xref: /netbsd-src/sys/kern/kern_event.c (revision b7ae68fde0d8ef1c03714e8bbb1ee7c6118ea93b)
1 /*	$NetBSD: kern_event.c,v 1.30 2006/07/23 22:06:11 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $
29  */
30 
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.30 2006/07/23 22:06:11 ad Exp $");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/malloc.h>
39 #include <sys/unistd.h>
40 #include <sys/file.h>
41 #include <sys/fcntl.h>
42 #include <sys/select.h>
43 #include <sys/queue.h>
44 #include <sys/event.h>
45 #include <sys/eventvar.h>
46 #include <sys/poll.h>
47 #include <sys/pool.h>
48 #include <sys/protosw.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/stat.h>
52 #include <sys/uio.h>
53 #include <sys/mount.h>
54 #include <sys/filedesc.h>
55 #include <sys/sa.h>
56 #include <sys/syscallargs.h>
57 #include <sys/kauth.h>
58 
59 static void	kqueue_wakeup(struct kqueue *kq);
60 
61 static int	kqueue_scan(struct file *, size_t, struct kevent *,
62     const struct timespec *, struct lwp *, register_t *,
63     const struct kevent_ops *);
64 static int	kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
65 		    kauth_cred_t cred, int flags);
66 static int	kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
67 		    kauth_cred_t cred, int flags);
68 static int	kqueue_ioctl(struct file *fp, u_long com, void *data,
69 		    struct lwp *l);
70 static int	kqueue_fcntl(struct file *fp, u_int com, void *data,
71 		    struct lwp *l);
72 static int	kqueue_poll(struct file *fp, int events, struct lwp *l);
73 static int	kqueue_kqfilter(struct file *fp, struct knote *kn);
74 static int	kqueue_stat(struct file *fp, struct stat *sp, struct lwp *l);
75 static int	kqueue_close(struct file *fp, struct lwp *l);
76 
77 static const struct fileops kqueueops = {
78 	kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll,
79 	kqueue_stat, kqueue_close, kqueue_kqfilter
80 };
81 
82 static void	knote_attach(struct knote *kn, struct filedesc *fdp);
83 static void	knote_drop(struct knote *kn, struct lwp *l,
84 		    struct filedesc *fdp);
85 static void	knote_enqueue(struct knote *kn);
86 static void	knote_dequeue(struct knote *kn);
87 
88 static void	filt_kqdetach(struct knote *kn);
89 static int	filt_kqueue(struct knote *kn, long hint);
90 static int	filt_procattach(struct knote *kn);
91 static void	filt_procdetach(struct knote *kn);
92 static int	filt_proc(struct knote *kn, long hint);
93 static int	filt_fileattach(struct knote *kn);
94 static void	filt_timerexpire(void *knx);
95 static int	filt_timerattach(struct knote *kn);
96 static void	filt_timerdetach(struct knote *kn);
97 static int	filt_timer(struct knote *kn, long hint);
98 
99 static const struct filterops kqread_filtops =
100 	{ 1, NULL, filt_kqdetach, filt_kqueue };
101 static const struct filterops proc_filtops =
102 	{ 0, filt_procattach, filt_procdetach, filt_proc };
103 static const struct filterops file_filtops =
104 	{ 1, filt_fileattach, NULL, NULL };
105 static const struct filterops timer_filtops =
106 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
107 
108 static POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL);
109 static POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL);
110 static int	kq_ncallouts = 0;
111 static int	kq_calloutmax = (4 * 1024);
112 
113 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes");
114 
115 #define	KNOTE_ACTIVATE(kn)						\
116 do {									\
117 	kn->kn_status |= KN_ACTIVE;					\
118 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
119 		knote_enqueue(kn);					\
120 } while(0)
121 
122 #define	KN_HASHSIZE		64		/* XXX should be tunable */
123 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
124 
125 extern const struct filterops sig_filtops;
126 
127 /*
128  * Table for for all system-defined filters.
129  * These should be listed in the numeric order of the EVFILT_* defines.
130  * If filtops is NULL, the filter isn't implemented in NetBSD.
131  * End of list is when name is NULL.
132  */
133 struct kfilter {
134 	const char	 *name;		/* name of filter */
135 	uint32_t	  filter;	/* id of filter */
136 	const struct filterops *filtops;/* operations for filter */
137 };
138 
139 		/* System defined filters */
140 static const struct kfilter sys_kfilters[] = {
141 	{ "EVFILT_READ",	EVFILT_READ,	&file_filtops },
142 	{ "EVFILT_WRITE",	EVFILT_WRITE,	&file_filtops },
143 	{ "EVFILT_AIO",		EVFILT_AIO,	NULL },
144 	{ "EVFILT_VNODE",	EVFILT_VNODE,	&file_filtops },
145 	{ "EVFILT_PROC",	EVFILT_PROC,	&proc_filtops },
146 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	&sig_filtops },
147 	{ "EVFILT_TIMER",	EVFILT_TIMER,	&timer_filtops },
148 	{ NULL,			0,		NULL },	/* end of list */
149 };
150 
151 		/* User defined kfilters */
152 static struct kfilter	*user_kfilters;		/* array */
153 static int		user_kfilterc;		/* current offset */
154 static int		user_kfiltermaxc;	/* max size so far */
155 
156 /*
157  * Find kfilter entry by name, or NULL if not found.
158  */
159 static const struct kfilter *
160 kfilter_byname_sys(const char *name)
161 {
162 	int i;
163 
164 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
165 		if (strcmp(name, sys_kfilters[i].name) == 0)
166 			return (&sys_kfilters[i]);
167 	}
168 	return (NULL);
169 }
170 
171 static struct kfilter *
172 kfilter_byname_user(const char *name)
173 {
174 	int i;
175 
176 	/* user_kfilters[] could be NULL if no filters were registered */
177 	if (!user_kfilters)
178 		return (NULL);
179 
180 	for (i = 0; user_kfilters[i].name != NULL; i++) {
181 		if (user_kfilters[i].name != '\0' &&
182 		    strcmp(name, user_kfilters[i].name) == 0)
183 			return (&user_kfilters[i]);
184 	}
185 	return (NULL);
186 }
187 
188 static const struct kfilter *
189 kfilter_byname(const char *name)
190 {
191 	const struct kfilter *kfilter;
192 
193 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
194 		return (kfilter);
195 
196 	return (kfilter_byname_user(name));
197 }
198 
199 /*
200  * Find kfilter entry by filter id, or NULL if not found.
201  * Assumes entries are indexed in filter id order, for speed.
202  */
203 static const struct kfilter *
204 kfilter_byfilter(uint32_t filter)
205 {
206 	const struct kfilter *kfilter;
207 
208 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
209 		kfilter = &sys_kfilters[filter];
210 	else if (user_kfilters != NULL &&
211 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
212 					/* it's a user filter */
213 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
214 	else
215 		return (NULL);		/* out of range */
216 	KASSERT(kfilter->filter == filter);	/* sanity check! */
217 	return (kfilter);
218 }
219 
220 /*
221  * Register a new kfilter. Stores the entry in user_kfilters.
222  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
223  * If retfilter != NULL, the new filterid is returned in it.
224  */
225 int
226 kfilter_register(const char *name, const struct filterops *filtops,
227     int *retfilter)
228 {
229 	struct kfilter *kfilter;
230 	void *space;
231 	int len;
232 
233 	if (name == NULL || name[0] == '\0' || filtops == NULL)
234 		return (EINVAL);	/* invalid args */
235 	if (kfilter_byname(name) != NULL)
236 		return (EEXIST);	/* already exists */
237 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT)
238 		return (EINVAL);	/* too many */
239 
240 	/* check if need to grow user_kfilters */
241 	if (user_kfilterc + 1 > user_kfiltermaxc) {
242 		/*
243 		 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we
244 		 * want to traverse user_kfilters as an array.
245 		 */
246 		user_kfiltermaxc += KFILTER_EXTENT;
247 		kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *),
248 		    M_KEVENT, M_WAITOK);
249 
250 		/* copy existing user_kfilters */
251 		if (user_kfilters != NULL)
252 			memcpy((caddr_t)kfilter, (caddr_t)user_kfilters,
253 			    user_kfilterc * sizeof(struct kfilter *));
254 					/* zero new sections */
255 		memset((caddr_t)kfilter +
256 		    user_kfilterc * sizeof(struct kfilter *), 0,
257 		    (user_kfiltermaxc - user_kfilterc) *
258 		    sizeof(struct kfilter *));
259 					/* switch to new kfilter */
260 		if (user_kfilters != NULL)
261 			free(user_kfilters, M_KEVENT);
262 		user_kfilters = kfilter;
263 	}
264 	len = strlen(name) + 1;		/* copy name */
265 	space = malloc(len, M_KEVENT, M_WAITOK);
266 	memcpy(space, name, len);
267 	user_kfilters[user_kfilterc].name = space;
268 
269 	user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT;
270 
271 	len = sizeof(struct filterops);	/* copy filtops */
272 	space = malloc(len, M_KEVENT, M_WAITOK);
273 	memcpy(space, filtops, len);
274 	user_kfilters[user_kfilterc].filtops = space;
275 
276 	if (retfilter != NULL)
277 		*retfilter = user_kfilters[user_kfilterc].filter;
278 	user_kfilterc++;		/* finally, increment count */
279 	return (0);
280 }
281 
282 /*
283  * Unregister a kfilter previously registered with kfilter_register.
284  * This retains the filter id, but clears the name and frees filtops (filter
285  * operations), so that the number isn't reused during a boot.
286  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
287  */
288 int
289 kfilter_unregister(const char *name)
290 {
291 	struct kfilter *kfilter;
292 
293 	if (name == NULL || name[0] == '\0')
294 		return (EINVAL);	/* invalid name */
295 
296 	if (kfilter_byname_sys(name) != NULL)
297 		return (EINVAL);	/* can't detach system filters */
298 
299 	kfilter = kfilter_byname_user(name);
300 	if (kfilter == NULL)		/* not found */
301 		return (ENOENT);
302 
303 	if (kfilter->name[0] != '\0') {
304 		/* XXXUNCONST Cast away const (but we know it's safe. */
305 		free(__UNCONST(kfilter->name), M_KEVENT);
306 		kfilter->name = "";	/* mark as `not implemented' */
307 	}
308 	if (kfilter->filtops != NULL) {
309 		/* XXXUNCONST Cast away const (but we know it's safe. */
310 		free(__UNCONST(kfilter->filtops), M_KEVENT);
311 		kfilter->filtops = NULL; /* mark as `not implemented' */
312 	}
313 	return (0);
314 }
315 
316 
317 /*
318  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
319  * descriptors. Calls struct fileops kqfilter method for given file descriptor.
320  */
321 static int
322 filt_fileattach(struct knote *kn)
323 {
324 	struct file *fp;
325 
326 	fp = kn->kn_fp;
327 	return ((*fp->f_ops->fo_kqfilter)(fp, kn));
328 }
329 
330 /*
331  * Filter detach method for EVFILT_READ on kqueue descriptor.
332  */
333 static void
334 filt_kqdetach(struct knote *kn)
335 {
336 	struct kqueue *kq;
337 
338 	kq = (struct kqueue *)kn->kn_fp->f_data;
339 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
340 }
341 
342 /*
343  * Filter event method for EVFILT_READ on kqueue descriptor.
344  */
345 /*ARGSUSED*/
346 static int
347 filt_kqueue(struct knote *kn, long hint)
348 {
349 	struct kqueue *kq;
350 
351 	kq = (struct kqueue *)kn->kn_fp->f_data;
352 	kn->kn_data = kq->kq_count;
353 	return (kn->kn_data > 0);
354 }
355 
356 /*
357  * Filter attach method for EVFILT_PROC.
358  */
359 static int
360 filt_procattach(struct knote *kn)
361 {
362 	struct proc *p, *curp;
363 	struct lwp *curl;
364 
365 	curl = curlwp;
366 	curp = curl->l_proc;
367 
368 	p = pfind(kn->kn_id);
369 	if (p == NULL)
370 		return (ESRCH);
371 
372 	/*
373 	 * Fail if it's not owned by you, or the last exec gave us
374 	 * setuid/setgid privs (unless you're root).
375 	 */
376 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(curl->l_cred) ||
377 	    (p->p_flag & P_SUGID)) && kauth_authorize_generic(curl->l_cred,
378 	    KAUTH_GENERIC_ISSUSER, &curl->l_acflag) != 0)
379 		return (EACCES);
380 
381 	kn->kn_ptr.p_proc = p;
382 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
383 
384 	/*
385 	 * internal flag indicating registration done by kernel
386 	 */
387 	if (kn->kn_flags & EV_FLAG1) {
388 		kn->kn_data = kn->kn_sdata;	/* ppid */
389 		kn->kn_fflags = NOTE_CHILD;
390 		kn->kn_flags &= ~EV_FLAG1;
391 	}
392 
393 	/* XXXSMP lock the process? */
394 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
395 
396 	return (0);
397 }
398 
399 /*
400  * Filter detach method for EVFILT_PROC.
401  *
402  * The knote may be attached to a different process, which may exit,
403  * leaving nothing for the knote to be attached to.  So when the process
404  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
405  * it will be deleted when read out.  However, as part of the knote deletion,
406  * this routine is called, so a check is needed to avoid actually performing
407  * a detach, because the original process might not exist any more.
408  */
409 static void
410 filt_procdetach(struct knote *kn)
411 {
412 	struct proc *p;
413 
414 	if (kn->kn_status & KN_DETACHED)
415 		return;
416 
417 	p = kn->kn_ptr.p_proc;
418 	KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p);
419 
420 	/* XXXSMP lock the process? */
421 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
422 }
423 
424 /*
425  * Filter event method for EVFILT_PROC.
426  */
427 static int
428 filt_proc(struct knote *kn, long hint)
429 {
430 	u_int event;
431 
432 	/*
433 	 * mask off extra data
434 	 */
435 	event = (u_int)hint & NOTE_PCTRLMASK;
436 
437 	/*
438 	 * if the user is interested in this event, record it.
439 	 */
440 	if (kn->kn_sfflags & event)
441 		kn->kn_fflags |= event;
442 
443 	/*
444 	 * process is gone, so flag the event as finished.
445 	 */
446 	if (event == NOTE_EXIT) {
447 		/*
448 		 * Detach the knote from watched process and mark
449 		 * it as such. We can't leave this to kqueue_scan(),
450 		 * since the process might not exist by then. And we
451 		 * have to do this now, since psignal KNOTE() is called
452 		 * also for zombies and we might end up reading freed
453 		 * memory if the kevent would already be picked up
454 		 * and knote g/c'ed.
455 		 */
456 		kn->kn_fop->f_detach(kn);
457 		kn->kn_status |= KN_DETACHED;
458 
459 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
460 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
461 		return (1);
462 	}
463 
464 	/*
465 	 * process forked, and user wants to track the new process,
466 	 * so attach a new knote to it, and immediately report an
467 	 * event with the parent's pid.
468 	 */
469 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
470 		struct kevent kev;
471 		int error;
472 
473 		/*
474 		 * register knote with new process.
475 		 */
476 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
477 		kev.filter = kn->kn_filter;
478 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
479 		kev.fflags = kn->kn_sfflags;
480 		kev.data = kn->kn_id;			/* parent */
481 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
482 		error = kqueue_register(kn->kn_kq, &kev, NULL);
483 		if (error)
484 			kn->kn_fflags |= NOTE_TRACKERR;
485 	}
486 
487 	return (kn->kn_fflags != 0);
488 }
489 
490 static void
491 filt_timerexpire(void *knx)
492 {
493 	struct knote *kn = knx;
494 	int tticks;
495 
496 	kn->kn_data++;
497 	KNOTE_ACTIVATE(kn);
498 
499 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
500 		tticks = mstohz(kn->kn_sdata);
501 		callout_schedule((struct callout *)kn->kn_hook, tticks);
502 	}
503 }
504 
505 /*
506  * data contains amount of time to sleep, in milliseconds
507  */
508 static int
509 filt_timerattach(struct knote *kn)
510 {
511 	struct callout *calloutp;
512 	int tticks;
513 
514 	if (kq_ncallouts >= kq_calloutmax)
515 		return (ENOMEM);
516 	kq_ncallouts++;
517 
518 	tticks = mstohz(kn->kn_sdata);
519 
520 	/* if the supplied value is under our resolution, use 1 tick */
521 	if (tticks == 0) {
522 		if (kn->kn_sdata == 0)
523 			return (EINVAL);
524 		tticks = 1;
525 	}
526 
527 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
528 	MALLOC(calloutp, struct callout *, sizeof(*calloutp),
529 	    M_KEVENT, 0);
530 	callout_init(calloutp);
531 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
532 	kn->kn_hook = calloutp;
533 
534 	return (0);
535 }
536 
537 static void
538 filt_timerdetach(struct knote *kn)
539 {
540 	struct callout *calloutp;
541 
542 	calloutp = (struct callout *)kn->kn_hook;
543 	callout_stop(calloutp);
544 	FREE(calloutp, M_KEVENT);
545 	kq_ncallouts--;
546 }
547 
548 static int
549 filt_timer(struct knote *kn, long hint)
550 {
551 	return (kn->kn_data != 0);
552 }
553 
554 /*
555  * filt_seltrue:
556  *
557  *	This filter "event" routine simulates seltrue().
558  */
559 int
560 filt_seltrue(struct knote *kn, long hint)
561 {
562 
563 	/*
564 	 * We don't know how much data can be read/written,
565 	 * but we know that it *can* be.  This is about as
566 	 * good as select/poll does as well.
567 	 */
568 	kn->kn_data = 0;
569 	return (1);
570 }
571 
572 /*
573  * This provides full kqfilter entry for device switch tables, which
574  * has same effect as filter using filt_seltrue() as filter method.
575  */
576 static void
577 filt_seltruedetach(struct knote *kn)
578 {
579 	/* Nothing to do */
580 }
581 
582 static const struct filterops seltrue_filtops =
583 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
584 
585 int
586 seltrue_kqfilter(dev_t dev, struct knote *kn)
587 {
588 	switch (kn->kn_filter) {
589 	case EVFILT_READ:
590 	case EVFILT_WRITE:
591 		kn->kn_fop = &seltrue_filtops;
592 		break;
593 	default:
594 		return (1);
595 	}
596 
597 	/* Nothing more to do */
598 	return (0);
599 }
600 
601 /*
602  * kqueue(2) system call.
603  */
604 int
605 sys_kqueue(struct lwp *l, void *v, register_t *retval)
606 {
607 	struct filedesc	*fdp;
608 	struct kqueue	*kq;
609 	struct file	*fp;
610 	int		fd, error;
611 
612 	fdp = l->l_proc->p_fd;
613 	error = falloc(l, &fp, &fd);	/* setup a new file descriptor */
614 	if (error)
615 		return (error);
616 	fp->f_flag = FREAD | FWRITE;
617 	fp->f_type = DTYPE_KQUEUE;
618 	fp->f_ops = &kqueueops;
619 	kq = pool_get(&kqueue_pool, PR_WAITOK);
620 	memset((char *)kq, 0, sizeof(struct kqueue));
621 	simple_lock_init(&kq->kq_lock);
622 	TAILQ_INIT(&kq->kq_head);
623 	fp->f_data = (caddr_t)kq;	/* store the kqueue with the fp */
624 	*retval = fd;
625 	if (fdp->fd_knlistsize < 0)
626 		fdp->fd_knlistsize = 0;	/* this process has a kq */
627 	kq->kq_fdp = fdp;
628 	FILE_SET_MATURE(fp);
629 	FILE_UNUSE(fp, l);		/* falloc() does FILE_USE() */
630 	return (error);
631 }
632 
633 /*
634  * kevent(2) system call.
635  */
636 static int
637 kevent_fetch_changes(void *private, const struct kevent *changelist,
638     struct kevent *changes, size_t index, int n)
639 {
640 	return copyin(changelist + index, changes, n * sizeof(*changes));
641 }
642 
643 static int
644 kevent_put_events(void *private, struct kevent *events,
645     struct kevent *eventlist, size_t index, int n)
646 {
647 	return copyout(events, eventlist + index, n * sizeof(*events));
648 }
649 
650 static const struct kevent_ops kevent_native_ops = {
651 	keo_private: NULL,
652 	keo_fetch_timeout: copyin,
653 	keo_fetch_changes: kevent_fetch_changes,
654 	keo_put_events: kevent_put_events,
655 };
656 
657 int
658 sys_kevent(struct lwp *l, void *v, register_t *retval)
659 {
660 	struct sys_kevent_args /* {
661 		syscallarg(int) fd;
662 		syscallarg(const struct kevent *) changelist;
663 		syscallarg(size_t) nchanges;
664 		syscallarg(struct kevent *) eventlist;
665 		syscallarg(size_t) nevents;
666 		syscallarg(const struct timespec *) timeout;
667 	} */ *uap = v;
668 
669 	return kevent1(l, retval, SCARG(uap, fd), SCARG(uap, changelist),
670 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
671 	    SCARG(uap, timeout), &kevent_native_ops);
672 }
673 
674 int
675 kevent1(struct lwp *l, register_t *retval, int fd,
676     const struct kevent *changelist, size_t nchanges, struct kevent *eventlist,
677     size_t nevents, const struct timespec *timeout,
678     const struct kevent_ops *keops)
679 {
680 	struct kevent	*kevp;
681 	struct kqueue	*kq;
682 	struct file	*fp;
683 	struct timespec	ts;
684 	struct proc	*p;
685 	size_t		i, n, ichange;
686 	int		nerrors, error;
687 
688 	p = l->l_proc;
689 	/* check that we're dealing with a kq */
690 	fp = fd_getfile(p->p_fd, fd);
691 	if (fp == NULL)
692 		return (EBADF);
693 
694 	if (fp->f_type != DTYPE_KQUEUE) {
695 		simple_unlock(&fp->f_slock);
696 		return (EBADF);
697 	}
698 
699 	FILE_USE(fp);
700 
701 	if (timeout != NULL) {
702 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
703 		if (error)
704 			goto done;
705 		timeout = &ts;
706 	}
707 
708 	kq = (struct kqueue *)fp->f_data;
709 	nerrors = 0;
710 	ichange = 0;
711 
712 	/* traverse list of events to register */
713 	while (nchanges > 0) {
714 		/* copyin a maximum of KQ_EVENTS at each pass */
715 		n = MIN(nchanges, KQ_NEVENTS);
716 		error = (*keops->keo_fetch_changes)(keops->keo_private,
717 		    changelist, kq->kq_kev, ichange, n);
718 		if (error)
719 			goto done;
720 		for (i = 0; i < n; i++) {
721 			kevp = &kq->kq_kev[i];
722 			kevp->flags &= ~EV_SYSFLAGS;
723 			/* register each knote */
724 			error = kqueue_register(kq, kevp, l);
725 			if (error) {
726 				if (nevents != 0) {
727 					kevp->flags = EV_ERROR;
728 					kevp->data = error;
729 					error = (*keops->keo_put_events)
730 					    (keops->keo_private, kevp,
731 					    eventlist, nerrors, 1);
732 					if (error)
733 						goto done;
734 					nevents--;
735 					nerrors++;
736 				} else {
737 					goto done;
738 				}
739 			}
740 		}
741 		nchanges -= n;	/* update the results */
742 		ichange += n;
743 	}
744 	if (nerrors) {
745 		*retval = nerrors;
746 		error = 0;
747 		goto done;
748 	}
749 
750 	/* actually scan through the events */
751 	error = kqueue_scan(fp, nevents, eventlist, timeout, l, retval, keops);
752  done:
753 	FILE_UNUSE(fp, l);
754 	return (error);
755 }
756 
757 /*
758  * Register a given kevent kev onto the kqueue
759  */
760 int
761 kqueue_register(struct kqueue *kq, struct kevent *kev, struct lwp *l)
762 {
763 	const struct kfilter *kfilter;
764 	struct filedesc	*fdp;
765 	struct file	*fp;
766 	struct knote	*kn;
767 	int		s, error;
768 
769 	fdp = kq->kq_fdp;
770 	fp = NULL;
771 	kn = NULL;
772 	error = 0;
773 	kfilter = kfilter_byfilter(kev->filter);
774 	if (kfilter == NULL || kfilter->filtops == NULL) {
775 		/* filter not found nor implemented */
776 		return (EINVAL);
777 	}
778 
779 	/* search if knote already exists */
780 	if (kfilter->filtops->f_isfd) {
781 		/* monitoring a file descriptor */
782 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
783 			return (EBADF);	/* validate descriptor */
784 		FILE_USE(fp);
785 
786 		if (kev->ident < fdp->fd_knlistsize) {
787 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
788 				if (kq == kn->kn_kq &&
789 				    kev->filter == kn->kn_filter)
790 					break;
791 		}
792 	} else {
793 		/*
794 		 * not monitoring a file descriptor, so
795 		 * lookup knotes in internal hash table
796 		 */
797 		if (fdp->fd_knhashmask != 0) {
798 			struct klist *list;
799 
800 			list = &fdp->fd_knhash[
801 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
802 			SLIST_FOREACH(kn, list, kn_link)
803 				if (kev->ident == kn->kn_id &&
804 				    kq == kn->kn_kq &&
805 				    kev->filter == kn->kn_filter)
806 					break;
807 		}
808 	}
809 
810 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
811 		error = ENOENT;		/* filter not found */
812 		goto done;
813 	}
814 
815 	/*
816 	 * kn now contains the matching knote, or NULL if no match
817 	 */
818 	if (kev->flags & EV_ADD) {
819 		/* add knote */
820 
821 		if (kn == NULL) {
822 			/* create new knote */
823 			kn = pool_get(&knote_pool, PR_WAITOK);
824 			if (kn == NULL) {
825 				error = ENOMEM;
826 				goto done;
827 			}
828 			kn->kn_fp = fp;
829 			kn->kn_kq = kq;
830 			kn->kn_fop = kfilter->filtops;
831 
832 			/*
833 			 * apply reference count to knote structure, and
834 			 * do not release it at the end of this routine.
835 			 */
836 			fp = NULL;
837 
838 			kn->kn_sfflags = kev->fflags;
839 			kn->kn_sdata = kev->data;
840 			kev->fflags = 0;
841 			kev->data = 0;
842 			kn->kn_kevent = *kev;
843 
844 			knote_attach(kn, fdp);
845 			if ((error = kfilter->filtops->f_attach(kn)) != 0) {
846 				knote_drop(kn, l, fdp);
847 				goto done;
848 			}
849 		} else {
850 			/* modify existing knote */
851 
852 			/*
853 			 * The user may change some filter values after the
854 			 * initial EV_ADD, but doing so will not reset any
855 			 * filter which have already been triggered.
856 			 */
857 			kn->kn_sfflags = kev->fflags;
858 			kn->kn_sdata = kev->data;
859 			kn->kn_kevent.udata = kev->udata;
860 		}
861 
862 		s = splsched();
863 		if (kn->kn_fop->f_event(kn, 0))
864 			KNOTE_ACTIVATE(kn);
865 		splx(s);
866 
867 	} else if (kev->flags & EV_DELETE) {	/* delete knote */
868 		kn->kn_fop->f_detach(kn);
869 		knote_drop(kn, l, fdp);
870 		goto done;
871 	}
872 
873 	/* disable knote */
874 	if ((kev->flags & EV_DISABLE) &&
875 	    ((kn->kn_status & KN_DISABLED) == 0)) {
876 		s = splsched();
877 		kn->kn_status |= KN_DISABLED;
878 		splx(s);
879 	}
880 
881 	/* enable knote */
882 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
883 		s = splsched();
884 		kn->kn_status &= ~KN_DISABLED;
885 		if ((kn->kn_status & KN_ACTIVE) &&
886 		    ((kn->kn_status & KN_QUEUED) == 0))
887 			knote_enqueue(kn);
888 		splx(s);
889 	}
890 
891  done:
892 	if (fp != NULL)
893 		FILE_UNUSE(fp, l);
894 	return (error);
895 }
896 
897 /*
898  * Scan through the list of events on fp (for a maximum of maxevents),
899  * returning the results in to ulistp. Timeout is determined by tsp; if
900  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
901  * as appropriate.
902  */
903 static int
904 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp,
905     const struct timespec *tsp, struct lwp *l, register_t *retval,
906     const struct kevent_ops *keops)
907 {
908 	struct proc	*p = l->l_proc;
909 	struct kqueue	*kq;
910 	struct kevent	*kevp;
911 	struct timeval	atv, sleeptv;
912 	struct knote	*kn, *marker=NULL;
913 	size_t		count, nkev, nevents;
914 	int		s, timeout, error;
915 
916 	kq = (struct kqueue *)fp->f_data;
917 	count = maxevents;
918 	nkev = nevents = error = 0;
919 	if (count == 0)
920 		goto done;
921 
922 	if (tsp) {				/* timeout supplied */
923 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
924 		if (inittimeleft(&atv, &sleeptv) == -1) {
925 			error = EINVAL;
926 			goto done;
927 		}
928 		timeout = tvtohz(&atv);
929 		if (timeout <= 0)
930 			timeout = -1;           /* do poll */
931 	} else {
932 		/* no timeout, wait forever */
933 		timeout = 0;
934 	}
935 
936 	MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK);
937 	memset(marker, 0, sizeof(*marker));
938 
939 	goto start;
940 
941  retry:
942 	if (tsp && (timeout = gettimeleft(&atv, &sleeptv)) <= 0) {
943 		goto done;
944 	}
945 
946  start:
947 	kevp = kq->kq_kev;
948 	s = splsched();
949 	simple_lock(&kq->kq_lock);
950 	if (kq->kq_count == 0) {
951 		if (timeout < 0) {
952 			error = EWOULDBLOCK;
953 			simple_unlock(&kq->kq_lock);
954 		} else {
955 			kq->kq_state |= KQ_SLEEP;
956 			error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK,
957 					"kqread", timeout, &kq->kq_lock);
958 		}
959 		splx(s);
960 		if (error == 0)
961 			goto retry;
962 		/* don't restart after signals... */
963 		if (error == ERESTART)
964 			error = EINTR;
965 		else if (error == EWOULDBLOCK)
966 			error = 0;
967 		goto done;
968 	}
969 
970 	/* mark end of knote list */
971 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
972 	simple_unlock(&kq->kq_lock);
973 
974 	while (count) {				/* while user wants data ... */
975 		simple_lock(&kq->kq_lock);
976 		kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
977 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
978 		if (kn == marker) {		/* if it's our marker, stop */
979 			/* What if it's some else's marker? */
980 			simple_unlock(&kq->kq_lock);
981 			splx(s);
982 			if (count == maxevents)
983 				goto retry;
984 			goto done;
985 		}
986 		kq->kq_count--;
987 		simple_unlock(&kq->kq_lock);
988 
989 		if (kn->kn_status & KN_DISABLED) {
990 			/* don't want disabled events */
991 			kn->kn_status &= ~KN_QUEUED;
992 			continue;
993 		}
994 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
995 		    kn->kn_fop->f_event(kn, 0) == 0) {
996 			/*
997 			 * non-ONESHOT event that hasn't
998 			 * triggered again, so de-queue.
999 			 */
1000 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1001 			continue;
1002 		}
1003 		*kevp = kn->kn_kevent;
1004 		kevp++;
1005 		nkev++;
1006 		if (kn->kn_flags & EV_ONESHOT) {
1007 			/* delete ONESHOT events after retrieval */
1008 			kn->kn_status &= ~KN_QUEUED;
1009 			splx(s);
1010 			kn->kn_fop->f_detach(kn);
1011 			knote_drop(kn, l, p->p_fd);
1012 			s = splsched();
1013 		} else if (kn->kn_flags & EV_CLEAR) {
1014 			/* clear state after retrieval */
1015 			kn->kn_data = 0;
1016 			kn->kn_fflags = 0;
1017 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
1018 		} else {
1019 			/* add event back on list */
1020 			simple_lock(&kq->kq_lock);
1021 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1022 			kq->kq_count++;
1023 			simple_unlock(&kq->kq_lock);
1024 		}
1025 		count--;
1026 		if (nkev == KQ_NEVENTS) {
1027 			/* do copyouts in KQ_NEVENTS chunks */
1028 			splx(s);
1029 			error = (*keops->keo_put_events)(keops->keo_private,
1030 			    &kq->kq_kev[0], ulistp, nevents, nkev);
1031 			nevents += nkev;
1032 			nkev = 0;
1033 			kevp = kq->kq_kev;
1034 			s = splsched();
1035 			if (error)
1036 				break;
1037 		}
1038 	}
1039 
1040 	/* remove marker */
1041 	simple_lock(&kq->kq_lock);
1042 	TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1043 	simple_unlock(&kq->kq_lock);
1044 	splx(s);
1045  done:
1046 	if (marker)
1047 		FREE(marker, M_KEVENT);
1048 
1049 	if (nkev != 0)
1050 		/* copyout remaining events */
1051 		error = (*keops->keo_put_events)(keops->keo_private,
1052 		    &kq->kq_kev[0], ulistp, nevents, nkev);
1053 	*retval = maxevents - count;
1054 
1055 	return (error);
1056 }
1057 
1058 /*
1059  * struct fileops read method for a kqueue descriptor.
1060  * Not implemented.
1061  * XXX: This could be expanded to call kqueue_scan, if desired.
1062  */
1063 /*ARGSUSED*/
1064 static int
1065 kqueue_read(struct file *fp, off_t *offset, struct uio *uio,
1066 	kauth_cred_t cred, int flags)
1067 {
1068 
1069 	return (ENXIO);
1070 }
1071 
1072 /*
1073  * struct fileops write method for a kqueue descriptor.
1074  * Not implemented.
1075  */
1076 /*ARGSUSED*/
1077 static int
1078 kqueue_write(struct file *fp, off_t *offset, struct uio *uio,
1079 	kauth_cred_t cred, int flags)
1080 {
1081 
1082 	return (ENXIO);
1083 }
1084 
1085 /*
1086  * struct fileops ioctl method for a kqueue descriptor.
1087  *
1088  * Two ioctls are currently supported. They both use struct kfilter_mapping:
1089  *	KFILTER_BYNAME		find name for filter, and return result in
1090  *				name, which is of size len.
1091  *	KFILTER_BYFILTER	find filter for name. len is ignored.
1092  */
1093 /*ARGSUSED*/
1094 static int
1095 kqueue_ioctl(struct file *fp, u_long com, void *data, struct lwp *l)
1096 {
1097 	struct kfilter_mapping	*km;
1098 	const struct kfilter	*kfilter;
1099 	char			*name;
1100 	int			error;
1101 
1102 	km = (struct kfilter_mapping *)data;
1103 	error = 0;
1104 
1105 	switch (com) {
1106 	case KFILTER_BYFILTER:	/* convert filter -> name */
1107 		kfilter = kfilter_byfilter(km->filter);
1108 		if (kfilter != NULL)
1109 			error = copyoutstr(kfilter->name, km->name, km->len,
1110 			    NULL);
1111 		else
1112 			error = ENOENT;
1113 		break;
1114 
1115 	case KFILTER_BYNAME:	/* convert name -> filter */
1116 		MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK);
1117 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1118 		if (error) {
1119 			FREE(name, M_KEVENT);
1120 			break;
1121 		}
1122 		kfilter = kfilter_byname(name);
1123 		if (kfilter != NULL)
1124 			km->filter = kfilter->filter;
1125 		else
1126 			error = ENOENT;
1127 		FREE(name, M_KEVENT);
1128 		break;
1129 
1130 	default:
1131 		error = ENOTTY;
1132 
1133 	}
1134 	return (error);
1135 }
1136 
1137 /*
1138  * struct fileops fcntl method for a kqueue descriptor.
1139  * Not implemented.
1140  */
1141 /*ARGSUSED*/
1142 static int
1143 kqueue_fcntl(struct file *fp, u_int com, void *data, struct lwp *l)
1144 {
1145 
1146 	return (ENOTTY);
1147 }
1148 
1149 /*
1150  * struct fileops poll method for a kqueue descriptor.
1151  * Determine if kqueue has events pending.
1152  */
1153 static int
1154 kqueue_poll(struct file *fp, int events, struct lwp *l)
1155 {
1156 	struct kqueue	*kq;
1157 	int		revents;
1158 
1159 	kq = (struct kqueue *)fp->f_data;
1160 	revents = 0;
1161 	if (events & (POLLIN | POLLRDNORM)) {
1162 		if (kq->kq_count) {
1163 			revents |= events & (POLLIN | POLLRDNORM);
1164 		} else {
1165 			selrecord(l, &kq->kq_sel);
1166 		}
1167 	}
1168 	return (revents);
1169 }
1170 
1171 /*
1172  * struct fileops stat method for a kqueue descriptor.
1173  * Returns dummy info, with st_size being number of events pending.
1174  */
1175 static int
1176 kqueue_stat(struct file *fp, struct stat *st, struct lwp *l)
1177 {
1178 	struct kqueue	*kq;
1179 
1180 	kq = (struct kqueue *)fp->f_data;
1181 	memset((void *)st, 0, sizeof(*st));
1182 	st->st_size = kq->kq_count;
1183 	st->st_blksize = sizeof(struct kevent);
1184 	st->st_mode = S_IFIFO;
1185 	return (0);
1186 }
1187 
1188 /*
1189  * struct fileops close method for a kqueue descriptor.
1190  * Cleans up kqueue.
1191  */
1192 static int
1193 kqueue_close(struct file *fp, struct lwp *l)
1194 {
1195 	struct proc	*p = l->l_proc;
1196 	struct kqueue	*kq;
1197 	struct filedesc	*fdp;
1198 	struct knote	**knp, *kn, *kn0;
1199 	int		i;
1200 
1201 	kq = (struct kqueue *)fp->f_data;
1202 	fdp = p->p_fd;
1203 	for (i = 0; i < fdp->fd_knlistsize; i++) {
1204 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
1205 		kn = *knp;
1206 		while (kn != NULL) {
1207 			kn0 = SLIST_NEXT(kn, kn_link);
1208 			if (kq == kn->kn_kq) {
1209 				kn->kn_fop->f_detach(kn);
1210 				FILE_UNUSE(kn->kn_fp, l);
1211 				pool_put(&knote_pool, kn);
1212 				*knp = kn0;
1213 			} else {
1214 				knp = &SLIST_NEXT(kn, kn_link);
1215 			}
1216 			kn = kn0;
1217 		}
1218 	}
1219 	if (fdp->fd_knhashmask != 0) {
1220 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1221 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
1222 			kn = *knp;
1223 			while (kn != NULL) {
1224 				kn0 = SLIST_NEXT(kn, kn_link);
1225 				if (kq == kn->kn_kq) {
1226 					kn->kn_fop->f_detach(kn);
1227 					/* XXX non-fd release of kn->kn_ptr */
1228 					pool_put(&knote_pool, kn);
1229 					*knp = kn0;
1230 				} else {
1231 					knp = &SLIST_NEXT(kn, kn_link);
1232 				}
1233 				kn = kn0;
1234 			}
1235 		}
1236 	}
1237 	pool_put(&kqueue_pool, kq);
1238 	fp->f_data = NULL;
1239 
1240 	return (0);
1241 }
1242 
1243 /*
1244  * wakeup a kqueue
1245  */
1246 static void
1247 kqueue_wakeup(struct kqueue *kq)
1248 {
1249 	int s;
1250 
1251 	s = splsched();
1252 	simple_lock(&kq->kq_lock);
1253 	if (kq->kq_state & KQ_SLEEP) {		/* if currently sleeping ...  */
1254 		kq->kq_state &= ~KQ_SLEEP;
1255 		wakeup(kq);			/* ... wakeup */
1256 	}
1257 
1258 	/* Notify select/poll and kevent. */
1259 	selnotify(&kq->kq_sel, 0);
1260 	simple_unlock(&kq->kq_lock);
1261 	splx(s);
1262 }
1263 
1264 /*
1265  * struct fileops kqfilter method for a kqueue descriptor.
1266  * Event triggered when monitored kqueue changes.
1267  */
1268 /*ARGSUSED*/
1269 static int
1270 kqueue_kqfilter(struct file *fp, struct knote *kn)
1271 {
1272 	struct kqueue *kq;
1273 
1274 	KASSERT(fp == kn->kn_fp);
1275 	kq = (struct kqueue *)kn->kn_fp->f_data;
1276 	if (kn->kn_filter != EVFILT_READ)
1277 		return (1);
1278 	kn->kn_fop = &kqread_filtops;
1279 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1280 	return (0);
1281 }
1282 
1283 
1284 /*
1285  * Walk down a list of knotes, activating them if their event has triggered.
1286  */
1287 void
1288 knote(struct klist *list, long hint)
1289 {
1290 	struct knote *kn;
1291 
1292 	SLIST_FOREACH(kn, list, kn_selnext)
1293 		if (kn->kn_fop->f_event(kn, hint))
1294 			KNOTE_ACTIVATE(kn);
1295 }
1296 
1297 /*
1298  * Remove all knotes from a specified klist
1299  */
1300 void
1301 knote_remove(struct lwp *l, struct klist *list)
1302 {
1303 	struct knote *kn;
1304 
1305 	while ((kn = SLIST_FIRST(list)) != NULL) {
1306 		kn->kn_fop->f_detach(kn);
1307 		knote_drop(kn, l, l->l_proc->p_fd);
1308 	}
1309 }
1310 
1311 /*
1312  * Remove all knotes referencing a specified fd
1313  */
1314 void
1315 knote_fdclose(struct lwp *l, int fd)
1316 {
1317 	struct filedesc	*fdp;
1318 	struct klist	*list;
1319 
1320 	fdp = l->l_proc->p_fd;
1321 	list = &fdp->fd_knlist[fd];
1322 	knote_remove(l, list);
1323 }
1324 
1325 /*
1326  * Attach a new knote to a file descriptor
1327  */
1328 static void
1329 knote_attach(struct knote *kn, struct filedesc *fdp)
1330 {
1331 	struct klist	*list;
1332 	int		size;
1333 
1334 	if (! kn->kn_fop->f_isfd) {
1335 		/* if knote is not on an fd, store on internal hash table */
1336 		if (fdp->fd_knhashmask == 0)
1337 			fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST,
1338 			    M_KEVENT, M_WAITOK, &fdp->fd_knhashmask);
1339 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1340 		goto done;
1341 	}
1342 
1343 	/*
1344 	 * otherwise, knote is on an fd.
1345 	 * knotes are stored in fd_knlist indexed by kn->kn_id.
1346 	 */
1347 	if (fdp->fd_knlistsize <= kn->kn_id) {
1348 		/* expand list, it's too small */
1349 		size = fdp->fd_knlistsize;
1350 		while (size <= kn->kn_id) {
1351 			/* grow in KQ_EXTENT chunks */
1352 			size += KQ_EXTENT;
1353 		}
1354 		list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK);
1355 		if (fdp->fd_knlist) {
1356 			/* copy existing knlist */
1357 			memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist,
1358 			    fdp->fd_knlistsize * sizeof(struct klist *));
1359 		}
1360 		/*
1361 		 * Zero new memory. Stylistically, SLIST_INIT() should be
1362 		 * used here, but that does same thing as the memset() anyway.
1363 		 */
1364 		memset(&list[fdp->fd_knlistsize], 0,
1365 		    (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1366 
1367 		/* switch to new knlist */
1368 		if (fdp->fd_knlist != NULL)
1369 			free(fdp->fd_knlist, M_KEVENT);
1370 		fdp->fd_knlistsize = size;
1371 		fdp->fd_knlist = list;
1372 	}
1373 
1374 	/* get list head for this fd */
1375 	list = &fdp->fd_knlist[kn->kn_id];
1376  done:
1377 	/* add new knote */
1378 	SLIST_INSERT_HEAD(list, kn, kn_link);
1379 	kn->kn_status = 0;
1380 }
1381 
1382 /*
1383  * Drop knote.
1384  * Should be called at spl == 0, since we don't want to hold spl
1385  * while calling FILE_UNUSE and free.
1386  */
1387 static void
1388 knote_drop(struct knote *kn, struct lwp *l, struct filedesc *fdp)
1389 {
1390 	struct klist	*list;
1391 
1392 	if (kn->kn_fop->f_isfd)
1393 		list = &fdp->fd_knlist[kn->kn_id];
1394 	else
1395 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1396 
1397 	SLIST_REMOVE(list, kn, knote, kn_link);
1398 	if (kn->kn_status & KN_QUEUED)
1399 		knote_dequeue(kn);
1400 	if (kn->kn_fop->f_isfd)
1401 		FILE_UNUSE(kn->kn_fp, l);
1402 	pool_put(&knote_pool, kn);
1403 }
1404 
1405 
1406 /*
1407  * Queue new event for knote.
1408  */
1409 static void
1410 knote_enqueue(struct knote *kn)
1411 {
1412 	struct kqueue	*kq;
1413 	int		s;
1414 
1415 	kq = kn->kn_kq;
1416 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
1417 
1418 	s = splsched();
1419 	simple_lock(&kq->kq_lock);
1420 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1421 	kn->kn_status |= KN_QUEUED;
1422 	kq->kq_count++;
1423 	simple_unlock(&kq->kq_lock);
1424 	splx(s);
1425 	kqueue_wakeup(kq);
1426 }
1427 
1428 /*
1429  * Dequeue event for knote.
1430  */
1431 static void
1432 knote_dequeue(struct knote *kn)
1433 {
1434 	struct kqueue	*kq;
1435 	int		s;
1436 
1437 	KASSERT(kn->kn_status & KN_QUEUED);
1438 	kq = kn->kn_kq;
1439 
1440 	s = splsched();
1441 	simple_lock(&kq->kq_lock);
1442 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1443 	kn->kn_status &= ~KN_QUEUED;
1444 	kq->kq_count--;
1445 	simple_unlock(&kq->kq_lock);
1446 	splx(s);
1447 }
1448