1 /* $NetBSD: kern_event.c,v 1.149 2023/07/28 18:19:01 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 34 * Copyright (c) 2009 Apple, Inc 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp 59 */ 60 61 #ifdef _KERNEL_OPT 62 #include "opt_ddb.h" 63 #endif /* _KERNEL_OPT */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.149 2023/07/28 18:19:01 christos Exp $"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/wait.h> 72 #include <sys/proc.h> 73 #include <sys/file.h> 74 #include <sys/select.h> 75 #include <sys/queue.h> 76 #include <sys/event.h> 77 #include <sys/eventvar.h> 78 #include <sys/poll.h> 79 #include <sys/kmem.h> 80 #include <sys/stat.h> 81 #include <sys/filedesc.h> 82 #include <sys/syscallargs.h> 83 #include <sys/kauth.h> 84 #include <sys/conf.h> 85 #include <sys/atomic.h> 86 87 static int kqueue_scan(file_t *, size_t, struct kevent *, 88 const struct timespec *, register_t *, 89 const struct kevent_ops *, struct kevent *, 90 size_t); 91 static int kqueue_ioctl(file_t *, u_long, void *); 92 static int kqueue_fcntl(file_t *, u_int, void *); 93 static int kqueue_poll(file_t *, int); 94 static int kqueue_kqfilter(file_t *, struct knote *); 95 static int kqueue_stat(file_t *, struct stat *); 96 static int kqueue_close(file_t *); 97 static void kqueue_restart(file_t *); 98 static int kqueue_fpathconf(file_t *, int, register_t *); 99 static int kqueue_register(struct kqueue *, struct kevent *); 100 static void kqueue_doclose(struct kqueue *, struct klist *, int); 101 102 static void knote_detach(struct knote *, filedesc_t *fdp, bool); 103 static void knote_enqueue(struct knote *); 104 static void knote_activate(struct knote *); 105 static void knote_activate_locked(struct knote *); 106 static void knote_deactivate_locked(struct knote *); 107 108 static void filt_kqdetach(struct knote *); 109 static int filt_kqueue(struct knote *, long hint); 110 static int filt_procattach(struct knote *); 111 static void filt_procdetach(struct knote *); 112 static int filt_proc(struct knote *, long hint); 113 static int filt_fileattach(struct knote *); 114 static void filt_timerexpire(void *x); 115 static int filt_timerattach(struct knote *); 116 static void filt_timerdetach(struct knote *); 117 static int filt_timer(struct knote *, long hint); 118 static int filt_timertouch(struct knote *, struct kevent *, long type); 119 static int filt_userattach(struct knote *); 120 static void filt_userdetach(struct knote *); 121 static int filt_user(struct knote *, long hint); 122 static int filt_usertouch(struct knote *, struct kevent *, long type); 123 124 /* 125 * Private knote state that should never be exposed outside 126 * of kern_event.c 127 * 128 * Field locking: 129 * 130 * q kn_kq->kq_lock 131 */ 132 struct knote_impl { 133 struct knote ki_knote; 134 unsigned int ki_influx; /* q: in-flux counter */ 135 kmutex_t ki_foplock; /* for kn_filterops */ 136 }; 137 138 #define KIMPL_TO_KNOTE(kip) (&(kip)->ki_knote) 139 #define KNOTE_TO_KIMPL(knp) container_of((knp), struct knote_impl, ki_knote) 140 141 static inline struct knote * 142 knote_alloc(bool sleepok) 143 { 144 struct knote_impl *ki; 145 146 ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP); 147 mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE); 148 149 return KIMPL_TO_KNOTE(ki); 150 } 151 152 static inline void 153 knote_free(struct knote *kn) 154 { 155 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 156 157 mutex_destroy(&ki->ki_foplock); 158 kmem_free(ki, sizeof(*ki)); 159 } 160 161 static inline void 162 knote_foplock_enter(struct knote *kn) 163 { 164 mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock); 165 } 166 167 static inline void 168 knote_foplock_exit(struct knote *kn) 169 { 170 mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock); 171 } 172 173 static inline bool __diagused 174 knote_foplock_owned(struct knote *kn) 175 { 176 return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock); 177 } 178 179 static const struct fileops kqueueops = { 180 .fo_name = "kqueue", 181 .fo_read = (void *)enxio, 182 .fo_write = (void *)enxio, 183 .fo_ioctl = kqueue_ioctl, 184 .fo_fcntl = kqueue_fcntl, 185 .fo_poll = kqueue_poll, 186 .fo_stat = kqueue_stat, 187 .fo_close = kqueue_close, 188 .fo_kqfilter = kqueue_kqfilter, 189 .fo_restart = kqueue_restart, 190 .fo_fpathconf = kqueue_fpathconf, 191 }; 192 193 static void 194 filt_nopdetach(struct knote *kn __unused) 195 { 196 } 197 198 static int 199 filt_nopevent(struct knote *kn __unused, long hint __unused) 200 { 201 return 0; 202 } 203 204 static const struct filterops nop_fd_filtops = { 205 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 206 .f_attach = NULL, 207 .f_detach = filt_nopdetach, 208 .f_event = filt_nopevent, 209 }; 210 211 static const struct filterops nop_filtops = { 212 .f_flags = FILTEROP_MPSAFE, 213 .f_attach = NULL, 214 .f_detach = filt_nopdetach, 215 .f_event = filt_nopevent, 216 }; 217 218 static const struct filterops kqread_filtops = { 219 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 220 .f_attach = NULL, 221 .f_detach = filt_kqdetach, 222 .f_event = filt_kqueue, 223 }; 224 225 static const struct filterops proc_filtops = { 226 .f_flags = FILTEROP_MPSAFE, 227 .f_attach = filt_procattach, 228 .f_detach = filt_procdetach, 229 .f_event = filt_proc, 230 }; 231 232 /* 233 * file_filtops is not marked MPSAFE because it's going to call 234 * fileops::fo_kqfilter(), which might not be. That function, 235 * however, will override the knote's filterops, and thus will 236 * inherit the MPSAFE-ness of the back-end at that time. 237 */ 238 static const struct filterops file_filtops = { 239 .f_flags = FILTEROP_ISFD, 240 .f_attach = filt_fileattach, 241 .f_detach = NULL, 242 .f_event = NULL, 243 }; 244 245 static const struct filterops timer_filtops = { 246 .f_flags = FILTEROP_MPSAFE, 247 .f_attach = filt_timerattach, 248 .f_detach = filt_timerdetach, 249 .f_event = filt_timer, 250 .f_touch = filt_timertouch, 251 }; 252 253 static const struct filterops user_filtops = { 254 .f_flags = FILTEROP_MPSAFE, 255 .f_attach = filt_userattach, 256 .f_detach = filt_userdetach, 257 .f_event = filt_user, 258 .f_touch = filt_usertouch, 259 }; 260 261 static u_int kq_ncallouts = 0; 262 static int kq_calloutmax = (4 * 1024); 263 264 #define KN_HASHSIZE 64 /* XXX should be tunable */ 265 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 266 267 extern const struct filterops fs_filtops; /* vfs_syscalls.c */ 268 extern const struct filterops sig_filtops; /* kern_sig.c */ 269 270 /* 271 * Table for for all system-defined filters. 272 * These should be listed in the numeric order of the EVFILT_* defines. 273 * If filtops is NULL, the filter isn't implemented in NetBSD. 274 * End of list is when name is NULL. 275 * 276 * Note that 'refcnt' is meaningless for built-in filters. 277 */ 278 struct kfilter { 279 const char *name; /* name of filter */ 280 uint32_t filter; /* id of filter */ 281 unsigned refcnt; /* reference count */ 282 const struct filterops *filtops;/* operations for filter */ 283 size_t namelen; /* length of name string */ 284 }; 285 286 /* System defined filters */ 287 static struct kfilter sys_kfilters[] = { 288 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 }, 289 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, }, 290 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 }, 291 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 }, 292 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 }, 293 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 }, 294 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 }, 295 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 }, 296 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 }, 297 { "EVFILT_EMPTY", EVFILT_EMPTY, 0, &file_filtops, 0 }, 298 { NULL, 0, 0, NULL, 0 }, 299 }; 300 301 /* User defined kfilters */ 302 static struct kfilter *user_kfilters; /* array */ 303 static int user_kfilterc; /* current offset */ 304 static int user_kfiltermaxc; /* max size so far */ 305 static size_t user_kfiltersz; /* size of allocated memory */ 306 307 /* 308 * Global Locks. 309 * 310 * Lock order: 311 * 312 * kqueue_filter_lock 313 * -> kn_kq->kq_fdp->fd_lock 314 * -> knote foplock (if taken) 315 * -> object lock (e.g., device driver lock, &c.) 316 * -> kn_kq->kq_lock 317 * 318 * Locking rules. ==> indicates the lock is acquired by the backing 319 * object, locks prior are acquired before calling filter ops: 320 * 321 * f_attach: fdp->fd_lock -> knote foplock -> 322 * (maybe) KERNEL_LOCK ==> backing object lock 323 * 324 * f_detach: fdp->fd_lock -> knote foplock -> 325 * (maybe) KERNEL_LOCK ==> backing object lock 326 * 327 * f_event via kevent: fdp->fd_lock -> knote foplock -> 328 * (maybe) KERNEL_LOCK ==> backing object lock 329 * N.B. NOTE_SUBMIT will never be set in the "hint" argument 330 * in this case. 331 * 332 * f_event via knote (via backing object: Whatever caller guarantees. 333 * Typically: 334 * f_event(NOTE_SUBMIT): caller has already acquired backing 335 * object lock. 336 * f_event(!NOTE_SUBMIT): caller has not acquired backing object, 337 * lock or has possibly acquired KERNEL_LOCK. Backing object 338 * lock may or may not be acquired as-needed. 339 * N.B. the knote foplock will **not** be acquired in this case. The 340 * caller guarantees that klist_fini() will not be called concurrently 341 * with knote(). 342 * 343 * f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock) 344 * N.B. knote foplock is **not** acquired in this case and 345 * the caller must guarantee that klist_fini() will never 346 * be called. kevent_register() restricts filters that 347 * provide f_touch to known-safe cases. 348 * 349 * klist_fini(): Caller must guarantee that no more knotes can 350 * be attached to the klist, and must **not** hold the backing 351 * object's lock; klist_fini() itself will acquire the foplock 352 * of each knote on the klist. 353 * 354 * Locking rules when detaching knotes: 355 * 356 * There are some situations where knote submission may require dropping 357 * locks (see knote_proc_fork()). In order to support this, it's possible 358 * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to 359 * be detached while it remains in-flux. Because it will not be detached, 360 * locks can be dropped so e.g. memory can be allocated, locks on other 361 * data structures can be acquired, etc. During this time, any attempt to 362 * detach an in-flux knote must wait until the knote is no longer in-flux. 363 * When this happens, the knote is marked for death (KN_WILLDETACH) and the 364 * LWP who gets to finish the detach operation is recorded in the knote's 365 * 'udata' field (which is no longer required for its original purpose once 366 * a knote is so marked). Code paths that lead to knote_detach() must ensure 367 * that their LWP is the one tasked with its final demise after waiting for 368 * the in-flux status of the knote to clear. Note that once a knote is 369 * marked KN_WILLDETACH, no code paths may put it into an in-flux state. 370 * 371 * Once the special circumstances have been handled, the locks are re- 372 * acquired in the proper order (object lock -> kq_lock), the knote taken 373 * out of flux, and any waiters are notified. Because waiters must have 374 * also dropped *their* locks in order to safely block, they must re- 375 * validate all of their assumptions; see knote_detach_quiesce(). See also 376 * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT) 377 * cases. 378 * 379 * When kqueue_scan() encounters an in-flux knote, the situation is 380 * treated like another LWP's list marker. 381 * 382 * LISTEN WELL: It is important to not hold knotes in flux for an 383 * extended period of time! In-flux knotes effectively block any 384 * progress of the kqueue_scan() operation. Any code paths that place 385 * knotes in-flux should be careful to not block for indefinite periods 386 * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but 387 * KM_SLEEP is not). 388 */ 389 static krwlock_t kqueue_filter_lock; /* lock on filter lists */ 390 391 #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock) 392 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv) 393 394 static inline bool 395 kn_in_flux(struct knote *kn) 396 { 397 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 398 return KNOTE_TO_KIMPL(kn)->ki_influx != 0; 399 } 400 401 static inline bool 402 kn_enter_flux(struct knote *kn) 403 { 404 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 405 406 if (kn->kn_status & KN_WILLDETACH) { 407 return false; 408 } 409 410 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 411 KASSERT(ki->ki_influx < UINT_MAX); 412 ki->ki_influx++; 413 414 return true; 415 } 416 417 static inline bool 418 kn_leave_flux(struct knote *kn) 419 { 420 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 421 422 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 423 KASSERT(ki->ki_influx > 0); 424 ki->ki_influx--; 425 return ki->ki_influx == 0; 426 } 427 428 static void 429 kn_wait_flux(struct knote *kn, bool can_loop) 430 { 431 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 432 bool loop; 433 434 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 435 436 /* 437 * It may not be safe for us to touch the knote again after 438 * dropping the kq_lock. The caller has let us know in 439 * 'can_loop'. 440 */ 441 for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) { 442 KQ_FLUX_WAIT(kn->kn_kq); 443 } 444 } 445 446 #define KNOTE_WILLDETACH(kn) \ 447 do { \ 448 (kn)->kn_status |= KN_WILLDETACH; \ 449 (kn)->kn_kevent.udata = curlwp; \ 450 } while (/*CONSTCOND*/0) 451 452 /* 453 * Wait until the specified knote is in a quiescent state and 454 * safe to detach. Returns true if we potentially blocked (and 455 * thus dropped our locks). 456 */ 457 static bool 458 knote_detach_quiesce(struct knote *kn) 459 { 460 struct kqueue *kq = kn->kn_kq; 461 filedesc_t *fdp = kq->kq_fdp; 462 463 KASSERT(mutex_owned(&fdp->fd_lock)); 464 465 mutex_spin_enter(&kq->kq_lock); 466 /* 467 * There are two cases where we might see KN_WILLDETACH here: 468 * 469 * 1. Someone else has already started detaching the knote but 470 * had to wait for it to settle first. 471 * 472 * 2. We had to wait for it to settle, and had to come back 473 * around after re-acquiring the locks. 474 * 475 * When KN_WILLDETACH is set, we also set the LWP that claimed 476 * the prize of finishing the detach in the 'udata' field of the 477 * knote (which will never be used again for its usual purpose 478 * once the note is in this state). If it doesn't point to us, 479 * we must drop the locks and let them in to finish the job. 480 * 481 * Otherwise, once we have claimed the knote for ourselves, we 482 * can finish waiting for it to settle. The is the only scenario 483 * where touching a detaching knote is safe after dropping the 484 * locks. 485 */ 486 if ((kn->kn_status & KN_WILLDETACH) != 0 && 487 kn->kn_kevent.udata != curlwp) { 488 /* 489 * N.B. it is NOT safe for us to touch the knote again 490 * after dropping the locks here. The caller must go 491 * back around and re-validate everything. However, if 492 * the knote is in-flux, we want to block to minimize 493 * busy-looping. 494 */ 495 mutex_exit(&fdp->fd_lock); 496 if (kn_in_flux(kn)) { 497 kn_wait_flux(kn, false); 498 mutex_spin_exit(&kq->kq_lock); 499 return true; 500 } 501 mutex_spin_exit(&kq->kq_lock); 502 preempt_point(); 503 return true; 504 } 505 /* 506 * If we get here, we know that we will be claiming the 507 * detach responsibilies, or that we already have and 508 * this is the second attempt after re-validation. 509 */ 510 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || 511 kn->kn_kevent.udata == curlwp); 512 /* 513 * Similarly, if we get here, either we are just claiming it 514 * and may have to wait for it to settle, or if this is the 515 * second attempt after re-validation that no other code paths 516 * have put it in-flux. 517 */ 518 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || 519 kn_in_flux(kn) == false); 520 KNOTE_WILLDETACH(kn); 521 if (kn_in_flux(kn)) { 522 mutex_exit(&fdp->fd_lock); 523 kn_wait_flux(kn, true); 524 /* 525 * It is safe for us to touch the knote again after 526 * dropping the locks, but the caller must still 527 * re-validate everything because other aspects of 528 * the environment may have changed while we blocked. 529 */ 530 KASSERT(kn_in_flux(kn) == false); 531 mutex_spin_exit(&kq->kq_lock); 532 return true; 533 } 534 mutex_spin_exit(&kq->kq_lock); 535 536 return false; 537 } 538 539 /* 540 * Calls into the filterops need to be resilient against things which 541 * destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid 542 * chasing garbage pointers (to data, or even potentially code in a 543 * module about to be unloaded). To that end, we acquire the 544 * knote foplock before calling into the filter ops. When a driver 545 * (or anything else) is tearing down its klist, klist_fini() enumerates 546 * each knote, acquires its foplock, and replaces the filterops with a 547 * nop stub, allowing knote detach (when descriptors are closed) to safely 548 * proceed. 549 */ 550 551 static int 552 filter_attach(struct knote *kn) 553 { 554 int rv; 555 556 KASSERT(knote_foplock_owned(kn)); 557 KASSERT(kn->kn_fop != NULL); 558 KASSERT(kn->kn_fop->f_attach != NULL); 559 560 /* 561 * N.B. that kn->kn_fop may change as the result of calling 562 * f_attach(). After f_attach() returns, kn->kn_fop may not 563 * be modified by code outside of klist_fini(). 564 */ 565 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 566 rv = kn->kn_fop->f_attach(kn); 567 } else { 568 KERNEL_LOCK(1, NULL); 569 rv = kn->kn_fop->f_attach(kn); 570 KERNEL_UNLOCK_ONE(NULL); 571 } 572 573 return rv; 574 } 575 576 static void 577 filter_detach(struct knote *kn) 578 { 579 580 KASSERT(knote_foplock_owned(kn)); 581 KASSERT(kn->kn_fop != NULL); 582 KASSERT(kn->kn_fop->f_detach != NULL); 583 584 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 585 kn->kn_fop->f_detach(kn); 586 } else { 587 KERNEL_LOCK(1, NULL); 588 kn->kn_fop->f_detach(kn); 589 KERNEL_UNLOCK_ONE(NULL); 590 } 591 } 592 593 static int 594 filter_event(struct knote *kn, long hint, bool submitting) 595 { 596 int rv; 597 598 /* See knote(). */ 599 KASSERT(submitting || knote_foplock_owned(kn)); 600 KASSERT(kn->kn_fop != NULL); 601 KASSERT(kn->kn_fop->f_event != NULL); 602 603 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 604 rv = kn->kn_fop->f_event(kn, hint); 605 } else { 606 KERNEL_LOCK(1, NULL); 607 rv = kn->kn_fop->f_event(kn, hint); 608 KERNEL_UNLOCK_ONE(NULL); 609 } 610 611 return rv; 612 } 613 614 static int 615 filter_touch(struct knote *kn, struct kevent *kev, long type) 616 { 617 618 /* 619 * XXX We cannot assert that the knote foplock is held here 620 * XXX beause we cannot safely acquire it in all cases 621 * XXX where "touch" will be used in kqueue_scan(). We just 622 * XXX have to assume that f_touch will always be safe to call, 623 * XXX and kqueue_register() allows only the two known-safe 624 * XXX users of that op. 625 */ 626 627 KASSERT(kn->kn_fop != NULL); 628 KASSERT(kn->kn_fop->f_touch != NULL); 629 630 return kn->kn_fop->f_touch(kn, kev, type); 631 } 632 633 static kauth_listener_t kqueue_listener; 634 635 static int 636 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 637 void *arg0, void *arg1, void *arg2, void *arg3) 638 { 639 struct proc *p; 640 int result; 641 642 result = KAUTH_RESULT_DEFER; 643 p = arg0; 644 645 if (action != KAUTH_PROCESS_KEVENT_FILTER) 646 return result; 647 648 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) || 649 ISSET(p->p_flag, PK_SUGID))) 650 return result; 651 652 result = KAUTH_RESULT_ALLOW; 653 654 return result; 655 } 656 657 /* 658 * Initialize the kqueue subsystem. 659 */ 660 void 661 kqueue_init(void) 662 { 663 664 rw_init(&kqueue_filter_lock); 665 666 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 667 kqueue_listener_cb, NULL); 668 } 669 670 /* 671 * Find kfilter entry by name, or NULL if not found. 672 */ 673 static struct kfilter * 674 kfilter_byname_sys(const char *name) 675 { 676 int i; 677 678 KASSERT(rw_lock_held(&kqueue_filter_lock)); 679 680 for (i = 0; sys_kfilters[i].name != NULL; i++) { 681 if (strcmp(name, sys_kfilters[i].name) == 0) 682 return &sys_kfilters[i]; 683 } 684 return NULL; 685 } 686 687 static struct kfilter * 688 kfilter_byname_user(const char *name) 689 { 690 int i; 691 692 KASSERT(rw_lock_held(&kqueue_filter_lock)); 693 694 /* user filter slots have a NULL name if previously deregistered */ 695 for (i = 0; i < user_kfilterc ; i++) { 696 if (user_kfilters[i].name != NULL && 697 strcmp(name, user_kfilters[i].name) == 0) 698 return &user_kfilters[i]; 699 } 700 return NULL; 701 } 702 703 static struct kfilter * 704 kfilter_byname(const char *name) 705 { 706 struct kfilter *kfilter; 707 708 KASSERT(rw_lock_held(&kqueue_filter_lock)); 709 710 if ((kfilter = kfilter_byname_sys(name)) != NULL) 711 return kfilter; 712 713 return kfilter_byname_user(name); 714 } 715 716 /* 717 * Find kfilter entry by filter id, or NULL if not found. 718 * Assumes entries are indexed in filter id order, for speed. 719 */ 720 static struct kfilter * 721 kfilter_byfilter(uint32_t filter) 722 { 723 struct kfilter *kfilter; 724 725 KASSERT(rw_lock_held(&kqueue_filter_lock)); 726 727 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */ 728 kfilter = &sys_kfilters[filter]; 729 else if (user_kfilters != NULL && 730 filter < EVFILT_SYSCOUNT + user_kfilterc) 731 /* it's a user filter */ 732 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT]; 733 else 734 return (NULL); /* out of range */ 735 KASSERT(kfilter->filter == filter); /* sanity check! */ 736 return (kfilter); 737 } 738 739 /* 740 * Register a new kfilter. Stores the entry in user_kfilters. 741 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 742 * If retfilter != NULL, the new filterid is returned in it. 743 */ 744 int 745 kfilter_register(const char *name, const struct filterops *filtops, 746 int *retfilter) 747 { 748 struct kfilter *kfilter; 749 size_t len; 750 int i; 751 752 if (name == NULL || name[0] == '\0' || filtops == NULL) 753 return (EINVAL); /* invalid args */ 754 755 rw_enter(&kqueue_filter_lock, RW_WRITER); 756 if (kfilter_byname(name) != NULL) { 757 rw_exit(&kqueue_filter_lock); 758 return (EEXIST); /* already exists */ 759 } 760 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) { 761 rw_exit(&kqueue_filter_lock); 762 return (EINVAL); /* too many */ 763 } 764 765 for (i = 0; i < user_kfilterc; i++) { 766 kfilter = &user_kfilters[i]; 767 if (kfilter->name == NULL) { 768 /* Previously deregistered slot. Reuse. */ 769 goto reuse; 770 } 771 } 772 773 /* check if need to grow user_kfilters */ 774 if (user_kfilterc + 1 > user_kfiltermaxc) { 775 /* Grow in KFILTER_EXTENT chunks. */ 776 user_kfiltermaxc += KFILTER_EXTENT; 777 len = user_kfiltermaxc * sizeof(*kfilter); 778 kfilter = kmem_alloc(len, KM_SLEEP); 779 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz); 780 if (user_kfilters != NULL) { 781 memcpy(kfilter, user_kfilters, user_kfiltersz); 782 kmem_free(user_kfilters, user_kfiltersz); 783 } 784 user_kfiltersz = len; 785 user_kfilters = kfilter; 786 } 787 /* Adding new slot */ 788 kfilter = &user_kfilters[user_kfilterc++]; 789 reuse: 790 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP); 791 792 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT; 793 794 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP); 795 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops)); 796 797 if (retfilter != NULL) 798 *retfilter = kfilter->filter; 799 rw_exit(&kqueue_filter_lock); 800 801 return (0); 802 } 803 804 /* 805 * Unregister a kfilter previously registered with kfilter_register. 806 * This retains the filter id, but clears the name and frees filtops (filter 807 * operations), so that the number isn't reused during a boot. 808 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 809 */ 810 int 811 kfilter_unregister(const char *name) 812 { 813 struct kfilter *kfilter; 814 815 if (name == NULL || name[0] == '\0') 816 return (EINVAL); /* invalid name */ 817 818 rw_enter(&kqueue_filter_lock, RW_WRITER); 819 if (kfilter_byname_sys(name) != NULL) { 820 rw_exit(&kqueue_filter_lock); 821 return (EINVAL); /* can't detach system filters */ 822 } 823 824 kfilter = kfilter_byname_user(name); 825 if (kfilter == NULL) { 826 rw_exit(&kqueue_filter_lock); 827 return (ENOENT); 828 } 829 if (kfilter->refcnt != 0) { 830 rw_exit(&kqueue_filter_lock); 831 return (EBUSY); 832 } 833 834 /* Cast away const (but we know it's safe. */ 835 kmem_free(__UNCONST(kfilter->name), kfilter->namelen); 836 kfilter->name = NULL; /* mark as `not implemented' */ 837 838 if (kfilter->filtops != NULL) { 839 /* Cast away const (but we know it's safe. */ 840 kmem_free(__UNCONST(kfilter->filtops), 841 sizeof(*kfilter->filtops)); 842 kfilter->filtops = NULL; /* mark as `not implemented' */ 843 } 844 rw_exit(&kqueue_filter_lock); 845 846 return (0); 847 } 848 849 850 /* 851 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file 852 * descriptors. Calls fileops kqfilter method for given file descriptor. 853 */ 854 static int 855 filt_fileattach(struct knote *kn) 856 { 857 file_t *fp; 858 859 fp = kn->kn_obj; 860 861 return (*fp->f_ops->fo_kqfilter)(fp, kn); 862 } 863 864 /* 865 * Filter detach method for EVFILT_READ on kqueue descriptor. 866 */ 867 static void 868 filt_kqdetach(struct knote *kn) 869 { 870 struct kqueue *kq; 871 872 kq = ((file_t *)kn->kn_obj)->f_kqueue; 873 874 mutex_spin_enter(&kq->kq_lock); 875 selremove_knote(&kq->kq_sel, kn); 876 mutex_spin_exit(&kq->kq_lock); 877 } 878 879 /* 880 * Filter event method for EVFILT_READ on kqueue descriptor. 881 */ 882 /*ARGSUSED*/ 883 static int 884 filt_kqueue(struct knote *kn, long hint) 885 { 886 struct kqueue *kq; 887 int rv; 888 889 kq = ((file_t *)kn->kn_obj)->f_kqueue; 890 891 if (hint != NOTE_SUBMIT) 892 mutex_spin_enter(&kq->kq_lock); 893 kn->kn_data = KQ_COUNT(kq); 894 rv = (kn->kn_data > 0); 895 if (hint != NOTE_SUBMIT) 896 mutex_spin_exit(&kq->kq_lock); 897 898 return rv; 899 } 900 901 /* 902 * Filter attach method for EVFILT_PROC. 903 */ 904 static int 905 filt_procattach(struct knote *kn) 906 { 907 struct proc *p; 908 909 mutex_enter(&proc_lock); 910 p = proc_find(kn->kn_id); 911 if (p == NULL) { 912 mutex_exit(&proc_lock); 913 return ESRCH; 914 } 915 916 /* 917 * Fail if it's not owned by you, or the last exec gave us 918 * setuid/setgid privs (unless you're root). 919 */ 920 mutex_enter(p->p_lock); 921 mutex_exit(&proc_lock); 922 if (kauth_authorize_process(curlwp->l_cred, 923 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) { 924 mutex_exit(p->p_lock); 925 return EACCES; 926 } 927 928 kn->kn_obj = p; 929 kn->kn_flags |= EV_CLEAR; /* automatically set */ 930 931 /* 932 * NOTE_CHILD is only ever generated internally; don't let it 933 * leak in from user-space. See knote_proc_fork_track(). 934 */ 935 kn->kn_sfflags &= ~NOTE_CHILD; 936 937 klist_insert(&p->p_klist, kn); 938 mutex_exit(p->p_lock); 939 940 return 0; 941 } 942 943 /* 944 * Filter detach method for EVFILT_PROC. 945 * 946 * The knote may be attached to a different process, which may exit, 947 * leaving nothing for the knote to be attached to. So when the process 948 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 949 * it will be deleted when read out. However, as part of the knote deletion, 950 * this routine is called, so a check is needed to avoid actually performing 951 * a detach, because the original process might not exist any more. 952 */ 953 static void 954 filt_procdetach(struct knote *kn) 955 { 956 struct kqueue *kq = kn->kn_kq; 957 struct proc *p; 958 959 /* 960 * We have to synchronize with knote_proc_exit(), but we 961 * are forced to acquire the locks in the wrong order here 962 * because we can't be sure kn->kn_obj is valid unless 963 * KN_DETACHED is not set. 964 */ 965 again: 966 mutex_spin_enter(&kq->kq_lock); 967 if ((kn->kn_status & KN_DETACHED) == 0) { 968 p = kn->kn_obj; 969 if (!mutex_tryenter(p->p_lock)) { 970 mutex_spin_exit(&kq->kq_lock); 971 preempt_point(); 972 goto again; 973 } 974 kn->kn_status |= KN_DETACHED; 975 klist_remove(&p->p_klist, kn); 976 mutex_exit(p->p_lock); 977 } 978 mutex_spin_exit(&kq->kq_lock); 979 } 980 981 /* 982 * Filter event method for EVFILT_PROC. 983 * 984 * Due to some of the complexities of process locking, we have special 985 * entry points for delivering knote submissions. filt_proc() is used 986 * only to check for activation from kqueue_register() and kqueue_scan(). 987 */ 988 static int 989 filt_proc(struct knote *kn, long hint) 990 { 991 struct kqueue *kq = kn->kn_kq; 992 uint32_t fflags; 993 994 /* 995 * Because we share the same klist with signal knotes, just 996 * ensure that we're not being invoked for the proc-related 997 * submissions. 998 */ 999 KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0); 1000 1001 mutex_spin_enter(&kq->kq_lock); 1002 fflags = kn->kn_fflags; 1003 mutex_spin_exit(&kq->kq_lock); 1004 1005 return fflags != 0; 1006 } 1007 1008 void 1009 knote_proc_exec(struct proc *p) 1010 { 1011 struct knote *kn, *tmpkn; 1012 struct kqueue *kq; 1013 uint32_t fflags; 1014 1015 mutex_enter(p->p_lock); 1016 1017 SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) { 1018 /* N.B. EVFILT_SIGNAL knotes are on this same list. */ 1019 if (kn->kn_fop == &sig_filtops) { 1020 continue; 1021 } 1022 KASSERT(kn->kn_fop == &proc_filtops); 1023 1024 kq = kn->kn_kq; 1025 mutex_spin_enter(&kq->kq_lock); 1026 fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC)); 1027 if (fflags) { 1028 knote_activate_locked(kn); 1029 } 1030 mutex_spin_exit(&kq->kq_lock); 1031 } 1032 1033 mutex_exit(p->p_lock); 1034 } 1035 1036 static int __noinline 1037 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn) 1038 { 1039 struct kqueue *kq = okn->kn_kq; 1040 1041 KASSERT(mutex_owned(&kq->kq_lock)); 1042 KASSERT(mutex_owned(p1->p_lock)); 1043 1044 /* 1045 * We're going to put this knote into flux while we drop 1046 * the locks and create and attach a new knote to track the 1047 * child. If we are not able to enter flux, then this knote 1048 * is about to go away, so skip the notification. 1049 */ 1050 if (!kn_enter_flux(okn)) { 1051 return 0; 1052 } 1053 1054 mutex_spin_exit(&kq->kq_lock); 1055 mutex_exit(p1->p_lock); 1056 1057 /* 1058 * We actually have to register *two* new knotes: 1059 * 1060 * ==> One for the NOTE_CHILD notification. This is a forced 1061 * ONESHOT note. 1062 * 1063 * ==> One to actually track the child process as it subsequently 1064 * forks, execs, and, ultimately, exits. 1065 * 1066 * If we only register a single knote, then it's possible for 1067 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single 1068 * notification if the child exits before the tracking process 1069 * has received the NOTE_CHILD notification, which applications 1070 * aren't expecting (the event's 'data' field would be clobbered, 1071 * for example). 1072 * 1073 * To do this, what we have here is an **extremely** stripped-down 1074 * version of kqueue_register() that has the following properties: 1075 * 1076 * ==> Does not block to allocate memory. If we are unable 1077 * to allocate memory, we return ENOMEM. 1078 * 1079 * ==> Does not search for existing knotes; we know there 1080 * are not any because this is a new process that isn't 1081 * even visible to other processes yet. 1082 * 1083 * ==> Assumes that the knhash for our kq's descriptor table 1084 * already exists (after all, we're already tracking 1085 * processes with knotes if we got here). 1086 * 1087 * ==> Directly attaches the new tracking knote to the child 1088 * process. 1089 * 1090 * The whole point is to do the minimum amount of work while the 1091 * knote is held in-flux, and to avoid doing extra work in general 1092 * (we already have the new child process; why bother looking it 1093 * up again?). 1094 */ 1095 filedesc_t *fdp = kq->kq_fdp; 1096 struct knote *knchild, *kntrack; 1097 int error = 0; 1098 1099 knchild = knote_alloc(false); 1100 kntrack = knote_alloc(false); 1101 if (__predict_false(knchild == NULL || kntrack == NULL)) { 1102 error = ENOMEM; 1103 goto out; 1104 } 1105 1106 kntrack->kn_obj = p2; 1107 kntrack->kn_id = p2->p_pid; 1108 kntrack->kn_kq = kq; 1109 kntrack->kn_fop = okn->kn_fop; 1110 kntrack->kn_kfilter = okn->kn_kfilter; 1111 kntrack->kn_sfflags = okn->kn_sfflags; 1112 kntrack->kn_sdata = p1->p_pid; 1113 1114 kntrack->kn_kevent.ident = p2->p_pid; 1115 kntrack->kn_kevent.filter = okn->kn_filter; 1116 kntrack->kn_kevent.flags = 1117 okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR; 1118 kntrack->kn_kevent.fflags = 0; 1119 kntrack->kn_kevent.data = 0; 1120 kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */ 1121 1122 /* 1123 * The child note does not need to be attached to the 1124 * new proc's klist at all. 1125 */ 1126 *knchild = *kntrack; 1127 knchild->kn_status = KN_DETACHED; 1128 knchild->kn_sfflags = 0; 1129 knchild->kn_kevent.flags |= EV_ONESHOT; 1130 knchild->kn_kevent.fflags = NOTE_CHILD; 1131 knchild->kn_kevent.data = p1->p_pid; /* parent */ 1132 1133 mutex_enter(&fdp->fd_lock); 1134 1135 /* 1136 * We need to check to see if the kq is closing, and skip 1137 * attaching the knote if so. Normally, this isn't necessary 1138 * when coming in the front door because the file descriptor 1139 * layer will synchronize this. 1140 * 1141 * It's safe to test KQ_CLOSING without taking the kq_lock 1142 * here because that flag is only ever set when the fd_lock 1143 * is also held. 1144 */ 1145 if (__predict_false(kq->kq_count & KQ_CLOSING)) { 1146 mutex_exit(&fdp->fd_lock); 1147 goto out; 1148 } 1149 1150 /* 1151 * We do the "insert into FD table" and "attach to klist" steps 1152 * in the opposite order of kqueue_register() here to avoid 1153 * having to take p2->p_lock twice. But this is OK because we 1154 * hold fd_lock across the entire operation. 1155 */ 1156 1157 mutex_enter(p2->p_lock); 1158 error = kauth_authorize_process(curlwp->l_cred, 1159 KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL); 1160 if (__predict_false(error != 0)) { 1161 mutex_exit(p2->p_lock); 1162 mutex_exit(&fdp->fd_lock); 1163 error = EACCES; 1164 goto out; 1165 } 1166 klist_insert(&p2->p_klist, kntrack); 1167 mutex_exit(p2->p_lock); 1168 1169 KASSERT(fdp->fd_knhashmask != 0); 1170 KASSERT(fdp->fd_knhash != NULL); 1171 struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id, 1172 fdp->fd_knhashmask)]; 1173 SLIST_INSERT_HEAD(list, kntrack, kn_link); 1174 SLIST_INSERT_HEAD(list, knchild, kn_link); 1175 1176 /* This adds references for knchild *and* kntrack. */ 1177 atomic_add_int(&kntrack->kn_kfilter->refcnt, 2); 1178 1179 knote_activate(knchild); 1180 1181 kntrack = NULL; 1182 knchild = NULL; 1183 1184 mutex_exit(&fdp->fd_lock); 1185 1186 out: 1187 if (__predict_false(knchild != NULL)) { 1188 knote_free(knchild); 1189 } 1190 if (__predict_false(kntrack != NULL)) { 1191 knote_free(kntrack); 1192 } 1193 mutex_enter(p1->p_lock); 1194 mutex_spin_enter(&kq->kq_lock); 1195 1196 if (kn_leave_flux(okn)) { 1197 KQ_FLUX_WAKEUP(kq); 1198 } 1199 1200 return error; 1201 } 1202 1203 void 1204 knote_proc_fork(struct proc *p1, struct proc *p2) 1205 { 1206 struct knote *kn; 1207 struct kqueue *kq; 1208 uint32_t fflags; 1209 1210 mutex_enter(p1->p_lock); 1211 1212 /* 1213 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we 1214 * don't want to pre-fetch the next knote; in the event we 1215 * have to drop p_lock, we will have put the knote in-flux, 1216 * meaning that no one will be able to detach it until we 1217 * have taken the knote out of flux. However, that does 1218 * NOT stop someone else from detaching the next note in the 1219 * list while we have it unlocked. Thus, we want to fetch 1220 * the next note in the list only after we have re-acquired 1221 * the lock, and using SLIST_FOREACH() will satisfy that. 1222 */ 1223 SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) { 1224 /* N.B. EVFILT_SIGNAL knotes are on this same list. */ 1225 if (kn->kn_fop == &sig_filtops) { 1226 continue; 1227 } 1228 KASSERT(kn->kn_fop == &proc_filtops); 1229 1230 kq = kn->kn_kq; 1231 mutex_spin_enter(&kq->kq_lock); 1232 kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK); 1233 if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) { 1234 /* 1235 * This will drop kq_lock and p_lock and 1236 * re-acquire them before it returns. 1237 */ 1238 if (knote_proc_fork_track(p1, p2, kn)) { 1239 kn->kn_fflags |= NOTE_TRACKERR; 1240 } 1241 KASSERT(mutex_owned(p1->p_lock)); 1242 KASSERT(mutex_owned(&kq->kq_lock)); 1243 } 1244 fflags = kn->kn_fflags; 1245 if (fflags) { 1246 knote_activate_locked(kn); 1247 } 1248 mutex_spin_exit(&kq->kq_lock); 1249 } 1250 1251 mutex_exit(p1->p_lock); 1252 } 1253 1254 void 1255 knote_proc_exit(struct proc *p) 1256 { 1257 struct knote *kn; 1258 struct kqueue *kq; 1259 1260 KASSERT(mutex_owned(p->p_lock)); 1261 1262 while (!SLIST_EMPTY(&p->p_klist)) { 1263 kn = SLIST_FIRST(&p->p_klist); 1264 kq = kn->kn_kq; 1265 1266 KASSERT(kn->kn_obj == p); 1267 1268 mutex_spin_enter(&kq->kq_lock); 1269 kn->kn_data = P_WAITSTATUS(p); 1270 /* 1271 * Mark as ONESHOT, so that the knote is g/c'ed 1272 * when read. 1273 */ 1274 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1275 kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT; 1276 1277 /* 1278 * Detach the knote from the process and mark it as such. 1279 * N.B. EVFILT_SIGNAL are also on p_klist, but by the 1280 * time we get here, all open file descriptors for this 1281 * process have been released, meaning that signal knotes 1282 * will have already been detached. 1283 * 1284 * We need to synchronize this with filt_procdetach(). 1285 */ 1286 KASSERT(kn->kn_fop == &proc_filtops); 1287 if ((kn->kn_status & KN_DETACHED) == 0) { 1288 kn->kn_status |= KN_DETACHED; 1289 SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext); 1290 } 1291 1292 /* 1293 * Always activate the knote for NOTE_EXIT regardless 1294 * of whether or not the listener cares about it. 1295 * This matches historical behavior. 1296 */ 1297 knote_activate_locked(kn); 1298 mutex_spin_exit(&kq->kq_lock); 1299 } 1300 } 1301 1302 #define FILT_TIMER_NOSCHED ((uintptr_t)-1) 1303 1304 static int 1305 filt_timercompute(struct kevent *kev, uintptr_t *tticksp) 1306 { 1307 struct timespec ts; 1308 uintptr_t tticks; 1309 1310 if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) { 1311 return EINVAL; 1312 } 1313 1314 /* 1315 * Convert the event 'data' to a timespec, then convert the 1316 * timespec to callout ticks. 1317 */ 1318 switch (kev->fflags & NOTE_TIMER_UNITMASK) { 1319 case NOTE_SECONDS: 1320 ts.tv_sec = kev->data; 1321 ts.tv_nsec = 0; 1322 break; 1323 1324 case NOTE_MSECONDS: /* == historical value 0 */ 1325 ts.tv_sec = kev->data / 1000; 1326 ts.tv_nsec = (kev->data % 1000) * 1000000; 1327 break; 1328 1329 case NOTE_USECONDS: 1330 ts.tv_sec = kev->data / 1000000; 1331 ts.tv_nsec = (kev->data % 1000000) * 1000; 1332 break; 1333 1334 case NOTE_NSECONDS: 1335 ts.tv_sec = kev->data / 1000000000; 1336 ts.tv_nsec = kev->data % 1000000000; 1337 break; 1338 1339 default: 1340 return EINVAL; 1341 } 1342 1343 if (kev->fflags & NOTE_ABSTIME) { 1344 struct timespec deadline = ts; 1345 1346 /* 1347 * Get current time. 1348 * 1349 * XXX This is CLOCK_REALTIME. There is no way to 1350 * XXX specify CLOCK_MONOTONIC. 1351 */ 1352 nanotime(&ts); 1353 1354 /* Absolute timers do not repeat. */ 1355 kev->data = FILT_TIMER_NOSCHED; 1356 1357 /* If we're past the deadline, then the event will fire. */ 1358 if (timespeccmp(&deadline, &ts, <=)) { 1359 tticks = FILT_TIMER_NOSCHED; 1360 goto out; 1361 } 1362 1363 /* Calculate how much time is left. */ 1364 timespecsub(&deadline, &ts, &ts); 1365 } else { 1366 /* EV_CLEAR automatically set for relative timers. */ 1367 kev->flags |= EV_CLEAR; 1368 } 1369 1370 tticks = tstohz(&ts); 1371 1372 /* if the supplied value is under our resolution, use 1 tick */ 1373 if (tticks == 0) { 1374 if (kev->data == 0) 1375 return EINVAL; 1376 tticks = 1; 1377 } else if (tticks > INT_MAX) { 1378 return EINVAL; 1379 } 1380 1381 if ((kev->flags & EV_ONESHOT) != 0) { 1382 /* Timer does not repeat. */ 1383 kev->data = FILT_TIMER_NOSCHED; 1384 } else { 1385 KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED); 1386 kev->data = tticks; 1387 } 1388 1389 out: 1390 *tticksp = tticks; 1391 1392 return 0; 1393 } 1394 1395 static void 1396 filt_timerexpire(void *knx) 1397 { 1398 struct knote *kn = knx; 1399 struct kqueue *kq = kn->kn_kq; 1400 1401 mutex_spin_enter(&kq->kq_lock); 1402 kn->kn_data++; 1403 knote_activate_locked(kn); 1404 if (kn->kn_sdata != FILT_TIMER_NOSCHED) { 1405 KASSERT(kn->kn_sdata > 0); 1406 KASSERT(kn->kn_sdata <= INT_MAX); 1407 callout_schedule((callout_t *)kn->kn_hook, 1408 (int)kn->kn_sdata); 1409 } 1410 mutex_spin_exit(&kq->kq_lock); 1411 } 1412 1413 static inline void 1414 filt_timerstart(struct knote *kn, uintptr_t tticks) 1415 { 1416 callout_t *calloutp = kn->kn_hook; 1417 1418 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 1419 KASSERT(!callout_pending(calloutp)); 1420 1421 if (__predict_false(tticks == FILT_TIMER_NOSCHED)) { 1422 kn->kn_data = 1; 1423 } else { 1424 KASSERT(tticks <= INT_MAX); 1425 callout_reset(calloutp, (int)tticks, filt_timerexpire, kn); 1426 } 1427 } 1428 1429 static int 1430 filt_timerattach(struct knote *kn) 1431 { 1432 callout_t *calloutp; 1433 struct kqueue *kq; 1434 uintptr_t tticks; 1435 int error; 1436 1437 struct kevent kev = { 1438 .flags = kn->kn_flags, 1439 .fflags = kn->kn_sfflags, 1440 .data = kn->kn_sdata, 1441 }; 1442 1443 error = filt_timercompute(&kev, &tticks); 1444 if (error) { 1445 return error; 1446 } 1447 1448 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax || 1449 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) { 1450 atomic_dec_uint(&kq_ncallouts); 1451 return ENOMEM; 1452 } 1453 callout_init(calloutp, CALLOUT_MPSAFE); 1454 1455 kq = kn->kn_kq; 1456 mutex_spin_enter(&kq->kq_lock); 1457 1458 kn->kn_sdata = kev.data; 1459 kn->kn_flags = kev.flags; 1460 KASSERT(kn->kn_sfflags == kev.fflags); 1461 kn->kn_hook = calloutp; 1462 1463 filt_timerstart(kn, tticks); 1464 1465 mutex_spin_exit(&kq->kq_lock); 1466 1467 return (0); 1468 } 1469 1470 static void 1471 filt_timerdetach(struct knote *kn) 1472 { 1473 callout_t *calloutp; 1474 struct kqueue *kq = kn->kn_kq; 1475 1476 /* prevent rescheduling when we expire */ 1477 mutex_spin_enter(&kq->kq_lock); 1478 kn->kn_sdata = FILT_TIMER_NOSCHED; 1479 mutex_spin_exit(&kq->kq_lock); 1480 1481 calloutp = (callout_t *)kn->kn_hook; 1482 1483 /* 1484 * Attempt to stop the callout. This will block if it's 1485 * already running. 1486 */ 1487 callout_halt(calloutp, NULL); 1488 1489 callout_destroy(calloutp); 1490 kmem_free(calloutp, sizeof(*calloutp)); 1491 atomic_dec_uint(&kq_ncallouts); 1492 } 1493 1494 static int 1495 filt_timertouch(struct knote *kn, struct kevent *kev, long type) 1496 { 1497 struct kqueue *kq = kn->kn_kq; 1498 callout_t *calloutp; 1499 uintptr_t tticks; 1500 int error; 1501 1502 KASSERT(mutex_owned(&kq->kq_lock)); 1503 1504 switch (type) { 1505 case EVENT_REGISTER: 1506 /* Only relevant for EV_ADD. */ 1507 if ((kev->flags & EV_ADD) == 0) { 1508 return 0; 1509 } 1510 1511 /* 1512 * Stop the timer, under the assumption that if 1513 * an application is re-configuring the timer, 1514 * they no longer care about the old one. We 1515 * can safely drop the kq_lock while we wait 1516 * because fdp->fd_lock will be held throughout, 1517 * ensuring that no one can sneak in with an 1518 * EV_DELETE or close the kq. 1519 */ 1520 KASSERT(mutex_owned(&kq->kq_fdp->fd_lock)); 1521 1522 calloutp = kn->kn_hook; 1523 callout_halt(calloutp, &kq->kq_lock); 1524 KASSERT(mutex_owned(&kq->kq_lock)); 1525 knote_deactivate_locked(kn); 1526 kn->kn_data = 0; 1527 1528 error = filt_timercompute(kev, &tticks); 1529 if (error) { 1530 return error; 1531 } 1532 kn->kn_sdata = kev->data; 1533 kn->kn_flags = kev->flags; 1534 kn->kn_sfflags = kev->fflags; 1535 filt_timerstart(kn, tticks); 1536 break; 1537 1538 case EVENT_PROCESS: 1539 *kev = kn->kn_kevent; 1540 break; 1541 1542 default: 1543 panic("%s: invalid type (%ld)", __func__, type); 1544 } 1545 1546 return 0; 1547 } 1548 1549 static int 1550 filt_timer(struct knote *kn, long hint) 1551 { 1552 struct kqueue *kq = kn->kn_kq; 1553 int rv; 1554 1555 mutex_spin_enter(&kq->kq_lock); 1556 rv = (kn->kn_data != 0); 1557 mutex_spin_exit(&kq->kq_lock); 1558 1559 return rv; 1560 } 1561 1562 static int 1563 filt_userattach(struct knote *kn) 1564 { 1565 struct kqueue *kq = kn->kn_kq; 1566 1567 /* 1568 * EVFILT_USER knotes are not attached to anything in the kernel. 1569 */ 1570 mutex_spin_enter(&kq->kq_lock); 1571 kn->kn_hook = NULL; 1572 if (kn->kn_fflags & NOTE_TRIGGER) 1573 kn->kn_hookid = 1; 1574 else 1575 kn->kn_hookid = 0; 1576 mutex_spin_exit(&kq->kq_lock); 1577 return (0); 1578 } 1579 1580 static void 1581 filt_userdetach(struct knote *kn) 1582 { 1583 1584 /* 1585 * EVFILT_USER knotes are not attached to anything in the kernel. 1586 */ 1587 } 1588 1589 static int 1590 filt_user(struct knote *kn, long hint) 1591 { 1592 struct kqueue *kq = kn->kn_kq; 1593 int hookid; 1594 1595 mutex_spin_enter(&kq->kq_lock); 1596 hookid = kn->kn_hookid; 1597 mutex_spin_exit(&kq->kq_lock); 1598 1599 return hookid; 1600 } 1601 1602 static int 1603 filt_usertouch(struct knote *kn, struct kevent *kev, long type) 1604 { 1605 int ffctrl; 1606 1607 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 1608 1609 switch (type) { 1610 case EVENT_REGISTER: 1611 if (kev->fflags & NOTE_TRIGGER) 1612 kn->kn_hookid = 1; 1613 1614 ffctrl = kev->fflags & NOTE_FFCTRLMASK; 1615 kev->fflags &= NOTE_FFLAGSMASK; 1616 switch (ffctrl) { 1617 case NOTE_FFNOP: 1618 break; 1619 1620 case NOTE_FFAND: 1621 kn->kn_sfflags &= kev->fflags; 1622 break; 1623 1624 case NOTE_FFOR: 1625 kn->kn_sfflags |= kev->fflags; 1626 break; 1627 1628 case NOTE_FFCOPY: 1629 kn->kn_sfflags = kev->fflags; 1630 break; 1631 1632 default: 1633 /* XXX Return error? */ 1634 break; 1635 } 1636 kn->kn_sdata = kev->data; 1637 if (kev->flags & EV_CLEAR) { 1638 kn->kn_hookid = 0; 1639 kn->kn_data = 0; 1640 kn->kn_fflags = 0; 1641 } 1642 break; 1643 1644 case EVENT_PROCESS: 1645 *kev = kn->kn_kevent; 1646 kev->fflags = kn->kn_sfflags; 1647 kev->data = kn->kn_sdata; 1648 if (kn->kn_flags & EV_CLEAR) { 1649 kn->kn_hookid = 0; 1650 kn->kn_data = 0; 1651 kn->kn_fflags = 0; 1652 } 1653 break; 1654 1655 default: 1656 panic("filt_usertouch() - invalid type (%ld)", type); 1657 break; 1658 } 1659 1660 return 0; 1661 } 1662 1663 /* 1664 * filt_seltrue: 1665 * 1666 * This filter "event" routine simulates seltrue(). 1667 */ 1668 int 1669 filt_seltrue(struct knote *kn, long hint) 1670 { 1671 1672 /* 1673 * We don't know how much data can be read/written, 1674 * but we know that it *can* be. This is about as 1675 * good as select/poll does as well. 1676 */ 1677 kn->kn_data = 0; 1678 return (1); 1679 } 1680 1681 /* 1682 * This provides full kqfilter entry for device switch tables, which 1683 * has same effect as filter using filt_seltrue() as filter method. 1684 */ 1685 static void 1686 filt_seltruedetach(struct knote *kn) 1687 { 1688 /* Nothing to do */ 1689 } 1690 1691 const struct filterops seltrue_filtops = { 1692 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 1693 .f_attach = NULL, 1694 .f_detach = filt_seltruedetach, 1695 .f_event = filt_seltrue, 1696 }; 1697 1698 int 1699 seltrue_kqfilter(dev_t dev, struct knote *kn) 1700 { 1701 switch (kn->kn_filter) { 1702 case EVFILT_READ: 1703 case EVFILT_WRITE: 1704 kn->kn_fop = &seltrue_filtops; 1705 break; 1706 default: 1707 return (EINVAL); 1708 } 1709 1710 /* Nothing more to do */ 1711 return (0); 1712 } 1713 1714 /* 1715 * kqueue(2) system call. 1716 */ 1717 static int 1718 kqueue1(struct lwp *l, int flags, register_t *retval) 1719 { 1720 struct kqueue *kq; 1721 file_t *fp; 1722 int fd, error; 1723 1724 if ((error = fd_allocfile(&fp, &fd)) != 0) 1725 return error; 1726 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE)); 1727 fp->f_type = DTYPE_KQUEUE; 1728 fp->f_ops = &kqueueops; 1729 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP); 1730 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED); 1731 cv_init(&kq->kq_cv, "kqueue"); 1732 selinit(&kq->kq_sel); 1733 TAILQ_INIT(&kq->kq_head); 1734 fp->f_kqueue = kq; 1735 *retval = fd; 1736 kq->kq_fdp = curlwp->l_fd; 1737 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0); 1738 fd_affix(curproc, fp, fd); 1739 return error; 1740 } 1741 1742 /* 1743 * kqueue(2) system call. 1744 */ 1745 int 1746 sys_kqueue(struct lwp *l, const void *v, register_t *retval) 1747 { 1748 return kqueue1(l, 0, retval); 1749 } 1750 1751 int 1752 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap, 1753 register_t *retval) 1754 { 1755 /* { 1756 syscallarg(int) flags; 1757 } */ 1758 return kqueue1(l, SCARG(uap, flags), retval); 1759 } 1760 1761 /* 1762 * kevent(2) system call. 1763 */ 1764 int 1765 kevent_fetch_changes(void *ctx, const struct kevent *changelist, 1766 struct kevent *changes, size_t index, int n) 1767 { 1768 1769 return copyin(changelist + index, changes, n * sizeof(*changes)); 1770 } 1771 1772 int 1773 kevent_put_events(void *ctx, struct kevent *events, 1774 struct kevent *eventlist, size_t index, int n) 1775 { 1776 1777 return copyout(events, eventlist + index, n * sizeof(*events)); 1778 } 1779 1780 static const struct kevent_ops kevent_native_ops = { 1781 .keo_private = NULL, 1782 .keo_fetch_timeout = copyin, 1783 .keo_fetch_changes = kevent_fetch_changes, 1784 .keo_put_events = kevent_put_events, 1785 }; 1786 1787 int 1788 sys___kevent100(struct lwp *l, const struct sys___kevent100_args *uap, 1789 register_t *retval) 1790 { 1791 /* { 1792 syscallarg(int) fd; 1793 syscallarg(const struct kevent *) changelist; 1794 syscallarg(size_t) nchanges; 1795 syscallarg(struct kevent *) eventlist; 1796 syscallarg(size_t) nevents; 1797 syscallarg(const struct timespec *) timeout; 1798 } */ 1799 1800 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist), 1801 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents), 1802 SCARG(uap, timeout), &kevent_native_ops); 1803 } 1804 1805 int 1806 kevent1(register_t *retval, int fd, 1807 const struct kevent *changelist, size_t nchanges, 1808 struct kevent *eventlist, size_t nevents, 1809 const struct timespec *timeout, 1810 const struct kevent_ops *keops) 1811 { 1812 struct kevent *kevp; 1813 struct kqueue *kq; 1814 struct timespec ts; 1815 size_t i, n, ichange; 1816 int nerrors, error; 1817 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */ 1818 file_t *fp; 1819 1820 /* check that we're dealing with a kq */ 1821 fp = fd_getfile(fd); 1822 if (fp == NULL) 1823 return (EBADF); 1824 1825 if (fp->f_type != DTYPE_KQUEUE) { 1826 fd_putfile(fd); 1827 return (EBADF); 1828 } 1829 1830 if (timeout != NULL) { 1831 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts)); 1832 if (error) 1833 goto done; 1834 timeout = &ts; 1835 } 1836 1837 kq = fp->f_kqueue; 1838 nerrors = 0; 1839 ichange = 0; 1840 1841 /* traverse list of events to register */ 1842 while (nchanges > 0) { 1843 n = MIN(nchanges, __arraycount(kevbuf)); 1844 error = (*keops->keo_fetch_changes)(keops->keo_private, 1845 changelist, kevbuf, ichange, n); 1846 if (error) 1847 goto done; 1848 for (i = 0; i < n; i++) { 1849 kevp = &kevbuf[i]; 1850 kevp->flags &= ~EV_SYSFLAGS; 1851 /* register each knote */ 1852 error = kqueue_register(kq, kevp); 1853 if (!error && !(kevp->flags & EV_RECEIPT)) 1854 continue; 1855 if (nevents == 0) 1856 goto done; 1857 kevp->flags = EV_ERROR; 1858 kevp->data = error; 1859 error = (*keops->keo_put_events) 1860 (keops->keo_private, kevp, 1861 eventlist, nerrors, 1); 1862 if (error) 1863 goto done; 1864 nevents--; 1865 nerrors++; 1866 } 1867 nchanges -= n; /* update the results */ 1868 ichange += n; 1869 } 1870 if (nerrors) { 1871 *retval = nerrors; 1872 error = 0; 1873 goto done; 1874 } 1875 1876 /* actually scan through the events */ 1877 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops, 1878 kevbuf, __arraycount(kevbuf)); 1879 done: 1880 fd_putfile(fd); 1881 return (error); 1882 } 1883 1884 /* 1885 * Register a given kevent kev onto the kqueue 1886 */ 1887 static int 1888 kqueue_register(struct kqueue *kq, struct kevent *kev) 1889 { 1890 struct kfilter *kfilter; 1891 filedesc_t *fdp; 1892 file_t *fp; 1893 fdfile_t *ff; 1894 struct knote *kn, *newkn; 1895 struct klist *list; 1896 int error, fd, rv; 1897 1898 fdp = kq->kq_fdp; 1899 fp = NULL; 1900 kn = NULL; 1901 error = 0; 1902 fd = 0; 1903 1904 newkn = knote_alloc(true); 1905 1906 rw_enter(&kqueue_filter_lock, RW_READER); 1907 kfilter = kfilter_byfilter(kev->filter); 1908 if (kfilter == NULL || kfilter->filtops == NULL) { 1909 /* filter not found nor implemented */ 1910 rw_exit(&kqueue_filter_lock); 1911 knote_free(newkn); 1912 return (EINVAL); 1913 } 1914 1915 /* search if knote already exists */ 1916 if (kfilter->filtops->f_flags & FILTEROP_ISFD) { 1917 /* monitoring a file descriptor */ 1918 /* validate descriptor */ 1919 if (kev->ident > INT_MAX 1920 || (fp = fd_getfile(fd = kev->ident)) == NULL) { 1921 rw_exit(&kqueue_filter_lock); 1922 knote_free(newkn); 1923 return EBADF; 1924 } 1925 mutex_enter(&fdp->fd_lock); 1926 ff = fdp->fd_dt->dt_ff[fd]; 1927 if (ff->ff_refcnt & FR_CLOSING) { 1928 error = EBADF; 1929 goto doneunlock; 1930 } 1931 if (fd <= fdp->fd_lastkqfile) { 1932 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) { 1933 if (kq == kn->kn_kq && 1934 kev->filter == kn->kn_filter) 1935 break; 1936 } 1937 } 1938 } else { 1939 /* 1940 * not monitoring a file descriptor, so 1941 * lookup knotes in internal hash table 1942 */ 1943 mutex_enter(&fdp->fd_lock); 1944 if (fdp->fd_knhashmask != 0) { 1945 list = &fdp->fd_knhash[ 1946 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; 1947 SLIST_FOREACH(kn, list, kn_link) { 1948 if (kev->ident == kn->kn_id && 1949 kq == kn->kn_kq && 1950 kev->filter == kn->kn_filter) 1951 break; 1952 } 1953 } 1954 } 1955 1956 /* It's safe to test KQ_CLOSING while holding only the fd_lock. */ 1957 KASSERT(mutex_owned(&fdp->fd_lock)); 1958 KASSERT((kq->kq_count & KQ_CLOSING) == 0); 1959 1960 /* 1961 * kn now contains the matching knote, or NULL if no match 1962 */ 1963 if (kn == NULL) { 1964 if (kev->flags & EV_ADD) { 1965 /* create new knote */ 1966 kn = newkn; 1967 newkn = NULL; 1968 kn->kn_obj = fp; 1969 kn->kn_id = kev->ident; 1970 kn->kn_kq = kq; 1971 kn->kn_fop = kfilter->filtops; 1972 kn->kn_kfilter = kfilter; 1973 kn->kn_sfflags = kev->fflags; 1974 kn->kn_sdata = kev->data; 1975 kev->fflags = 0; 1976 kev->data = 0; 1977 kn->kn_kevent = *kev; 1978 1979 KASSERT(kn->kn_fop != NULL); 1980 /* 1981 * XXX Allow only known-safe users of f_touch. 1982 * XXX See filter_touch() for details. 1983 */ 1984 if (kn->kn_fop->f_touch != NULL && 1985 kn->kn_fop != &timer_filtops && 1986 kn->kn_fop != &user_filtops) { 1987 error = ENOTSUP; 1988 goto fail_ev_add; 1989 } 1990 1991 /* 1992 * apply reference count to knote structure, and 1993 * do not release it at the end of this routine. 1994 */ 1995 fp = NULL; 1996 1997 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) { 1998 /* 1999 * If knote is not on an fd, store on 2000 * internal hash table. 2001 */ 2002 if (fdp->fd_knhashmask == 0) { 2003 /* XXXAD can block with fd_lock held */ 2004 fdp->fd_knhash = hashinit(KN_HASHSIZE, 2005 HASH_LIST, true, 2006 &fdp->fd_knhashmask); 2007 } 2008 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, 2009 fdp->fd_knhashmask)]; 2010 } else { 2011 /* Otherwise, knote is on an fd. */ 2012 list = (struct klist *) 2013 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; 2014 if ((int)kn->kn_id > fdp->fd_lastkqfile) 2015 fdp->fd_lastkqfile = kn->kn_id; 2016 } 2017 SLIST_INSERT_HEAD(list, kn, kn_link); 2018 2019 /* 2020 * N.B. kn->kn_fop may change as the result 2021 * of filter_attach()! 2022 */ 2023 knote_foplock_enter(kn); 2024 error = filter_attach(kn); 2025 if (error != 0) { 2026 #ifdef DEBUG 2027 struct proc *p = curlwp->l_proc; 2028 const file_t *ft = kn->kn_obj; 2029 printf("%s: %s[%d]: event type %d not " 2030 "supported for file type %d/%s " 2031 "(error %d)\n", __func__, 2032 p->p_comm, p->p_pid, 2033 kn->kn_filter, ft ? ft->f_type : -1, 2034 ft ? ft->f_ops->fo_name : "?", error); 2035 #endif 2036 2037 fail_ev_add: 2038 /* 2039 * N.B. no need to check for this note to 2040 * be in-flux, since it was never visible 2041 * to the monitored object. 2042 * 2043 * knote_detach() drops fdp->fd_lock 2044 */ 2045 knote_foplock_exit(kn); 2046 mutex_enter(&kq->kq_lock); 2047 KNOTE_WILLDETACH(kn); 2048 KASSERT(kn_in_flux(kn) == false); 2049 mutex_exit(&kq->kq_lock); 2050 knote_detach(kn, fdp, false); 2051 goto done; 2052 } 2053 atomic_inc_uint(&kfilter->refcnt); 2054 goto done_ev_add; 2055 } else { 2056 /* No matching knote and the EV_ADD flag is not set. */ 2057 error = ENOENT; 2058 goto doneunlock; 2059 } 2060 } 2061 2062 if (kev->flags & EV_DELETE) { 2063 /* 2064 * Let the world know that this knote is about to go 2065 * away, and wait for it to settle if it's currently 2066 * in-flux. 2067 */ 2068 mutex_spin_enter(&kq->kq_lock); 2069 if (kn->kn_status & KN_WILLDETACH) { 2070 /* 2071 * This knote is already on its way out, 2072 * so just be done. 2073 */ 2074 mutex_spin_exit(&kq->kq_lock); 2075 goto doneunlock; 2076 } 2077 KNOTE_WILLDETACH(kn); 2078 if (kn_in_flux(kn)) { 2079 mutex_exit(&fdp->fd_lock); 2080 /* 2081 * It's safe for us to conclusively wait for 2082 * this knote to settle because we know we'll 2083 * be completing the detach. 2084 */ 2085 kn_wait_flux(kn, true); 2086 KASSERT(kn_in_flux(kn) == false); 2087 mutex_spin_exit(&kq->kq_lock); 2088 mutex_enter(&fdp->fd_lock); 2089 } else { 2090 mutex_spin_exit(&kq->kq_lock); 2091 } 2092 2093 /* knote_detach() drops fdp->fd_lock */ 2094 knote_detach(kn, fdp, true); 2095 goto done; 2096 } 2097 2098 /* 2099 * The user may change some filter values after the 2100 * initial EV_ADD, but doing so will not reset any 2101 * filter which have already been triggered. 2102 */ 2103 knote_foplock_enter(kn); 2104 kn->kn_kevent.udata = kev->udata; 2105 KASSERT(kn->kn_fop != NULL); 2106 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && 2107 kn->kn_fop->f_touch != NULL) { 2108 mutex_spin_enter(&kq->kq_lock); 2109 error = filter_touch(kn, kev, EVENT_REGISTER); 2110 mutex_spin_exit(&kq->kq_lock); 2111 if (__predict_false(error != 0)) { 2112 /* Never a new knote (which would consume newkn). */ 2113 KASSERT(newkn != NULL); 2114 knote_foplock_exit(kn); 2115 goto doneunlock; 2116 } 2117 } else { 2118 kn->kn_sfflags = kev->fflags; 2119 kn->kn_sdata = kev->data; 2120 } 2121 2122 /* 2123 * We can get here if we are trying to attach 2124 * an event to a file descriptor that does not 2125 * support events, and the attach routine is 2126 * broken and does not return an error. 2127 */ 2128 done_ev_add: 2129 rv = filter_event(kn, 0, false); 2130 if (rv) 2131 knote_activate(kn); 2132 2133 knote_foplock_exit(kn); 2134 2135 /* disable knote */ 2136 if ((kev->flags & EV_DISABLE)) { 2137 mutex_spin_enter(&kq->kq_lock); 2138 if ((kn->kn_status & KN_DISABLED) == 0) 2139 kn->kn_status |= KN_DISABLED; 2140 mutex_spin_exit(&kq->kq_lock); 2141 } 2142 2143 /* enable knote */ 2144 if ((kev->flags & EV_ENABLE)) { 2145 knote_enqueue(kn); 2146 } 2147 doneunlock: 2148 mutex_exit(&fdp->fd_lock); 2149 done: 2150 rw_exit(&kqueue_filter_lock); 2151 if (newkn != NULL) 2152 knote_free(newkn); 2153 if (fp != NULL) 2154 fd_putfile(fd); 2155 return (error); 2156 } 2157 2158 #define KN_FMT(buf, kn) \ 2159 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf) 2160 2161 #if defined(DDB) 2162 void 2163 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...)) 2164 { 2165 const struct knote *kn; 2166 u_int count; 2167 int nmarker; 2168 char buf[128]; 2169 2170 count = 0; 2171 nmarker = 0; 2172 2173 (*pr)("kqueue %p (restart=%d count=%u):\n", kq, 2174 !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq)); 2175 (*pr)(" Queued knotes:\n"); 2176 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { 2177 if (kn->kn_status & KN_MARKER) { 2178 nmarker++; 2179 } else { 2180 count++; 2181 } 2182 (*pr)(" knote %p: kq=%p status=%s\n", 2183 kn, kn->kn_kq, KN_FMT(buf, kn)); 2184 (*pr)(" id=0x%lx (%lu) filter=%d\n", 2185 (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter); 2186 if (kn->kn_kq != kq) { 2187 (*pr)(" !!! kn->kn_kq != kq\n"); 2188 } 2189 } 2190 if (count != KQ_COUNT(kq)) { 2191 (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n", 2192 count, KQ_COUNT(kq)); 2193 } 2194 } 2195 #endif /* DDB */ 2196 2197 #if defined(DEBUG) 2198 static void 2199 kqueue_check(const char *func, size_t line, const struct kqueue *kq) 2200 { 2201 const struct knote *kn; 2202 u_int count; 2203 int nmarker; 2204 char buf[128]; 2205 2206 KASSERT(mutex_owned(&kq->kq_lock)); 2207 2208 count = 0; 2209 nmarker = 0; 2210 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { 2211 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) { 2212 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s", 2213 func, line, kq, kn, KN_FMT(buf, kn)); 2214 } 2215 if ((kn->kn_status & KN_MARKER) == 0) { 2216 if (kn->kn_kq != kq) { 2217 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s", 2218 func, line, kq, kn, kn->kn_kq, 2219 KN_FMT(buf, kn)); 2220 } 2221 if ((kn->kn_status & KN_ACTIVE) == 0) { 2222 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s", 2223 func, line, kq, kn, KN_FMT(buf, kn)); 2224 } 2225 count++; 2226 if (count > KQ_COUNT(kq)) { 2227 panic("%s,%zu: kq=%p kq->kq_count(%u) != " 2228 "count(%d), nmarker=%d", 2229 func, line, kq, KQ_COUNT(kq), count, 2230 nmarker); 2231 } 2232 } else { 2233 nmarker++; 2234 } 2235 } 2236 } 2237 #define kq_check(a) kqueue_check(__func__, __LINE__, (a)) 2238 #else /* defined(DEBUG) */ 2239 #define kq_check(a) /* nothing */ 2240 #endif /* defined(DEBUG) */ 2241 2242 static void 2243 kqueue_restart(file_t *fp) 2244 { 2245 struct kqueue *kq = fp->f_kqueue; 2246 KASSERT(kq != NULL); 2247 2248 mutex_spin_enter(&kq->kq_lock); 2249 kq->kq_count |= KQ_RESTART; 2250 cv_broadcast(&kq->kq_cv); 2251 mutex_spin_exit(&kq->kq_lock); 2252 } 2253 2254 static int 2255 kqueue_fpathconf(struct file *fp, int name, register_t *retval) 2256 { 2257 2258 return EINVAL; 2259 } 2260 2261 /* 2262 * Scan through the list of events on fp (for a maximum of maxevents), 2263 * returning the results in to ulistp. Timeout is determined by tsp; if 2264 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait 2265 * as appropriate. 2266 */ 2267 static int 2268 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp, 2269 const struct timespec *tsp, register_t *retval, 2270 const struct kevent_ops *keops, struct kevent *kevbuf, 2271 size_t kevcnt) 2272 { 2273 struct kqueue *kq; 2274 struct kevent *kevp; 2275 struct timespec ats, sleepts; 2276 struct knote *kn, *marker; 2277 struct knote_impl morker; 2278 size_t count, nkev, nevents; 2279 int timeout, error, touch, rv, influx; 2280 filedesc_t *fdp; 2281 2282 fdp = curlwp->l_fd; 2283 kq = fp->f_kqueue; 2284 count = maxevents; 2285 nkev = nevents = error = 0; 2286 if (count == 0) { 2287 *retval = 0; 2288 return 0; 2289 } 2290 2291 if (tsp) { /* timeout supplied */ 2292 ats = *tsp; 2293 if (inittimeleft(&ats, &sleepts) == -1) { 2294 *retval = maxevents; 2295 return EINVAL; 2296 } 2297 timeout = tstohz(&ats); 2298 if (timeout <= 0) 2299 timeout = -1; /* do poll */ 2300 } else { 2301 /* no timeout, wait forever */ 2302 timeout = 0; 2303 } 2304 2305 memset(&morker, 0, sizeof(morker)); 2306 marker = &morker.ki_knote; 2307 marker->kn_kq = kq; 2308 marker->kn_status = KN_MARKER; 2309 mutex_spin_enter(&kq->kq_lock); 2310 retry: 2311 kevp = kevbuf; 2312 if (KQ_COUNT(kq) == 0) { 2313 if (timeout >= 0) { 2314 error = cv_timedwait_sig(&kq->kq_cv, 2315 &kq->kq_lock, timeout); 2316 if (error == 0) { 2317 if (KQ_COUNT(kq) == 0 && 2318 (kq->kq_count & KQ_RESTART)) { 2319 /* return to clear file reference */ 2320 error = ERESTART; 2321 } else if (tsp == NULL || (timeout = 2322 gettimeleft(&ats, &sleepts)) > 0) { 2323 goto retry; 2324 } 2325 } else { 2326 /* don't restart after signals... */ 2327 if (error == ERESTART) 2328 error = EINTR; 2329 if (error == EWOULDBLOCK) 2330 error = 0; 2331 } 2332 } 2333 mutex_spin_exit(&kq->kq_lock); 2334 goto done; 2335 } 2336 2337 /* mark end of knote list */ 2338 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); 2339 influx = 0; 2340 2341 /* 2342 * Acquire the fdp->fd_lock interlock to avoid races with 2343 * file creation/destruction from other threads. 2344 */ 2345 mutex_spin_exit(&kq->kq_lock); 2346 relock: 2347 mutex_enter(&fdp->fd_lock); 2348 mutex_spin_enter(&kq->kq_lock); 2349 2350 while (count != 0) { 2351 /* 2352 * Get next knote. We are guaranteed this will never 2353 * be NULL because of the marker we inserted above. 2354 */ 2355 kn = TAILQ_FIRST(&kq->kq_head); 2356 2357 bool kn_is_other_marker = 2358 (kn->kn_status & KN_MARKER) != 0 && kn != marker; 2359 bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0; 2360 bool kn_is_in_flux = kn_in_flux(kn); 2361 2362 /* 2363 * If we found a marker that's not ours, or this knote 2364 * is in a state of flux, then wait for everything to 2365 * settle down and go around again. 2366 */ 2367 if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) { 2368 if (influx) { 2369 influx = 0; 2370 KQ_FLUX_WAKEUP(kq); 2371 } 2372 mutex_exit(&fdp->fd_lock); 2373 if (kn_is_other_marker || kn_is_in_flux) { 2374 KQ_FLUX_WAIT(kq); 2375 mutex_spin_exit(&kq->kq_lock); 2376 } else { 2377 /* 2378 * Detaching but not in-flux? Someone is 2379 * actively trying to finish the job; just 2380 * go around and try again. 2381 */ 2382 KASSERT(kn_is_detaching); 2383 mutex_spin_exit(&kq->kq_lock); 2384 preempt_point(); 2385 } 2386 goto relock; 2387 } 2388 2389 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2390 if (kn == marker) { 2391 /* it's our marker, stop */ 2392 KQ_FLUX_WAKEUP(kq); 2393 if (count == maxevents) { 2394 mutex_exit(&fdp->fd_lock); 2395 goto retry; 2396 } 2397 break; 2398 } 2399 KASSERT((kn->kn_status & KN_BUSY) == 0); 2400 2401 kq_check(kq); 2402 kn->kn_status &= ~KN_QUEUED; 2403 kn->kn_status |= KN_BUSY; 2404 kq_check(kq); 2405 if (kn->kn_status & KN_DISABLED) { 2406 kn->kn_status &= ~KN_BUSY; 2407 kq->kq_count--; 2408 /* don't want disabled events */ 2409 continue; 2410 } 2411 if ((kn->kn_flags & EV_ONESHOT) == 0) { 2412 mutex_spin_exit(&kq->kq_lock); 2413 KASSERT(mutex_owned(&fdp->fd_lock)); 2414 knote_foplock_enter(kn); 2415 rv = filter_event(kn, 0, false); 2416 knote_foplock_exit(kn); 2417 mutex_spin_enter(&kq->kq_lock); 2418 /* Re-poll if note was re-enqueued. */ 2419 if ((kn->kn_status & KN_QUEUED) != 0) { 2420 kn->kn_status &= ~KN_BUSY; 2421 /* Re-enqueue raised kq_count, lower it again */ 2422 kq->kq_count--; 2423 influx = 1; 2424 continue; 2425 } 2426 if (rv == 0) { 2427 /* 2428 * non-ONESHOT event that hasn't triggered 2429 * again, so it will remain de-queued. 2430 */ 2431 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2432 kq->kq_count--; 2433 influx = 1; 2434 continue; 2435 } 2436 } else { 2437 /* 2438 * Must NOT drop kq_lock until we can do 2439 * the KNOTE_WILLDETACH() below. 2440 */ 2441 } 2442 KASSERT(kn->kn_fop != NULL); 2443 touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && 2444 kn->kn_fop->f_touch != NULL); 2445 /* XXXAD should be got from f_event if !oneshot. */ 2446 KASSERT((kn->kn_status & KN_WILLDETACH) == 0); 2447 if (touch) { 2448 (void)filter_touch(kn, kevp, EVENT_PROCESS); 2449 } else { 2450 *kevp = kn->kn_kevent; 2451 } 2452 kevp++; 2453 nkev++; 2454 influx = 1; 2455 if (kn->kn_flags & EV_ONESHOT) { 2456 /* delete ONESHOT events after retrieval */ 2457 KNOTE_WILLDETACH(kn); 2458 kn->kn_status &= ~KN_BUSY; 2459 kq->kq_count--; 2460 KASSERT(kn_in_flux(kn) == false); 2461 KASSERT((kn->kn_status & KN_WILLDETACH) != 0); 2462 KASSERT(kn->kn_kevent.udata == curlwp); 2463 mutex_spin_exit(&kq->kq_lock); 2464 knote_detach(kn, fdp, true); 2465 mutex_enter(&fdp->fd_lock); 2466 mutex_spin_enter(&kq->kq_lock); 2467 } else if (kn->kn_flags & EV_CLEAR) { 2468 /* clear state after retrieval */ 2469 kn->kn_data = 0; 2470 kn->kn_fflags = 0; 2471 /* 2472 * Manually clear knotes who weren't 2473 * 'touch'ed. 2474 */ 2475 if (touch == 0) { 2476 kn->kn_data = 0; 2477 kn->kn_fflags = 0; 2478 } 2479 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2480 kq->kq_count--; 2481 } else if (kn->kn_flags & EV_DISPATCH) { 2482 kn->kn_status |= KN_DISABLED; 2483 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2484 kq->kq_count--; 2485 } else { 2486 /* add event back on list */ 2487 kq_check(kq); 2488 kn->kn_status |= KN_QUEUED; 2489 kn->kn_status &= ~KN_BUSY; 2490 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2491 kq_check(kq); 2492 } 2493 2494 if (nkev == kevcnt) { 2495 /* do copyouts in kevcnt chunks */ 2496 influx = 0; 2497 KQ_FLUX_WAKEUP(kq); 2498 mutex_spin_exit(&kq->kq_lock); 2499 mutex_exit(&fdp->fd_lock); 2500 error = (*keops->keo_put_events) 2501 (keops->keo_private, 2502 kevbuf, ulistp, nevents, nkev); 2503 mutex_enter(&fdp->fd_lock); 2504 mutex_spin_enter(&kq->kq_lock); 2505 nevents += nkev; 2506 nkev = 0; 2507 kevp = kevbuf; 2508 } 2509 count--; 2510 if (error != 0 || count == 0) { 2511 /* remove marker */ 2512 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); 2513 break; 2514 } 2515 } 2516 KQ_FLUX_WAKEUP(kq); 2517 mutex_spin_exit(&kq->kq_lock); 2518 mutex_exit(&fdp->fd_lock); 2519 2520 done: 2521 if (nkev != 0) { 2522 /* copyout remaining events */ 2523 error = (*keops->keo_put_events)(keops->keo_private, 2524 kevbuf, ulistp, nevents, nkev); 2525 } 2526 *retval = maxevents - count; 2527 2528 return error; 2529 } 2530 2531 /* 2532 * fileops ioctl method for a kqueue descriptor. 2533 * 2534 * Two ioctls are currently supported. They both use struct kfilter_mapping: 2535 * KFILTER_BYNAME find name for filter, and return result in 2536 * name, which is of size len. 2537 * KFILTER_BYFILTER find filter for name. len is ignored. 2538 */ 2539 /*ARGSUSED*/ 2540 static int 2541 kqueue_ioctl(file_t *fp, u_long com, void *data) 2542 { 2543 struct kfilter_mapping *km; 2544 const struct kfilter *kfilter; 2545 char *name; 2546 int error; 2547 2548 km = data; 2549 error = 0; 2550 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP); 2551 2552 switch (com) { 2553 case KFILTER_BYFILTER: /* convert filter -> name */ 2554 rw_enter(&kqueue_filter_lock, RW_READER); 2555 kfilter = kfilter_byfilter(km->filter); 2556 if (kfilter != NULL) { 2557 strlcpy(name, kfilter->name, KFILTER_MAXNAME); 2558 rw_exit(&kqueue_filter_lock); 2559 error = copyoutstr(name, km->name, km->len, NULL); 2560 } else { 2561 rw_exit(&kqueue_filter_lock); 2562 error = ENOENT; 2563 } 2564 break; 2565 2566 case KFILTER_BYNAME: /* convert name -> filter */ 2567 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL); 2568 if (error) { 2569 break; 2570 } 2571 rw_enter(&kqueue_filter_lock, RW_READER); 2572 kfilter = kfilter_byname(name); 2573 if (kfilter != NULL) 2574 km->filter = kfilter->filter; 2575 else 2576 error = ENOENT; 2577 rw_exit(&kqueue_filter_lock); 2578 break; 2579 2580 default: 2581 error = ENOTTY; 2582 break; 2583 2584 } 2585 kmem_free(name, KFILTER_MAXNAME); 2586 return (error); 2587 } 2588 2589 /* 2590 * fileops fcntl method for a kqueue descriptor. 2591 */ 2592 static int 2593 kqueue_fcntl(file_t *fp, u_int com, void *data) 2594 { 2595 2596 return (ENOTTY); 2597 } 2598 2599 /* 2600 * fileops poll method for a kqueue descriptor. 2601 * Determine if kqueue has events pending. 2602 */ 2603 static int 2604 kqueue_poll(file_t *fp, int events) 2605 { 2606 struct kqueue *kq; 2607 int revents; 2608 2609 kq = fp->f_kqueue; 2610 2611 revents = 0; 2612 if (events & (POLLIN | POLLRDNORM)) { 2613 mutex_spin_enter(&kq->kq_lock); 2614 if (KQ_COUNT(kq) != 0) { 2615 revents |= events & (POLLIN | POLLRDNORM); 2616 } else { 2617 selrecord(curlwp, &kq->kq_sel); 2618 } 2619 kq_check(kq); 2620 mutex_spin_exit(&kq->kq_lock); 2621 } 2622 2623 return revents; 2624 } 2625 2626 /* 2627 * fileops stat method for a kqueue descriptor. 2628 * Returns dummy info, with st_size being number of events pending. 2629 */ 2630 static int 2631 kqueue_stat(file_t *fp, struct stat *st) 2632 { 2633 struct kqueue *kq; 2634 2635 kq = fp->f_kqueue; 2636 2637 memset(st, 0, sizeof(*st)); 2638 st->st_size = KQ_COUNT(kq); 2639 st->st_blksize = sizeof(struct kevent); 2640 st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 2641 st->st_blocks = 1; 2642 st->st_uid = kauth_cred_geteuid(fp->f_cred); 2643 st->st_gid = kauth_cred_getegid(fp->f_cred); 2644 2645 return 0; 2646 } 2647 2648 static void 2649 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd) 2650 { 2651 struct knote *kn; 2652 filedesc_t *fdp; 2653 2654 fdp = kq->kq_fdp; 2655 2656 KASSERT(mutex_owned(&fdp->fd_lock)); 2657 2658 again: 2659 for (kn = SLIST_FIRST(list); kn != NULL;) { 2660 if (kq != kn->kn_kq) { 2661 kn = SLIST_NEXT(kn, kn_link); 2662 continue; 2663 } 2664 if (knote_detach_quiesce(kn)) { 2665 mutex_enter(&fdp->fd_lock); 2666 goto again; 2667 } 2668 knote_detach(kn, fdp, true); 2669 mutex_enter(&fdp->fd_lock); 2670 kn = SLIST_FIRST(list); 2671 } 2672 } 2673 2674 /* 2675 * fileops close method for a kqueue descriptor. 2676 */ 2677 static int 2678 kqueue_close(file_t *fp) 2679 { 2680 struct kqueue *kq; 2681 filedesc_t *fdp; 2682 fdfile_t *ff; 2683 int i; 2684 2685 kq = fp->f_kqueue; 2686 fp->f_kqueue = NULL; 2687 fp->f_type = 0; 2688 fdp = curlwp->l_fd; 2689 2690 KASSERT(kq->kq_fdp == fdp); 2691 2692 mutex_enter(&fdp->fd_lock); 2693 2694 /* 2695 * We're doing to drop the fd_lock multiple times while 2696 * we detach knotes. During this time, attempts to register 2697 * knotes via the back door (e.g. knote_proc_fork_track()) 2698 * need to fail, lest they sneak in to attach a knote after 2699 * we've already drained the list it's destined for. 2700 * 2701 * We must acquire kq_lock here to set KQ_CLOSING (to serialize 2702 * with other code paths that modify kq_count without holding 2703 * the fd_lock), but once this bit is set, it's only safe to 2704 * test it while holding the fd_lock, and holding kq_lock while 2705 * doing so is not necessary. 2706 */ 2707 mutex_enter(&kq->kq_lock); 2708 kq->kq_count |= KQ_CLOSING; 2709 mutex_exit(&kq->kq_lock); 2710 2711 for (i = 0; i <= fdp->fd_lastkqfile; i++) { 2712 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL) 2713 continue; 2714 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i); 2715 } 2716 if (fdp->fd_knhashmask != 0) { 2717 for (i = 0; i < fdp->fd_knhashmask + 1; i++) { 2718 kqueue_doclose(kq, &fdp->fd_knhash[i], -1); 2719 } 2720 } 2721 2722 mutex_exit(&fdp->fd_lock); 2723 2724 #if defined(DEBUG) 2725 mutex_enter(&kq->kq_lock); 2726 kq_check(kq); 2727 mutex_exit(&kq->kq_lock); 2728 #endif /* DEBUG */ 2729 KASSERT(TAILQ_EMPTY(&kq->kq_head)); 2730 KASSERT(KQ_COUNT(kq) == 0); 2731 mutex_destroy(&kq->kq_lock); 2732 cv_destroy(&kq->kq_cv); 2733 seldestroy(&kq->kq_sel); 2734 kmem_free(kq, sizeof(*kq)); 2735 2736 return (0); 2737 } 2738 2739 /* 2740 * struct fileops kqfilter method for a kqueue descriptor. 2741 * Event triggered when monitored kqueue changes. 2742 */ 2743 static int 2744 kqueue_kqfilter(file_t *fp, struct knote *kn) 2745 { 2746 struct kqueue *kq; 2747 2748 kq = ((file_t *)kn->kn_obj)->f_kqueue; 2749 2750 KASSERT(fp == kn->kn_obj); 2751 2752 if (kn->kn_filter != EVFILT_READ) 2753 return EINVAL; 2754 2755 kn->kn_fop = &kqread_filtops; 2756 mutex_enter(&kq->kq_lock); 2757 selrecord_knote(&kq->kq_sel, kn); 2758 mutex_exit(&kq->kq_lock); 2759 2760 return 0; 2761 } 2762 2763 2764 /* 2765 * Walk down a list of knotes, activating them if their event has 2766 * triggered. The caller's object lock (e.g. device driver lock) 2767 * must be held. 2768 */ 2769 void 2770 knote(struct klist *list, long hint) 2771 { 2772 struct knote *kn, *tmpkn; 2773 2774 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) { 2775 /* 2776 * We assume here that the backing object's lock is 2777 * already held if we're traversing the klist, and 2778 * so acquiring the knote foplock would create a 2779 * deadlock scenario. But we also know that the klist 2780 * won't disappear on us while we're here, so not 2781 * acquiring it is safe. 2782 */ 2783 if (filter_event(kn, hint, true)) { 2784 knote_activate(kn); 2785 } 2786 } 2787 } 2788 2789 /* 2790 * Remove all knotes referencing a specified fd 2791 */ 2792 void 2793 knote_fdclose(int fd) 2794 { 2795 struct klist *list; 2796 struct knote *kn; 2797 filedesc_t *fdp; 2798 2799 again: 2800 fdp = curlwp->l_fd; 2801 mutex_enter(&fdp->fd_lock); 2802 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist; 2803 while ((kn = SLIST_FIRST(list)) != NULL) { 2804 if (knote_detach_quiesce(kn)) { 2805 goto again; 2806 } 2807 knote_detach(kn, fdp, true); 2808 mutex_enter(&fdp->fd_lock); 2809 } 2810 mutex_exit(&fdp->fd_lock); 2811 } 2812 2813 /* 2814 * Drop knote. Called with fdp->fd_lock held, and will drop before 2815 * returning. 2816 */ 2817 static void 2818 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop) 2819 { 2820 struct klist *list; 2821 struct kqueue *kq; 2822 2823 kq = kn->kn_kq; 2824 2825 KASSERT((kn->kn_status & KN_MARKER) == 0); 2826 KASSERT((kn->kn_status & KN_WILLDETACH) != 0); 2827 KASSERT(kn->kn_fop != NULL); 2828 KASSERT(mutex_owned(&fdp->fd_lock)); 2829 2830 /* Remove from monitored object. */ 2831 if (dofop) { 2832 knote_foplock_enter(kn); 2833 filter_detach(kn); 2834 knote_foplock_exit(kn); 2835 } 2836 2837 /* Remove from descriptor table. */ 2838 if (kn->kn_fop->f_flags & FILTEROP_ISFD) 2839 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; 2840 else 2841 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; 2842 2843 SLIST_REMOVE(list, kn, knote, kn_link); 2844 2845 /* Remove from kqueue. */ 2846 again: 2847 mutex_spin_enter(&kq->kq_lock); 2848 KASSERT(kn_in_flux(kn) == false); 2849 if ((kn->kn_status & KN_QUEUED) != 0) { 2850 kq_check(kq); 2851 KASSERT(KQ_COUNT(kq) != 0); 2852 kq->kq_count--; 2853 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2854 kn->kn_status &= ~KN_QUEUED; 2855 kq_check(kq); 2856 } else if (kn->kn_status & KN_BUSY) { 2857 mutex_spin_exit(&kq->kq_lock); 2858 goto again; 2859 } 2860 mutex_spin_exit(&kq->kq_lock); 2861 2862 mutex_exit(&fdp->fd_lock); 2863 if (kn->kn_fop->f_flags & FILTEROP_ISFD) 2864 fd_putfile(kn->kn_id); 2865 atomic_dec_uint(&kn->kn_kfilter->refcnt); 2866 knote_free(kn); 2867 } 2868 2869 /* 2870 * Queue new event for knote. 2871 */ 2872 static void 2873 knote_enqueue(struct knote *kn) 2874 { 2875 struct kqueue *kq; 2876 2877 KASSERT((kn->kn_status & KN_MARKER) == 0); 2878 2879 kq = kn->kn_kq; 2880 2881 mutex_spin_enter(&kq->kq_lock); 2882 if (__predict_false(kn->kn_status & KN_WILLDETACH)) { 2883 /* Don't bother enqueueing a dying knote. */ 2884 goto out; 2885 } 2886 if ((kn->kn_status & KN_DISABLED) != 0) { 2887 kn->kn_status &= ~KN_DISABLED; 2888 } 2889 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) { 2890 kq_check(kq); 2891 kn->kn_status |= KN_QUEUED; 2892 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2893 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); 2894 kq->kq_count++; 2895 kq_check(kq); 2896 cv_broadcast(&kq->kq_cv); 2897 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); 2898 } 2899 out: 2900 mutex_spin_exit(&kq->kq_lock); 2901 } 2902 /* 2903 * Queue new event for knote. 2904 */ 2905 static void 2906 knote_activate_locked(struct knote *kn) 2907 { 2908 struct kqueue *kq; 2909 2910 KASSERT((kn->kn_status & KN_MARKER) == 0); 2911 2912 kq = kn->kn_kq; 2913 2914 if (__predict_false(kn->kn_status & KN_WILLDETACH)) { 2915 /* Don't bother enqueueing a dying knote. */ 2916 return; 2917 } 2918 kn->kn_status |= KN_ACTIVE; 2919 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) { 2920 kq_check(kq); 2921 kn->kn_status |= KN_QUEUED; 2922 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2923 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); 2924 kq->kq_count++; 2925 kq_check(kq); 2926 cv_broadcast(&kq->kq_cv); 2927 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); 2928 } 2929 } 2930 2931 static void 2932 knote_activate(struct knote *kn) 2933 { 2934 struct kqueue *kq = kn->kn_kq; 2935 2936 mutex_spin_enter(&kq->kq_lock); 2937 knote_activate_locked(kn); 2938 mutex_spin_exit(&kq->kq_lock); 2939 } 2940 2941 static void 2942 knote_deactivate_locked(struct knote *kn) 2943 { 2944 struct kqueue *kq = kn->kn_kq; 2945 2946 if (kn->kn_status & KN_QUEUED) { 2947 kq_check(kq); 2948 kn->kn_status &= ~KN_QUEUED; 2949 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2950 KASSERT(KQ_COUNT(kq) > 0); 2951 kq->kq_count--; 2952 kq_check(kq); 2953 } 2954 kn->kn_status &= ~KN_ACTIVE; 2955 } 2956 2957 /* 2958 * Set EV_EOF on the specified knote. Also allows additional 2959 * EV_* flags to be set (e.g. EV_ONESHOT). 2960 */ 2961 void 2962 knote_set_eof(struct knote *kn, uint32_t flags) 2963 { 2964 struct kqueue *kq = kn->kn_kq; 2965 2966 mutex_spin_enter(&kq->kq_lock); 2967 kn->kn_flags |= EV_EOF | flags; 2968 mutex_spin_exit(&kq->kq_lock); 2969 } 2970 2971 /* 2972 * Clear EV_EOF on the specified knote. 2973 */ 2974 void 2975 knote_clear_eof(struct knote *kn) 2976 { 2977 struct kqueue *kq = kn->kn_kq; 2978 2979 mutex_spin_enter(&kq->kq_lock); 2980 kn->kn_flags &= ~EV_EOF; 2981 mutex_spin_exit(&kq->kq_lock); 2982 } 2983 2984 /* 2985 * Initialize a klist. 2986 */ 2987 void 2988 klist_init(struct klist *list) 2989 { 2990 SLIST_INIT(list); 2991 } 2992 2993 /* 2994 * Finalize a klist. 2995 */ 2996 void 2997 klist_fini(struct klist *list) 2998 { 2999 struct knote *kn; 3000 3001 /* 3002 * Neuter all existing knotes on the klist because the list is 3003 * being destroyed. The caller has guaranteed that no additional 3004 * knotes will be added to the list, that the backing object's 3005 * locks are not held (otherwise there is a locking order issue 3006 * with acquiring the knote foplock ), and that we can traverse 3007 * the list safely in this state. 3008 */ 3009 SLIST_FOREACH(kn, list, kn_selnext) { 3010 knote_foplock_enter(kn); 3011 KASSERT(kn->kn_fop != NULL); 3012 if (kn->kn_fop->f_flags & FILTEROP_ISFD) { 3013 kn->kn_fop = &nop_fd_filtops; 3014 } else { 3015 kn->kn_fop = &nop_filtops; 3016 } 3017 knote_foplock_exit(kn); 3018 } 3019 } 3020 3021 /* 3022 * Insert a knote into a klist. 3023 */ 3024 void 3025 klist_insert(struct klist *list, struct knote *kn) 3026 { 3027 SLIST_INSERT_HEAD(list, kn, kn_selnext); 3028 } 3029 3030 /* 3031 * Remove a knote from a klist. Returns true if the last 3032 * knote was removed and the list is now empty. 3033 */ 3034 bool 3035 klist_remove(struct klist *list, struct knote *kn) 3036 { 3037 SLIST_REMOVE(list, kn, knote, kn_selnext); 3038 return SLIST_EMPTY(list); 3039 } 3040