1 /* $NetBSD: kern_event.c,v 1.32 2006/10/12 01:32:14 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $ 29 */ 30 31 #include <sys/cdefs.h> 32 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.32 2006/10/12 01:32:14 christos Exp $"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/proc.h> 38 #include <sys/malloc.h> 39 #include <sys/unistd.h> 40 #include <sys/file.h> 41 #include <sys/fcntl.h> 42 #include <sys/select.h> 43 #include <sys/queue.h> 44 #include <sys/event.h> 45 #include <sys/eventvar.h> 46 #include <sys/poll.h> 47 #include <sys/pool.h> 48 #include <sys/protosw.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/stat.h> 52 #include <sys/uio.h> 53 #include <sys/mount.h> 54 #include <sys/filedesc.h> 55 #include <sys/sa.h> 56 #include <sys/syscallargs.h> 57 #include <sys/kauth.h> 58 59 static void kqueue_wakeup(struct kqueue *kq); 60 61 static int kqueue_scan(struct file *, size_t, struct kevent *, 62 const struct timespec *, struct lwp *, register_t *, 63 const struct kevent_ops *); 64 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio, 65 kauth_cred_t cred, int flags); 66 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio, 67 kauth_cred_t cred, int flags); 68 static int kqueue_ioctl(struct file *fp, u_long com, void *data, 69 struct lwp *l); 70 static int kqueue_fcntl(struct file *fp, u_int com, void *data, 71 struct lwp *l); 72 static int kqueue_poll(struct file *fp, int events, struct lwp *l); 73 static int kqueue_kqfilter(struct file *fp, struct knote *kn); 74 static int kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l); 75 static int kqueue_close(struct file *fp, struct lwp *l); 76 77 static const struct fileops kqueueops = { 78 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll, 79 kqueue_stat, kqueue_close, kqueue_kqfilter 80 }; 81 82 static void knote_attach(struct knote *kn, struct filedesc *fdp); 83 static void knote_drop(struct knote *kn, struct lwp *l, 84 struct filedesc *fdp); 85 static void knote_enqueue(struct knote *kn); 86 static void knote_dequeue(struct knote *kn); 87 88 static void filt_kqdetach(struct knote *kn); 89 static int filt_kqueue(struct knote *kn, long hint); 90 static int filt_procattach(struct knote *kn); 91 static void filt_procdetach(struct knote *kn); 92 static int filt_proc(struct knote *kn, long hint); 93 static int filt_fileattach(struct knote *kn); 94 static void filt_timerexpire(void *knx); 95 static int filt_timerattach(struct knote *kn); 96 static void filt_timerdetach(struct knote *kn); 97 static int filt_timer(struct knote *kn, long hint); 98 99 static const struct filterops kqread_filtops = 100 { 1, NULL, filt_kqdetach, filt_kqueue }; 101 static const struct filterops proc_filtops = 102 { 0, filt_procattach, filt_procdetach, filt_proc }; 103 static const struct filterops file_filtops = 104 { 1, filt_fileattach, NULL, NULL }; 105 static const struct filterops timer_filtops = 106 { 0, filt_timerattach, filt_timerdetach, filt_timer }; 107 108 static POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL); 109 static POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL); 110 static int kq_ncallouts = 0; 111 static int kq_calloutmax = (4 * 1024); 112 113 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes"); 114 115 #define KNOTE_ACTIVATE(kn) \ 116 do { \ 117 kn->kn_status |= KN_ACTIVE; \ 118 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \ 119 knote_enqueue(kn); \ 120 } while(0) 121 122 #define KN_HASHSIZE 64 /* XXX should be tunable */ 123 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 124 125 extern const struct filterops sig_filtops; 126 127 /* 128 * Table for for all system-defined filters. 129 * These should be listed in the numeric order of the EVFILT_* defines. 130 * If filtops is NULL, the filter isn't implemented in NetBSD. 131 * End of list is when name is NULL. 132 */ 133 struct kfilter { 134 const char *name; /* name of filter */ 135 uint32_t filter; /* id of filter */ 136 const struct filterops *filtops;/* operations for filter */ 137 }; 138 139 /* System defined filters */ 140 static const struct kfilter sys_kfilters[] = { 141 { "EVFILT_READ", EVFILT_READ, &file_filtops }, 142 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops }, 143 { "EVFILT_AIO", EVFILT_AIO, NULL }, 144 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops }, 145 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops }, 146 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops }, 147 { "EVFILT_TIMER", EVFILT_TIMER, &timer_filtops }, 148 { NULL, 0, NULL }, /* end of list */ 149 }; 150 151 /* User defined kfilters */ 152 static struct kfilter *user_kfilters; /* array */ 153 static int user_kfilterc; /* current offset */ 154 static int user_kfiltermaxc; /* max size so far */ 155 156 /* 157 * Find kfilter entry by name, or NULL if not found. 158 */ 159 static const struct kfilter * 160 kfilter_byname_sys(const char *name) 161 { 162 int i; 163 164 for (i = 0; sys_kfilters[i].name != NULL; i++) { 165 if (strcmp(name, sys_kfilters[i].name) == 0) 166 return (&sys_kfilters[i]); 167 } 168 return (NULL); 169 } 170 171 static struct kfilter * 172 kfilter_byname_user(const char *name) 173 { 174 int i; 175 176 /* user filter slots have a NULL name if previously deregistered */ 177 for (i = 0; i < user_kfilterc ; i++) { 178 if (user_kfilters[i].name != NULL && 179 strcmp(name, user_kfilters[i].name) == 0) 180 return (&user_kfilters[i]); 181 } 182 return (NULL); 183 } 184 185 static const struct kfilter * 186 kfilter_byname(const char *name) 187 { 188 const struct kfilter *kfilter; 189 190 if ((kfilter = kfilter_byname_sys(name)) != NULL) 191 return (kfilter); 192 193 return (kfilter_byname_user(name)); 194 } 195 196 /* 197 * Find kfilter entry by filter id, or NULL if not found. 198 * Assumes entries are indexed in filter id order, for speed. 199 */ 200 static const struct kfilter * 201 kfilter_byfilter(uint32_t filter) 202 { 203 const struct kfilter *kfilter; 204 205 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */ 206 kfilter = &sys_kfilters[filter]; 207 else if (user_kfilters != NULL && 208 filter < EVFILT_SYSCOUNT + user_kfilterc) 209 /* it's a user filter */ 210 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT]; 211 else 212 return (NULL); /* out of range */ 213 KASSERT(kfilter->filter == filter); /* sanity check! */ 214 return (kfilter); 215 } 216 217 /* 218 * Register a new kfilter. Stores the entry in user_kfilters. 219 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 220 * If retfilter != NULL, the new filterid is returned in it. 221 */ 222 int 223 kfilter_register(const char *name, const struct filterops *filtops, 224 int *retfilter) 225 { 226 struct kfilter *kfilter; 227 void *space; 228 int len; 229 int i; 230 231 if (name == NULL || name[0] == '\0' || filtops == NULL) 232 return (EINVAL); /* invalid args */ 233 if (kfilter_byname(name) != NULL) 234 return (EEXIST); /* already exists */ 235 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) 236 return (EINVAL); /* too many */ 237 238 for (i = 0; i < user_kfilterc; i++) { 239 kfilter = &user_kfilters[i]; 240 if (kfilter->name == NULL) { 241 /* Previously deregistered slot. Reuse. */ 242 goto reuse; 243 } 244 } 245 246 /* check if need to grow user_kfilters */ 247 if (user_kfilterc + 1 > user_kfiltermaxc) { 248 /* 249 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we 250 * want to traverse user_kfilters as an array. 251 */ 252 user_kfiltermaxc += KFILTER_EXTENT; 253 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *), 254 M_KEVENT, M_WAITOK); 255 256 /* copy existing user_kfilters */ 257 if (user_kfilters != NULL) 258 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters, 259 user_kfilterc * sizeof(struct kfilter *)); 260 /* zero new sections */ 261 memset((caddr_t)kfilter + 262 user_kfilterc * sizeof(struct kfilter *), 0, 263 (user_kfiltermaxc - user_kfilterc) * 264 sizeof(struct kfilter *)); 265 /* switch to new kfilter */ 266 if (user_kfilters != NULL) 267 free(user_kfilters, M_KEVENT); 268 user_kfilters = kfilter; 269 } 270 /* Adding new slot */ 271 kfilter = &user_kfilters[user_kfilterc++]; 272 reuse: 273 len = strlen(name) + 1; /* copy name */ 274 space = malloc(len, M_KEVENT, M_WAITOK); 275 memcpy(space, name, len); 276 kfilter->name = space; 277 278 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT; 279 280 len = sizeof(struct filterops); /* copy filtops */ 281 space = malloc(len, M_KEVENT, M_WAITOK); 282 memcpy(space, filtops, len); 283 kfilter->filtops = space; 284 285 if (retfilter != NULL) 286 *retfilter = kfilter->filter; 287 return (0); 288 } 289 290 /* 291 * Unregister a kfilter previously registered with kfilter_register. 292 * This retains the filter id, but clears the name and frees filtops (filter 293 * operations), so that the number isn't reused during a boot. 294 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 295 */ 296 int 297 kfilter_unregister(const char *name) 298 { 299 struct kfilter *kfilter; 300 301 if (name == NULL || name[0] == '\0') 302 return (EINVAL); /* invalid name */ 303 304 if (kfilter_byname_sys(name) != NULL) 305 return (EINVAL); /* can't detach system filters */ 306 307 kfilter = kfilter_byname_user(name); 308 if (kfilter == NULL) /* not found */ 309 return (ENOENT); 310 311 /* XXXUNCONST Cast away const (but we know it's safe. */ 312 free(__UNCONST(kfilter->name), M_KEVENT); 313 kfilter->name = NULL; /* mark as `not implemented' */ 314 315 if (kfilter->filtops != NULL) { 316 /* XXXUNCONST Cast away const (but we know it's safe. */ 317 free(__UNCONST(kfilter->filtops), M_KEVENT); 318 kfilter->filtops = NULL; /* mark as `not implemented' */ 319 } 320 return (0); 321 } 322 323 324 /* 325 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file 326 * descriptors. Calls struct fileops kqfilter method for given file descriptor. 327 */ 328 static int 329 filt_fileattach(struct knote *kn) 330 { 331 struct file *fp; 332 333 fp = kn->kn_fp; 334 return ((*fp->f_ops->fo_kqfilter)(fp, kn)); 335 } 336 337 /* 338 * Filter detach method for EVFILT_READ on kqueue descriptor. 339 */ 340 static void 341 filt_kqdetach(struct knote *kn) 342 { 343 struct kqueue *kq; 344 345 kq = (struct kqueue *)kn->kn_fp->f_data; 346 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext); 347 } 348 349 /* 350 * Filter event method for EVFILT_READ on kqueue descriptor. 351 */ 352 /*ARGSUSED*/ 353 static int 354 filt_kqueue(struct knote *kn, long hint __unused) 355 { 356 struct kqueue *kq; 357 358 kq = (struct kqueue *)kn->kn_fp->f_data; 359 kn->kn_data = kq->kq_count; 360 return (kn->kn_data > 0); 361 } 362 363 /* 364 * Filter attach method for EVFILT_PROC. 365 */ 366 static int 367 filt_procattach(struct knote *kn) 368 { 369 struct proc *p, *curp; 370 struct lwp *curl; 371 372 curl = curlwp; 373 curp = curl->l_proc; 374 375 p = pfind(kn->kn_id); 376 if (p == NULL) 377 return (ESRCH); 378 379 /* 380 * Fail if it's not owned by you, or the last exec gave us 381 * setuid/setgid privs (unless you're root). 382 */ 383 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(curl->l_cred) || 384 (p->p_flag & P_SUGID)) && kauth_authorize_generic(curl->l_cred, 385 KAUTH_GENERIC_ISSUSER, &curl->l_acflag) != 0) 386 return (EACCES); 387 388 kn->kn_ptr.p_proc = p; 389 kn->kn_flags |= EV_CLEAR; /* automatically set */ 390 391 /* 392 * internal flag indicating registration done by kernel 393 */ 394 if (kn->kn_flags & EV_FLAG1) { 395 kn->kn_data = kn->kn_sdata; /* ppid */ 396 kn->kn_fflags = NOTE_CHILD; 397 kn->kn_flags &= ~EV_FLAG1; 398 } 399 400 /* XXXSMP lock the process? */ 401 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 402 403 return (0); 404 } 405 406 /* 407 * Filter detach method for EVFILT_PROC. 408 * 409 * The knote may be attached to a different process, which may exit, 410 * leaving nothing for the knote to be attached to. So when the process 411 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 412 * it will be deleted when read out. However, as part of the knote deletion, 413 * this routine is called, so a check is needed to avoid actually performing 414 * a detach, because the original process might not exist any more. 415 */ 416 static void 417 filt_procdetach(struct knote *kn) 418 { 419 struct proc *p; 420 421 if (kn->kn_status & KN_DETACHED) 422 return; 423 424 p = kn->kn_ptr.p_proc; 425 KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p); 426 427 /* XXXSMP lock the process? */ 428 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 429 } 430 431 /* 432 * Filter event method for EVFILT_PROC. 433 */ 434 static int 435 filt_proc(struct knote *kn, long hint) 436 { 437 u_int event; 438 439 /* 440 * mask off extra data 441 */ 442 event = (u_int)hint & NOTE_PCTRLMASK; 443 444 /* 445 * if the user is interested in this event, record it. 446 */ 447 if (kn->kn_sfflags & event) 448 kn->kn_fflags |= event; 449 450 /* 451 * process is gone, so flag the event as finished. 452 */ 453 if (event == NOTE_EXIT) { 454 /* 455 * Detach the knote from watched process and mark 456 * it as such. We can't leave this to kqueue_scan(), 457 * since the process might not exist by then. And we 458 * have to do this now, since psignal KNOTE() is called 459 * also for zombies and we might end up reading freed 460 * memory if the kevent would already be picked up 461 * and knote g/c'ed. 462 */ 463 kn->kn_fop->f_detach(kn); 464 kn->kn_status |= KN_DETACHED; 465 466 /* Mark as ONESHOT, so that the knote it g/c'ed when read */ 467 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 468 return (1); 469 } 470 471 /* 472 * process forked, and user wants to track the new process, 473 * so attach a new knote to it, and immediately report an 474 * event with the parent's pid. 475 */ 476 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) { 477 struct kevent kev; 478 int error; 479 480 /* 481 * register knote with new process. 482 */ 483 kev.ident = hint & NOTE_PDATAMASK; /* pid */ 484 kev.filter = kn->kn_filter; 485 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1; 486 kev.fflags = kn->kn_sfflags; 487 kev.data = kn->kn_id; /* parent */ 488 kev.udata = kn->kn_kevent.udata; /* preserve udata */ 489 error = kqueue_register(kn->kn_kq, &kev, NULL); 490 if (error) 491 kn->kn_fflags |= NOTE_TRACKERR; 492 } 493 494 return (kn->kn_fflags != 0); 495 } 496 497 static void 498 filt_timerexpire(void *knx) 499 { 500 struct knote *kn = knx; 501 int tticks; 502 503 kn->kn_data++; 504 KNOTE_ACTIVATE(kn); 505 506 if ((kn->kn_flags & EV_ONESHOT) == 0) { 507 tticks = mstohz(kn->kn_sdata); 508 callout_schedule((struct callout *)kn->kn_hook, tticks); 509 } 510 } 511 512 /* 513 * data contains amount of time to sleep, in milliseconds 514 */ 515 static int 516 filt_timerattach(struct knote *kn) 517 { 518 struct callout *calloutp; 519 int tticks; 520 521 if (kq_ncallouts >= kq_calloutmax) 522 return (ENOMEM); 523 kq_ncallouts++; 524 525 tticks = mstohz(kn->kn_sdata); 526 527 /* if the supplied value is under our resolution, use 1 tick */ 528 if (tticks == 0) { 529 if (kn->kn_sdata == 0) 530 return (EINVAL); 531 tticks = 1; 532 } 533 534 kn->kn_flags |= EV_CLEAR; /* automatically set */ 535 MALLOC(calloutp, struct callout *, sizeof(*calloutp), 536 M_KEVENT, 0); 537 callout_init(calloutp); 538 callout_reset(calloutp, tticks, filt_timerexpire, kn); 539 kn->kn_hook = calloutp; 540 541 return (0); 542 } 543 544 static void 545 filt_timerdetach(struct knote *kn) 546 { 547 struct callout *calloutp; 548 549 calloutp = (struct callout *)kn->kn_hook; 550 callout_stop(calloutp); 551 FREE(calloutp, M_KEVENT); 552 kq_ncallouts--; 553 } 554 555 static int 556 filt_timer(struct knote *kn, long hint __unused) 557 { 558 return (kn->kn_data != 0); 559 } 560 561 /* 562 * filt_seltrue: 563 * 564 * This filter "event" routine simulates seltrue(). 565 */ 566 int 567 filt_seltrue(struct knote *kn, long hint __unused) 568 { 569 570 /* 571 * We don't know how much data can be read/written, 572 * but we know that it *can* be. This is about as 573 * good as select/poll does as well. 574 */ 575 kn->kn_data = 0; 576 return (1); 577 } 578 579 /* 580 * This provides full kqfilter entry for device switch tables, which 581 * has same effect as filter using filt_seltrue() as filter method. 582 */ 583 static void 584 filt_seltruedetach(struct knote *kn __unused) 585 { 586 /* Nothing to do */ 587 } 588 589 static const struct filterops seltrue_filtops = 590 { 1, NULL, filt_seltruedetach, filt_seltrue }; 591 592 int 593 seltrue_kqfilter(dev_t dev __unused, struct knote *kn) 594 { 595 switch (kn->kn_filter) { 596 case EVFILT_READ: 597 case EVFILT_WRITE: 598 kn->kn_fop = &seltrue_filtops; 599 break; 600 default: 601 return (1); 602 } 603 604 /* Nothing more to do */ 605 return (0); 606 } 607 608 /* 609 * kqueue(2) system call. 610 */ 611 int 612 sys_kqueue(struct lwp *l, void *v __unused, register_t *retval) 613 { 614 struct filedesc *fdp; 615 struct kqueue *kq; 616 struct file *fp; 617 int fd, error; 618 619 fdp = l->l_proc->p_fd; 620 error = falloc(l, &fp, &fd); /* setup a new file descriptor */ 621 if (error) 622 return (error); 623 fp->f_flag = FREAD | FWRITE; 624 fp->f_type = DTYPE_KQUEUE; 625 fp->f_ops = &kqueueops; 626 kq = pool_get(&kqueue_pool, PR_WAITOK); 627 memset((char *)kq, 0, sizeof(struct kqueue)); 628 simple_lock_init(&kq->kq_lock); 629 TAILQ_INIT(&kq->kq_head); 630 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */ 631 *retval = fd; 632 if (fdp->fd_knlistsize < 0) 633 fdp->fd_knlistsize = 0; /* this process has a kq */ 634 kq->kq_fdp = fdp; 635 FILE_SET_MATURE(fp); 636 FILE_UNUSE(fp, l); /* falloc() does FILE_USE() */ 637 return (error); 638 } 639 640 /* 641 * kevent(2) system call. 642 */ 643 static int 644 kevent_fetch_changes(void *private __unused, const struct kevent *changelist, 645 struct kevent *changes, size_t index, int n) 646 { 647 return copyin(changelist + index, changes, n * sizeof(*changes)); 648 } 649 650 static int 651 kevent_put_events(void *private __unused, struct kevent *events, 652 struct kevent *eventlist, size_t index, int n) 653 { 654 return copyout(events, eventlist + index, n * sizeof(*events)); 655 } 656 657 static const struct kevent_ops kevent_native_ops = { 658 keo_private: NULL, 659 keo_fetch_timeout: copyin, 660 keo_fetch_changes: kevent_fetch_changes, 661 keo_put_events: kevent_put_events, 662 }; 663 664 int 665 sys_kevent(struct lwp *l, void *v, register_t *retval) 666 { 667 struct sys_kevent_args /* { 668 syscallarg(int) fd; 669 syscallarg(const struct kevent *) changelist; 670 syscallarg(size_t) nchanges; 671 syscallarg(struct kevent *) eventlist; 672 syscallarg(size_t) nevents; 673 syscallarg(const struct timespec *) timeout; 674 } */ *uap = v; 675 676 return kevent1(l, retval, SCARG(uap, fd), SCARG(uap, changelist), 677 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents), 678 SCARG(uap, timeout), &kevent_native_ops); 679 } 680 681 int 682 kevent1(struct lwp *l, register_t *retval, int fd, 683 const struct kevent *changelist, size_t nchanges, struct kevent *eventlist, 684 size_t nevents, const struct timespec *timeout, 685 const struct kevent_ops *keops) 686 { 687 struct kevent *kevp; 688 struct kqueue *kq; 689 struct file *fp; 690 struct timespec ts; 691 struct proc *p; 692 size_t i, n, ichange; 693 int nerrors, error; 694 695 p = l->l_proc; 696 /* check that we're dealing with a kq */ 697 fp = fd_getfile(p->p_fd, fd); 698 if (fp == NULL) 699 return (EBADF); 700 701 if (fp->f_type != DTYPE_KQUEUE) { 702 simple_unlock(&fp->f_slock); 703 return (EBADF); 704 } 705 706 FILE_USE(fp); 707 708 if (timeout != NULL) { 709 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts)); 710 if (error) 711 goto done; 712 timeout = &ts; 713 } 714 715 kq = (struct kqueue *)fp->f_data; 716 nerrors = 0; 717 ichange = 0; 718 719 /* traverse list of events to register */ 720 while (nchanges > 0) { 721 /* copyin a maximum of KQ_EVENTS at each pass */ 722 n = MIN(nchanges, KQ_NEVENTS); 723 error = (*keops->keo_fetch_changes)(keops->keo_private, 724 changelist, kq->kq_kev, ichange, n); 725 if (error) 726 goto done; 727 for (i = 0; i < n; i++) { 728 kevp = &kq->kq_kev[i]; 729 kevp->flags &= ~EV_SYSFLAGS; 730 /* register each knote */ 731 error = kqueue_register(kq, kevp, l); 732 if (error) { 733 if (nevents != 0) { 734 kevp->flags = EV_ERROR; 735 kevp->data = error; 736 error = (*keops->keo_put_events) 737 (keops->keo_private, kevp, 738 eventlist, nerrors, 1); 739 if (error) 740 goto done; 741 nevents--; 742 nerrors++; 743 } else { 744 goto done; 745 } 746 } 747 } 748 nchanges -= n; /* update the results */ 749 ichange += n; 750 } 751 if (nerrors) { 752 *retval = nerrors; 753 error = 0; 754 goto done; 755 } 756 757 /* actually scan through the events */ 758 error = kqueue_scan(fp, nevents, eventlist, timeout, l, retval, keops); 759 done: 760 FILE_UNUSE(fp, l); 761 return (error); 762 } 763 764 /* 765 * Register a given kevent kev onto the kqueue 766 */ 767 int 768 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l) 769 { 770 const struct kfilter *kfilter; 771 struct filedesc *fdp; 772 struct file *fp; 773 struct knote *kn; 774 int s, error; 775 776 fdp = kq->kq_fdp; 777 fp = NULL; 778 kn = NULL; 779 error = 0; 780 kfilter = kfilter_byfilter(kev->filter); 781 if (kfilter == NULL || kfilter->filtops == NULL) { 782 /* filter not found nor implemented */ 783 return (EINVAL); 784 } 785 786 /* search if knote already exists */ 787 if (kfilter->filtops->f_isfd) { 788 /* monitoring a file descriptor */ 789 if ((fp = fd_getfile(fdp, kev->ident)) == NULL) 790 return (EBADF); /* validate descriptor */ 791 FILE_USE(fp); 792 793 if (kev->ident < fdp->fd_knlistsize) { 794 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link) 795 if (kq == kn->kn_kq && 796 kev->filter == kn->kn_filter) 797 break; 798 } 799 } else { 800 /* 801 * not monitoring a file descriptor, so 802 * lookup knotes in internal hash table 803 */ 804 if (fdp->fd_knhashmask != 0) { 805 struct klist *list; 806 807 list = &fdp->fd_knhash[ 808 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; 809 SLIST_FOREACH(kn, list, kn_link) 810 if (kev->ident == kn->kn_id && 811 kq == kn->kn_kq && 812 kev->filter == kn->kn_filter) 813 break; 814 } 815 } 816 817 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) { 818 error = ENOENT; /* filter not found */ 819 goto done; 820 } 821 822 /* 823 * kn now contains the matching knote, or NULL if no match 824 */ 825 if (kev->flags & EV_ADD) { 826 /* add knote */ 827 828 if (kn == NULL) { 829 /* create new knote */ 830 kn = pool_get(&knote_pool, PR_WAITOK); 831 if (kn == NULL) { 832 error = ENOMEM; 833 goto done; 834 } 835 kn->kn_fp = fp; 836 kn->kn_kq = kq; 837 kn->kn_fop = kfilter->filtops; 838 839 /* 840 * apply reference count to knote structure, and 841 * do not release it at the end of this routine. 842 */ 843 fp = NULL; 844 845 kn->kn_sfflags = kev->fflags; 846 kn->kn_sdata = kev->data; 847 kev->fflags = 0; 848 kev->data = 0; 849 kn->kn_kevent = *kev; 850 851 knote_attach(kn, fdp); 852 if ((error = kfilter->filtops->f_attach(kn)) != 0) { 853 knote_drop(kn, l, fdp); 854 goto done; 855 } 856 } else { 857 /* modify existing knote */ 858 859 /* 860 * The user may change some filter values after the 861 * initial EV_ADD, but doing so will not reset any 862 * filter which have already been triggered. 863 */ 864 kn->kn_sfflags = kev->fflags; 865 kn->kn_sdata = kev->data; 866 kn->kn_kevent.udata = kev->udata; 867 } 868 869 s = splsched(); 870 if (kn->kn_fop->f_event(kn, 0)) 871 KNOTE_ACTIVATE(kn); 872 splx(s); 873 874 } else if (kev->flags & EV_DELETE) { /* delete knote */ 875 kn->kn_fop->f_detach(kn); 876 knote_drop(kn, l, fdp); 877 goto done; 878 } 879 880 /* disable knote */ 881 if ((kev->flags & EV_DISABLE) && 882 ((kn->kn_status & KN_DISABLED) == 0)) { 883 s = splsched(); 884 kn->kn_status |= KN_DISABLED; 885 splx(s); 886 } 887 888 /* enable knote */ 889 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { 890 s = splsched(); 891 kn->kn_status &= ~KN_DISABLED; 892 if ((kn->kn_status & KN_ACTIVE) && 893 ((kn->kn_status & KN_QUEUED) == 0)) 894 knote_enqueue(kn); 895 splx(s); 896 } 897 898 done: 899 if (fp != NULL) 900 FILE_UNUSE(fp, l); 901 return (error); 902 } 903 904 /* 905 * Scan through the list of events on fp (for a maximum of maxevents), 906 * returning the results in to ulistp. Timeout is determined by tsp; if 907 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait 908 * as appropriate. 909 */ 910 static int 911 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp, 912 const struct timespec *tsp, struct lwp *l, register_t *retval, 913 const struct kevent_ops *keops) 914 { 915 struct proc *p = l->l_proc; 916 struct kqueue *kq; 917 struct kevent *kevp; 918 struct timeval atv, sleeptv; 919 struct knote *kn, *marker=NULL; 920 size_t count, nkev, nevents; 921 int s, timeout, error; 922 923 kq = (struct kqueue *)fp->f_data; 924 count = maxevents; 925 nkev = nevents = error = 0; 926 if (count == 0) 927 goto done; 928 929 if (tsp) { /* timeout supplied */ 930 TIMESPEC_TO_TIMEVAL(&atv, tsp); 931 if (inittimeleft(&atv, &sleeptv) == -1) { 932 error = EINVAL; 933 goto done; 934 } 935 timeout = tvtohz(&atv); 936 if (timeout <= 0) 937 timeout = -1; /* do poll */ 938 } else { 939 /* no timeout, wait forever */ 940 timeout = 0; 941 } 942 943 MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK); 944 memset(marker, 0, sizeof(*marker)); 945 946 goto start; 947 948 retry: 949 if (tsp && (timeout = gettimeleft(&atv, &sleeptv)) <= 0) { 950 goto done; 951 } 952 953 start: 954 kevp = kq->kq_kev; 955 s = splsched(); 956 simple_lock(&kq->kq_lock); 957 if (kq->kq_count == 0) { 958 if (timeout < 0) { 959 error = EWOULDBLOCK; 960 simple_unlock(&kq->kq_lock); 961 } else { 962 kq->kq_state |= KQ_SLEEP; 963 error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK, 964 "kqread", timeout, &kq->kq_lock); 965 } 966 splx(s); 967 if (error == 0) 968 goto retry; 969 /* don't restart after signals... */ 970 if (error == ERESTART) 971 error = EINTR; 972 else if (error == EWOULDBLOCK) 973 error = 0; 974 goto done; 975 } 976 977 /* mark end of knote list */ 978 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); 979 simple_unlock(&kq->kq_lock); 980 981 while (count) { /* while user wants data ... */ 982 simple_lock(&kq->kq_lock); 983 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */ 984 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 985 if (kn == marker) { /* if it's our marker, stop */ 986 /* What if it's some else's marker? */ 987 simple_unlock(&kq->kq_lock); 988 splx(s); 989 if (count == maxevents) 990 goto retry; 991 goto done; 992 } 993 kq->kq_count--; 994 simple_unlock(&kq->kq_lock); 995 996 if (kn->kn_status & KN_DISABLED) { 997 /* don't want disabled events */ 998 kn->kn_status &= ~KN_QUEUED; 999 continue; 1000 } 1001 if ((kn->kn_flags & EV_ONESHOT) == 0 && 1002 kn->kn_fop->f_event(kn, 0) == 0) { 1003 /* 1004 * non-ONESHOT event that hasn't 1005 * triggered again, so de-queue. 1006 */ 1007 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 1008 continue; 1009 } 1010 *kevp = kn->kn_kevent; 1011 kevp++; 1012 nkev++; 1013 if (kn->kn_flags & EV_ONESHOT) { 1014 /* delete ONESHOT events after retrieval */ 1015 kn->kn_status &= ~KN_QUEUED; 1016 splx(s); 1017 kn->kn_fop->f_detach(kn); 1018 knote_drop(kn, l, p->p_fd); 1019 s = splsched(); 1020 } else if (kn->kn_flags & EV_CLEAR) { 1021 /* clear state after retrieval */ 1022 kn->kn_data = 0; 1023 kn->kn_fflags = 0; 1024 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 1025 } else { 1026 /* add event back on list */ 1027 simple_lock(&kq->kq_lock); 1028 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 1029 kq->kq_count++; 1030 simple_unlock(&kq->kq_lock); 1031 } 1032 count--; 1033 if (nkev == KQ_NEVENTS) { 1034 /* do copyouts in KQ_NEVENTS chunks */ 1035 splx(s); 1036 error = (*keops->keo_put_events)(keops->keo_private, 1037 &kq->kq_kev[0], ulistp, nevents, nkev); 1038 nevents += nkev; 1039 nkev = 0; 1040 kevp = kq->kq_kev; 1041 s = splsched(); 1042 if (error) 1043 break; 1044 } 1045 } 1046 1047 /* remove marker */ 1048 simple_lock(&kq->kq_lock); 1049 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); 1050 simple_unlock(&kq->kq_lock); 1051 splx(s); 1052 done: 1053 if (marker) 1054 FREE(marker, M_KEVENT); 1055 1056 if (nkev != 0) 1057 /* copyout remaining events */ 1058 error = (*keops->keo_put_events)(keops->keo_private, 1059 &kq->kq_kev[0], ulistp, nevents, nkev); 1060 *retval = maxevents - count; 1061 1062 return (error); 1063 } 1064 1065 /* 1066 * struct fileops read method for a kqueue descriptor. 1067 * Not implemented. 1068 * XXX: This could be expanded to call kqueue_scan, if desired. 1069 */ 1070 /*ARGSUSED*/ 1071 static int 1072 kqueue_read(struct file *fp __unused, off_t *offset __unused, 1073 struct uio *uio __unused, kauth_cred_t cred __unused, int flags __unused) 1074 { 1075 1076 return (ENXIO); 1077 } 1078 1079 /* 1080 * struct fileops write method for a kqueue descriptor. 1081 * Not implemented. 1082 */ 1083 /*ARGSUSED*/ 1084 static int 1085 kqueue_write(struct file *fp __unused, off_t *offset __unused, 1086 struct uio *uio __unused, kauth_cred_t cred __unused, int flags __unused) 1087 { 1088 1089 return (ENXIO); 1090 } 1091 1092 /* 1093 * struct fileops ioctl method for a kqueue descriptor. 1094 * 1095 * Two ioctls are currently supported. They both use struct kfilter_mapping: 1096 * KFILTER_BYNAME find name for filter, and return result in 1097 * name, which is of size len. 1098 * KFILTER_BYFILTER find filter for name. len is ignored. 1099 */ 1100 /*ARGSUSED*/ 1101 static int 1102 kqueue_ioctl(struct file *fp __unused, u_long com, void *data, 1103 struct lwp *l __unused) 1104 { 1105 struct kfilter_mapping *km; 1106 const struct kfilter *kfilter; 1107 char *name; 1108 int error; 1109 1110 km = (struct kfilter_mapping *)data; 1111 error = 0; 1112 1113 switch (com) { 1114 case KFILTER_BYFILTER: /* convert filter -> name */ 1115 kfilter = kfilter_byfilter(km->filter); 1116 if (kfilter != NULL) 1117 error = copyoutstr(kfilter->name, km->name, km->len, 1118 NULL); 1119 else 1120 error = ENOENT; 1121 break; 1122 1123 case KFILTER_BYNAME: /* convert name -> filter */ 1124 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK); 1125 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL); 1126 if (error) { 1127 FREE(name, M_KEVENT); 1128 break; 1129 } 1130 kfilter = kfilter_byname(name); 1131 if (kfilter != NULL) 1132 km->filter = kfilter->filter; 1133 else 1134 error = ENOENT; 1135 FREE(name, M_KEVENT); 1136 break; 1137 1138 default: 1139 error = ENOTTY; 1140 1141 } 1142 return (error); 1143 } 1144 1145 /* 1146 * struct fileops fcntl method for a kqueue descriptor. 1147 * Not implemented. 1148 */ 1149 /*ARGSUSED*/ 1150 static int 1151 kqueue_fcntl(struct file *fp __unused, u_int com __unused, void *data __unused, 1152 struct lwp *l __unused) 1153 { 1154 1155 return (ENOTTY); 1156 } 1157 1158 /* 1159 * struct fileops poll method for a kqueue descriptor. 1160 * Determine if kqueue has events pending. 1161 */ 1162 static int 1163 kqueue_poll(struct file *fp, int events, struct lwp *l) 1164 { 1165 struct kqueue *kq; 1166 int revents; 1167 1168 kq = (struct kqueue *)fp->f_data; 1169 revents = 0; 1170 if (events & (POLLIN | POLLRDNORM)) { 1171 if (kq->kq_count) { 1172 revents |= events & (POLLIN | POLLRDNORM); 1173 } else { 1174 selrecord(l, &kq->kq_sel); 1175 } 1176 } 1177 return (revents); 1178 } 1179 1180 /* 1181 * struct fileops stat method for a kqueue descriptor. 1182 * Returns dummy info, with st_size being number of events pending. 1183 */ 1184 static int 1185 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l __unused) 1186 { 1187 struct kqueue *kq; 1188 1189 kq = (struct kqueue *)fp->f_data; 1190 memset((void *)st, 0, sizeof(*st)); 1191 st->st_size = kq->kq_count; 1192 st->st_blksize = sizeof(struct kevent); 1193 st->st_mode = S_IFIFO; 1194 return (0); 1195 } 1196 1197 /* 1198 * struct fileops close method for a kqueue descriptor. 1199 * Cleans up kqueue. 1200 */ 1201 static int 1202 kqueue_close(struct file *fp, struct lwp *l) 1203 { 1204 struct proc *p = l->l_proc; 1205 struct kqueue *kq; 1206 struct filedesc *fdp; 1207 struct knote **knp, *kn, *kn0; 1208 int i; 1209 1210 kq = (struct kqueue *)fp->f_data; 1211 fdp = p->p_fd; 1212 for (i = 0; i < fdp->fd_knlistsize; i++) { 1213 knp = &SLIST_FIRST(&fdp->fd_knlist[i]); 1214 kn = *knp; 1215 while (kn != NULL) { 1216 kn0 = SLIST_NEXT(kn, kn_link); 1217 if (kq == kn->kn_kq) { 1218 kn->kn_fop->f_detach(kn); 1219 FILE_UNUSE(kn->kn_fp, l); 1220 pool_put(&knote_pool, kn); 1221 *knp = kn0; 1222 } else { 1223 knp = &SLIST_NEXT(kn, kn_link); 1224 } 1225 kn = kn0; 1226 } 1227 } 1228 if (fdp->fd_knhashmask != 0) { 1229 for (i = 0; i < fdp->fd_knhashmask + 1; i++) { 1230 knp = &SLIST_FIRST(&fdp->fd_knhash[i]); 1231 kn = *knp; 1232 while (kn != NULL) { 1233 kn0 = SLIST_NEXT(kn, kn_link); 1234 if (kq == kn->kn_kq) { 1235 kn->kn_fop->f_detach(kn); 1236 /* XXX non-fd release of kn->kn_ptr */ 1237 pool_put(&knote_pool, kn); 1238 *knp = kn0; 1239 } else { 1240 knp = &SLIST_NEXT(kn, kn_link); 1241 } 1242 kn = kn0; 1243 } 1244 } 1245 } 1246 pool_put(&kqueue_pool, kq); 1247 fp->f_data = NULL; 1248 1249 return (0); 1250 } 1251 1252 /* 1253 * wakeup a kqueue 1254 */ 1255 static void 1256 kqueue_wakeup(struct kqueue *kq) 1257 { 1258 int s; 1259 1260 s = splsched(); 1261 simple_lock(&kq->kq_lock); 1262 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */ 1263 kq->kq_state &= ~KQ_SLEEP; 1264 wakeup(kq); /* ... wakeup */ 1265 } 1266 1267 /* Notify select/poll and kevent. */ 1268 selnotify(&kq->kq_sel, 0); 1269 simple_unlock(&kq->kq_lock); 1270 splx(s); 1271 } 1272 1273 /* 1274 * struct fileops kqfilter method for a kqueue descriptor. 1275 * Event triggered when monitored kqueue changes. 1276 */ 1277 /*ARGSUSED*/ 1278 static int 1279 kqueue_kqfilter(struct file *fp __unused, struct knote *kn) 1280 { 1281 struct kqueue *kq; 1282 1283 KASSERT(fp == kn->kn_fp); 1284 kq = (struct kqueue *)kn->kn_fp->f_data; 1285 if (kn->kn_filter != EVFILT_READ) 1286 return (1); 1287 kn->kn_fop = &kqread_filtops; 1288 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext); 1289 return (0); 1290 } 1291 1292 1293 /* 1294 * Walk down a list of knotes, activating them if their event has triggered. 1295 */ 1296 void 1297 knote(struct klist *list, long hint) 1298 { 1299 struct knote *kn; 1300 1301 SLIST_FOREACH(kn, list, kn_selnext) 1302 if (kn->kn_fop->f_event(kn, hint)) 1303 KNOTE_ACTIVATE(kn); 1304 } 1305 1306 /* 1307 * Remove all knotes from a specified klist 1308 */ 1309 void 1310 knote_remove(struct lwp *l, struct klist *list) 1311 { 1312 struct knote *kn; 1313 1314 while ((kn = SLIST_FIRST(list)) != NULL) { 1315 kn->kn_fop->f_detach(kn); 1316 knote_drop(kn, l, l->l_proc->p_fd); 1317 } 1318 } 1319 1320 /* 1321 * Remove all knotes referencing a specified fd 1322 */ 1323 void 1324 knote_fdclose(struct lwp *l, int fd) 1325 { 1326 struct filedesc *fdp; 1327 struct klist *list; 1328 1329 fdp = l->l_proc->p_fd; 1330 list = &fdp->fd_knlist[fd]; 1331 knote_remove(l, list); 1332 } 1333 1334 /* 1335 * Attach a new knote to a file descriptor 1336 */ 1337 static void 1338 knote_attach(struct knote *kn, struct filedesc *fdp) 1339 { 1340 struct klist *list; 1341 int size; 1342 1343 if (! kn->kn_fop->f_isfd) { 1344 /* if knote is not on an fd, store on internal hash table */ 1345 if (fdp->fd_knhashmask == 0) 1346 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST, 1347 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask); 1348 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; 1349 goto done; 1350 } 1351 1352 /* 1353 * otherwise, knote is on an fd. 1354 * knotes are stored in fd_knlist indexed by kn->kn_id. 1355 */ 1356 if (fdp->fd_knlistsize <= kn->kn_id) { 1357 /* expand list, it's too small */ 1358 size = fdp->fd_knlistsize; 1359 while (size <= kn->kn_id) { 1360 /* grow in KQ_EXTENT chunks */ 1361 size += KQ_EXTENT; 1362 } 1363 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK); 1364 if (fdp->fd_knlist) { 1365 /* copy existing knlist */ 1366 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist, 1367 fdp->fd_knlistsize * sizeof(struct klist *)); 1368 } 1369 /* 1370 * Zero new memory. Stylistically, SLIST_INIT() should be 1371 * used here, but that does same thing as the memset() anyway. 1372 */ 1373 memset(&list[fdp->fd_knlistsize], 0, 1374 (size - fdp->fd_knlistsize) * sizeof(struct klist *)); 1375 1376 /* switch to new knlist */ 1377 if (fdp->fd_knlist != NULL) 1378 free(fdp->fd_knlist, M_KEVENT); 1379 fdp->fd_knlistsize = size; 1380 fdp->fd_knlist = list; 1381 } 1382 1383 /* get list head for this fd */ 1384 list = &fdp->fd_knlist[kn->kn_id]; 1385 done: 1386 /* add new knote */ 1387 SLIST_INSERT_HEAD(list, kn, kn_link); 1388 kn->kn_status = 0; 1389 } 1390 1391 /* 1392 * Drop knote. 1393 * Should be called at spl == 0, since we don't want to hold spl 1394 * while calling FILE_UNUSE and free. 1395 */ 1396 static void 1397 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp) 1398 { 1399 struct klist *list; 1400 1401 if (kn->kn_fop->f_isfd) 1402 list = &fdp->fd_knlist[kn->kn_id]; 1403 else 1404 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; 1405 1406 SLIST_REMOVE(list, kn, knote, kn_link); 1407 if (kn->kn_status & KN_QUEUED) 1408 knote_dequeue(kn); 1409 if (kn->kn_fop->f_isfd) 1410 FILE_UNUSE(kn->kn_fp, l); 1411 pool_put(&knote_pool, kn); 1412 } 1413 1414 1415 /* 1416 * Queue new event for knote. 1417 */ 1418 static void 1419 knote_enqueue(struct knote *kn) 1420 { 1421 struct kqueue *kq; 1422 int s; 1423 1424 kq = kn->kn_kq; 1425 KASSERT((kn->kn_status & KN_QUEUED) == 0); 1426 1427 s = splsched(); 1428 simple_lock(&kq->kq_lock); 1429 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 1430 kn->kn_status |= KN_QUEUED; 1431 kq->kq_count++; 1432 simple_unlock(&kq->kq_lock); 1433 splx(s); 1434 kqueue_wakeup(kq); 1435 } 1436 1437 /* 1438 * Dequeue event for knote. 1439 */ 1440 static void 1441 knote_dequeue(struct knote *kn) 1442 { 1443 struct kqueue *kq; 1444 int s; 1445 1446 KASSERT(kn->kn_status & KN_QUEUED); 1447 kq = kn->kn_kq; 1448 1449 s = splsched(); 1450 simple_lock(&kq->kq_lock); 1451 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 1452 kn->kn_status &= ~KN_QUEUED; 1453 kq->kq_count--; 1454 simple_unlock(&kq->kq_lock); 1455 splx(s); 1456 } 1457