth.h>
95 #include <sys/lwpctl.h>
96 #include <sys/pax.h>
97 #include <sys/cpu.h>
98 #include <sys/module.h>
99 #include <sys/syscallvar.h>
100 #include <sys/syscallargs.h>
101 #if NVERIEXEC > 0
102 #include <sys/verified_exec.h>
103 #endif /* NVERIEXEC > 0 */
104 #include <sys/sdt.h>
105 #include <sys/spawn.h>
106 #include <sys/prot.h>
107 #include <sys/cprng.h>
108 
109 #include <uvm/uvm_extern.h>
110 
111 #include <machine/reg.h>
112 
113 #include <compat/common/compat_util.h>
114 
115 #ifndef MD_TOPDOWN_INIT
116 #ifdef __USING_TOPDOWN_VM
117 #define	MD_TOPDOWN_INIT(epp)	(epp)->ep_flags |= EXEC_TOPDOWN_VM
118 #else
119 #define	MD_TOPDOWN_INIT(epp)
120 #endif
121 #endif
122 
123 static int exec_sigcode_map(struct proc *, const struct emul *);
124 
125 #ifdef DEBUG_EXEC
126 #define DPRINTF(a) printf a
127 #define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
128     __LINE__, (s), (a), (b))
129 #else
130 #define DPRINTF(a)
131 #define COPYPRINTF(s, a, b)
132 #endif /* DEBUG_EXEC */
133 
134 /*
135  * DTrace SDT provider definitions
136  */
137 SDT_PROBE_DEFINE(proc,,,exec,exec,
138 	    "char *", NULL,
139 	    NULL, NULL, NULL, NULL,
140 	    NULL, NULL, NULL, NULL);
141 SDT_PROBE_DEFINE(proc,,,exec_success,exec-success,
142 	    "char *", NULL,
143 	    NULL, NULL, NULL, NULL,
144 	    NULL, NULL, NULL, NULL);
145 SDT_PROBE_DEFINE(proc,,,exec_failure,exec-failure,
146 	    "int", NULL,
147 	    NULL, NULL, NULL, NULL,
148 	    NULL, NULL, NULL, NULL);
149 
150 /*
151  * Exec function switch:
152  *
153  * Note that each makecmds function is responsible for loading the
154  * exec package with the necessary functions for any exec-type-specific
155  * handling.
156  *
157  * Functions for specific exec types should be defined in their own
158  * header file.
159  */
160 static const struct execsw	**execsw = NULL;
161 static int			nexecs;
162 
163 u_int	exec_maxhdrsz;	 /* must not be static - used by netbsd32 */
164 
165 /* list of dynamically loaded execsw entries */
166 static LIST_HEAD(execlist_head, exec_entry) ex_head =
167     LIST_HEAD_INITIALIZER(ex_head);
168 struct exec_entry {
169 	LIST_ENTRY(exec_entry)	ex_list;
170 	SLIST_ENTRY(exec_entry)	ex_slist;
171 	const struct execsw	*ex_sw;
172 };
173 
174 #ifndef __HAVE_SYSCALL_INTERN
175 void	syscall(void);
176 #endif
177 
178 /* NetBSD emul struct */
179 struct emul emul_netbsd = {
180 	.e_name =		"netbsd",
181 	.e_path =		NULL,
182 #ifndef __HAVE_MINIMAL_EMUL
183 	.e_flags =		EMUL_HAS_SYS___syscall,
184 	.e_errno =		NULL,
185 	.e_nosys =		SYS_syscall,
186 	.e_nsysent =		SYS_NSYSENT,
187 #endif
188 	.e_sysent =		sysent,
189 #ifdef SYSCALL_DEBUG
190 	.e_syscallnames =	syscallnames,
191 #else
192 	.e_syscallnames =	NULL,
193 #endif
194 	.e_sendsig =		sendsig,
195 	.e_trapsignal =		trapsignal,
196 	.e_tracesig =		NULL,
197 	.e_sigcode =		NULL,
198 	.e_esigcode =		NULL,
199 	.e_sigobject =		NULL,
200 	.e_setregs =		setregs,
201 	.e_proc_exec =		NULL,
202 	.e_proc_fork =		NULL,
203 	.e_proc_exit =		NULL,
204 	.e_lwp_fork =		NULL,
205 	.e_lwp_exit =		NULL,
206 #ifdef __HAVE_SYSCALL_INTERN
207 	.e_syscall_intern =	syscall_intern,
208 #else
209 	.e_syscall =		syscall,
210 #endif
211 	.e_sysctlovly =		NULL,
212 	.e_fault =		NULL,
213 	.e_vm_default_addr =	uvm_default_mapaddr,
214 	.e_usertrap =		NULL,
215 	.e_ucsize =		sizeof(ucontext_t),
216 	.e_startlwp =		startlwp
217 };
218 
219 /*
220  * Exec lock. Used to control access to execsw[] structures.
221  * This must not be static so that netbsd32 can access it, too.
222  */
223 krwlock_t exec_lock;
224 
225 static kmutex_t sigobject_lock;
226 
227 /*
228  * Data used between a loadvm and execve part of an "exec" operation
229  */
230 struct execve_data {
231 	struct exec_package	ed_pack;
232 	struct pathbuf		*ed_pathbuf;
233 	struct vattr		ed_attr;
234 	struct ps_strings	ed_arginfo;
235 	char			*ed_argp;
236 	const char		*ed_pathstring;
237 	char			*ed_resolvedpathbuf;
238 	size_t			ed_ps_strings_sz;
239 	int			ed_szsigcode;
240 	long			ed_argc;
241 	long			ed_envc;
242 };
243 
244 /*
245  * data passed from parent lwp to child during a posix_spawn()
246  */
247 struct spawn_exec_data {
248 	struct execve_data	sed_exec;
249 	struct posix_spawn_file_actions
250 				*sed_actions;
251 	struct posix_spawnattr	*sed_attrs;
252 	struct proc		*sed_parent;
253 	kcondvar_t		sed_cv_child_ready;
254 	kmutex_t		sed_mtx_child;
255 	int			sed_error;
256 	volatile uint32_t	sed_refcnt;
257 };
258 
259 static void *
260 exec_pool_alloc(struct pool *pp, int flags)
261 {
262 
263 	return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
264 	    UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
265 }
266 
267 static void
268 exec_pool_free(struct pool *pp, void *addr)
269 {
270 
271 	uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
272 }
273 
274 static struct pool exec_pool;
275 
276 static struct pool_allocator exec_palloc = {
277 	.pa_alloc = exec_pool_alloc,
278 	.pa_free = exec_pool_free,
279 	.pa_pagesz = NCARGS
280 };
281 
282 /*
283  * check exec:
284  * given an "executable" described in the exec package's namei info,
285  * see what we can do with it.
286  *
287  * ON ENTRY:
288  *	exec package with appropriate namei info
289  *	lwp pointer of exec'ing lwp
290  *	NO SELF-LOCKED VNODES
291  *
292  * ON EXIT:
293  *	error:	nothing held, etc.  exec header still allocated.
294  *	ok:	filled exec package, executable's vnode (unlocked).
295  *
296  * EXEC SWITCH ENTRY:
297  * 	Locked vnode to check, exec package, proc.
298  *
299  * EXEC SWITCH EXIT:
300  *	ok:	return 0, filled exec package, executable's vnode (unlocked).
301  *	error:	destructive:
302  *			everything deallocated execept exec header.
303  *		non-destructive:
304  *			error code, executable's vnode (unlocked),
305  *			exec header unmodified.
306  */
307 int
308 /*ARGSUSED*/
309 check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
310 {
311 	int		error, i;
312 	struct vnode	*vp;
313 	struct nameidata nd;
314 	size_t		resid;
315 
316 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
317 
318 	/* first get the vnode */
319 	if ((error = namei(&nd)) != 0)
320 		return error;
321 	epp->ep_vp = vp = nd.ni_vp;
322 	/* this cannot overflow as both are size PATH_MAX */
323 	strcpy(epp->ep_resolvedname, nd.ni_pnbuf);
324 
325 #ifdef DIAGNOSTIC
326 	/* paranoia (take this out once namei stuff stabilizes) */
327 	memset(nd.ni_pnbuf, '~', PATH_MAX);
328 #endif
329 
330 	/* check access and type */
331 	if (vp->v_type != VREG) {
332 		error = EACCES;
333 		goto bad1;
334 	}
335 	if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
336 		goto bad1;
337 
338 	/* get attributes */
339 	if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
340 		goto bad1;
341 
342 	/* Check mount point */
343 	if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
344 		error = EACCES;
345 		goto bad1;
346 	}
347 	if (vp->v_mount->mnt_flag & MNT_NOSUID)
348 		epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
349 
350 	/* try to open it */
351 	if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
352 		goto bad1;
353 
354 	/* unlock vp, since we need it unlocked from here on out. */
355 	VOP_UNLOCK(vp);
356 
357 #if NVERIEXEC > 0
358 	error = veriexec_verify(l, vp, epp->ep_resolvedname,
359 	    epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
360 	    NULL);
361 	if (error)
362 		goto bad2;
363 #endif /* NVERIEXEC > 0 */
364 
365 #ifdef PAX_SEGVGUARD
366 	error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
367 	if (error)
368 		goto bad2;
369 #endif /* PAX_SEGVGUARD */
370 
371 	/* now we have the file, get the exec header */
372 	error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
373 			UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
374 	if (error)
375 		goto bad2;
376 	epp->ep_hdrvalid = epp->ep_hdrlen - resid;
377 
378 	/*
379 	 * Set up default address space limits.  Can be overridden
380 	 * by individual exec packages.
381 	 *
382 	 * XXX probably should be all done in the exec packages.
383 	 */
384 	epp->ep_vm_minaddr = VM_MIN_ADDRESS;
385 	epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
386 	/*
387 	 * set up the vmcmds for creation of the process
388 	 * address space
389 	 */
390 	error = ENOEXEC;
391 	for (i = 0; i < nexecs; i++) {
392 		int newerror;
393 
394 		epp->ep_esch = execsw[i];
395 		newerror = (*execsw[i]->es_makecmds)(l, epp);
396 
397 		if (!newerror) {
398 			/* Seems ok: check that entry point is not too high */
399 			if (epp->ep_entry > epp->ep_vm_maxaddr) {
400 #ifdef DIAGNOSTIC
401 				printf("%s: rejecting %p due to "
402 				    "too high entry address (> %p)\n",
403 					 __func__, (void *)epp->ep_entry,
404 					 (void *)epp->ep_vm_maxaddr);
405 #endif
406 				error = ENOEXEC;
407 				break;
408 			}
409 			/* Seems ok: check that entry point is not too low */
410 			if (epp->ep_entry < epp->ep_vm_minaddr) {
411 #ifdef DIAGNOSTIC
412 				printf("%s: rejecting %p due to "
413 				    "too low entry address (< %p)\n",
414 				     __func__, (void *)epp->ep_entry,
415 				     (void *)epp->ep_vm_minaddr);
416 #endif
417 				error = ENOEXEC;
418 				break;
419 			}
420 
421 			/* check limits */
422 			if ((epp->ep_tsize > MAXTSIZ) ||
423 			    (epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
424 						    [RLIMIT_DATA].rlim_cur)) {
425 #ifdef DIAGNOSTIC
426 				printf("%s: rejecting due to "
427 				    "limits (t=%llu > %llu || d=%llu > %llu)\n",
428 				    __func__,
429 				    (unsigned long long)epp->ep_tsize,
430 				    (unsigned long long)MAXTSIZ,
431 				    (unsigned long long)epp->ep_dsize,
432 				    (unsigned long long)
433 				    l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
434 #endif
435 				error = ENOMEM;
436 				break;
437 			}
438 			return 0;
439 		}
440 
441 		if (epp->ep_emul_root != NULL) {
442 			vrele(epp->ep_emul_root);
443 			epp->ep_emul_root = NULL;
444 		}
445 		if (epp->ep_interp != NULL) {
446 			vrele(epp->ep_interp);
447 			epp->ep_interp = NULL;
448 		}
449 
450 		/* make sure the first "interesting" error code is saved. */
451 		if (error == ENOEXEC)
452 			error = newerror;
453 
454 		if (epp->ep_flags & EXEC_DESTR)
455 			/* Error from "#!" code, tidied up by recursive call */
456 			return error;
457 	}
458 
459 	/* not found, error */
460 
461 	/*
462 	 * free any vmspace-creation commands,
463 	 * and release their references
464 	 */
465 	kill_vmcmds(&epp->ep_vmcmds);
466 
467 bad2:
468 	/*
469 	 * close and release the vnode, restore the old one, free the
470 	 * pathname buf, and punt.
471 	 */
472 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
473 	VOP_CLOSE(vp, FREAD, l->l_cred);
474 	vput(vp);
475 	return error;
476 
477 bad1:
478 	/*
479 	 * free the namei pathname buffer, and put the vnode
480 	 * (which we don't yet have open).
481 	 */
482 	vput(vp);				/* was still locked */
483 	return error;
484 }
485 
486 #ifdef __MACHINE_STACK_GROWS_UP
487 #define STACK_PTHREADSPACE NBPG
488 #else
489 #define STACK_PTHREADSPACE 0
490 #endif
491 
492 static int
493 execve_fetch_element(char * const *array, size_t index, char **value)
494 {
495 	return copyin(array + index, value, sizeof(*value));
496 }
497 
498 /*
499  * exec system call
500  */
501 int
502 sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
503 {
504 	/* {
505 		syscallarg(const char *)	path;
506 		syscallarg(char * const *)	argp;
507 		syscallarg(char * const *)	envp;
508 	} */
509 
510 	return execve1(l, SCARG(uap, path), SCARG(uap, argp),
511 	    SCARG(uap, envp), execve_fetch_element);
512 }
513 
514 int
515 sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
516     register_t *retval)
517 {
518 	/* {
519 		syscallarg(int)			fd;
520 		syscallarg(char * const *)	argp;
521 		syscallarg(char * const *)	envp;
522 	} */
523 
524 	return ENOSYS;
525 }
526 
527 /*
528  * Load modules to try and execute an image that we do not understand.
529  * If no execsw entries are present, we load those likely to be needed
530  * in order to run native images only.  Otherwise, we autoload all
531  * possible modules that could let us run the binary.  XXX lame
532  */
533 static void
534 exec_autoload(void)
535 {
536 #ifdef MODULAR
537 	static const char * const native[] = {
538 		"exec_elf32",
539 		"exec_elf64",
540 		"exec_script",
541 		NULL
542 	};
543 	static const char * const compat[] = {
544 		"exec_elf32",
545 		"exec_elf64",
546 		"exec_script",
547 		"exec_aout",
548 		"exec_coff",
549 		"exec_ecoff",
550 		"compat_aoutm68k",
551 		"compat_freebsd",
552 		"compat_ibcs2",
553 		"compat_linux",
554 		"compat_linux32",
555 		"compat_netbsd32",
556 		"compat_sunos",
557 		"compat_sunos32",
558 		"compat_svr4",
559 		"compat_svr4_32",
560 		"compat_ultrix",
561 		NULL
562 	};
563 	char const * const *list;
564 	int i;
565 
566 	list = (nexecs == 0 ? native : compat);
567 	for (i = 0; list[i] != NULL; i++) {
568 		if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
569 		    	continue;
570 		}
571 	   	yield();
572 	}
573 #endif
574 }
575 
576 static int
577 execve_loadvm(struct lwp *l, const char *path, char * const *args,
578 	char * const *envs, execve_fetch_element_t fetch_element,
579 	struct execve_data * restrict data)
580 {
581 	int			error;
582 	struct proc		*p;
583 	char			*dp, *sp;
584 	size_t			i, len;
585 	struct exec_fakearg	*tmpfap;
586 	u_int			modgen;
587 
588 	KASSERT(data != NULL);
589 
590 	p = l->l_proc;
591  	modgen = 0;
592 
593 	SDT_PROBE(proc,,,exec, path, 0, 0, 0, 0);
594 
595 	/*
596 	 * Check if we have exceeded our number of processes limit.
597 	 * This is so that we handle the case where a root daemon
598 	 * forked, ran setuid to become the desired user and is trying
599 	 * to exec. The obvious place to do the reference counting check
600 	 * is setuid(), but we don't do the reference counting check there
601 	 * like other OS's do because then all the programs that use setuid()
602 	 * must be modified to check the return code of setuid() and exit().
603 	 * It is dangerous to make setuid() fail, because it fails open and
604 	 * the program will continue to run as root. If we make it succeed
605 	 * and return an error code, again we are not enforcing the limit.
606 	 * The best place to enforce the limit is here, when the process tries
607 	 * to execute a new image, because eventually the process will need
608 	 * to call exec in order to do something useful.
609 	 */
610  retry:
611 	if (p->p_flag & PK_SUGID) {
612 		if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
613 		     p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
614 		     &p->p_rlimit[RLIMIT_NPROC],
615 		     KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
616 		    chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
617 		     p->p_rlimit[RLIMIT_NPROC].rlim_cur)
618 		return EAGAIN;
619 	}
620 
621 	/*
622 	 * Drain existing references and forbid new ones.  The process
623 	 * should be left alone until we're done here.  This is necessary
624 	 * to avoid race conditions - e.g. in ptrace() - that might allow
625 	 * a local user to illicitly obtain elevated privileges.
626 	 */
627 	rw_enter(&p->p_reflock, RW_WRITER);
628 
629 	/*
630 	 * Init the namei data to point the file user's program name.
631 	 * This is done here rather than in check_exec(), so that it's
632 	 * possible to override this settings if any of makecmd/probe
633 	 * functions call check_exec() recursively - for example,
634 	 * see exec_script_makecmds().
635 	 */
636 	error = pathbuf_copyin(path, &data->ed_pathbuf);
637 	if (error) {
638 		DPRINTF(("%s: pathbuf_copyin path @%p %d\n", __func__,
639 		    path, error));
640 		goto clrflg;
641 	}
642 	data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
643 
644 	data->ed_resolvedpathbuf = PNBUF_GET();
645 #ifdef DIAGNOSTIC
646 	strcpy(data->ed_resolvedpathbuf, "/wrong");
647 #endif
648 
649 	/*
650 	 * initialize the fields of the exec package.
651 	 */
652 	data->ed_pack.ep_name = path;
653 	data->ed_pack.ep_kname = data->ed_pathstring;
654 	data->ed_pack.ep_resolvedname = data->ed_resolvedpathbuf;
655 	data->ed_pack.ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
656 	data->ed_pack.ep_hdrlen = exec_maxhdrsz;
657 	data->ed_pack.ep_hdrvalid = 0;
658 	data->ed_pack.ep_emul_arg = NULL;
659 	data->ed_pack.ep_emul_arg_free = NULL;
660 	data->ed_pack.ep_vmcmds.evs_cnt = 0;
661 	data->ed_pack.ep_vmcmds.evs_used = 0;
662 	data->ed_pack.ep_vap = &data->ed_attr;
663 	data->ed_pack.ep_flags = 0;
664 	MD_TOPDOWN_INIT(&data->ed_pack);
665 	data->ed_pack.ep_emul_root = NULL;
666 	data->ed_pack.ep_interp = NULL;
667 	data->ed_pack.ep_esch = NULL;
668 	data->ed_pack.ep_pax_flags = 0;
669 	memset(data->ed_pack.ep_machine_arch, 0,
670 	    sizeof(data->ed_pack.ep_machine_arch));
671 
672 	rw_enter(&exec_lock, RW_READER);
673 
674 	/* see if we can run it. */
675 	if ((error = check_exec(l, &data->ed_pack, data->ed_pathbuf)) != 0) {
676 		if (error != ENOENT) {
677 			DPRINTF(("%s: check exec failed %d\n",
678 			    __func__, error));
679 		}
680 		goto freehdr;
681 	}
682 
683 	/* XXX -- THE FOLLOWING SECTION NEEDS MAJOR CLEANUP */
684 
685 	/* allocate an argument buffer */
686 	data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
687 	KASSERT(data->ed_argp != NULL);
688 	dp = data->ed_argp;
689 	data->ed_argc = 0;
690 
691 	/* copy the fake args list, if there's one, freeing it as we go */
692 	if (data->ed_pack.ep_flags & EXEC_HASARGL) {
693 		tmpfap = data->ed_pack.ep_fa;
694 		while (tmpfap->fa_arg != NULL) {
695 			const char *cp;
696 
697 			cp = tmpfap->fa_arg;
698 			while (*cp)
699 				*dp++ = *cp++;
700 			*dp++ = '\0';
701 			ktrexecarg(tmpfap->fa_arg, cp - tmpfap->fa_arg);
702 
703 			kmem_free(tmpfap->fa_arg, tmpfap->fa_len);
704 			tmpfap++; data->ed_argc++;
705 		}
706 		kmem_free(data->ed_pack.ep_fa, data->ed_pack.ep_fa_len);
707 		data->ed_pack.ep_flags &= ~EXEC_HASARGL;
708 	}
709 
710 	/* Now get argv & environment */
711 	if (args == NULL) {
712 		DPRINTF(("%s: null args\n", __func__));
713 		error = EINVAL;
714 		goto bad;
715 	}
716 	/* 'i' will index the argp/envp element to be retrieved */
717 	i = 0;
718 	if (data->ed_pack.ep_flags & EXEC_SKIPARG)
719 		i++;
720 
721 	while (1) {
722 		len = data->ed_argp + ARG_MAX - dp;
723 		if ((error = (*fetch_element)(args, i, &sp)) != 0) {
724 			DPRINTF(("%s: fetch_element args %d\n",
725 			    __func__, error));
726 			goto bad;
727 		}
728 		if (!sp)
729 			break;
730 		if ((error = copyinstr(sp, dp, len, &len)) != 0) {
731 			DPRINTF(("%s: copyinstr args %d\n", __func__, error));
732 			if (error == ENAMETOOLONG)
733 				error = E2BIG;
734 			goto bad;
735 		}
736 		ktrexecarg(dp, len - 1);
737 		dp += len;
738 		i++;
739 		data->ed_argc++;
740 	}
741 
742 	data->ed_envc = 0;
743 	/* environment need not be there */
744 	if (envs != NULL) {
745 		i = 0;
746 		while (1) {
747 			len = data->ed_argp + ARG_MAX - dp;
748 			if ((error = (*fetch_element)(envs, i, &sp)) != 0) {
749 				DPRINTF(("%s: fetch_element env %d\n",
750 				    __func__, error));
751 				goto bad;
752 			}
753 			if (!sp)
754 				break;
755 			if ((error = copyinstr(sp, dp, len, &len)) != 0) {
756 				DPRINTF(("%s: copyinstr env %d\n",
757 				    __func__, error));
758 				if (error == ENAMETOOLONG)
759 					error = E2BIG;
760 				goto bad;
761 			}
762 
763 			ktrexecenv(dp, len - 1);
764 			dp += len;
765 			i++;
766 			data->ed_envc++;
767 		}
768 	}
769 
770 	dp = (char *) ALIGN(dp);
771 
772 	data->ed_szsigcode = data->ed_pack.ep_esch->es_emul->e_esigcode -
773 	    data->ed_pack.ep_esch->es_emul->e_sigcode;
774 
775 #ifdef __MACHINE_STACK_GROWS_UP
776 /* See big comment lower down */
777 #define	RTLD_GAP	32
778 #else
779 #define	RTLD_GAP	0
780 #endif
781 
782 	/* Now check if args & environ fit into new stack */
783 	if (data->ed_pack.ep_flags & EXEC_32) {
784 		data->ed_ps_strings_sz = sizeof(struct ps_strings32);
785 		len = ((data->ed_argc + data->ed_envc + 2 +
786 		    data->ed_pack.ep_esch->es_arglen) *
787 		    sizeof(int) + sizeof(int) + dp + RTLD_GAP +
788 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
789 		    - data->ed_argp;
790 	} else {
791 		data->ed_ps_strings_sz = sizeof(struct ps_strings);
792 		len = ((data->ed_argc + data->ed_envc + 2 +
793 		    data->ed_pack.ep_esch->es_arglen) *
794 		    sizeof(char *) + sizeof(int) + dp + RTLD_GAP +
795 		    data->ed_szsigcode + data->ed_ps_strings_sz + STACK_PTHREADSPACE)
796 		    - data->ed_argp;
797 	}
798 
799 #ifdef PAX_ASLR
800 	if (pax_aslr_active(l))
801 		len += (cprng_fast32() % PAGE_SIZE);
802 #endif /* PAX_ASLR */
803 
804 	/* make the stack "safely" aligned */
805 	len = STACK_LEN_ALIGN(len, STACK_ALIGNBYTES);
806 
807 	if (len > data->ed_pack.ep_ssize) {
808 		/* in effect, compare to initial limit */
809 		DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
810 		goto bad;
811 	}
812 	/* adjust "active stack depth" for process VSZ */
813 	data->ed_pack.ep_ssize = len;
814 
815 	return 0;
816 
817  bad:
818 	/* free the vmspace-creation commands, and release their references */
819 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
820 	/* kill any opened file descriptor, if necessary */
821 	if (data->ed_pack.ep_flags & EXEC_HASFD) {
822 		data->ed_pack.ep_flags &= ~EXEC_HASFD;
823 		fd_close(data->ed_pack.ep_fd);
824 	}
825 	/* close and put the exec'd file */
826 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
827 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
828 	vput(data->ed_pack.ep_vp);
829 	pool_put(&exec_pool, data->ed_argp);
830 
831  freehdr:
832 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
833 	if (data->ed_pack.ep_emul_root != NULL)
834 		vrele(data->ed_pack.ep_emul_root);
835 	if (data->ed_pack.ep_interp != NULL)
836 		vrele(data->ed_pack.ep_interp);
837 
838 	rw_exit(&exec_lock);
839 
840 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
841 	pathbuf_destroy(data->ed_pathbuf);
842 	PNBUF_PUT(data->ed_resolvedpathbuf);
843 
844  clrflg:
845 	rw_exit(&p->p_reflock);
846 
847 	if (modgen != module_gen && error == ENOEXEC) {
848 		modgen = module_gen;
849 		exec_autoload();
850 		goto retry;
851 	}
852 
853 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
854 	return error;
855 }
856 
857 static void
858 execve_free_data(struct execve_data *data)
859 {
860 
861 	/* free the vmspace-creation commands, and release their references */
862 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
863 	/* kill any opened file descriptor, if necessary */
864 	if (data->ed_pack.ep_flags & EXEC_HASFD) {
865 		data->ed_pack.ep_flags &= ~EXEC_HASFD;
866 		fd_close(data->ed_pack.ep_fd);
867 	}
868 
869 	/* close and put the exec'd file */
870 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
871 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, curlwp->l_cred);
872 	vput(data->ed_pack.ep_vp);
873 	pool_put(&exec_pool, data->ed_argp);
874 
875 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
876 	if (data->ed_pack.ep_emul_root != NULL)
877 		vrele(data->ed_pack.ep_emul_root);
878 	if (data->ed_pack.ep_interp != NULL)
879 		vrele(data->ed_pack.ep_interp);
880 
881 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
882 	pathbuf_destroy(data->ed_pathbuf);
883 	PNBUF_PUT(data->ed_resolvedpathbuf);
884 }
885 
886 static int
887 execve_runproc(struct lwp *l, struct execve_data * restrict data,
888 	bool no_local_exec_lock, bool is_spawn)
889 {
890 	int error = 0;
891 	struct proc		*p;
892 	size_t			i;
893 	char			*stack, *dp;
894 	const char		*commandname;
895 	struct ps_strings32	arginfo32;
896 	struct exec_vmcmd	*base_vcp;
897 	void			*aip;
898 	struct vmspace		*vm;
899 	ksiginfo_t		ksi;
900 	ksiginfoq_t		kq;
901 
902 	/*
903 	 * In case of a posix_spawn operation, the child doing the exec
904 	 * might not hold the reader lock on exec_lock, but the parent
905 	 * will do this instead.
906 	 */
907 	KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
908 	KASSERT(data != NULL);
909 	if (data == NULL)
910 		return (EINVAL);
911 
912 	p = l->l_proc;
913 	if (no_local_exec_lock)
914 		KASSERT(is_spawn);
915 
916 	base_vcp = NULL;
917 
918 	if (data->ed_pack.ep_flags & EXEC_32)
919 		aip = &arginfo32;
920 	else
921 		aip = &data->ed_arginfo;
922 
923 	/* Get rid of other LWPs. */
924 	if (p->p_nlwps > 1) {
925 		mutex_enter(p->p_lock);
926 		exit_lwps(l);
927 		mutex_exit(p->p_lock);
928 	}
929 	KDASSERT(p->p_nlwps == 1);
930 
931 	/* Destroy any lwpctl info. */
932 	if (p->p_lwpctl != NULL)
933 		lwp_ctl_exit();
934 
935 	/* Remove POSIX timers */
936 	timers_free(p, TIMERS_POSIX);
937 
938 	/*
939 	 * Do whatever is necessary to prepare the address space
940 	 * for remapping.  Note that this might replace the current
941 	 * vmspace with another!
942 	 */
943 	if (is_spawn)
944 		uvmspace_spawn(l, data->ed_pack.ep_vm_minaddr,
945 		    data->ed_pack.ep_vm_maxaddr,
946 		    data->ed_pack.ep_flags & EXEC_TOPDOWN_VM);
947 	else
948 		uvmspace_exec(l, data->ed_pack.ep_vm_minaddr,
949 		    data->ed_pack.ep_vm_maxaddr,
950 		    data->ed_pack.ep_flags & EXEC_TOPDOWN_VM);
951 
952 	/* record proc's vnode, for use by procfs and others */
953         if (p->p_textvp)
954                 vrele(p->p_textvp);
955 	vref(data->ed_pack.ep_vp);
956 	p->p_textvp = data->ed_pack.ep_vp;
957 
958 	/* Now map address space */
959 	vm = p->p_vmspace;
960 	vm->vm_taddr = (void *)data->ed_pack.ep_taddr;
961 	vm->vm_tsize = btoc(data->ed_pack.ep_tsize);
962 	vm->vm_daddr = (void*)data->ed_pack.ep_daddr;
963 	vm->vm_dsize = btoc(data->ed_pack.ep_dsize);
964 	vm->vm_ssize = btoc(data->ed_pack.ep_ssize);
965 	vm->vm_issize = 0;
966 	vm->vm_maxsaddr = (void *)data->ed_pack.ep_maxsaddr;
967 	vm->vm_minsaddr = (void *)data->ed_pack.ep_minsaddr;
968 
969 #ifdef PAX_ASLR
970 	pax_aslr_init(l, vm);
971 #endif /* PAX_ASLR */
972 
973 	/* create the new process's VM space by running the vmcmds */
974 #ifdef DIAGNOSTIC
975 	if (data->ed_pack.ep_vmcmds.evs_used == 0)
976 		panic("%s: no vmcmds", __func__);
977 #endif
978 
979 #ifdef DEBUG_EXEC
980 	{
981 		size_t j;
982 		struct exec_vmcmd *vp = &data->ed_pack.ep_vmcmds.evs_cmds[0];
983 		DPRINTF(("vmcmds %u\n", data->ed_pack.ep_vmcmds.evs_used));
984 		for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
985 			DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
986 			    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
987 			    PRIxVSIZE" prot=0%o flags=%d\n", j,
988 			    vp[j].ev_proc == vmcmd_map_pagedvn ?
989 			    "pagedvn" :
990 			    vp[j].ev_proc == vmcmd_map_readvn ?
991 			    "readvn" :
992 			    vp[j].ev_proc == vmcmd_map_zero ?
993 			    "zero" : "*unknown*",
994 			    vp[j].ev_addr, vp[j].ev_len,
995 			    vp[j].ev_offset, vp[j].ev_prot,
996 			    vp[j].ev_flags));
997 		}
998 	}
999 #endif	/* DEBUG_EXEC */
1000 
1001 	for (i = 0; i < data->ed_pack.ep_vmcmds.evs_used && !error; i++) {
1002 		struct exec_vmcmd *vcp;
1003 
1004 		vcp = &data->ed_pack.ep_vmcmds.evs_cmds[i];
1005 		if (vcp->ev_flags & VMCMD_RELATIVE) {
1006 #ifdef DIAGNOSTIC
1007 			if (base_vcp == NULL)
1008 				panic("%s: relative vmcmd with no base",
1009 				    __func__);
1010 			if (vcp->ev_flags & VMCMD_BASE)
1011 				panic("%s: illegal base & relative vmcmd",
1012 				    __func__);
1013 #endif
1014 			vcp->ev_addr += base_vcp->ev_addr;
1015 		}
1016 		error = (*vcp->ev_proc)(l, vcp);
1017 #ifdef DEBUG_EXEC
1018 		if (error) {
1019 			size_t j;
1020 			struct exec_vmcmd *vp =
1021 			    &data->ed_pack.ep_vmcmds.evs_cmds[0];
1022 			DPRINTF(("vmcmds %zu/%u, error %d\n", i,
1023 			    data->ed_pack.ep_vmcmds.evs_used, error));
1024 			for (j = 0; j < data->ed_pack.ep_vmcmds.evs_used; j++) {
1025 				DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
1026 				    PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
1027 				    PRIxVSIZE" prot=0%o flags=%d\n", j,
1028 				    vp[j].ev_proc == vmcmd_map_pagedvn ?
1029 				    "pagedvn" :
1030 				    vp[j].ev_proc == vmcmd_map_readvn ?
1031 				    "readvn" :
1032 				    vp[j].ev_proc == vmcmd_map_zero ?
1033 				    "zero" : "*unknown*",
1034 				    vp[j].ev_addr, vp[j].ev_len,
1035 				    vp[j].ev_offset, vp[j].ev_prot,
1036 				    vp[j].ev_flags));
1037 				if (j == i)
1038 					DPRINTF(("     ^--- failed\n"));
1039 			}
1040 		}
1041 #endif /* DEBUG_EXEC */
1042 		if (vcp->ev_flags & VMCMD_BASE)
1043 			base_vcp = vcp;
1044 	}
1045 
1046 	/* free the vmspace-creation commands, and release their references */
1047 	kill_vmcmds(&data->ed_pack.ep_vmcmds);
1048 
1049 	vn_lock(data->ed_pack.ep_vp, LK_EXCLUSIVE | LK_RETRY);
1050 	VOP_CLOSE(data->ed_pack.ep_vp, FREAD, l->l_cred);
1051 	vput(data->ed_pack.ep_vp);
1052 
1053 	/* if an error happened, deallocate and punt */
1054 	if (error) {
1055 		DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
1056 		goto exec_abort;
1057 	}
1058 
1059 	/* remember information about the process */
1060 	data->ed_arginfo.ps_nargvstr = data->ed_argc;
1061 	data->ed_arginfo.ps_nenvstr = data->ed_envc;
1062 
1063 	/* set command name & other accounting info */
1064 	commandname = strrchr(data->ed_pack.ep_resolvedname, '/');
1065 	if (commandname != NULL) {
1066 		commandname++;
1067 	} else {
1068 		commandname = data->ed_pack.ep_resolvedname;
1069 	}
1070 	i = min(strlen(commandname), MAXCOMLEN);
1071 	(void)memcpy(p->p_comm, commandname, i);
1072 	p->p_comm[i] = '\0';
1073 
1074 	dp = PNBUF_GET();
1075 	/*
1076 	 * If the path starts with /, we don't need to do any work.
1077 	 * This handles the majority of the cases.
1078 	 * In the future perhaps we could canonicalize it?
1079 	 */
1080 	if (data->ed_pathstring[0] == '/')
1081 		(void)strlcpy(data->ed_pack.ep_path = dp, data->ed_pathstring,
1082 		    MAXPATHLEN);
1083 #ifdef notyet
1084 	/*
1085 	 * Although this works most of the time [since the entry was just
1086 	 * entered in the cache] we don't use it because it theoretically
1087 	 * can fail and it is not the cleanest interface, because there
1088 	 * could be races. When the namei cache is re-written, this can
1089 	 * be changed to use the appropriate function.
1090 	 */
1091 	else if (!(error = vnode_to_path(dp, MAXPATHLEN, p->p_textvp, l, p)))
1092 		data->ed_pack.ep_path = dp;
1093 #endif
1094 	else {
1095 #ifdef notyet
1096 		printf("Cannot get path for pid %d [%s] (error %d)\n",
1097 		    (int)p->p_pid, p->p_comm, error);
1098 #endif
1099 		data->ed_pack.ep_path = NULL;
1100 		PNBUF_PUT(dp);
1101 	}
1102 
1103 	stack = (char *)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1104 		STACK_PTHREADSPACE + data->ed_ps_strings_sz + data->ed_szsigcode),
1105 		data->ed_pack.ep_ssize - (data->ed_ps_strings_sz + data->ed_szsigcode));
1106 
1107 #ifdef __MACHINE_STACK_GROWS_UP
1108 	/*
1109 	 * The copyargs call always copies into lower addresses
1110 	 * first, moving towards higher addresses, starting with
1111 	 * the stack pointer that we give.  When the stack grows
1112 	 * down, this puts argc/argv/envp very shallow on the
1113 	 * stack, right at the first user stack pointer.
1114 	 * When the stack grows up, the situation is reversed.
1115 	 *
1116 	 * Normally, this is no big deal.  But the ld_elf.so _rtld()
1117 	 * function expects to be called with a single pointer to
1118 	 * a region that has a few words it can stash values into,
1119 	 * followed by argc/argv/envp.  When the stack grows down,
1120 	 * it's easy to decrement the stack pointer a little bit to
1121 	 * allocate the space for these few words and pass the new
1122 	 * stack pointer to _rtld.  When the stack grows up, however,
1123 	 * a few words before argc is part of the signal trampoline, XXX
1124 	 * so we have a problem.
1125 	 *
1126 	 * Instead of changing how _rtld works, we take the easy way
1127 	 * out and steal 32 bytes before we call copyargs.
1128 	 * This extra space was allowed for when 'pack.ep_ssize' was calculated.
1129 	 */
1130 	stack += RTLD_GAP;
1131 #endif /* __MACHINE_STACK_GROWS_UP */
1132 
1133 	/* Now copy argc, args & environ to new stack */
1134 	error = (*data->ed_pack.ep_esch->es_copyargs)(l, &data->ed_pack,
1135 	    &data->ed_arginfo, &stack, data->ed_argp);
1136 
1137 	if (data->ed_pack.ep_path) {
1138 		PNBUF_PUT(data->ed_pack.ep_path);
1139 		data->ed_pack.ep_path = NULL;
1140 	}
1141 	if (error) {
1142 		DPRINTF(("%s: copyargs failed %d\n", __func__, error));
1143 		goto exec_abort;
1144 	}
1145 	/* Move the stack back to original point */
1146 	stack = (char *)STACK_GROW(vm->vm_minsaddr, data->ed_pack.ep_ssize);
1147 
1148 	/* fill process ps_strings info */
1149 	p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(vm->vm_minsaddr,
1150 	    STACK_PTHREADSPACE), data->ed_ps_strings_sz);
1151 
1152 	if (data->ed_pack.ep_flags & EXEC_32) {
1153 		arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
1154 		arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
1155 		arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
1156 		arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
1157 	}
1158 
1159 	/* copy out the process's ps_strings structure */
1160 	if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
1161 	    != 0) {
1162 		DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
1163 		    __func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
1164 		goto exec_abort;
1165 	}
1166 
1167 	cwdexec(p);
1168 	fd_closeexec();		/* handle close on exec */
1169 
1170 	if (__predict_false(ktrace_on))
1171 		fd_ktrexecfd();
1172 
1173 	execsigs(p);		/* reset catched signals */
1174 
1175 	l->l_ctxlink = NULL;	/* reset ucontext link */
1176 
1177 
1178 	p->p_acflag &= ~AFORK;
1179 	mutex_enter(p->p_lock);
1180 	p->p_flag |= PK_EXEC;
1181 	mutex_exit(p->p_lock);
1182 
1183 	/*
1184 	 * Stop profiling.
1185 	 */
1186 	if ((p->p_stflag & PST_PROFIL) != 0) {
1187 		mutex_spin_enter(&p->p_stmutex);
1188 		stopprofclock(p);
1189 		mutex_spin_exit(&p->p_stmutex);
1190 	}
1191 
1192 	/*
1193 	 * It's OK to test PL_PPWAIT unlocked here, as other LWPs have
1194 	 * exited and exec()/exit() are the only places it will be cleared.
1195 	 */
1196 	if ((p->p_lflag & PL_PPWAIT) != 0) {
1197 #if 0
1198 		lwp_t *lp;
1199 
1200 		mutex_enter(proc_lock);
1201 		lp = p->p_vforklwp;
1202 		p->p_vforklwp = NULL;
1203 
1204 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1205 		p->p_lflag &= ~PL_PPWAIT;
1206 
1207 		lp->l_pflag &= ~LP_VFORKWAIT; /* XXX */
1208 		cv_broadcast(&lp->l_waitcv);
1209 		mutex_exit(proc_lock);
1210 #else
1211 		mutex_enter(proc_lock);
1212 		l->l_lwpctl = NULL; /* was on loan from blocked parent */
1213 		p->p_lflag &= ~PL_PPWAIT;
1214 		cv_broadcast(&p->p_pptr->p_waitcv);
1215 		mutex_exit(proc_lock);
1216 #endif
1217 	}
1218 
1219 	/*
1220 	 * Deal with set[ug]id.  MNT_NOSUID has already been used to disable
1221 	 * s[ug]id.  It's OK to check for PSL_TRACED here as we have blocked
1222 	 * out additional references on the process for the moment.
1223 	 */
1224 	if ((p->p_slflag & PSL_TRACED) == 0 &&
1225 
1226 	    (((data->ed_attr.va_mode & S_ISUID) != 0 &&
1227 	      kauth_cred_geteuid(l->l_cred) != data->ed_attr.va_uid) ||
1228 
1229 	     ((data->ed_attr.va_mode & S_ISGID) != 0 &&
1230 	      kauth_cred_getegid(l->l_cred) != data->ed_attr.va_gid))) {
1231 		/*
1232 		 * Mark the process as SUGID before we do
1233 		 * anything that might block.
1234 		 */
1235 		proc_crmod_enter();
1236 		proc_crmod_leave(NULL, NULL, true);
1237 
1238 		/* Make sure file descriptors 0..2 are in use. */
1239 		if ((error = fd_checkstd()) != 0) {
1240 			DPRINTF(("%s: fdcheckstd failed %d\n",
1241 			    __func__, error));
1242 			goto exec_abort;
1243 		}
1244 
1245 		/*
1246 		 * Copy the credential so other references don't see our
1247 		 * changes.
1248 		 */
1249 		l->l_cred = kauth_cred_copy(l->l_cred);
1250 #ifdef KTRACE
1251 		/*
1252 		 * If the persistent trace flag isn't set, turn off.
1253 		 */
1254 		if (p->p_tracep) {
1255 			mutex_enter(&ktrace_lock);
1256 			if (!(p->p_traceflag & KTRFAC_PERSISTENT))
1257 				ktrderef(p);
1258 			mutex_exit(&ktrace_lock);
1259 		}
1260 #endif
1261 		if (data->ed_attr.va_mode & S_ISUID)
1262 			kauth_cred_seteuid(l->l_cred, data->ed_attr.va_uid);
1263 		if (data->ed_attr.va_mode & S_ISGID)
1264 			kauth_cred_setegid(l->l_cred, data->ed_attr.va_gid);
1265 	} else {
1266 		if (kauth_cred_geteuid(l->l_cred) ==
1267 		    kauth_cred_getuid(l->l_cred) &&
1268 		    kauth_cred_getegid(l->l_cred) ==
1269 		    kauth_cred_getgid(l->l_cred))
1270 			p->p_flag &= ~PK_SUGID;
1271 	}
1272 
1273 	/*
1274 	 * Copy the credential so other references don't see our changes.
1275 	 * Test to see if this is necessary first, since in the common case
1276 	 * we won't need a private reference.
1277 	 */
1278 	if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
1279 	    kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
1280 		l->l_cred = kauth_cred_copy(l->l_cred);
1281 		kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
1282 		kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
1283 	}
1284 
1285 	/* Update the master credentials. */
1286 	if (l->l_cred != p->p_cred) {
1287 		kauth_cred_t ocred;
1288 
1289 		kauth_cred_hold(l->l_cred);
1290 		mutex_enter(p->p_lock);
1291 		ocred = p->p_cred;
1292 		p->p_cred = l->l_cred;
1293 		mutex_exit(p->p_lock);
1294 		kauth_cred_free(ocred);
1295 	}
1296 
1297 #if defined(__HAVE_RAS)
1298 	/*
1299 	 * Remove all RASs from the address space.
1300 	 */
1301 	ras_purgeall();
1302 #endif
1303 
1304 	doexechooks(p);
1305 
1306 	/* setup new registers and do misc. setup. */
1307 	(*data->ed_pack.ep_esch->es_emul->e_setregs)(l, &data->ed_pack,
1308 	     (vaddr_t)stack);
1309 	if (data->ed_pack.ep_esch->es_setregs)
1310 		(*data->ed_pack.ep_esch->es_setregs)(l, &data->ed_pack,
1311 		    (vaddr_t)stack);
1312 
1313 	/* Provide a consistent LWP private setting */
1314 	(void)lwp_setprivate(l, NULL);
1315 
1316 	/* Discard all PCU state; need to start fresh */
1317 	pcu_discard_all(l);
1318 
1319 	/* map the process's signal trampoline code */
1320 	if ((error = exec_sigcode_map(p, data->ed_pack.ep_esch->es_emul)) != 0) {
1321 		DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
1322 		goto exec_abort;
1323 	}
1324 
1325 	pool_put(&exec_pool, data->ed_argp);
1326 
1327 	/* notify others that we exec'd */
1328 	KNOTE(&p->p_klist, NOTE_EXEC);
1329 
1330 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1331 
1332 	SDT_PROBE(proc,,,exec_success, data->ed_pack.ep_name, 0, 0, 0, 0);
1333 
1334 	/* The emulation root will usually have been found when we looked
1335 	 * for the elf interpreter (or similar), if not look now. */
1336 	if (data->ed_pack.ep_esch->es_emul->e_path != NULL &&
1337 	    data->ed_pack.ep_emul_root == NULL)
1338 		emul_find_root(l, &data->ed_pack);
1339 
1340 	/* Any old emulation root got removed by fdcloseexec */
1341 	rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
1342 	p->p_cwdi->cwdi_edir = data->ed_pack.ep_emul_root;
1343 	rw_exit(&p->p_cwdi->cwdi_lock);
1344 	data->ed_pack.ep_emul_root = NULL;
1345 	if (data->ed_pack.ep_interp != NULL)
1346 		vrele(data->ed_pack.ep_interp);
1347 
1348 	/*
1349 	 * Call emulation specific exec hook. This can setup per-process
1350 	 * p->p_emuldata or do any other per-process stuff an emulation needs.
1351 	 *
1352 	 * If we are executing process of different emulation than the
1353 	 * original forked process, call e_proc_exit() of the old emulation
1354 	 * first, then e_proc_exec() of new emulation. If the emulation is
1355 	 * same, the exec hook code should deallocate any old emulation
1356 	 * resources held previously by this process.
1357 	 */
1358 	if (p->p_emul && p->p_emul->e_proc_exit
1359 	    && p->p_emul != data->ed_pack.ep_esch->es_emul)
1360 		(*p->p_emul->e_proc_exit)(p);
1361 
1362 	/*
1363 	 * This is now LWP 1.
1364 	 */
1365 	mutex_enter(p->p_lock);
1366 	p->p_nlwpid = 1;
1367 	l->l_lid = 1;
1368 	mutex_exit(p->p_lock);
1369 
1370 	/*
1371 	 * Call exec hook. Emulation code may NOT store reference to anything
1372 	 * from &pack.
1373 	 */
1374 	if (data->ed_pack.ep_esch->es_emul->e_proc_exec)
1375 		(*data->ed_pack.ep_esch->es_emul->e_proc_exec)(p, &data->ed_pack);
1376 
1377 	/* update p_emul, the old value is no longer needed */
1378 	p->p_emul = data->ed_pack.ep_esch->es_emul;
1379 
1380 	/* ...and the same for p_execsw */
1381 	p->p_execsw = data->ed_pack.ep_esch;
1382 
1383 #ifdef __HAVE_SYSCALL_INTERN
1384 	(*p->p_emul->e_syscall_intern)(p);
1385 #endif
1386 	ktremul();
1387 
1388 	/* Allow new references from the debugger/procfs. */
1389 	rw_exit(&p->p_reflock);
1390 	if (!no_local_exec_lock)
1391 		rw_exit(&exec_lock);
1392 
1393 	mutex_enter(proc_lock);
1394 
1395 	if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
1396 		KSI_INIT_EMPTY(&ksi);
1397 		ksi.ksi_signo = SIGTRAP;
1398 		ksi.ksi_lid = l->l_lid;
1399 		kpsignal(p, &ksi, NULL);
1400 	}
1401 
1402 	if (p->p_sflag & PS_STOPEXEC) {
1403 		KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
1404 		p->p_pptr->p_nstopchild++;
1405 		p->p_pptr->p_waited = 0;
1406 		mutex_enter(p->p_lock);
1407 		ksiginfo_queue_init(&kq);
1408 		sigclearall(p, &contsigmask, &kq);
1409 		lwp_lock(l);
1410 		l->l_stat = LSSTOP;
1411 		p->p_stat = SSTOP;
1412 		p->p_nrlwps--;
1413 		lwp_unlock(l);
1414 		mutex_exit(p->p_lock);
1415 		mutex_exit(proc_lock);
1416 		lwp_lock(l);
1417 		mi_switch(l);
1418 		ksiginfo_queue_drain(&kq);
1419 		KERNEL_LOCK(l->l_biglocks, l);
1420 	} else {
1421 		mutex_exit(proc_lock);
1422 	}
1423 
1424 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1425 	pathbuf_destroy(data->ed_pathbuf);
1426 	PNBUF_PUT(data->ed_resolvedpathbuf);
1427 	DPRINTF(("%s finished\n", __func__));
1428 	return (EJUSTRETURN);
1429 
1430  exec_abort:
1431 	SDT_PROBE(proc,,,exec_failure, error, 0, 0, 0, 0);
1432 	rw_exit(&p->p_reflock);
1433 	if (!no_local_exec_lock)
1434 		rw_exit(&exec_lock);
1435 
1436 	pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
1437 	pathbuf_destroy(data->ed_pathbuf);
1438 	PNBUF_PUT(data->ed_resolvedpathbuf);
1439 
1440 	/*
1441 	 * the old process doesn't exist anymore.  exit gracefully.
1442 	 * get rid of the (new) address space we have created, if any, get rid
1443 	 * of our namei data and vnode, and exit noting failure
1444 	 */
1445 	uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
1446 		VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
1447 
1448 	exec_free_emul_arg(&data->ed_pack);
1449 	pool_put(&exec_pool, data->ed_argp);
1450 	kmem_free(data->ed_pack.ep_hdr, data->ed_pack.ep_hdrlen);
1451 	if (data->ed_pack.ep_emul_root != NULL)
1452 		vrele(data->ed_pack.ep_emul_root);
1453 	if (data->ed_pack.ep_interp != NULL)
1454 		vrele(data->ed_pack.ep_interp);
1455 
1456 	/* Acquire the sched-state mutex (exit1() will release it). */
1457 	if (!is_spawn) {
1458 		mutex_enter(p->p_lock);
1459 		exit1(l, W_EXITCODE(error, SIGABRT));
1460 	}
1461 
1462 	return error;
1463 }
1464 
1465 int
1466 execve1(struct lwp *l, const char *path, char * const *args,
1467     char * const *envs, execve_fetch_element_t fetch_element)
1468 {
1469 	struct execve_data data;
1470 	int error;
1471 
1472 	error = execve_loadvm(l, path, args, envs, fetch_element, &data);
1473 	if (error)
1474 		return error;
1475 	error = execve_runproc(l, &data, false, false);
1476 	return error;
1477 }
1478 
1479 int
1480 copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
1481     char **stackp, void *argp)
1482 {
1483 	char	**cpp, *dp, *sp;
1484 	size_t	len;
1485 	void	*nullp;
1486 	long	argc, envc;
1487 	int	error;
1488 
1489 	cpp = (char **)*stackp;
1490 	nullp = NULL;
1491 	argc = arginfo->ps_nargvstr;
1492 	envc = arginfo->ps_nenvstr;
1493 	if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
1494 		COPYPRINTF("", cpp - 1, sizeof(argc));
1495 		return error;
1496 	}
1497 
1498 	dp = (char *) (cpp + argc + envc + 2 + pack->ep_esch->es_arglen);
1499 	sp = argp;
1500 
1501 	/* XXX don't copy them out, remap them! */
1502 	arginfo->ps_argvstr = cpp; /* remember location of argv for later */
1503 
1504 	for (; --argc >= 0; sp += len, dp += len) {
1505 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1506 			COPYPRINTF("", cpp - 1, sizeof(dp));
1507 			return error;
1508 		}
1509 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1510 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1511 			return error;
1512 		}
1513 	}
1514 
1515 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1516 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1517 		return error;
1518 	}
1519 
1520 	arginfo->ps_envstr = cpp; /* remember location of envp for later */
1521 
1522 	for (; --envc >= 0; sp += len, dp += len) {
1523 		if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
1524 			COPYPRINTF("", cpp - 1, sizeof(dp));
1525 			return error;
1526 		}
1527 		if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
1528 			COPYPRINTF("str", dp, (size_t)ARG_MAX);
1529 			return error;
1530 		}
1531 
1532 	}
1533 
1534 	if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
1535 		COPYPRINTF("", cpp - 1, sizeof(nullp));
1536 		return error;
1537 	}
1538 
1539 	*stackp = (char *)cpp;
1540 	return 0;
1541 }
1542 
1543 
1544 /*
1545  * Add execsw[] entries.
1546  */
1547 int
1548 exec_add(struct execsw *esp, int count)
1549 {
1550 	struct exec_entry	*it;
1551 	int			i;
1552 
1553 	if (count == 0) {
1554 		return 0;
1555 	}
1556 
1557 	/* Check for duplicates. */
1558 	rw_enter(&exec_lock, RW_WRITER);
1559 	for (i = 0; i < count; i++) {
1560 		LIST_FOREACH(it, &ex_head, ex_list) {
1561 			/* assume unique (makecmds, probe_func, emulation) */
1562 			if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
1563 			    it->ex_sw->u.elf_probe_func ==
1564 			    esp[i].u.elf_probe_func &&
1565 			    it->ex_sw->es_emul == esp[i].es_emul) {
1566 				rw_exit(&exec_lock);
1567 				return EEXIST;
1568 			}
1569 		}
1570 	}
1571 
1572 	/* Allocate new entries. */
1573 	for (i = 0; i < count; i++) {
1574 		it = kmem_alloc(sizeof(*it), KM_SLEEP);
1575 		it->ex_sw = &esp[i];
1576 		LIST_INSERT_HEAD(&ex_head, it, ex_list);
1577 	}
1578 
1579 	/* update execsw[] */
1580 	exec_init(0);
1581 	rw_exit(&exec_lock);
1582 	return 0;
1583 }
1584 
1585 /*
1586  * Remove execsw[] entry.
1587  */
1588 int
1589 exec_remove(struct execsw *esp, int count)
1590 {
1591 	struct exec_entry	*it, *next;
1592 	int			i;
1593 	const struct proclist_desc *pd;
1594 	proc_t			*p;
1595 
1596 	if (count == 0) {
1597 		return 0;
1598 	}
1599 
1600 	/* Abort if any are busy. */
1601 	rw_enter(&exec_lock, RW_WRITER);
1602 	for (i = 0; i < count; i++) {
1603 		mutex_enter(proc_lock);
1604 		for (pd = proclists; pd->pd_list != NULL; pd++) {
1605 			PROCLIST_FOREACH(p, pd->pd_list) {
1606 				if (p->p_execsw == &esp[i]) {
1607 					mutex_exit(proc_lock);
1608 					rw_exit(&exec_lock);
1609 					return EBUSY;
1610 				}
1611 			}
1612 		}
1613 		mutex_exit(proc_lock);
1614 	}
1615 
1616 	/* None are busy, so remove them all. */
1617 	for (i = 0; i < count; i++) {
1618 		for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
1619 			next = LIST_NEXT(it, ex_list);
1620 			if (it->ex_sw == &esp[i]) {
1621 				LIST_REMOVE(it, ex_list);
1622 				kmem_free(it, sizeof(*it));
1623 				break;
1624 			}
1625 		}
1626 	}
1627 
1628 	/* update execsw[] */
1629 	exec_init(0);
1630 	rw_exit(&exec_lock);
1631 	return 0;
1632 }
1633 
1634 /*
1635  * Initialize exec structures. If init_boot is true, also does necessary
1636  * one-time initialization (it's called from main() that way).
1637  * Once system is multiuser, this should be called with exec_lock held,
1638  * i.e. via exec_{add|remove}().
1639  */
1640 int
1641 exec_init(int init_boot)
1642 {
1643 	const struct execsw 	**sw;
1644 	struct exec_entry	*ex;
1645 	SLIST_HEAD(,exec_entry)	first;
1646 	SLIST_HEAD(,exec_entry)	any;
1647 	SLIST_HEAD(,exec_entry)	last;
1648 	int			i, sz;
1649 
1650 	if (init_boot) {
1651 		/* do one-time initializations */
1652 		rw_init(&exec_lock);
1653 		mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
1654 		pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
1655 		    "execargs", &exec_palloc, IPL_NONE);
1656 		pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
1657 	} else {
1658 		KASSERT(rw_write_held(&exec_lock));
1659 	}
1660 
1661 	/* Sort each entry onto the appropriate queue. */
1662 	SLIST_INIT(&first);
1663 	SLIST_INIT(&any);
1664 	SLIST_INIT(&last);
1665 	sz = 0;
1666 	LIST_FOREACH(ex, &ex_head, ex_list) {
1667 		switch(ex->ex_sw->es_prio) {
1668 		case EXECSW_PRIO_FIRST:
1669 			SLIST_INSERT_HEAD(&first, ex, ex_slist);
1670 			break;
1671 		case EXECSW_PRIO_ANY:
1672 			SLIST_INSERT_HEAD(&any, ex, ex_slist);
1673 			break;
1674 		case EXECSW_PRIO_LAST:
1675 			SLIST_INSERT_HEAD(&last, ex, ex_slist);
1676 			break;
1677 		default:
1678 			panic("%s", __func__);
1679 			break;
1680 		}
1681 		sz++;
1682 	}
1683 
1684 	/*
1685 	 * Create new execsw[].  Ensure we do not try a zero-sized
1686 	 * allocation.
1687 	 */
1688 	sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
1689 	i = 0;
1690 	SLIST_FOREACH(ex, &first, ex_slist) {
1691 		sw[i++] = ex->ex_sw;
1692 	}
1693 	SLIST_FOREACH(ex, &any, ex_slist) {
1694 		sw[i++] = ex->ex_sw;
1695 	}
1696 	SLIST_FOREACH(ex, &last, ex_slist) {
1697 		sw[i++] = ex->ex_sw;
1698 	}
1699 
1700 	/* Replace old execsw[] and free used memory. */
1701 	if (execsw != NULL) {
1702 		kmem_free(__UNCONST(execsw),
1703 		    nexecs * sizeof(struct execsw *) + 1);
1704 	}
1705 	execsw = sw;
1706 	nexecs = sz;
1707 
1708 	/* Figure out the maximum size of an exec header. */
1709 	exec_maxhdrsz = sizeof(int);
1710 	for (i = 0; i < nexecs; i++) {
1711 		if (execsw[i]->es_hdrsz > exec_maxhdrsz)
1712 			exec_maxhdrsz = execsw[i]->es_hdrsz;
1713 	}
1714 
1715 	return 0;
1716 }
1717 
1718 static int
1719 exec_sigcode_map(struct proc *p, const struct emul *e)
1720 {
1721 	vaddr_t va;
1722 	vsize_t sz;
1723 	int error;
1724 	struct uvm_object *uobj;
1725 
1726 	sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
1727 
1728 	if (e->e_sigobject == NULL || sz == 0) {
1729 		return 0;
1730 	}
1731 
1732 	/*
1733 	 * If we don't have a sigobject for this emulation, create one.
1734 	 *
1735 	 * sigobject is an anonymous memory object (just like SYSV shared
1736 	 * memory) that we keep a permanent reference to and that we map
1737 	 * in all processes that need this sigcode. The creation is simple,
1738 	 * we create an object, add a permanent reference to it, map it in
1739 	 * kernel space, copy out the sigcode to it and unmap it.
1740 	 * We map it with PROT_READ|PROT_EXEC into the process just
1741 	 * the way sys_mmap() would map it.
1742 	 */
1743 
1744 	uobj = *e->e_sigobject;
1745 	if (uobj == NULL) {
1746 		mutex_enter(&sigobject_lock);
1747 		if ((uobj = *e->e_sigobject) == NULL) {
1748 			uobj = uao_create(sz, 0);
1749 			(*uobj->pgops->pgo_reference)(uobj);
1750 			va = vm_map_min(kernel_map);
1751 			if ((error = uvm_map(kernel_map, &va, round_page(sz),
1752 			    uobj, 0, 0,
1753 			    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
1754 			    UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
1755 				printf("kernel mapping failed %d\n", error);
1756 				(*uobj->pgops->pgo_detach)(uobj);
1757 				mutex_exit(&sigobject_lock);
1758 				return (error);
1759 			}
1760 			memcpy((void *)va, e->e_sigcode, sz);
1761 #ifdef PMAP_NEED_PROCWR
1762 			pmap_procwr(&proc0, va, sz);
1763 #endif
1764 			uvm_unmap(kernel_map, va, va + round_page(sz));
1765 			*e->e_sigobject = uobj;
1766 		}
1767 		mutex_exit(&sigobject_lock);
1768 	}
1769 
1770 	/* Just a hint to uvm_map where to put it. */
1771 	va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
1772 	    round_page(sz));
1773 
1774 #ifdef __alpha__
1775 	/*
1776 	 * Tru64 puts /sbin/loader at the end of user virtual memory,
1777 	 * which causes the above calculation to put the sigcode at
1778 	 * an invalid address.  Put it just below the text instead.
1779 	 */
1780 	if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
1781 		va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
1782 	}
1783 #endif
1784 
1785 	(*uobj->pgops->pgo_reference)(uobj);
1786 	error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
1787 			uobj, 0, 0,
1788 			UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
1789 				    UVM_ADV_RANDOM, 0));
1790 	if (error) {
1791 		DPRINTF(("%s, %d: map %p "
1792 		    "uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
1793 		    __func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
1794 		    va, error));
1795 		(*uobj->pgops->pgo_detach)(uobj);
1796 		return (error);
1797 	}
1798 	p->p_sigctx.ps_sigcode = (void *)va;
1799 	return (0);
1800 }
1801 
1802 /*
1803  * Release a refcount on spawn_exec_data and destroy memory, if this
1804  * was the last one.
1805  */
1806 static void
1807 spawn_exec_data_release(struct spawn_exec_data *data)
1808 {
1809 	if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
1810 		return;
1811 
1812 	cv_destroy(&data->sed_cv_child_ready);
1813 	mutex_destroy(&data->sed_mtx_child);
1814 
1815 	if (data->sed_actions)
1816 		posix_spawn_fa_free(data->sed_actions,
1817 		    data->sed_actions->len);
1818 	if (data->sed_attrs)
1819 		kmem_free(data->sed_attrs,
1820 		    sizeof(*data->sed_attrs));
1821 	kmem_free(data, sizeof(*data));
1822 }
1823 
1824 /*
1825  * A child lwp of a posix_spawn operation starts here and ends up in
1826  * cpu_spawn_return, dealing with all filedescriptor and scheduler
1827  * manipulations in between.
1828  * The parent waits for the child, as it is not clear wether the child
1829  * will be able to aquire its own exec_lock. If it can, the parent can
1830  * be released early and continue running in parallel. If not (or if the
1831  * magic debug flag is passed in the scheduler attribute struct), the
1832  * child rides on the parent's exec lock untill it is ready to return to
1833  * to userland - and only then releases the parent. This method loses
1834  * concurrency, but improves error reporting.
1835  */
1836 static void
1837 spawn_return(void *arg)
1838 {
1839 	struct spawn_exec_data *spawn_data = arg;
1840 	struct lwp *l = curlwp;
1841 	int error, newfd;
1842 	size_t i;
1843 	const struct posix_spawn_file_actions_entry *fae;
1844 	pid_t ppid;
1845 	register_t retval;
1846 	bool have_reflock;
1847 	bool parent_is_waiting = true;
1848 
1849 	/*
1850 	 * Check if we can release parent early.
1851 	 * We either need to have no sed_attrs, or sed_attrs does not
1852 	 * have POSIX_SPAWN_RETURNERROR or one of the flags, that require
1853 	 * safe access to the parent proc (passed in sed_parent).
1854 	 * We then try to get the exec_lock, and only if that works, we can
1855 	 * release the parent here already.
1856 	 */
1857 	ppid = spawn_data->sed_parent->p_pid;
1858 	if ((!spawn_data->sed_attrs
1859 	    || (spawn_data->sed_attrs->sa_flags
1860 	        & (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
1861 	    && rw_tryenter(&exec_lock, RW_READER)) {
1862 		parent_is_waiting = false;
1863 		mutex_enter(&spawn_data->sed_mtx_child);
1864 		cv_signal(&spawn_data->sed_cv_child_ready);
1865 		mutex_exit(&spawn_data->sed_mtx_child);
1866 	}
1867 
1868 	/* don't allow debugger access yet */
1869 	rw_enter(&l->l_proc->p_reflock, RW_WRITER);
1870 	have_reflock = true;
1871 
1872 	error = 0;
1873 	/* handle posix_spawn_file_actions */
1874 	if (spawn_data->sed_actions != NULL) {
1875 		for (i = 0; i < spawn_data->sed_actions->len; i++) {
1876 			fae = &spawn_data->sed_actions->fae[i];
1877 			switch (fae->fae_action) {
1878 			case FAE_OPEN:
1879 				if (fd_getfile(fae->fae_fildes) != NULL) {
1880 					error = fd_close(fae->fae_fildes);
1881 					if (error)
1882 						break;
1883 				}
1884 				error = fd_open(fae->fae_path, fae->fae_oflag,
1885 				    fae->fae_mode, &newfd);
1886  				if (error)
1887  					break;
1888 				if (newfd != fae->fae_fildes) {
1889 					error = dodup(l, newfd,
1890 					    fae->fae_fildes, 0, &retval);
1891 					if (fd_getfile(newfd) != NULL)
1892 						fd_close(newfd);
1893 				}
1894 				break;
1895 			case FAE_DUP2:
1896 				error = dodup(l, fae->fae_fildes,
1897 				    fae->fae_newfildes, 0, &retval);
1898 				break;
1899 			case FAE_CLOSE:
1900 				if (fd_getfile(fae->fae_fildes) == NULL) {
1901 					error = EBADF;
1902 					break;
1903 				}
1904 				error = fd_close(fae->fae_fildes);
1905 				break;
1906 			}
1907 			if (error)
1908 				goto report_error;
1909 		}
1910 	}
1911 
1912 	/* handle posix_spawnattr */
1913 	if (spawn_data->sed_attrs != NULL) {
1914 		int ostat;
1915 		struct sigaction sigact;
1916 		sigact._sa_u._sa_handler = SIG_DFL;
1917 		sigact.sa_flags = 0;
1918 
1919 		/*
1920 		 * set state to SSTOP so that this proc can be found by pid.
1921 		 * see proc_enterprp, do_sched_setparam below
1922 		 */
1923 		ostat = l->l_proc->p_stat;
1924 		l->l_proc->p_stat = SSTOP;
1925 
1926 		/* Set process group */
1927 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
1928 			pid_t mypid = l->l_proc->p_pid,
1929 			     pgrp = spawn_data->sed_attrs->sa_pgroup;
1930 
1931 			if (pgrp == 0)
1932 				pgrp = mypid;
1933 
1934 			error = proc_enterpgrp(spawn_data->sed_parent,
1935 			    mypid, pgrp, false);
1936 			if (error)
1937 				goto report_error;
1938 		}
1939 
1940 		/* Set scheduler policy */
1941 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
1942 			error = do_sched_setparam(l->l_proc->p_pid, 0,
1943 			    spawn_data->sed_attrs->sa_schedpolicy,
1944 			    &spawn_data->sed_attrs->sa_schedparam);
1945 		else if (spawn_data->sed_attrs->sa_flags
1946 		    & POSIX_SPAWN_SETSCHEDPARAM) {
1947 			error = do_sched_setparam(ppid, 0,
1948 			    SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
1949 		}
1950 		if (error)
1951 			goto report_error;
1952 
1953 		/* Reset user ID's */
1954 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
1955 			error = do_setresuid(l, -1,
1956 			     kauth_cred_getgid(l->l_cred), -1,
1957 			     ID_E_EQ_R | ID_E_EQ_S);
1958 			if (error)
1959 				goto report_error;
1960 			error = do_setresuid(l, -1,
1961 			    kauth_cred_getuid(l->l_cred), -1,
1962 			    ID_E_EQ_R | ID_E_EQ_S);
1963 			if (error)
1964 				goto report_error;
1965 		}
1966 
1967 		/* Set signal masks/defaults */
1968 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
1969 			mutex_enter(l->l_proc->p_lock);
1970 			error = sigprocmask1(l, SIG_SETMASK,
1971 			    &spawn_data->sed_attrs->sa_sigmask, NULL);
1972 			mutex_exit(l->l_proc->p_lock);
1973 			if (error)
1974 				goto report_error;
1975 		}
1976 
1977 		if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
1978 			for (i = 1; i <= NSIG; i++) {
1979 				if (sigismember(
1980 				    &spawn_data->sed_attrs->sa_sigdefault, i))
1981 					sigaction1(l, i, &sigact, NULL, NULL,
1982 					    0);
1983 			}
1984 		}
1985 		l->l_proc->p_stat = ostat;
1986 	}
1987 
1988 	/* now do the real exec */
1989 	error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
1990 	    true);
1991 	have_reflock = false;
1992 	if (error == EJUSTRETURN)
1993 		error = 0;
1994 	else if (error)
1995 		goto report_error;
1996 
1997 	if (parent_is_waiting) {
1998 		mutex_enter(&spawn_data->sed_mtx_child);
1999 		cv_signal(&spawn_data->sed_cv_child_ready);
2000 		mutex_exit(&spawn_data->sed_mtx_child);
2001 	}
2002 
2003 	/* release our refcount on the data */
2004 	spawn_exec_data_release(spawn_data);
2005 
2006 	/* and finaly: leave to userland for the first time */
2007 	cpu_spawn_return(l);
2008 
2009 	/* NOTREACHED */
2010 	return;
2011 
2012  report_error:
2013  	if (have_reflock) {
2014  		/*
2015 		 * We have not passed through execve_runproc(),
2016 		 * which would have released the p_reflock and also
2017 		 * taken ownership of the sed_exec part of spawn_data,
2018 		 * so release/free both here.
2019 		 */
2020 		rw_exit(&l->l_proc->p_reflock);
2021 		execve_free_data(&spawn_data->sed_exec);
2022 	}
2023 
2024 	if (parent_is_waiting) {
2025 		/* pass error to parent */
2026 		mutex_enter(&spawn_data->sed_mtx_child);
2027 		spawn_data->sed_error = error;
2028 		cv_signal(&spawn_data->sed_cv_child_ready);
2029 		mutex_exit(&spawn_data->sed_mtx_child);
2030 	} else {
2031 		rw_exit(&exec_lock);
2032 	}
2033 
2034 	/* release our refcount on the data */
2035 	spawn_exec_data_release(spawn_data);
2036 
2037 	/* done, exit */
2038 	mutex_enter(l->l_proc->p_lock);
2039 	/*
2040 	 * Posix explicitly asks for an exit code of 127 if we report
2041 	 * errors from the child process - so, unfortunately, there
2042 	 * is no way to report a more exact error code.
2043 	 * A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
2044 	 * flag bit in the attrp argument to posix_spawn(2), see above.
2045 	 */
2046 	exit1(l, W_EXITCODE(127, 0));
2047 }
2048 
2049 void
2050 posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
2051 {
2052 
2053 	for (size_t i = 0; i < len; i++) {
2054 		struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
2055 		if (fae->fae_action != FAE_OPEN)
2056 			continue;
2057 		kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
2058 	}
2059 	if (fa->len > 0)
2060 		kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
2061 	kmem_free(fa, sizeof(*fa));
2062 }
2063 
2064 static int
2065 posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
2066     const struct posix_spawn_file_actions *ufa)
2067 {
2068 	struct posix_spawn_file_actions *fa;
2069 	struct posix_spawn_file_actions_entry *fae;
2070 	char *pbuf = NULL;
2071 	int error;
2072 	size_t i = 0;
2073 
2074 	fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
2075 	error = copyin(ufa, fa, sizeof(*fa));
2076 	if (error) {
2077 		fa->fae = NULL;
2078 		fa->len = 0;
2079 		goto out;
2080 	}
2081 
2082 	if (fa->len == 0) {
2083 		kmem_free(fa, sizeof(*fa));
2084 		return 0;
2085 	}
2086 
2087 	fa->size = fa->len;
2088 	size_t fal = fa->len * sizeof(*fae);
2089 	fae = fa->fae;
2090 	fa->fae = kmem_alloc(fal, KM_SLEEP);
2091 	error = copyin(fae, fa->fae, fal);
2092 	if (error)
2093 		goto out;
2094 
2095 	pbuf = PNBUF_GET();
2096 	for (; i < fa->len; i++) {
2097 		fae = &fa->fae[i];
2098 		if (fae->fae_action != FAE_OPEN)
2099 			continue;
2100 		error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
2101 		if (error)
2102 			goto out;
2103 		fae->fae_path = kmem_alloc(fal, KM_SLEEP);
2104 		memcpy(fae->fae_path, pbuf, fal);
2105 	}
2106 	PNBUF_PUT(pbuf);
2107 
2108 	*fap = fa;
2109 	return 0;
2110 out:
2111 	if (pbuf)
2112 		PNBUF_PUT(pbuf);
2113 	posix_spawn_fa_free(fa, i);
2114 	return error;
2115 }
2116 
2117 int
2118 check_posix_spawn(struct lwp *l1)
2119 {
2120 	int error, tnprocs, count;
2121 	uid_t uid;
2122 	struct proc *p1;
2123 
2124 	p1 = l1->l_proc;
2125 	uid = kauth_cred_getuid(l1->l_cred);
2126 	tnprocs = atomic_inc_uint_nv(&nprocs);
2127 
2128 	/*
2129 	 * Although process entries are dynamically created, we still keep
2130 	 * a global limit on the maximum number we will create.
2131 	 */
2132 	if (__predict_false(tnprocs >= maxproc))
2133 		error = -1;
2134 	else
2135 		error = kauth_authorize_process(l1->l_cred,
2136 		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
2137 
2138 	if (error) {
2139 		atomic_dec_uint(&nprocs);
2140 		return EAGAIN;
2141 	}
2142 
2143 	/*
2144 	 * Enforce limits.
2145 	 */
2146 	count = chgproccnt(uid, 1);
2147 	if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
2148 	     p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
2149 	     &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
2150 	    __predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
2151 		(void)chgproccnt(uid, -1);
2152 		atomic_dec_uint(&nprocs);
2153 		return EAGAIN;
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 int
2160 do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
2161 	struct posix_spawn_file_actions *fa,
2162 	struct posix_spawnattr *sa,
2163 	char *const *argv, char *const *envp,
2164 	execve_fetch_element_t fetch)
2165 {
2166 
2167 	struct proc *p1, *p2;
2168 	struct lwp *l2;
2169 	int error;
2170 	struct spawn_exec_data *spawn_data;
2171 	vaddr_t uaddr;
2172 	pid_t pid;
2173 	bool have_exec_lock = false;
2174 
2175 	p1 = l1->l_proc;
2176 
2177 	/* Allocate and init spawn_data */
2178 	spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
2179 	spawn_data->sed_refcnt = 1; /* only parent so far */
2180 	cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
2181 	mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
2182 	mutex_enter(&spawn_data->sed_mtx_child);
2183 
2184 	/*
2185 	 * Do the first part of the exec now, collect state
2186 	 * in spawn_data.
2187 	 */
2188 	error = execve_loadvm(l1, path, argv,
2189 	    envp, fetch, &spawn_data->sed_exec);
2190 	if (error == EJUSTRETURN)
2191 		error = 0;
2192 	else if (error)
2193 		goto error_exit;
2194 
2195 	have_exec_lock = true;
2196 
2197 	/*
2198 	 * Allocate virtual address space for the U-area now, while it
2199 	 * is still easy to abort the fork operation if we're out of
2200 	 * kernel virtual address space.
2201 	 */
2202 	uaddr = uvm_uarea_alloc();
2203 	if (__predict_false(uaddr == 0)) {
2204 		error = ENOMEM;
2205 		goto error_exit;
2206 	}
2207 
2208 	/*
2209 	 * Allocate new proc. Borrow proc0 vmspace for it, we will
2210 	 * replace it with its own before returning to userland
2211 	 * in the child.
2212 	 * This is a point of no return, we will have to go through
2213 	 * the child proc to properly clean it up past this point.
2214 	 */
2215 	p2 = proc_alloc();
2216 	pid = p2->p_pid;
2217 
2218 	/*
2219 	 * Make a proc table entry for the new process.
2220 	 * Start by zeroing the section of proc that is zero-initialized,
2221 	 * then copy the section that is copied directly from the parent.
2222 	 */
2223 	memset(&p2->p_startzero, 0,
2224 	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
2225 	memcpy(&p2->p_startcopy, &p1->p_startcopy,
2226 	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
2227 	p2->p_vmspace = proc0.p_vmspace;
2228 
2229 	CIRCLEQ_INIT(&p2->p_sigpend.sp_info);
2230 
2231 	LIST_INIT(&p2->p_lwps);
2232 	LIST_INIT(&p2->p_sigwaiters);
2233 
2234 	/*
2235 	 * Duplicate sub-structures as needed.
2236 	 * Increase reference counts on shared objects.
2237 	 * Inherit flags we want to keep.  The flags related to SIGCHLD
2238 	 * handling are important in order to keep a consistent behaviour
2239 	 * for the child after the fork.  If we are a 32-bit process, the
2240 	 * child will be too.
2241 	 */
2242 	p2->p_flag =
2243 	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
2244 	p2->p_emul = p1->p_emul;
2245 	p2->p_execsw = p1->p_execsw;
2246 
2247 	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
2248 	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
2249 	rw_init(&p2->p_reflock);
2250 	cv_init(&p2->p_waitcv, "wait");
2251 	cv_init(&p2->p_lwpcv, "lwpwait");
2252 
2253 	p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2254 
2255 	kauth_proc_fork(p1, p2);
2256 
2257 	p2->p_raslist = NULL;
2258 	p2->p_fd = fd_copy();
2259 
2260 	/* XXX racy */
2261 	p2->p_mqueue_cnt = p1->p_mqueue_cnt;
2262 
2263 	p2->p_cwdi = cwdinit();
2264 
2265 	/*
2266 	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
2267 	 * we just need increase pl_refcnt.
2268 	 */
2269 	if (!p1->p_limit->pl_writeable) {
2270 		lim_addref(p1->p_limit);
2271 		p2->p_limit = p1->p_limit;
2272 	} else {
2273 		p2->p_limit = lim_copy(p1->p_limit);
2274 	}
2275 
2276 	p2->p_lflag = 0;
2277 	p2->p_sflag = 0;
2278 	p2->p_slflag = 0;
2279 	p2->p_pptr = p1;
2280 	p2->p_ppid = p1->p_pid;
2281 	LIST_INIT(&p2->p_children);
2282 
2283 	p2->p_aio = NULL;
2284 
2285 #ifdef KTRACE
2286 	/*
2287 	 * Copy traceflag and tracefile if enabled.
2288 	 * If not inherited, these were zeroed above.
2289 	 */
2290 	if (p1->p_traceflag & KTRFAC_INHERIT) {
2291 		mutex_enter(&ktrace_lock);
2292 		p2->p_traceflag = p1->p_traceflag;
2293 		if ((p2->p_tracep = p1->p_tracep) != NULL)
2294 			ktradref(p2);
2295 		mutex_exit(&ktrace_lock);
2296 	}
2297 #endif
2298 
2299 	/*
2300 	 * Create signal actions for the child process.
2301 	 */
2302 	p2->p_sigacts = sigactsinit(p1, 0);
2303 	mutex_enter(p1->p_lock);
2304 	p2->p_sflag |=
2305 	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
2306 	sched_proc_fork(p1, p2);
2307 	mutex_exit(p1->p_lock);
2308 
2309 	p2->p_stflag = p1->p_stflag;
2310 
2311 	/*
2312 	 * p_stats.
2313 	 * Copy parts of p_stats, and zero out the rest.
2314 	 */
2315 	p2->p_stats = pstatscopy(p1->p_stats);
2316 
2317 	/* copy over machdep flags to the new proc */
2318 	cpu_proc_fork(p1, p2);
2319 
2320 	/*
2321 	 * Prepare remaining parts of spawn data
2322 	 */
2323 	spawn_data->sed_actions = fa;
2324 	spawn_data->sed_attrs = sa;
2325 
2326 	spawn_data->sed_parent = p1;
2327 
2328 	/* create LWP */
2329 	lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
2330 	    &l2, l1->l_class);
2331 	l2->l_ctxlink = NULL;	/* reset ucontext link */
2332 
2333 	/*
2334 	 * Copy the credential so other references don't see our changes.
2335 	 * Test to see if this is necessary first, since in the common case
2336 	 * we won't need a private reference.
2337 	 */
2338 	if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
2339 	    kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
2340 		l2->l_cred = kauth_cred_copy(l2->l_cred);
2341 		kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
2342 		kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
2343 	}
2344 
2345 	/* Update the master credentials. */
2346 	if (l2->l_cred != p2->p_cred) {
2347 		kauth_cred_t ocred;
2348 
2349 		kauth_cred_hold(l2->l_cred);
2350 		mutex_enter(p2->p_lock);
2351 		ocred = p2->p_cred;
2352 		p2->p_cred = l2->l_cred;
2353 		mutex_exit(p2->p_lock);
2354 		kauth_cred_free(ocred);
2355 	}
2356 
2357 	*child_ok = true;
2358 	spawn_data->sed_refcnt = 2;	/* child gets it as well */
2359 #if 0
2360 	l2->l_nopreempt = 1; /* start it non-preemptable */
2361 #endif
2362 
2363 	/*
2364 	 * It's now safe for the scheduler and other processes to see the
2365 	 * child process.
2366 	 */
2367 	mutex_enter(proc_lock);
2368 
2369 	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
2370 		p2->p_lflag |= PL_CONTROLT;
2371 
2372 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
2373 	p2->p_exitsig = SIGCHLD;	/* signal for parent on exit */
2374 
2375 	LIST_INSERT_AFTER(p1, p2, p_pglist);
2376 	LIST_INSERT_HEAD(&allproc, p2, p_list);
2377 
2378 	p2->p_trace_enabled = trace_is_enabled(p2);
2379 #ifdef __HAVE_SYSCALL_INTERN
2380 	(*p2->p_emul->e_syscall_intern)(p2);
2381 #endif
2382 
2383 	/*
2384 	 * Make child runnable, set start time, and add to run queue except
2385 	 * if the parent requested the child to start in SSTOP state.
2386 	 */
2387 	mutex_enter(p2->p_lock);
2388 
2389 	getmicrotime(&p2->p_stats->p_start);
2390 
2391 	lwp_lock(l2);
2392 	KASSERT(p2->p_nrlwps == 1);
2393 	p2->p_nrlwps = 1;
2394 	p2->p_stat = SACTIVE;
2395 	l2->l_stat = LSRUN;
2396 	sched_enqueue(l2, false);
2397 	lwp_unlock(l2);
2398 
2399 	mutex_exit(p2->p_lock);
2400 	mutex_exit(proc_lock);
2401 
2402 	cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
2403 	error = spawn_data->sed_error;
2404 	mutex_exit(&spawn_data->sed_mtx_child);
2405 	spawn_exec_data_release(spawn_data);
2406 
2407 	rw_exit(&p1->p_reflock);
2408 	rw_exit(&exec_lock);
2409 	have_exec_lock = false;
2410 
2411 	*pid_res = pid;
2412 	return error;
2413 
2414  error_exit:
2415  	if (have_exec_lock) {
2416 		execve_free_data(&spawn_data->sed_exec);
2417 		rw_exit(&p1->p_reflock);
2418  		rw_exit(&exec_lock);
2419 	}
2420 	mutex_exit(&spawn_data->sed_mtx_child);
2421 	spawn_exec_data_release(spawn_data);
2422 
2423 	return error;
2424 }
2425 
2426 int
2427 sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
2428     register_t *retval)
2429 {
2430 	/* {
2431 		syscallarg(pid_t *) pid;
2432 		syscallarg(const char *) path;
2433 		syscallarg(const struct posix_spawn_file_actions *) file_actions;
2434 		syscallarg(const struct posix_spawnattr *) attrp;
2435 		syscallarg(char *const *) argv;
2436 		syscallarg(char *const *) envp;
2437 	} */
2438 
2439 	int error;
2440 	struct posix_spawn_file_actions *fa = NULL;
2441 	struct posix_spawnattr *sa = NULL;
2442 	pid_t pid;
2443 	bool child_ok = false;
2444 
2445 	error = check_posix_spawn(l1);
2446 	if (error) {
2447 		*retval = error;
2448 		return 0;
2449 	}
2450 
2451 	/* copy in file_actions struct */
2452 	if (SCARG(uap, file_actions) != NULL) {
2453 		error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions));
2454 		if (error)
2455 			goto error_exit;
2456 	}
2457 
2458 	/* copyin posix_spawnattr struct */
2459 	if (SCARG(uap, attrp) != NULL) {
2460 		sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
2461 		error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
2462 		if (error)
2463 			goto error_exit;
2464 	}
2465 
2466 	/*
2467 	 * Do the spawn
2468 	 */
2469 	error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
2470 	    SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
2471 	if (error)
2472 		goto error_exit;
2473 
2474 	if (error == 0 && SCARG(uap, pid) != NULL)
2475 		error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
2476 
2477 	*retval = error;
2478 	return 0;
2479 
2480  error_exit:
2481 	if (!child_ok) {
2482 		(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
2483 		atomic_dec_uint(&nprocs);
2484 
2485 		if (sa)
2486 			kmem_free(sa, sizeof(*sa));
2487 		if (fa)
2488 			posix_spawn_fa_free(fa, fa->len);
2489 	}
2490 
2491 	*retval = error;
2492 	return 0;
2493 }
2494 
2495 void
2496 exec_free_emul_arg(struct exec_package *epp)
2497 {
2498 	if (epp->ep_emul_arg_free != NULL) {
2499 		KASSERT(epp->ep_emul_arg != NULL);
2500 		(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
2501 		epp->ep_emul_arg_free = NULL;
2502 		epp->ep_emul_arg = NULL;
2503 	} else {
2504 		KASSERT(epp->ep_emul_arg == NULL);
2505 	}
2506 }
2507