1 /* $NetBSD: kern_event.c,v 1.146 2022/07/24 19:23:44 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 34 * Copyright (c) 2009 Apple, Inc 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp 59 */ 60 61 #ifdef _KERNEL_OPT 62 #include "opt_ddb.h" 63 #endif /* _KERNEL_OPT */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.146 2022/07/24 19:23:44 riastradh Exp $"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/wait.h> 72 #include <sys/proc.h> 73 #include <sys/file.h> 74 #include <sys/select.h> 75 #include <sys/queue.h> 76 #include <sys/event.h> 77 #include <sys/eventvar.h> 78 #include <sys/poll.h> 79 #include <sys/kmem.h> 80 #include <sys/stat.h> 81 #include <sys/filedesc.h> 82 #include <sys/syscallargs.h> 83 #include <sys/kauth.h> 84 #include <sys/conf.h> 85 #include <sys/atomic.h> 86 87 static int kqueue_scan(file_t *, size_t, struct kevent *, 88 const struct timespec *, register_t *, 89 const struct kevent_ops *, struct kevent *, 90 size_t); 91 static int kqueue_ioctl(file_t *, u_long, void *); 92 static int kqueue_fcntl(file_t *, u_int, void *); 93 static int kqueue_poll(file_t *, int); 94 static int kqueue_kqfilter(file_t *, struct knote *); 95 static int kqueue_stat(file_t *, struct stat *); 96 static int kqueue_close(file_t *); 97 static void kqueue_restart(file_t *); 98 static int kqueue_register(struct kqueue *, struct kevent *); 99 static void kqueue_doclose(struct kqueue *, struct klist *, int); 100 101 static void knote_detach(struct knote *, filedesc_t *fdp, bool); 102 static void knote_enqueue(struct knote *); 103 static void knote_activate(struct knote *); 104 static void knote_activate_locked(struct knote *); 105 static void knote_deactivate_locked(struct knote *); 106 107 static void filt_kqdetach(struct knote *); 108 static int filt_kqueue(struct knote *, long hint); 109 static int filt_procattach(struct knote *); 110 static void filt_procdetach(struct knote *); 111 static int filt_proc(struct knote *, long hint); 112 static int filt_fileattach(struct knote *); 113 static void filt_timerexpire(void *x); 114 static int filt_timerattach(struct knote *); 115 static void filt_timerdetach(struct knote *); 116 static int filt_timer(struct knote *, long hint); 117 static int filt_timertouch(struct knote *, struct kevent *, long type); 118 static int filt_userattach(struct knote *); 119 static void filt_userdetach(struct knote *); 120 static int filt_user(struct knote *, long hint); 121 static int filt_usertouch(struct knote *, struct kevent *, long type); 122 123 /* 124 * Private knote state that should never be exposed outside 125 * of kern_event.c 126 * 127 * Field locking: 128 * 129 * q kn_kq->kq_lock 130 */ 131 struct knote_impl { 132 struct knote ki_knote; 133 unsigned int ki_influx; /* q: in-flux counter */ 134 kmutex_t ki_foplock; /* for kn_filterops */ 135 }; 136 137 #define KIMPL_TO_KNOTE(kip) (&(kip)->ki_knote) 138 #define KNOTE_TO_KIMPL(knp) container_of((knp), struct knote_impl, ki_knote) 139 140 static inline struct knote * 141 knote_alloc(bool sleepok) 142 { 143 struct knote_impl *ki; 144 145 ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP); 146 mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE); 147 148 return KIMPL_TO_KNOTE(ki); 149 } 150 151 static inline void 152 knote_free(struct knote *kn) 153 { 154 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 155 156 mutex_destroy(&ki->ki_foplock); 157 kmem_free(ki, sizeof(*ki)); 158 } 159 160 static inline void 161 knote_foplock_enter(struct knote *kn) 162 { 163 mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock); 164 } 165 166 static inline void 167 knote_foplock_exit(struct knote *kn) 168 { 169 mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock); 170 } 171 172 static inline bool __diagused 173 knote_foplock_owned(struct knote *kn) 174 { 175 return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock); 176 } 177 178 static const struct fileops kqueueops = { 179 .fo_name = "kqueue", 180 .fo_read = (void *)enxio, 181 .fo_write = (void *)enxio, 182 .fo_ioctl = kqueue_ioctl, 183 .fo_fcntl = kqueue_fcntl, 184 .fo_poll = kqueue_poll, 185 .fo_stat = kqueue_stat, 186 .fo_close = kqueue_close, 187 .fo_kqfilter = kqueue_kqfilter, 188 .fo_restart = kqueue_restart, 189 }; 190 191 static void 192 filt_nopdetach(struct knote *kn __unused) 193 { 194 } 195 196 static int 197 filt_nopevent(struct knote *kn __unused, long hint __unused) 198 { 199 return 0; 200 } 201 202 static const struct filterops nop_fd_filtops = { 203 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 204 .f_attach = NULL, 205 .f_detach = filt_nopdetach, 206 .f_event = filt_nopevent, 207 }; 208 209 static const struct filterops nop_filtops = { 210 .f_flags = FILTEROP_MPSAFE, 211 .f_attach = NULL, 212 .f_detach = filt_nopdetach, 213 .f_event = filt_nopevent, 214 }; 215 216 static const struct filterops kqread_filtops = { 217 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 218 .f_attach = NULL, 219 .f_detach = filt_kqdetach, 220 .f_event = filt_kqueue, 221 }; 222 223 static const struct filterops proc_filtops = { 224 .f_flags = FILTEROP_MPSAFE, 225 .f_attach = filt_procattach, 226 .f_detach = filt_procdetach, 227 .f_event = filt_proc, 228 }; 229 230 /* 231 * file_filtops is not marked MPSAFE because it's going to call 232 * fileops::fo_kqfilter(), which might not be. That function, 233 * however, will override the knote's filterops, and thus will 234 * inherit the MPSAFE-ness of the back-end at that time. 235 */ 236 static const struct filterops file_filtops = { 237 .f_flags = FILTEROP_ISFD, 238 .f_attach = filt_fileattach, 239 .f_detach = NULL, 240 .f_event = NULL, 241 }; 242 243 static const struct filterops timer_filtops = { 244 .f_flags = FILTEROP_MPSAFE, 245 .f_attach = filt_timerattach, 246 .f_detach = filt_timerdetach, 247 .f_event = filt_timer, 248 .f_touch = filt_timertouch, 249 }; 250 251 static const struct filterops user_filtops = { 252 .f_flags = FILTEROP_MPSAFE, 253 .f_attach = filt_userattach, 254 .f_detach = filt_userdetach, 255 .f_event = filt_user, 256 .f_touch = filt_usertouch, 257 }; 258 259 static u_int kq_ncallouts = 0; 260 static int kq_calloutmax = (4 * 1024); 261 262 #define KN_HASHSIZE 64 /* XXX should be tunable */ 263 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 264 265 extern const struct filterops fs_filtops; /* vfs_syscalls.c */ 266 extern const struct filterops sig_filtops; /* kern_sig.c */ 267 268 /* 269 * Table for for all system-defined filters. 270 * These should be listed in the numeric order of the EVFILT_* defines. 271 * If filtops is NULL, the filter isn't implemented in NetBSD. 272 * End of list is when name is NULL. 273 * 274 * Note that 'refcnt' is meaningless for built-in filters. 275 */ 276 struct kfilter { 277 const char *name; /* name of filter */ 278 uint32_t filter; /* id of filter */ 279 unsigned refcnt; /* reference count */ 280 const struct filterops *filtops;/* operations for filter */ 281 size_t namelen; /* length of name string */ 282 }; 283 284 /* System defined filters */ 285 static struct kfilter sys_kfilters[] = { 286 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 }, 287 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, }, 288 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 }, 289 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 }, 290 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 }, 291 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 }, 292 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 }, 293 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 }, 294 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 }, 295 { "EVFILT_EMPTY", EVFILT_EMPTY, 0, &file_filtops, 0 }, 296 { NULL, 0, 0, NULL, 0 }, 297 }; 298 299 /* User defined kfilters */ 300 static struct kfilter *user_kfilters; /* array */ 301 static int user_kfilterc; /* current offset */ 302 static int user_kfiltermaxc; /* max size so far */ 303 static size_t user_kfiltersz; /* size of allocated memory */ 304 305 /* 306 * Global Locks. 307 * 308 * Lock order: 309 * 310 * kqueue_filter_lock 311 * -> kn_kq->kq_fdp->fd_lock 312 * -> knote foplock (if taken) 313 * -> object lock (e.g., device driver lock, &c.) 314 * -> kn_kq->kq_lock 315 * 316 * Locking rules. ==> indicates the lock is acquired by the backing 317 * object, locks prior are acquired before calling filter ops: 318 * 319 * f_attach: fdp->fd_lock -> knote foplock -> 320 * (maybe) KERNEL_LOCK ==> backing object lock 321 * 322 * f_detach: fdp->fd_lock -> knote foplock -> 323 * (maybe) KERNEL_LOCK ==> backing object lock 324 * 325 * f_event via kevent: fdp->fd_lock -> knote foplock -> 326 * (maybe) KERNEL_LOCK ==> backing object lock 327 * N.B. NOTE_SUBMIT will never be set in the "hint" argument 328 * in this case. 329 * 330 * f_event via knote (via backing object: Whatever caller guarantees. 331 * Typically: 332 * f_event(NOTE_SUBMIT): caller has already acquired backing 333 * object lock. 334 * f_event(!NOTE_SUBMIT): caller has not acquired backing object, 335 * lock or has possibly acquired KERNEL_LOCK. Backing object 336 * lock may or may not be acquired as-needed. 337 * N.B. the knote foplock will **not** be acquired in this case. The 338 * caller guarantees that klist_fini() will not be called concurrently 339 * with knote(). 340 * 341 * f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock) 342 * N.B. knote foplock is **not** acquired in this case and 343 * the caller must guarantee that klist_fini() will never 344 * be called. kevent_register() restricts filters that 345 * provide f_touch to known-safe cases. 346 * 347 * klist_fini(): Caller must guarantee that no more knotes can 348 * be attached to the klist, and must **not** hold the backing 349 * object's lock; klist_fini() itself will acquire the foplock 350 * of each knote on the klist. 351 * 352 * Locking rules when detaching knotes: 353 * 354 * There are some situations where knote submission may require dropping 355 * locks (see knote_proc_fork()). In order to support this, it's possible 356 * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to 357 * be detached while it remains in-flux. Because it will not be detached, 358 * locks can be dropped so e.g. memory can be allocated, locks on other 359 * data structures can be acquired, etc. During this time, any attempt to 360 * detach an in-flux knote must wait until the knote is no longer in-flux. 361 * When this happens, the knote is marked for death (KN_WILLDETACH) and the 362 * LWP who gets to finish the detach operation is recorded in the knote's 363 * 'udata' field (which is no longer required for its original purpose once 364 * a knote is so marked). Code paths that lead to knote_detach() must ensure 365 * that their LWP is the one tasked with its final demise after waiting for 366 * the in-flux status of the knote to clear. Note that once a knote is 367 * marked KN_WILLDETACH, no code paths may put it into an in-flux state. 368 * 369 * Once the special circumstances have been handled, the locks are re- 370 * acquired in the proper order (object lock -> kq_lock), the knote taken 371 * out of flux, and any waiters are notified. Because waiters must have 372 * also dropped *their* locks in order to safely block, they must re- 373 * validate all of their assumptions; see knote_detach_quiesce(). See also 374 * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT) 375 * cases. 376 * 377 * When kqueue_scan() encounters an in-flux knote, the situation is 378 * treated like another LWP's list marker. 379 * 380 * LISTEN WELL: It is important to not hold knotes in flux for an 381 * extended period of time! In-flux knotes effectively block any 382 * progress of the kqueue_scan() operation. Any code paths that place 383 * knotes in-flux should be careful to not block for indefinite periods 384 * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but 385 * KM_SLEEP is not). 386 */ 387 static krwlock_t kqueue_filter_lock; /* lock on filter lists */ 388 389 #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock) 390 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv) 391 392 static inline bool 393 kn_in_flux(struct knote *kn) 394 { 395 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 396 return KNOTE_TO_KIMPL(kn)->ki_influx != 0; 397 } 398 399 static inline bool 400 kn_enter_flux(struct knote *kn) 401 { 402 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 403 404 if (kn->kn_status & KN_WILLDETACH) { 405 return false; 406 } 407 408 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 409 KASSERT(ki->ki_influx < UINT_MAX); 410 ki->ki_influx++; 411 412 return true; 413 } 414 415 static inline bool 416 kn_leave_flux(struct knote *kn) 417 { 418 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 419 420 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 421 KASSERT(ki->ki_influx > 0); 422 ki->ki_influx--; 423 return ki->ki_influx == 0; 424 } 425 426 static void 427 kn_wait_flux(struct knote *kn, bool can_loop) 428 { 429 struct knote_impl *ki = KNOTE_TO_KIMPL(kn); 430 bool loop; 431 432 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 433 434 /* 435 * It may not be safe for us to touch the knote again after 436 * dropping the kq_lock. The caller has let us know in 437 * 'can_loop'. 438 */ 439 for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) { 440 KQ_FLUX_WAIT(kn->kn_kq); 441 } 442 } 443 444 #define KNOTE_WILLDETACH(kn) \ 445 do { \ 446 (kn)->kn_status |= KN_WILLDETACH; \ 447 (kn)->kn_kevent.udata = curlwp; \ 448 } while (/*CONSTCOND*/0) 449 450 /* 451 * Wait until the specified knote is in a quiescent state and 452 * safe to detach. Returns true if we potentially blocked (and 453 * thus dropped our locks). 454 */ 455 static bool 456 knote_detach_quiesce(struct knote *kn) 457 { 458 struct kqueue *kq = kn->kn_kq; 459 filedesc_t *fdp = kq->kq_fdp; 460 461 KASSERT(mutex_owned(&fdp->fd_lock)); 462 463 mutex_spin_enter(&kq->kq_lock); 464 /* 465 * There are two cases where we might see KN_WILLDETACH here: 466 * 467 * 1. Someone else has already started detaching the knote but 468 * had to wait for it to settle first. 469 * 470 * 2. We had to wait for it to settle, and had to come back 471 * around after re-acquiring the locks. 472 * 473 * When KN_WILLDETACH is set, we also set the LWP that claimed 474 * the prize of finishing the detach in the 'udata' field of the 475 * knote (which will never be used again for its usual purpose 476 * once the note is in this state). If it doesn't point to us, 477 * we must drop the locks and let them in to finish the job. 478 * 479 * Otherwise, once we have claimed the knote for ourselves, we 480 * can finish waiting for it to settle. The is the only scenario 481 * where touching a detaching knote is safe after dropping the 482 * locks. 483 */ 484 if ((kn->kn_status & KN_WILLDETACH) != 0 && 485 kn->kn_kevent.udata != curlwp) { 486 /* 487 * N.B. it is NOT safe for us to touch the knote again 488 * after dropping the locks here. The caller must go 489 * back around and re-validate everything. However, if 490 * the knote is in-flux, we want to block to minimize 491 * busy-looping. 492 */ 493 mutex_exit(&fdp->fd_lock); 494 if (kn_in_flux(kn)) { 495 kn_wait_flux(kn, false); 496 mutex_spin_exit(&kq->kq_lock); 497 return true; 498 } 499 mutex_spin_exit(&kq->kq_lock); 500 preempt_point(); 501 return true; 502 } 503 /* 504 * If we get here, we know that we will be claiming the 505 * detach responsibilies, or that we already have and 506 * this is the second attempt after re-validation. 507 */ 508 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || 509 kn->kn_kevent.udata == curlwp); 510 /* 511 * Similarly, if we get here, either we are just claiming it 512 * and may have to wait for it to settle, or if this is the 513 * second attempt after re-validation that no other code paths 514 * have put it in-flux. 515 */ 516 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || 517 kn_in_flux(kn) == false); 518 KNOTE_WILLDETACH(kn); 519 if (kn_in_flux(kn)) { 520 mutex_exit(&fdp->fd_lock); 521 kn_wait_flux(kn, true); 522 /* 523 * It is safe for us to touch the knote again after 524 * dropping the locks, but the caller must still 525 * re-validate everything because other aspects of 526 * the environment may have changed while we blocked. 527 */ 528 KASSERT(kn_in_flux(kn) == false); 529 mutex_spin_exit(&kq->kq_lock); 530 return true; 531 } 532 mutex_spin_exit(&kq->kq_lock); 533 534 return false; 535 } 536 537 /* 538 * Calls into the filterops need to be resilient against things which 539 * destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid 540 * chasing garbage pointers (to data, or even potentially code in a 541 * module about to be unloaded). To that end, we acquire the 542 * knote foplock before calling into the filter ops. When a driver 543 * (or anything else) is tearing down its klist, klist_fini() enumerates 544 * each knote, acquires its foplock, and replaces the filterops with a 545 * nop stub, allowing knote detach (when descriptors are closed) to safely 546 * proceed. 547 */ 548 549 static int 550 filter_attach(struct knote *kn) 551 { 552 int rv; 553 554 KASSERT(knote_foplock_owned(kn)); 555 KASSERT(kn->kn_fop != NULL); 556 KASSERT(kn->kn_fop->f_attach != NULL); 557 558 /* 559 * N.B. that kn->kn_fop may change as the result of calling 560 * f_attach(). After f_attach() returns, kn->kn_fop may not 561 * be modified by code outside of klist_fini(). 562 */ 563 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 564 rv = kn->kn_fop->f_attach(kn); 565 } else { 566 KERNEL_LOCK(1, NULL); 567 rv = kn->kn_fop->f_attach(kn); 568 KERNEL_UNLOCK_ONE(NULL); 569 } 570 571 return rv; 572 } 573 574 static void 575 filter_detach(struct knote *kn) 576 { 577 578 KASSERT(knote_foplock_owned(kn)); 579 KASSERT(kn->kn_fop != NULL); 580 KASSERT(kn->kn_fop->f_detach != NULL); 581 582 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 583 kn->kn_fop->f_detach(kn); 584 } else { 585 KERNEL_LOCK(1, NULL); 586 kn->kn_fop->f_detach(kn); 587 KERNEL_UNLOCK_ONE(NULL); 588 } 589 } 590 591 static int 592 filter_event(struct knote *kn, long hint, bool submitting) 593 { 594 int rv; 595 596 /* See knote(). */ 597 KASSERT(submitting || knote_foplock_owned(kn)); 598 KASSERT(kn->kn_fop != NULL); 599 KASSERT(kn->kn_fop->f_event != NULL); 600 601 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 602 rv = kn->kn_fop->f_event(kn, hint); 603 } else { 604 KERNEL_LOCK(1, NULL); 605 rv = kn->kn_fop->f_event(kn, hint); 606 KERNEL_UNLOCK_ONE(NULL); 607 } 608 609 return rv; 610 } 611 612 static int 613 filter_touch(struct knote *kn, struct kevent *kev, long type) 614 { 615 616 /* 617 * XXX We cannot assert that the knote foplock is held here 618 * XXX beause we cannot safely acquire it in all cases 619 * XXX where "touch" will be used in kqueue_scan(). We just 620 * XXX have to assume that f_touch will always be safe to call, 621 * XXX and kqueue_register() allows only the two known-safe 622 * XXX users of that op. 623 */ 624 625 KASSERT(kn->kn_fop != NULL); 626 KASSERT(kn->kn_fop->f_touch != NULL); 627 628 return kn->kn_fop->f_touch(kn, kev, type); 629 } 630 631 static kauth_listener_t kqueue_listener; 632 633 static int 634 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 635 void *arg0, void *arg1, void *arg2, void *arg3) 636 { 637 struct proc *p; 638 int result; 639 640 result = KAUTH_RESULT_DEFER; 641 p = arg0; 642 643 if (action != KAUTH_PROCESS_KEVENT_FILTER) 644 return result; 645 646 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) || 647 ISSET(p->p_flag, PK_SUGID))) 648 return result; 649 650 result = KAUTH_RESULT_ALLOW; 651 652 return result; 653 } 654 655 /* 656 * Initialize the kqueue subsystem. 657 */ 658 void 659 kqueue_init(void) 660 { 661 662 rw_init(&kqueue_filter_lock); 663 664 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 665 kqueue_listener_cb, NULL); 666 } 667 668 /* 669 * Find kfilter entry by name, or NULL if not found. 670 */ 671 static struct kfilter * 672 kfilter_byname_sys(const char *name) 673 { 674 int i; 675 676 KASSERT(rw_lock_held(&kqueue_filter_lock)); 677 678 for (i = 0; sys_kfilters[i].name != NULL; i++) { 679 if (strcmp(name, sys_kfilters[i].name) == 0) 680 return &sys_kfilters[i]; 681 } 682 return NULL; 683 } 684 685 static struct kfilter * 686 kfilter_byname_user(const char *name) 687 { 688 int i; 689 690 KASSERT(rw_lock_held(&kqueue_filter_lock)); 691 692 /* user filter slots have a NULL name if previously deregistered */ 693 for (i = 0; i < user_kfilterc ; i++) { 694 if (user_kfilters[i].name != NULL && 695 strcmp(name, user_kfilters[i].name) == 0) 696 return &user_kfilters[i]; 697 } 698 return NULL; 699 } 700 701 static struct kfilter * 702 kfilter_byname(const char *name) 703 { 704 struct kfilter *kfilter; 705 706 KASSERT(rw_lock_held(&kqueue_filter_lock)); 707 708 if ((kfilter = kfilter_byname_sys(name)) != NULL) 709 return kfilter; 710 711 return kfilter_byname_user(name); 712 } 713 714 /* 715 * Find kfilter entry by filter id, or NULL if not found. 716 * Assumes entries are indexed in filter id order, for speed. 717 */ 718 static struct kfilter * 719 kfilter_byfilter(uint32_t filter) 720 { 721 struct kfilter *kfilter; 722 723 KASSERT(rw_lock_held(&kqueue_filter_lock)); 724 725 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */ 726 kfilter = &sys_kfilters[filter]; 727 else if (user_kfilters != NULL && 728 filter < EVFILT_SYSCOUNT + user_kfilterc) 729 /* it's a user filter */ 730 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT]; 731 else 732 return (NULL); /* out of range */ 733 KASSERT(kfilter->filter == filter); /* sanity check! */ 734 return (kfilter); 735 } 736 737 /* 738 * Register a new kfilter. Stores the entry in user_kfilters. 739 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 740 * If retfilter != NULL, the new filterid is returned in it. 741 */ 742 int 743 kfilter_register(const char *name, const struct filterops *filtops, 744 int *retfilter) 745 { 746 struct kfilter *kfilter; 747 size_t len; 748 int i; 749 750 if (name == NULL || name[0] == '\0' || filtops == NULL) 751 return (EINVAL); /* invalid args */ 752 753 rw_enter(&kqueue_filter_lock, RW_WRITER); 754 if (kfilter_byname(name) != NULL) { 755 rw_exit(&kqueue_filter_lock); 756 return (EEXIST); /* already exists */ 757 } 758 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) { 759 rw_exit(&kqueue_filter_lock); 760 return (EINVAL); /* too many */ 761 } 762 763 for (i = 0; i < user_kfilterc; i++) { 764 kfilter = &user_kfilters[i]; 765 if (kfilter->name == NULL) { 766 /* Previously deregistered slot. Reuse. */ 767 goto reuse; 768 } 769 } 770 771 /* check if need to grow user_kfilters */ 772 if (user_kfilterc + 1 > user_kfiltermaxc) { 773 /* Grow in KFILTER_EXTENT chunks. */ 774 user_kfiltermaxc += KFILTER_EXTENT; 775 len = user_kfiltermaxc * sizeof(*kfilter); 776 kfilter = kmem_alloc(len, KM_SLEEP); 777 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz); 778 if (user_kfilters != NULL) { 779 memcpy(kfilter, user_kfilters, user_kfiltersz); 780 kmem_free(user_kfilters, user_kfiltersz); 781 } 782 user_kfiltersz = len; 783 user_kfilters = kfilter; 784 } 785 /* Adding new slot */ 786 kfilter = &user_kfilters[user_kfilterc++]; 787 reuse: 788 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP); 789 790 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT; 791 792 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP); 793 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops)); 794 795 if (retfilter != NULL) 796 *retfilter = kfilter->filter; 797 rw_exit(&kqueue_filter_lock); 798 799 return (0); 800 } 801 802 /* 803 * Unregister a kfilter previously registered with kfilter_register. 804 * This retains the filter id, but clears the name and frees filtops (filter 805 * operations), so that the number isn't reused during a boot. 806 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 807 */ 808 int 809 kfilter_unregister(const char *name) 810 { 811 struct kfilter *kfilter; 812 813 if (name == NULL || name[0] == '\0') 814 return (EINVAL); /* invalid name */ 815 816 rw_enter(&kqueue_filter_lock, RW_WRITER); 817 if (kfilter_byname_sys(name) != NULL) { 818 rw_exit(&kqueue_filter_lock); 819 return (EINVAL); /* can't detach system filters */ 820 } 821 822 kfilter = kfilter_byname_user(name); 823 if (kfilter == NULL) { 824 rw_exit(&kqueue_filter_lock); 825 return (ENOENT); 826 } 827 if (kfilter->refcnt != 0) { 828 rw_exit(&kqueue_filter_lock); 829 return (EBUSY); 830 } 831 832 /* Cast away const (but we know it's safe. */ 833 kmem_free(__UNCONST(kfilter->name), kfilter->namelen); 834 kfilter->name = NULL; /* mark as `not implemented' */ 835 836 if (kfilter->filtops != NULL) { 837 /* Cast away const (but we know it's safe. */ 838 kmem_free(__UNCONST(kfilter->filtops), 839 sizeof(*kfilter->filtops)); 840 kfilter->filtops = NULL; /* mark as `not implemented' */ 841 } 842 rw_exit(&kqueue_filter_lock); 843 844 return (0); 845 } 846 847 848 /* 849 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file 850 * descriptors. Calls fileops kqfilter method for given file descriptor. 851 */ 852 static int 853 filt_fileattach(struct knote *kn) 854 { 855 file_t *fp; 856 857 fp = kn->kn_obj; 858 859 return (*fp->f_ops->fo_kqfilter)(fp, kn); 860 } 861 862 /* 863 * Filter detach method for EVFILT_READ on kqueue descriptor. 864 */ 865 static void 866 filt_kqdetach(struct knote *kn) 867 { 868 struct kqueue *kq; 869 870 kq = ((file_t *)kn->kn_obj)->f_kqueue; 871 872 mutex_spin_enter(&kq->kq_lock); 873 selremove_knote(&kq->kq_sel, kn); 874 mutex_spin_exit(&kq->kq_lock); 875 } 876 877 /* 878 * Filter event method for EVFILT_READ on kqueue descriptor. 879 */ 880 /*ARGSUSED*/ 881 static int 882 filt_kqueue(struct knote *kn, long hint) 883 { 884 struct kqueue *kq; 885 int rv; 886 887 kq = ((file_t *)kn->kn_obj)->f_kqueue; 888 889 if (hint != NOTE_SUBMIT) 890 mutex_spin_enter(&kq->kq_lock); 891 kn->kn_data = KQ_COUNT(kq); 892 rv = (kn->kn_data > 0); 893 if (hint != NOTE_SUBMIT) 894 mutex_spin_exit(&kq->kq_lock); 895 896 return rv; 897 } 898 899 /* 900 * Filter attach method for EVFILT_PROC. 901 */ 902 static int 903 filt_procattach(struct knote *kn) 904 { 905 struct proc *p; 906 907 mutex_enter(&proc_lock); 908 p = proc_find(kn->kn_id); 909 if (p == NULL) { 910 mutex_exit(&proc_lock); 911 return ESRCH; 912 } 913 914 /* 915 * Fail if it's not owned by you, or the last exec gave us 916 * setuid/setgid privs (unless you're root). 917 */ 918 mutex_enter(p->p_lock); 919 mutex_exit(&proc_lock); 920 if (kauth_authorize_process(curlwp->l_cred, 921 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) { 922 mutex_exit(p->p_lock); 923 return EACCES; 924 } 925 926 kn->kn_obj = p; 927 kn->kn_flags |= EV_CLEAR; /* automatically set */ 928 929 /* 930 * NOTE_CHILD is only ever generated internally; don't let it 931 * leak in from user-space. See knote_proc_fork_track(). 932 */ 933 kn->kn_sfflags &= ~NOTE_CHILD; 934 935 klist_insert(&p->p_klist, kn); 936 mutex_exit(p->p_lock); 937 938 return 0; 939 } 940 941 /* 942 * Filter detach method for EVFILT_PROC. 943 * 944 * The knote may be attached to a different process, which may exit, 945 * leaving nothing for the knote to be attached to. So when the process 946 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 947 * it will be deleted when read out. However, as part of the knote deletion, 948 * this routine is called, so a check is needed to avoid actually performing 949 * a detach, because the original process might not exist any more. 950 */ 951 static void 952 filt_procdetach(struct knote *kn) 953 { 954 struct kqueue *kq = kn->kn_kq; 955 struct proc *p; 956 957 /* 958 * We have to synchronize with knote_proc_exit(), but we 959 * are forced to acquire the locks in the wrong order here 960 * because we can't be sure kn->kn_obj is valid unless 961 * KN_DETACHED is not set. 962 */ 963 again: 964 mutex_spin_enter(&kq->kq_lock); 965 if ((kn->kn_status & KN_DETACHED) == 0) { 966 p = kn->kn_obj; 967 if (!mutex_tryenter(p->p_lock)) { 968 mutex_spin_exit(&kq->kq_lock); 969 preempt_point(); 970 goto again; 971 } 972 kn->kn_status |= KN_DETACHED; 973 klist_remove(&p->p_klist, kn); 974 mutex_exit(p->p_lock); 975 } 976 mutex_spin_exit(&kq->kq_lock); 977 } 978 979 /* 980 * Filter event method for EVFILT_PROC. 981 * 982 * Due to some of the complexities of process locking, we have special 983 * entry points for delivering knote submissions. filt_proc() is used 984 * only to check for activation from kqueue_register() and kqueue_scan(). 985 */ 986 static int 987 filt_proc(struct knote *kn, long hint) 988 { 989 struct kqueue *kq = kn->kn_kq; 990 uint32_t fflags; 991 992 /* 993 * Because we share the same klist with signal knotes, just 994 * ensure that we're not being invoked for the proc-related 995 * submissions. 996 */ 997 KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0); 998 999 mutex_spin_enter(&kq->kq_lock); 1000 fflags = kn->kn_fflags; 1001 mutex_spin_exit(&kq->kq_lock); 1002 1003 return fflags != 0; 1004 } 1005 1006 void 1007 knote_proc_exec(struct proc *p) 1008 { 1009 struct knote *kn, *tmpkn; 1010 struct kqueue *kq; 1011 uint32_t fflags; 1012 1013 mutex_enter(p->p_lock); 1014 1015 SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) { 1016 /* N.B. EVFILT_SIGNAL knotes are on this same list. */ 1017 if (kn->kn_fop == &sig_filtops) { 1018 continue; 1019 } 1020 KASSERT(kn->kn_fop == &proc_filtops); 1021 1022 kq = kn->kn_kq; 1023 mutex_spin_enter(&kq->kq_lock); 1024 fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC)); 1025 if (fflags) { 1026 knote_activate_locked(kn); 1027 } 1028 mutex_spin_exit(&kq->kq_lock); 1029 } 1030 1031 mutex_exit(p->p_lock); 1032 } 1033 1034 static int __noinline 1035 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn) 1036 { 1037 struct kqueue *kq = okn->kn_kq; 1038 1039 KASSERT(mutex_owned(&kq->kq_lock)); 1040 KASSERT(mutex_owned(p1->p_lock)); 1041 1042 /* 1043 * We're going to put this knote into flux while we drop 1044 * the locks and create and attach a new knote to track the 1045 * child. If we are not able to enter flux, then this knote 1046 * is about to go away, so skip the notification. 1047 */ 1048 if (!kn_enter_flux(okn)) { 1049 return 0; 1050 } 1051 1052 mutex_spin_exit(&kq->kq_lock); 1053 mutex_exit(p1->p_lock); 1054 1055 /* 1056 * We actually have to register *two* new knotes: 1057 * 1058 * ==> One for the NOTE_CHILD notification. This is a forced 1059 * ONESHOT note. 1060 * 1061 * ==> One to actually track the child process as it subsequently 1062 * forks, execs, and, ultimately, exits. 1063 * 1064 * If we only register a single knote, then it's possible for 1065 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single 1066 * notification if the child exits before the tracking process 1067 * has received the NOTE_CHILD notification, which applications 1068 * aren't expecting (the event's 'data' field would be clobbered, 1069 * for example). 1070 * 1071 * To do this, what we have here is an **extremely** stripped-down 1072 * version of kqueue_register() that has the following properties: 1073 * 1074 * ==> Does not block to allocate memory. If we are unable 1075 * to allocate memory, we return ENOMEM. 1076 * 1077 * ==> Does not search for existing knotes; we know there 1078 * are not any because this is a new process that isn't 1079 * even visible to other processes yet. 1080 * 1081 * ==> Assumes that the knhash for our kq's descriptor table 1082 * already exists (after all, we're already tracking 1083 * processes with knotes if we got here). 1084 * 1085 * ==> Directly attaches the new tracking knote to the child 1086 * process. 1087 * 1088 * The whole point is to do the minimum amount of work while the 1089 * knote is held in-flux, and to avoid doing extra work in general 1090 * (we already have the new child process; why bother looking it 1091 * up again?). 1092 */ 1093 filedesc_t *fdp = kq->kq_fdp; 1094 struct knote *knchild, *kntrack; 1095 int error = 0; 1096 1097 knchild = knote_alloc(false); 1098 kntrack = knote_alloc(false); 1099 if (__predict_false(knchild == NULL || kntrack == NULL)) { 1100 error = ENOMEM; 1101 goto out; 1102 } 1103 1104 kntrack->kn_obj = p2; 1105 kntrack->kn_id = p2->p_pid; 1106 kntrack->kn_kq = kq; 1107 kntrack->kn_fop = okn->kn_fop; 1108 kntrack->kn_kfilter = okn->kn_kfilter; 1109 kntrack->kn_sfflags = okn->kn_sfflags; 1110 kntrack->kn_sdata = p1->p_pid; 1111 1112 kntrack->kn_kevent.ident = p2->p_pid; 1113 kntrack->kn_kevent.filter = okn->kn_filter; 1114 kntrack->kn_kevent.flags = 1115 okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR; 1116 kntrack->kn_kevent.fflags = 0; 1117 kntrack->kn_kevent.data = 0; 1118 kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */ 1119 1120 /* 1121 * The child note does not need to be attached to the 1122 * new proc's klist at all. 1123 */ 1124 *knchild = *kntrack; 1125 knchild->kn_status = KN_DETACHED; 1126 knchild->kn_sfflags = 0; 1127 knchild->kn_kevent.flags |= EV_ONESHOT; 1128 knchild->kn_kevent.fflags = NOTE_CHILD; 1129 knchild->kn_kevent.data = p1->p_pid; /* parent */ 1130 1131 mutex_enter(&fdp->fd_lock); 1132 1133 /* 1134 * We need to check to see if the kq is closing, and skip 1135 * attaching the knote if so. Normally, this isn't necessary 1136 * when coming in the front door because the file descriptor 1137 * layer will synchronize this. 1138 * 1139 * It's safe to test KQ_CLOSING without taking the kq_lock 1140 * here because that flag is only ever set when the fd_lock 1141 * is also held. 1142 */ 1143 if (__predict_false(kq->kq_count & KQ_CLOSING)) { 1144 mutex_exit(&fdp->fd_lock); 1145 goto out; 1146 } 1147 1148 /* 1149 * We do the "insert into FD table" and "attach to klist" steps 1150 * in the opposite order of kqueue_register() here to avoid 1151 * having to take p2->p_lock twice. But this is OK because we 1152 * hold fd_lock across the entire operation. 1153 */ 1154 1155 mutex_enter(p2->p_lock); 1156 error = kauth_authorize_process(curlwp->l_cred, 1157 KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL); 1158 if (__predict_false(error != 0)) { 1159 mutex_exit(p2->p_lock); 1160 mutex_exit(&fdp->fd_lock); 1161 error = EACCES; 1162 goto out; 1163 } 1164 klist_insert(&p2->p_klist, kntrack); 1165 mutex_exit(p2->p_lock); 1166 1167 KASSERT(fdp->fd_knhashmask != 0); 1168 KASSERT(fdp->fd_knhash != NULL); 1169 struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id, 1170 fdp->fd_knhashmask)]; 1171 SLIST_INSERT_HEAD(list, kntrack, kn_link); 1172 SLIST_INSERT_HEAD(list, knchild, kn_link); 1173 1174 /* This adds references for knchild *and* kntrack. */ 1175 atomic_add_int(&kntrack->kn_kfilter->refcnt, 2); 1176 1177 knote_activate(knchild); 1178 1179 kntrack = NULL; 1180 knchild = NULL; 1181 1182 mutex_exit(&fdp->fd_lock); 1183 1184 out: 1185 if (__predict_false(knchild != NULL)) { 1186 knote_free(knchild); 1187 } 1188 if (__predict_false(kntrack != NULL)) { 1189 knote_free(kntrack); 1190 } 1191 mutex_enter(p1->p_lock); 1192 mutex_spin_enter(&kq->kq_lock); 1193 1194 if (kn_leave_flux(okn)) { 1195 KQ_FLUX_WAKEUP(kq); 1196 } 1197 1198 return error; 1199 } 1200 1201 void 1202 knote_proc_fork(struct proc *p1, struct proc *p2) 1203 { 1204 struct knote *kn; 1205 struct kqueue *kq; 1206 uint32_t fflags; 1207 1208 mutex_enter(p1->p_lock); 1209 1210 /* 1211 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we 1212 * don't want to pre-fetch the next knote; in the event we 1213 * have to drop p_lock, we will have put the knote in-flux, 1214 * meaning that no one will be able to detach it until we 1215 * have taken the knote out of flux. However, that does 1216 * NOT stop someone else from detaching the next note in the 1217 * list while we have it unlocked. Thus, we want to fetch 1218 * the next note in the list only after we have re-acquired 1219 * the lock, and using SLIST_FOREACH() will satisfy that. 1220 */ 1221 SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) { 1222 /* N.B. EVFILT_SIGNAL knotes are on this same list. */ 1223 if (kn->kn_fop == &sig_filtops) { 1224 continue; 1225 } 1226 KASSERT(kn->kn_fop == &proc_filtops); 1227 1228 kq = kn->kn_kq; 1229 mutex_spin_enter(&kq->kq_lock); 1230 kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK); 1231 if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) { 1232 /* 1233 * This will drop kq_lock and p_lock and 1234 * re-acquire them before it returns. 1235 */ 1236 if (knote_proc_fork_track(p1, p2, kn)) { 1237 kn->kn_fflags |= NOTE_TRACKERR; 1238 } 1239 KASSERT(mutex_owned(p1->p_lock)); 1240 KASSERT(mutex_owned(&kq->kq_lock)); 1241 } 1242 fflags = kn->kn_fflags; 1243 if (fflags) { 1244 knote_activate_locked(kn); 1245 } 1246 mutex_spin_exit(&kq->kq_lock); 1247 } 1248 1249 mutex_exit(p1->p_lock); 1250 } 1251 1252 void 1253 knote_proc_exit(struct proc *p) 1254 { 1255 struct knote *kn; 1256 struct kqueue *kq; 1257 1258 KASSERT(mutex_owned(p->p_lock)); 1259 1260 while (!SLIST_EMPTY(&p->p_klist)) { 1261 kn = SLIST_FIRST(&p->p_klist); 1262 kq = kn->kn_kq; 1263 1264 KASSERT(kn->kn_obj == p); 1265 1266 mutex_spin_enter(&kq->kq_lock); 1267 kn->kn_data = P_WAITSTATUS(p); 1268 /* 1269 * Mark as ONESHOT, so that the knote is g/c'ed 1270 * when read. 1271 */ 1272 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1273 kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT; 1274 1275 /* 1276 * Detach the knote from the process and mark it as such. 1277 * N.B. EVFILT_SIGNAL are also on p_klist, but by the 1278 * time we get here, all open file descriptors for this 1279 * process have been released, meaning that signal knotes 1280 * will have already been detached. 1281 * 1282 * We need to synchronize this with filt_procdetach(). 1283 */ 1284 KASSERT(kn->kn_fop == &proc_filtops); 1285 if ((kn->kn_status & KN_DETACHED) == 0) { 1286 kn->kn_status |= KN_DETACHED; 1287 SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext); 1288 } 1289 1290 /* 1291 * Always activate the knote for NOTE_EXIT regardless 1292 * of whether or not the listener cares about it. 1293 * This matches historical behavior. 1294 */ 1295 knote_activate_locked(kn); 1296 mutex_spin_exit(&kq->kq_lock); 1297 } 1298 } 1299 1300 #define FILT_TIMER_NOSCHED ((uintptr_t)-1) 1301 1302 static int 1303 filt_timercompute(struct kevent *kev, uintptr_t *tticksp) 1304 { 1305 struct timespec ts; 1306 uintptr_t tticks; 1307 1308 if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) { 1309 return EINVAL; 1310 } 1311 1312 /* 1313 * Convert the event 'data' to a timespec, then convert the 1314 * timespec to callout ticks. 1315 */ 1316 switch (kev->fflags & NOTE_TIMER_UNITMASK) { 1317 case NOTE_SECONDS: 1318 ts.tv_sec = kev->data; 1319 ts.tv_nsec = 0; 1320 break; 1321 1322 case NOTE_MSECONDS: /* == historical value 0 */ 1323 ts.tv_sec = kev->data / 1000; 1324 ts.tv_nsec = (kev->data % 1000) * 1000000; 1325 break; 1326 1327 case NOTE_USECONDS: 1328 ts.tv_sec = kev->data / 1000000; 1329 ts.tv_nsec = (kev->data % 1000000) * 1000; 1330 break; 1331 1332 case NOTE_NSECONDS: 1333 ts.tv_sec = kev->data / 1000000000; 1334 ts.tv_nsec = kev->data % 1000000000; 1335 break; 1336 1337 default: 1338 return EINVAL; 1339 } 1340 1341 if (kev->fflags & NOTE_ABSTIME) { 1342 struct timespec deadline = ts; 1343 1344 /* 1345 * Get current time. 1346 * 1347 * XXX This is CLOCK_REALTIME. There is no way to 1348 * XXX specify CLOCK_MONOTONIC. 1349 */ 1350 nanotime(&ts); 1351 1352 /* Absolute timers do not repeat. */ 1353 kev->data = FILT_TIMER_NOSCHED; 1354 1355 /* If we're past the deadline, then the event will fire. */ 1356 if (timespeccmp(&deadline, &ts, <=)) { 1357 tticks = FILT_TIMER_NOSCHED; 1358 goto out; 1359 } 1360 1361 /* Calculate how much time is left. */ 1362 timespecsub(&deadline, &ts, &ts); 1363 } else { 1364 /* EV_CLEAR automatically set for relative timers. */ 1365 kev->flags |= EV_CLEAR; 1366 } 1367 1368 tticks = tstohz(&ts); 1369 1370 /* if the supplied value is under our resolution, use 1 tick */ 1371 if (tticks == 0) { 1372 if (kev->data == 0) 1373 return EINVAL; 1374 tticks = 1; 1375 } else if (tticks > INT_MAX) { 1376 return EINVAL; 1377 } 1378 1379 if ((kev->flags & EV_ONESHOT) != 0) { 1380 /* Timer does not repeat. */ 1381 kev->data = FILT_TIMER_NOSCHED; 1382 } else { 1383 KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED); 1384 kev->data = tticks; 1385 } 1386 1387 out: 1388 *tticksp = tticks; 1389 1390 return 0; 1391 } 1392 1393 static void 1394 filt_timerexpire(void *knx) 1395 { 1396 struct knote *kn = knx; 1397 struct kqueue *kq = kn->kn_kq; 1398 1399 mutex_spin_enter(&kq->kq_lock); 1400 kn->kn_data++; 1401 knote_activate_locked(kn); 1402 if (kn->kn_sdata != FILT_TIMER_NOSCHED) { 1403 KASSERT(kn->kn_sdata > 0 && kn->kn_sdata <= INT_MAX); 1404 callout_schedule((callout_t *)kn->kn_hook, 1405 (int)kn->kn_sdata); 1406 } 1407 mutex_spin_exit(&kq->kq_lock); 1408 } 1409 1410 static inline void 1411 filt_timerstart(struct knote *kn, uintptr_t tticks) 1412 { 1413 callout_t *calloutp = kn->kn_hook; 1414 1415 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 1416 KASSERT(!callout_pending(calloutp)); 1417 1418 if (__predict_false(tticks == FILT_TIMER_NOSCHED)) { 1419 kn->kn_data = 1; 1420 } else { 1421 KASSERT(tticks <= INT_MAX); 1422 callout_reset(calloutp, (int)tticks, filt_timerexpire, kn); 1423 } 1424 } 1425 1426 static int 1427 filt_timerattach(struct knote *kn) 1428 { 1429 callout_t *calloutp; 1430 struct kqueue *kq; 1431 uintptr_t tticks; 1432 int error; 1433 1434 struct kevent kev = { 1435 .flags = kn->kn_flags, 1436 .fflags = kn->kn_sfflags, 1437 .data = kn->kn_sdata, 1438 }; 1439 1440 error = filt_timercompute(&kev, &tticks); 1441 if (error) { 1442 return error; 1443 } 1444 1445 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax || 1446 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) { 1447 atomic_dec_uint(&kq_ncallouts); 1448 return ENOMEM; 1449 } 1450 callout_init(calloutp, CALLOUT_MPSAFE); 1451 1452 kq = kn->kn_kq; 1453 mutex_spin_enter(&kq->kq_lock); 1454 1455 kn->kn_sdata = kev.data; 1456 kn->kn_flags = kev.flags; 1457 KASSERT(kn->kn_sfflags == kev.fflags); 1458 kn->kn_hook = calloutp; 1459 1460 filt_timerstart(kn, tticks); 1461 1462 mutex_spin_exit(&kq->kq_lock); 1463 1464 return (0); 1465 } 1466 1467 static void 1468 filt_timerdetach(struct knote *kn) 1469 { 1470 callout_t *calloutp; 1471 struct kqueue *kq = kn->kn_kq; 1472 1473 /* prevent rescheduling when we expire */ 1474 mutex_spin_enter(&kq->kq_lock); 1475 kn->kn_sdata = FILT_TIMER_NOSCHED; 1476 mutex_spin_exit(&kq->kq_lock); 1477 1478 calloutp = (callout_t *)kn->kn_hook; 1479 1480 /* 1481 * Attempt to stop the callout. This will block if it's 1482 * already running. 1483 */ 1484 callout_halt(calloutp, NULL); 1485 1486 callout_destroy(calloutp); 1487 kmem_free(calloutp, sizeof(*calloutp)); 1488 atomic_dec_uint(&kq_ncallouts); 1489 } 1490 1491 static int 1492 filt_timertouch(struct knote *kn, struct kevent *kev, long type) 1493 { 1494 struct kqueue *kq = kn->kn_kq; 1495 callout_t *calloutp; 1496 uintptr_t tticks; 1497 int error; 1498 1499 KASSERT(mutex_owned(&kq->kq_lock)); 1500 1501 switch (type) { 1502 case EVENT_REGISTER: 1503 /* Only relevant for EV_ADD. */ 1504 if ((kev->flags & EV_ADD) == 0) { 1505 return 0; 1506 } 1507 1508 /* 1509 * Stop the timer, under the assumption that if 1510 * an application is re-configuring the timer, 1511 * they no longer care about the old one. We 1512 * can safely drop the kq_lock while we wait 1513 * because fdp->fd_lock will be held throughout, 1514 * ensuring that no one can sneak in with an 1515 * EV_DELETE or close the kq. 1516 */ 1517 KASSERT(mutex_owned(&kq->kq_fdp->fd_lock)); 1518 1519 calloutp = kn->kn_hook; 1520 callout_halt(calloutp, &kq->kq_lock); 1521 KASSERT(mutex_owned(&kq->kq_lock)); 1522 knote_deactivate_locked(kn); 1523 kn->kn_data = 0; 1524 1525 error = filt_timercompute(kev, &tticks); 1526 if (error) { 1527 return error; 1528 } 1529 kn->kn_sdata = kev->data; 1530 kn->kn_flags = kev->flags; 1531 kn->kn_sfflags = kev->fflags; 1532 filt_timerstart(kn, tticks); 1533 break; 1534 1535 case EVENT_PROCESS: 1536 *kev = kn->kn_kevent; 1537 break; 1538 1539 default: 1540 panic("%s: invalid type (%ld)", __func__, type); 1541 } 1542 1543 return 0; 1544 } 1545 1546 static int 1547 filt_timer(struct knote *kn, long hint) 1548 { 1549 struct kqueue *kq = kn->kn_kq; 1550 int rv; 1551 1552 mutex_spin_enter(&kq->kq_lock); 1553 rv = (kn->kn_data != 0); 1554 mutex_spin_exit(&kq->kq_lock); 1555 1556 return rv; 1557 } 1558 1559 static int 1560 filt_userattach(struct knote *kn) 1561 { 1562 struct kqueue *kq = kn->kn_kq; 1563 1564 /* 1565 * EVFILT_USER knotes are not attached to anything in the kernel. 1566 */ 1567 mutex_spin_enter(&kq->kq_lock); 1568 kn->kn_hook = NULL; 1569 if (kn->kn_fflags & NOTE_TRIGGER) 1570 kn->kn_hookid = 1; 1571 else 1572 kn->kn_hookid = 0; 1573 mutex_spin_exit(&kq->kq_lock); 1574 return (0); 1575 } 1576 1577 static void 1578 filt_userdetach(struct knote *kn) 1579 { 1580 1581 /* 1582 * EVFILT_USER knotes are not attached to anything in the kernel. 1583 */ 1584 } 1585 1586 static int 1587 filt_user(struct knote *kn, long hint) 1588 { 1589 struct kqueue *kq = kn->kn_kq; 1590 int hookid; 1591 1592 mutex_spin_enter(&kq->kq_lock); 1593 hookid = kn->kn_hookid; 1594 mutex_spin_exit(&kq->kq_lock); 1595 1596 return hookid; 1597 } 1598 1599 static int 1600 filt_usertouch(struct knote *kn, struct kevent *kev, long type) 1601 { 1602 int ffctrl; 1603 1604 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 1605 1606 switch (type) { 1607 case EVENT_REGISTER: 1608 if (kev->fflags & NOTE_TRIGGER) 1609 kn->kn_hookid = 1; 1610 1611 ffctrl = kev->fflags & NOTE_FFCTRLMASK; 1612 kev->fflags &= NOTE_FFLAGSMASK; 1613 switch (ffctrl) { 1614 case NOTE_FFNOP: 1615 break; 1616 1617 case NOTE_FFAND: 1618 kn->kn_sfflags &= kev->fflags; 1619 break; 1620 1621 case NOTE_FFOR: 1622 kn->kn_sfflags |= kev->fflags; 1623 break; 1624 1625 case NOTE_FFCOPY: 1626 kn->kn_sfflags = kev->fflags; 1627 break; 1628 1629 default: 1630 /* XXX Return error? */ 1631 break; 1632 } 1633 kn->kn_sdata = kev->data; 1634 if (kev->flags & EV_CLEAR) { 1635 kn->kn_hookid = 0; 1636 kn->kn_data = 0; 1637 kn->kn_fflags = 0; 1638 } 1639 break; 1640 1641 case EVENT_PROCESS: 1642 *kev = kn->kn_kevent; 1643 kev->fflags = kn->kn_sfflags; 1644 kev->data = kn->kn_sdata; 1645 if (kn->kn_flags & EV_CLEAR) { 1646 kn->kn_hookid = 0; 1647 kn->kn_data = 0; 1648 kn->kn_fflags = 0; 1649 } 1650 break; 1651 1652 default: 1653 panic("filt_usertouch() - invalid type (%ld)", type); 1654 break; 1655 } 1656 1657 return 0; 1658 } 1659 1660 /* 1661 * filt_seltrue: 1662 * 1663 * This filter "event" routine simulates seltrue(). 1664 */ 1665 int 1666 filt_seltrue(struct knote *kn, long hint) 1667 { 1668 1669 /* 1670 * We don't know how much data can be read/written, 1671 * but we know that it *can* be. This is about as 1672 * good as select/poll does as well. 1673 */ 1674 kn->kn_data = 0; 1675 return (1); 1676 } 1677 1678 /* 1679 * This provides full kqfilter entry for device switch tables, which 1680 * has same effect as filter using filt_seltrue() as filter method. 1681 */ 1682 static void 1683 filt_seltruedetach(struct knote *kn) 1684 { 1685 /* Nothing to do */ 1686 } 1687 1688 const struct filterops seltrue_filtops = { 1689 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 1690 .f_attach = NULL, 1691 .f_detach = filt_seltruedetach, 1692 .f_event = filt_seltrue, 1693 }; 1694 1695 int 1696 seltrue_kqfilter(dev_t dev, struct knote *kn) 1697 { 1698 switch (kn->kn_filter) { 1699 case EVFILT_READ: 1700 case EVFILT_WRITE: 1701 kn->kn_fop = &seltrue_filtops; 1702 break; 1703 default: 1704 return (EINVAL); 1705 } 1706 1707 /* Nothing more to do */ 1708 return (0); 1709 } 1710 1711 /* 1712 * kqueue(2) system call. 1713 */ 1714 static int 1715 kqueue1(struct lwp *l, int flags, register_t *retval) 1716 { 1717 struct kqueue *kq; 1718 file_t *fp; 1719 int fd, error; 1720 1721 if ((error = fd_allocfile(&fp, &fd)) != 0) 1722 return error; 1723 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE)); 1724 fp->f_type = DTYPE_KQUEUE; 1725 fp->f_ops = &kqueueops; 1726 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP); 1727 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED); 1728 cv_init(&kq->kq_cv, "kqueue"); 1729 selinit(&kq->kq_sel); 1730 TAILQ_INIT(&kq->kq_head); 1731 fp->f_kqueue = kq; 1732 *retval = fd; 1733 kq->kq_fdp = curlwp->l_fd; 1734 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0); 1735 fd_affix(curproc, fp, fd); 1736 return error; 1737 } 1738 1739 /* 1740 * kqueue(2) system call. 1741 */ 1742 int 1743 sys_kqueue(struct lwp *l, const void *v, register_t *retval) 1744 { 1745 return kqueue1(l, 0, retval); 1746 } 1747 1748 int 1749 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap, 1750 register_t *retval) 1751 { 1752 /* { 1753 syscallarg(int) flags; 1754 } */ 1755 return kqueue1(l, SCARG(uap, flags), retval); 1756 } 1757 1758 /* 1759 * kevent(2) system call. 1760 */ 1761 int 1762 kevent_fetch_changes(void *ctx, const struct kevent *changelist, 1763 struct kevent *changes, size_t index, int n) 1764 { 1765 1766 return copyin(changelist + index, changes, n * sizeof(*changes)); 1767 } 1768 1769 int 1770 kevent_put_events(void *ctx, struct kevent *events, 1771 struct kevent *eventlist, size_t index, int n) 1772 { 1773 1774 return copyout(events, eventlist + index, n * sizeof(*events)); 1775 } 1776 1777 static const struct kevent_ops kevent_native_ops = { 1778 .keo_private = NULL, 1779 .keo_fetch_timeout = copyin, 1780 .keo_fetch_changes = kevent_fetch_changes, 1781 .keo_put_events = kevent_put_events, 1782 }; 1783 1784 int 1785 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap, 1786 register_t *retval) 1787 { 1788 /* { 1789 syscallarg(int) fd; 1790 syscallarg(const struct kevent *) changelist; 1791 syscallarg(size_t) nchanges; 1792 syscallarg(struct kevent *) eventlist; 1793 syscallarg(size_t) nevents; 1794 syscallarg(const struct timespec *) timeout; 1795 } */ 1796 1797 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist), 1798 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents), 1799 SCARG(uap, timeout), &kevent_native_ops); 1800 } 1801 1802 int 1803 kevent1(register_t *retval, int fd, 1804 const struct kevent *changelist, size_t nchanges, 1805 struct kevent *eventlist, size_t nevents, 1806 const struct timespec *timeout, 1807 const struct kevent_ops *keops) 1808 { 1809 struct kevent *kevp; 1810 struct kqueue *kq; 1811 struct timespec ts; 1812 size_t i, n, ichange; 1813 int nerrors, error; 1814 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */ 1815 file_t *fp; 1816 1817 /* check that we're dealing with a kq */ 1818 fp = fd_getfile(fd); 1819 if (fp == NULL) 1820 return (EBADF); 1821 1822 if (fp->f_type != DTYPE_KQUEUE) { 1823 fd_putfile(fd); 1824 return (EBADF); 1825 } 1826 1827 if (timeout != NULL) { 1828 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts)); 1829 if (error) 1830 goto done; 1831 timeout = &ts; 1832 } 1833 1834 kq = fp->f_kqueue; 1835 nerrors = 0; 1836 ichange = 0; 1837 1838 /* traverse list of events to register */ 1839 while (nchanges > 0) { 1840 n = MIN(nchanges, __arraycount(kevbuf)); 1841 error = (*keops->keo_fetch_changes)(keops->keo_private, 1842 changelist, kevbuf, ichange, n); 1843 if (error) 1844 goto done; 1845 for (i = 0; i < n; i++) { 1846 kevp = &kevbuf[i]; 1847 kevp->flags &= ~EV_SYSFLAGS; 1848 /* register each knote */ 1849 error = kqueue_register(kq, kevp); 1850 if (!error && !(kevp->flags & EV_RECEIPT)) 1851 continue; 1852 if (nevents == 0) 1853 goto done; 1854 kevp->flags = EV_ERROR; 1855 kevp->data = error; 1856 error = (*keops->keo_put_events) 1857 (keops->keo_private, kevp, 1858 eventlist, nerrors, 1); 1859 if (error) 1860 goto done; 1861 nevents--; 1862 nerrors++; 1863 } 1864 nchanges -= n; /* update the results */ 1865 ichange += n; 1866 } 1867 if (nerrors) { 1868 *retval = nerrors; 1869 error = 0; 1870 goto done; 1871 } 1872 1873 /* actually scan through the events */ 1874 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops, 1875 kevbuf, __arraycount(kevbuf)); 1876 done: 1877 fd_putfile(fd); 1878 return (error); 1879 } 1880 1881 /* 1882 * Register a given kevent kev onto the kqueue 1883 */ 1884 static int 1885 kqueue_register(struct kqueue *kq, struct kevent *kev) 1886 { 1887 struct kfilter *kfilter; 1888 filedesc_t *fdp; 1889 file_t *fp; 1890 fdfile_t *ff; 1891 struct knote *kn, *newkn; 1892 struct klist *list; 1893 int error, fd, rv; 1894 1895 fdp = kq->kq_fdp; 1896 fp = NULL; 1897 kn = NULL; 1898 error = 0; 1899 fd = 0; 1900 1901 newkn = knote_alloc(true); 1902 1903 rw_enter(&kqueue_filter_lock, RW_READER); 1904 kfilter = kfilter_byfilter(kev->filter); 1905 if (kfilter == NULL || kfilter->filtops == NULL) { 1906 /* filter not found nor implemented */ 1907 rw_exit(&kqueue_filter_lock); 1908 knote_free(newkn); 1909 return (EINVAL); 1910 } 1911 1912 /* search if knote already exists */ 1913 if (kfilter->filtops->f_flags & FILTEROP_ISFD) { 1914 /* monitoring a file descriptor */ 1915 /* validate descriptor */ 1916 if (kev->ident > INT_MAX 1917 || (fp = fd_getfile(fd = kev->ident)) == NULL) { 1918 rw_exit(&kqueue_filter_lock); 1919 knote_free(newkn); 1920 return EBADF; 1921 } 1922 mutex_enter(&fdp->fd_lock); 1923 ff = fdp->fd_dt->dt_ff[fd]; 1924 if (ff->ff_refcnt & FR_CLOSING) { 1925 error = EBADF; 1926 goto doneunlock; 1927 } 1928 if (fd <= fdp->fd_lastkqfile) { 1929 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) { 1930 if (kq == kn->kn_kq && 1931 kev->filter == kn->kn_filter) 1932 break; 1933 } 1934 } 1935 } else { 1936 /* 1937 * not monitoring a file descriptor, so 1938 * lookup knotes in internal hash table 1939 */ 1940 mutex_enter(&fdp->fd_lock); 1941 if (fdp->fd_knhashmask != 0) { 1942 list = &fdp->fd_knhash[ 1943 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; 1944 SLIST_FOREACH(kn, list, kn_link) { 1945 if (kev->ident == kn->kn_id && 1946 kq == kn->kn_kq && 1947 kev->filter == kn->kn_filter) 1948 break; 1949 } 1950 } 1951 } 1952 1953 /* It's safe to test KQ_CLOSING while holding only the fd_lock. */ 1954 KASSERT(mutex_owned(&fdp->fd_lock)); 1955 KASSERT((kq->kq_count & KQ_CLOSING) == 0); 1956 1957 /* 1958 * kn now contains the matching knote, or NULL if no match 1959 */ 1960 if (kn == NULL) { 1961 if (kev->flags & EV_ADD) { 1962 /* create new knote */ 1963 kn = newkn; 1964 newkn = NULL; 1965 kn->kn_obj = fp; 1966 kn->kn_id = kev->ident; 1967 kn->kn_kq = kq; 1968 kn->kn_fop = kfilter->filtops; 1969 kn->kn_kfilter = kfilter; 1970 kn->kn_sfflags = kev->fflags; 1971 kn->kn_sdata = kev->data; 1972 kev->fflags = 0; 1973 kev->data = 0; 1974 kn->kn_kevent = *kev; 1975 1976 KASSERT(kn->kn_fop != NULL); 1977 /* 1978 * XXX Allow only known-safe users of f_touch. 1979 * XXX See filter_touch() for details. 1980 */ 1981 if (kn->kn_fop->f_touch != NULL && 1982 kn->kn_fop != &timer_filtops && 1983 kn->kn_fop != &user_filtops) { 1984 error = ENOTSUP; 1985 goto fail_ev_add; 1986 } 1987 1988 /* 1989 * apply reference count to knote structure, and 1990 * do not release it at the end of this routine. 1991 */ 1992 fp = NULL; 1993 1994 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) { 1995 /* 1996 * If knote is not on an fd, store on 1997 * internal hash table. 1998 */ 1999 if (fdp->fd_knhashmask == 0) { 2000 /* XXXAD can block with fd_lock held */ 2001 fdp->fd_knhash = hashinit(KN_HASHSIZE, 2002 HASH_LIST, true, 2003 &fdp->fd_knhashmask); 2004 } 2005 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, 2006 fdp->fd_knhashmask)]; 2007 } else { 2008 /* Otherwise, knote is on an fd. */ 2009 list = (struct klist *) 2010 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; 2011 if ((int)kn->kn_id > fdp->fd_lastkqfile) 2012 fdp->fd_lastkqfile = kn->kn_id; 2013 } 2014 SLIST_INSERT_HEAD(list, kn, kn_link); 2015 2016 /* 2017 * N.B. kn->kn_fop may change as the result 2018 * of filter_attach()! 2019 */ 2020 knote_foplock_enter(kn); 2021 error = filter_attach(kn); 2022 if (error != 0) { 2023 #ifdef DEBUG 2024 struct proc *p = curlwp->l_proc; 2025 const file_t *ft = kn->kn_obj; 2026 printf("%s: %s[%d]: event type %d not " 2027 "supported for file type %d/%s " 2028 "(error %d)\n", __func__, 2029 p->p_comm, p->p_pid, 2030 kn->kn_filter, ft ? ft->f_type : -1, 2031 ft ? ft->f_ops->fo_name : "?", error); 2032 #endif 2033 2034 fail_ev_add: 2035 /* 2036 * N.B. no need to check for this note to 2037 * be in-flux, since it was never visible 2038 * to the monitored object. 2039 * 2040 * knote_detach() drops fdp->fd_lock 2041 */ 2042 knote_foplock_exit(kn); 2043 mutex_enter(&kq->kq_lock); 2044 KNOTE_WILLDETACH(kn); 2045 KASSERT(kn_in_flux(kn) == false); 2046 mutex_exit(&kq->kq_lock); 2047 knote_detach(kn, fdp, false); 2048 goto done; 2049 } 2050 atomic_inc_uint(&kfilter->refcnt); 2051 goto done_ev_add; 2052 } else { 2053 /* No matching knote and the EV_ADD flag is not set. */ 2054 error = ENOENT; 2055 goto doneunlock; 2056 } 2057 } 2058 2059 if (kev->flags & EV_DELETE) { 2060 /* 2061 * Let the world know that this knote is about to go 2062 * away, and wait for it to settle if it's currently 2063 * in-flux. 2064 */ 2065 mutex_spin_enter(&kq->kq_lock); 2066 if (kn->kn_status & KN_WILLDETACH) { 2067 /* 2068 * This knote is already on its way out, 2069 * so just be done. 2070 */ 2071 mutex_spin_exit(&kq->kq_lock); 2072 goto doneunlock; 2073 } 2074 KNOTE_WILLDETACH(kn); 2075 if (kn_in_flux(kn)) { 2076 mutex_exit(&fdp->fd_lock); 2077 /* 2078 * It's safe for us to conclusively wait for 2079 * this knote to settle because we know we'll 2080 * be completing the detach. 2081 */ 2082 kn_wait_flux(kn, true); 2083 KASSERT(kn_in_flux(kn) == false); 2084 mutex_spin_exit(&kq->kq_lock); 2085 mutex_enter(&fdp->fd_lock); 2086 } else { 2087 mutex_spin_exit(&kq->kq_lock); 2088 } 2089 2090 /* knote_detach() drops fdp->fd_lock */ 2091 knote_detach(kn, fdp, true); 2092 goto done; 2093 } 2094 2095 /* 2096 * The user may change some filter values after the 2097 * initial EV_ADD, but doing so will not reset any 2098 * filter which have already been triggered. 2099 */ 2100 knote_foplock_enter(kn); 2101 kn->kn_kevent.udata = kev->udata; 2102 KASSERT(kn->kn_fop != NULL); 2103 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && 2104 kn->kn_fop->f_touch != NULL) { 2105 mutex_spin_enter(&kq->kq_lock); 2106 error = filter_touch(kn, kev, EVENT_REGISTER); 2107 mutex_spin_exit(&kq->kq_lock); 2108 if (__predict_false(error != 0)) { 2109 /* Never a new knote (which would consume newkn). */ 2110 KASSERT(newkn != NULL); 2111 knote_foplock_exit(kn); 2112 goto doneunlock; 2113 } 2114 } else { 2115 kn->kn_sfflags = kev->fflags; 2116 kn->kn_sdata = kev->data; 2117 } 2118 2119 /* 2120 * We can get here if we are trying to attach 2121 * an event to a file descriptor that does not 2122 * support events, and the attach routine is 2123 * broken and does not return an error. 2124 */ 2125 done_ev_add: 2126 rv = filter_event(kn, 0, false); 2127 if (rv) 2128 knote_activate(kn); 2129 2130 knote_foplock_exit(kn); 2131 2132 /* disable knote */ 2133 if ((kev->flags & EV_DISABLE)) { 2134 mutex_spin_enter(&kq->kq_lock); 2135 if ((kn->kn_status & KN_DISABLED) == 0) 2136 kn->kn_status |= KN_DISABLED; 2137 mutex_spin_exit(&kq->kq_lock); 2138 } 2139 2140 /* enable knote */ 2141 if ((kev->flags & EV_ENABLE)) { 2142 knote_enqueue(kn); 2143 } 2144 doneunlock: 2145 mutex_exit(&fdp->fd_lock); 2146 done: 2147 rw_exit(&kqueue_filter_lock); 2148 if (newkn != NULL) 2149 knote_free(newkn); 2150 if (fp != NULL) 2151 fd_putfile(fd); 2152 return (error); 2153 } 2154 2155 #define KN_FMT(buf, kn) \ 2156 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf) 2157 2158 #if defined(DDB) 2159 void 2160 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...)) 2161 { 2162 const struct knote *kn; 2163 u_int count; 2164 int nmarker; 2165 char buf[128]; 2166 2167 count = 0; 2168 nmarker = 0; 2169 2170 (*pr)("kqueue %p (restart=%d count=%u):\n", kq, 2171 !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq)); 2172 (*pr)(" Queued knotes:\n"); 2173 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { 2174 if (kn->kn_status & KN_MARKER) { 2175 nmarker++; 2176 } else { 2177 count++; 2178 } 2179 (*pr)(" knote %p: kq=%p status=%s\n", 2180 kn, kn->kn_kq, KN_FMT(buf, kn)); 2181 (*pr)(" id=0x%lx (%lu) filter=%d\n", 2182 (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter); 2183 if (kn->kn_kq != kq) { 2184 (*pr)(" !!! kn->kn_kq != kq\n"); 2185 } 2186 } 2187 if (count != KQ_COUNT(kq)) { 2188 (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n", 2189 count, KQ_COUNT(kq)); 2190 } 2191 } 2192 #endif /* DDB */ 2193 2194 #if defined(DEBUG) 2195 static void 2196 kqueue_check(const char *func, size_t line, const struct kqueue *kq) 2197 { 2198 const struct knote *kn; 2199 u_int count; 2200 int nmarker; 2201 char buf[128]; 2202 2203 KASSERT(mutex_owned(&kq->kq_lock)); 2204 2205 count = 0; 2206 nmarker = 0; 2207 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { 2208 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) { 2209 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s", 2210 func, line, kq, kn, KN_FMT(buf, kn)); 2211 } 2212 if ((kn->kn_status & KN_MARKER) == 0) { 2213 if (kn->kn_kq != kq) { 2214 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s", 2215 func, line, kq, kn, kn->kn_kq, 2216 KN_FMT(buf, kn)); 2217 } 2218 if ((kn->kn_status & KN_ACTIVE) == 0) { 2219 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s", 2220 func, line, kq, kn, KN_FMT(buf, kn)); 2221 } 2222 count++; 2223 if (count > KQ_COUNT(kq)) { 2224 panic("%s,%zu: kq=%p kq->kq_count(%u) != " 2225 "count(%d), nmarker=%d", 2226 func, line, kq, KQ_COUNT(kq), count, 2227 nmarker); 2228 } 2229 } else { 2230 nmarker++; 2231 } 2232 } 2233 } 2234 #define kq_check(a) kqueue_check(__func__, __LINE__, (a)) 2235 #else /* defined(DEBUG) */ 2236 #define kq_check(a) /* nothing */ 2237 #endif /* defined(DEBUG) */ 2238 2239 static void 2240 kqueue_restart(file_t *fp) 2241 { 2242 struct kqueue *kq = fp->f_kqueue; 2243 KASSERT(kq != NULL); 2244 2245 mutex_spin_enter(&kq->kq_lock); 2246 kq->kq_count |= KQ_RESTART; 2247 cv_broadcast(&kq->kq_cv); 2248 mutex_spin_exit(&kq->kq_lock); 2249 } 2250 2251 /* 2252 * Scan through the list of events on fp (for a maximum of maxevents), 2253 * returning the results in to ulistp. Timeout is determined by tsp; if 2254 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait 2255 * as appropriate. 2256 */ 2257 static int 2258 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp, 2259 const struct timespec *tsp, register_t *retval, 2260 const struct kevent_ops *keops, struct kevent *kevbuf, 2261 size_t kevcnt) 2262 { 2263 struct kqueue *kq; 2264 struct kevent *kevp; 2265 struct timespec ats, sleepts; 2266 struct knote *kn, *marker; 2267 struct knote_impl morker; 2268 size_t count, nkev, nevents; 2269 int timeout, error, touch, rv, influx; 2270 filedesc_t *fdp; 2271 2272 fdp = curlwp->l_fd; 2273 kq = fp->f_kqueue; 2274 count = maxevents; 2275 nkev = nevents = error = 0; 2276 if (count == 0) { 2277 *retval = 0; 2278 return 0; 2279 } 2280 2281 if (tsp) { /* timeout supplied */ 2282 ats = *tsp; 2283 if (inittimeleft(&ats, &sleepts) == -1) { 2284 *retval = maxevents; 2285 return EINVAL; 2286 } 2287 timeout = tstohz(&ats); 2288 if (timeout <= 0) 2289 timeout = -1; /* do poll */ 2290 } else { 2291 /* no timeout, wait forever */ 2292 timeout = 0; 2293 } 2294 2295 memset(&morker, 0, sizeof(morker)); 2296 marker = &morker.ki_knote; 2297 marker->kn_kq = kq; 2298 marker->kn_status = KN_MARKER; 2299 mutex_spin_enter(&kq->kq_lock); 2300 retry: 2301 kevp = kevbuf; 2302 if (KQ_COUNT(kq) == 0) { 2303 if (timeout >= 0) { 2304 error = cv_timedwait_sig(&kq->kq_cv, 2305 &kq->kq_lock, timeout); 2306 if (error == 0) { 2307 if (KQ_COUNT(kq) == 0 && 2308 (kq->kq_count & KQ_RESTART)) { 2309 /* return to clear file reference */ 2310 error = ERESTART; 2311 } else if (tsp == NULL || (timeout = 2312 gettimeleft(&ats, &sleepts)) > 0) { 2313 goto retry; 2314 } 2315 } else { 2316 /* don't restart after signals... */ 2317 if (error == ERESTART) 2318 error = EINTR; 2319 if (error == EWOULDBLOCK) 2320 error = 0; 2321 } 2322 } 2323 mutex_spin_exit(&kq->kq_lock); 2324 goto done; 2325 } 2326 2327 /* mark end of knote list */ 2328 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); 2329 influx = 0; 2330 2331 /* 2332 * Acquire the fdp->fd_lock interlock to avoid races with 2333 * file creation/destruction from other threads. 2334 */ 2335 mutex_spin_exit(&kq->kq_lock); 2336 relock: 2337 mutex_enter(&fdp->fd_lock); 2338 mutex_spin_enter(&kq->kq_lock); 2339 2340 while (count != 0) { 2341 /* 2342 * Get next knote. We are guaranteed this will never 2343 * be NULL because of the marker we inserted above. 2344 */ 2345 kn = TAILQ_FIRST(&kq->kq_head); 2346 2347 bool kn_is_other_marker = 2348 (kn->kn_status & KN_MARKER) != 0 && kn != marker; 2349 bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0; 2350 bool kn_is_in_flux = kn_in_flux(kn); 2351 2352 /* 2353 * If we found a marker that's not ours, or this knote 2354 * is in a state of flux, then wait for everything to 2355 * settle down and go around again. 2356 */ 2357 if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) { 2358 if (influx) { 2359 influx = 0; 2360 KQ_FLUX_WAKEUP(kq); 2361 } 2362 mutex_exit(&fdp->fd_lock); 2363 if (kn_is_other_marker || kn_is_in_flux) { 2364 KQ_FLUX_WAIT(kq); 2365 mutex_spin_exit(&kq->kq_lock); 2366 } else { 2367 /* 2368 * Detaching but not in-flux? Someone is 2369 * actively trying to finish the job; just 2370 * go around and try again. 2371 */ 2372 KASSERT(kn_is_detaching); 2373 mutex_spin_exit(&kq->kq_lock); 2374 preempt_point(); 2375 } 2376 goto relock; 2377 } 2378 2379 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2380 if (kn == marker) { 2381 /* it's our marker, stop */ 2382 KQ_FLUX_WAKEUP(kq); 2383 if (count == maxevents) { 2384 mutex_exit(&fdp->fd_lock); 2385 goto retry; 2386 } 2387 break; 2388 } 2389 KASSERT((kn->kn_status & KN_BUSY) == 0); 2390 2391 kq_check(kq); 2392 kn->kn_status &= ~KN_QUEUED; 2393 kn->kn_status |= KN_BUSY; 2394 kq_check(kq); 2395 if (kn->kn_status & KN_DISABLED) { 2396 kn->kn_status &= ~KN_BUSY; 2397 kq->kq_count--; 2398 /* don't want disabled events */ 2399 continue; 2400 } 2401 if ((kn->kn_flags & EV_ONESHOT) == 0) { 2402 mutex_spin_exit(&kq->kq_lock); 2403 KASSERT(mutex_owned(&fdp->fd_lock)); 2404 knote_foplock_enter(kn); 2405 rv = filter_event(kn, 0, false); 2406 knote_foplock_exit(kn); 2407 mutex_spin_enter(&kq->kq_lock); 2408 /* Re-poll if note was re-enqueued. */ 2409 if ((kn->kn_status & KN_QUEUED) != 0) { 2410 kn->kn_status &= ~KN_BUSY; 2411 /* Re-enqueue raised kq_count, lower it again */ 2412 kq->kq_count--; 2413 influx = 1; 2414 continue; 2415 } 2416 if (rv == 0) { 2417 /* 2418 * non-ONESHOT event that hasn't triggered 2419 * again, so it will remain de-queued. 2420 */ 2421 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2422 kq->kq_count--; 2423 influx = 1; 2424 continue; 2425 } 2426 } else { 2427 /* 2428 * Must NOT drop kq_lock until we can do 2429 * the KNOTE_WILLDETACH() below. 2430 */ 2431 } 2432 KASSERT(kn->kn_fop != NULL); 2433 touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && 2434 kn->kn_fop->f_touch != NULL); 2435 /* XXXAD should be got from f_event if !oneshot. */ 2436 KASSERT((kn->kn_status & KN_WILLDETACH) == 0); 2437 if (touch) { 2438 (void)filter_touch(kn, kevp, EVENT_PROCESS); 2439 } else { 2440 *kevp = kn->kn_kevent; 2441 } 2442 kevp++; 2443 nkev++; 2444 influx = 1; 2445 if (kn->kn_flags & EV_ONESHOT) { 2446 /* delete ONESHOT events after retrieval */ 2447 KNOTE_WILLDETACH(kn); 2448 kn->kn_status &= ~KN_BUSY; 2449 kq->kq_count--; 2450 KASSERT(kn_in_flux(kn) == false); 2451 KASSERT((kn->kn_status & KN_WILLDETACH) != 0 && 2452 kn->kn_kevent.udata == curlwp); 2453 mutex_spin_exit(&kq->kq_lock); 2454 knote_detach(kn, fdp, true); 2455 mutex_enter(&fdp->fd_lock); 2456 mutex_spin_enter(&kq->kq_lock); 2457 } else if (kn->kn_flags & EV_CLEAR) { 2458 /* clear state after retrieval */ 2459 kn->kn_data = 0; 2460 kn->kn_fflags = 0; 2461 /* 2462 * Manually clear knotes who weren't 2463 * 'touch'ed. 2464 */ 2465 if (touch == 0) { 2466 kn->kn_data = 0; 2467 kn->kn_fflags = 0; 2468 } 2469 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2470 kq->kq_count--; 2471 } else if (kn->kn_flags & EV_DISPATCH) { 2472 kn->kn_status |= KN_DISABLED; 2473 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2474 kq->kq_count--; 2475 } else { 2476 /* add event back on list */ 2477 kq_check(kq); 2478 kn->kn_status |= KN_QUEUED; 2479 kn->kn_status &= ~KN_BUSY; 2480 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2481 kq_check(kq); 2482 } 2483 2484 if (nkev == kevcnt) { 2485 /* do copyouts in kevcnt chunks */ 2486 influx = 0; 2487 KQ_FLUX_WAKEUP(kq); 2488 mutex_spin_exit(&kq->kq_lock); 2489 mutex_exit(&fdp->fd_lock); 2490 error = (*keops->keo_put_events) 2491 (keops->keo_private, 2492 kevbuf, ulistp, nevents, nkev); 2493 mutex_enter(&fdp->fd_lock); 2494 mutex_spin_enter(&kq->kq_lock); 2495 nevents += nkev; 2496 nkev = 0; 2497 kevp = kevbuf; 2498 } 2499 count--; 2500 if (error != 0 || count == 0) { 2501 /* remove marker */ 2502 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); 2503 break; 2504 } 2505 } 2506 KQ_FLUX_WAKEUP(kq); 2507 mutex_spin_exit(&kq->kq_lock); 2508 mutex_exit(&fdp->fd_lock); 2509 2510 done: 2511 if (nkev != 0) { 2512 /* copyout remaining events */ 2513 error = (*keops->keo_put_events)(keops->keo_private, 2514 kevbuf, ulistp, nevents, nkev); 2515 } 2516 *retval = maxevents - count; 2517 2518 return error; 2519 } 2520 2521 /* 2522 * fileops ioctl method for a kqueue descriptor. 2523 * 2524 * Two ioctls are currently supported. They both use struct kfilter_mapping: 2525 * KFILTER_BYNAME find name for filter, and return result in 2526 * name, which is of size len. 2527 * KFILTER_BYFILTER find filter for name. len is ignored. 2528 */ 2529 /*ARGSUSED*/ 2530 static int 2531 kqueue_ioctl(file_t *fp, u_long com, void *data) 2532 { 2533 struct kfilter_mapping *km; 2534 const struct kfilter *kfilter; 2535 char *name; 2536 int error; 2537 2538 km = data; 2539 error = 0; 2540 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP); 2541 2542 switch (com) { 2543 case KFILTER_BYFILTER: /* convert filter -> name */ 2544 rw_enter(&kqueue_filter_lock, RW_READER); 2545 kfilter = kfilter_byfilter(km->filter); 2546 if (kfilter != NULL) { 2547 strlcpy(name, kfilter->name, KFILTER_MAXNAME); 2548 rw_exit(&kqueue_filter_lock); 2549 error = copyoutstr(name, km->name, km->len, NULL); 2550 } else { 2551 rw_exit(&kqueue_filter_lock); 2552 error = ENOENT; 2553 } 2554 break; 2555 2556 case KFILTER_BYNAME: /* convert name -> filter */ 2557 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL); 2558 if (error) { 2559 break; 2560 } 2561 rw_enter(&kqueue_filter_lock, RW_READER); 2562 kfilter = kfilter_byname(name); 2563 if (kfilter != NULL) 2564 km->filter = kfilter->filter; 2565 else 2566 error = ENOENT; 2567 rw_exit(&kqueue_filter_lock); 2568 break; 2569 2570 default: 2571 error = ENOTTY; 2572 break; 2573 2574 } 2575 kmem_free(name, KFILTER_MAXNAME); 2576 return (error); 2577 } 2578 2579 /* 2580 * fileops fcntl method for a kqueue descriptor. 2581 */ 2582 static int 2583 kqueue_fcntl(file_t *fp, u_int com, void *data) 2584 { 2585 2586 return (ENOTTY); 2587 } 2588 2589 /* 2590 * fileops poll method for a kqueue descriptor. 2591 * Determine if kqueue has events pending. 2592 */ 2593 static int 2594 kqueue_poll(file_t *fp, int events) 2595 { 2596 struct kqueue *kq; 2597 int revents; 2598 2599 kq = fp->f_kqueue; 2600 2601 revents = 0; 2602 if (events & (POLLIN | POLLRDNORM)) { 2603 mutex_spin_enter(&kq->kq_lock); 2604 if (KQ_COUNT(kq) != 0) { 2605 revents |= events & (POLLIN | POLLRDNORM); 2606 } else { 2607 selrecord(curlwp, &kq->kq_sel); 2608 } 2609 kq_check(kq); 2610 mutex_spin_exit(&kq->kq_lock); 2611 } 2612 2613 return revents; 2614 } 2615 2616 /* 2617 * fileops stat method for a kqueue descriptor. 2618 * Returns dummy info, with st_size being number of events pending. 2619 */ 2620 static int 2621 kqueue_stat(file_t *fp, struct stat *st) 2622 { 2623 struct kqueue *kq; 2624 2625 kq = fp->f_kqueue; 2626 2627 memset(st, 0, sizeof(*st)); 2628 st->st_size = KQ_COUNT(kq); 2629 st->st_blksize = sizeof(struct kevent); 2630 st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 2631 st->st_blocks = 1; 2632 st->st_uid = kauth_cred_geteuid(fp->f_cred); 2633 st->st_gid = kauth_cred_getegid(fp->f_cred); 2634 2635 return 0; 2636 } 2637 2638 static void 2639 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd) 2640 { 2641 struct knote *kn; 2642 filedesc_t *fdp; 2643 2644 fdp = kq->kq_fdp; 2645 2646 KASSERT(mutex_owned(&fdp->fd_lock)); 2647 2648 again: 2649 for (kn = SLIST_FIRST(list); kn != NULL;) { 2650 if (kq != kn->kn_kq) { 2651 kn = SLIST_NEXT(kn, kn_link); 2652 continue; 2653 } 2654 if (knote_detach_quiesce(kn)) { 2655 mutex_enter(&fdp->fd_lock); 2656 goto again; 2657 } 2658 knote_detach(kn, fdp, true); 2659 mutex_enter(&fdp->fd_lock); 2660 kn = SLIST_FIRST(list); 2661 } 2662 } 2663 2664 /* 2665 * fileops close method for a kqueue descriptor. 2666 */ 2667 static int 2668 kqueue_close(file_t *fp) 2669 { 2670 struct kqueue *kq; 2671 filedesc_t *fdp; 2672 fdfile_t *ff; 2673 int i; 2674 2675 kq = fp->f_kqueue; 2676 fp->f_kqueue = NULL; 2677 fp->f_type = 0; 2678 fdp = curlwp->l_fd; 2679 2680 KASSERT(kq->kq_fdp == fdp); 2681 2682 mutex_enter(&fdp->fd_lock); 2683 2684 /* 2685 * We're doing to drop the fd_lock multiple times while 2686 * we detach knotes. During this time, attempts to register 2687 * knotes via the back door (e.g. knote_proc_fork_track()) 2688 * need to fail, lest they sneak in to attach a knote after 2689 * we've already drained the list it's destined for. 2690 * 2691 * We must acquire kq_lock here to set KQ_CLOSING (to serialize 2692 * with other code paths that modify kq_count without holding 2693 * the fd_lock), but once this bit is set, it's only safe to 2694 * test it while holding the fd_lock, and holding kq_lock while 2695 * doing so is not necessary. 2696 */ 2697 mutex_enter(&kq->kq_lock); 2698 kq->kq_count |= KQ_CLOSING; 2699 mutex_exit(&kq->kq_lock); 2700 2701 for (i = 0; i <= fdp->fd_lastkqfile; i++) { 2702 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL) 2703 continue; 2704 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i); 2705 } 2706 if (fdp->fd_knhashmask != 0) { 2707 for (i = 0; i < fdp->fd_knhashmask + 1; i++) { 2708 kqueue_doclose(kq, &fdp->fd_knhash[i], -1); 2709 } 2710 } 2711 2712 mutex_exit(&fdp->fd_lock); 2713 2714 #if defined(DEBUG) 2715 mutex_enter(&kq->kq_lock); 2716 kq_check(kq); 2717 mutex_exit(&kq->kq_lock); 2718 #endif /* DEBUG */ 2719 KASSERT(TAILQ_EMPTY(&kq->kq_head)); 2720 KASSERT(KQ_COUNT(kq) == 0); 2721 mutex_destroy(&kq->kq_lock); 2722 cv_destroy(&kq->kq_cv); 2723 seldestroy(&kq->kq_sel); 2724 kmem_free(kq, sizeof(*kq)); 2725 2726 return (0); 2727 } 2728 2729 /* 2730 * struct fileops kqfilter method for a kqueue descriptor. 2731 * Event triggered when monitored kqueue changes. 2732 */ 2733 static int 2734 kqueue_kqfilter(file_t *fp, struct knote *kn) 2735 { 2736 struct kqueue *kq; 2737 2738 kq = ((file_t *)kn->kn_obj)->f_kqueue; 2739 2740 KASSERT(fp == kn->kn_obj); 2741 2742 if (kn->kn_filter != EVFILT_READ) 2743 return EINVAL; 2744 2745 kn->kn_fop = &kqread_filtops; 2746 mutex_enter(&kq->kq_lock); 2747 selrecord_knote(&kq->kq_sel, kn); 2748 mutex_exit(&kq->kq_lock); 2749 2750 return 0; 2751 } 2752 2753 2754 /* 2755 * Walk down a list of knotes, activating them if their event has 2756 * triggered. The caller's object lock (e.g. device driver lock) 2757 * must be held. 2758 */ 2759 void 2760 knote(struct klist *list, long hint) 2761 { 2762 struct knote *kn, *tmpkn; 2763 2764 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) { 2765 /* 2766 * We assume here that the backing object's lock is 2767 * already held if we're traversing the klist, and 2768 * so acquiring the knote foplock would create a 2769 * deadlock scenario. But we also know that the klist 2770 * won't disappear on us while we're here, so not 2771 * acquiring it is safe. 2772 */ 2773 if (filter_event(kn, hint, true)) { 2774 knote_activate(kn); 2775 } 2776 } 2777 } 2778 2779 /* 2780 * Remove all knotes referencing a specified fd 2781 */ 2782 void 2783 knote_fdclose(int fd) 2784 { 2785 struct klist *list; 2786 struct knote *kn; 2787 filedesc_t *fdp; 2788 2789 again: 2790 fdp = curlwp->l_fd; 2791 mutex_enter(&fdp->fd_lock); 2792 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist; 2793 while ((kn = SLIST_FIRST(list)) != NULL) { 2794 if (knote_detach_quiesce(kn)) { 2795 goto again; 2796 } 2797 knote_detach(kn, fdp, true); 2798 mutex_enter(&fdp->fd_lock); 2799 } 2800 mutex_exit(&fdp->fd_lock); 2801 } 2802 2803 /* 2804 * Drop knote. Called with fdp->fd_lock held, and will drop before 2805 * returning. 2806 */ 2807 static void 2808 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop) 2809 { 2810 struct klist *list; 2811 struct kqueue *kq; 2812 2813 kq = kn->kn_kq; 2814 2815 KASSERT((kn->kn_status & KN_MARKER) == 0); 2816 KASSERT((kn->kn_status & KN_WILLDETACH) != 0); 2817 KASSERT(kn->kn_fop != NULL); 2818 KASSERT(mutex_owned(&fdp->fd_lock)); 2819 2820 /* Remove from monitored object. */ 2821 if (dofop) { 2822 knote_foplock_enter(kn); 2823 filter_detach(kn); 2824 knote_foplock_exit(kn); 2825 } 2826 2827 /* Remove from descriptor table. */ 2828 if (kn->kn_fop->f_flags & FILTEROP_ISFD) 2829 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; 2830 else 2831 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; 2832 2833 SLIST_REMOVE(list, kn, knote, kn_link); 2834 2835 /* Remove from kqueue. */ 2836 again: 2837 mutex_spin_enter(&kq->kq_lock); 2838 KASSERT(kn_in_flux(kn) == false); 2839 if ((kn->kn_status & KN_QUEUED) != 0) { 2840 kq_check(kq); 2841 KASSERT(KQ_COUNT(kq) != 0); 2842 kq->kq_count--; 2843 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2844 kn->kn_status &= ~KN_QUEUED; 2845 kq_check(kq); 2846 } else if (kn->kn_status & KN_BUSY) { 2847 mutex_spin_exit(&kq->kq_lock); 2848 goto again; 2849 } 2850 mutex_spin_exit(&kq->kq_lock); 2851 2852 mutex_exit(&fdp->fd_lock); 2853 if (kn->kn_fop->f_flags & FILTEROP_ISFD) 2854 fd_putfile(kn->kn_id); 2855 atomic_dec_uint(&kn->kn_kfilter->refcnt); 2856 knote_free(kn); 2857 } 2858 2859 /* 2860 * Queue new event for knote. 2861 */ 2862 static void 2863 knote_enqueue(struct knote *kn) 2864 { 2865 struct kqueue *kq; 2866 2867 KASSERT((kn->kn_status & KN_MARKER) == 0); 2868 2869 kq = kn->kn_kq; 2870 2871 mutex_spin_enter(&kq->kq_lock); 2872 if (__predict_false(kn->kn_status & KN_WILLDETACH)) { 2873 /* Don't bother enqueueing a dying knote. */ 2874 goto out; 2875 } 2876 if ((kn->kn_status & KN_DISABLED) != 0) { 2877 kn->kn_status &= ~KN_DISABLED; 2878 } 2879 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) { 2880 kq_check(kq); 2881 kn->kn_status |= KN_QUEUED; 2882 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2883 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); 2884 kq->kq_count++; 2885 kq_check(kq); 2886 cv_broadcast(&kq->kq_cv); 2887 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); 2888 } 2889 out: 2890 mutex_spin_exit(&kq->kq_lock); 2891 } 2892 /* 2893 * Queue new event for knote. 2894 */ 2895 static void 2896 knote_activate_locked(struct knote *kn) 2897 { 2898 struct kqueue *kq; 2899 2900 KASSERT((kn->kn_status & KN_MARKER) == 0); 2901 2902 kq = kn->kn_kq; 2903 2904 if (__predict_false(kn->kn_status & KN_WILLDETACH)) { 2905 /* Don't bother enqueueing a dying knote. */ 2906 return; 2907 } 2908 kn->kn_status |= KN_ACTIVE; 2909 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) { 2910 kq_check(kq); 2911 kn->kn_status |= KN_QUEUED; 2912 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2913 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); 2914 kq->kq_count++; 2915 kq_check(kq); 2916 cv_broadcast(&kq->kq_cv); 2917 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); 2918 } 2919 } 2920 2921 static void 2922 knote_activate(struct knote *kn) 2923 { 2924 struct kqueue *kq = kn->kn_kq; 2925 2926 mutex_spin_enter(&kq->kq_lock); 2927 knote_activate_locked(kn); 2928 mutex_spin_exit(&kq->kq_lock); 2929 } 2930 2931 static void 2932 knote_deactivate_locked(struct knote *kn) 2933 { 2934 struct kqueue *kq = kn->kn_kq; 2935 2936 if (kn->kn_status & KN_QUEUED) { 2937 kq_check(kq); 2938 kn->kn_status &= ~KN_QUEUED; 2939 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2940 KASSERT(KQ_COUNT(kq) > 0); 2941 kq->kq_count--; 2942 kq_check(kq); 2943 } 2944 kn->kn_status &= ~KN_ACTIVE; 2945 } 2946 2947 /* 2948 * Set EV_EOF on the specified knote. Also allows additional 2949 * EV_* flags to be set (e.g. EV_ONESHOT). 2950 */ 2951 void 2952 knote_set_eof(struct knote *kn, uint32_t flags) 2953 { 2954 struct kqueue *kq = kn->kn_kq; 2955 2956 mutex_spin_enter(&kq->kq_lock); 2957 kn->kn_flags |= EV_EOF | flags; 2958 mutex_spin_exit(&kq->kq_lock); 2959 } 2960 2961 /* 2962 * Clear EV_EOF on the specified knote. 2963 */ 2964 void 2965 knote_clear_eof(struct knote *kn) 2966 { 2967 struct kqueue *kq = kn->kn_kq; 2968 2969 mutex_spin_enter(&kq->kq_lock); 2970 kn->kn_flags &= ~EV_EOF; 2971 mutex_spin_exit(&kq->kq_lock); 2972 } 2973 2974 /* 2975 * Initialize a klist. 2976 */ 2977 void 2978 klist_init(struct klist *list) 2979 { 2980 SLIST_INIT(list); 2981 } 2982 2983 /* 2984 * Finalize a klist. 2985 */ 2986 void 2987 klist_fini(struct klist *list) 2988 { 2989 struct knote *kn; 2990 2991 /* 2992 * Neuter all existing knotes on the klist because the list is 2993 * being destroyed. The caller has guaranteed that no additional 2994 * knotes will be added to the list, that the backing object's 2995 * locks are not held (otherwise there is a locking order issue 2996 * with acquiring the knote foplock ), and that we can traverse 2997 * the list safely in this state. 2998 */ 2999 SLIST_FOREACH(kn, list, kn_selnext) { 3000 knote_foplock_enter(kn); 3001 KASSERT(kn->kn_fop != NULL); 3002 if (kn->kn_fop->f_flags & FILTEROP_ISFD) { 3003 kn->kn_fop = &nop_fd_filtops; 3004 } else { 3005 kn->kn_fop = &nop_filtops; 3006 } 3007 knote_foplock_exit(kn); 3008 } 3009 } 3010 3011 /* 3012 * Insert a knote into a klist. 3013 */ 3014 void 3015 klist_insert(struct klist *list, struct knote *kn) 3016 { 3017 SLIST_INSERT_HEAD(list, kn, kn_selnext); 3018 } 3019 3020 /* 3021 * Remove a knote from a klist. Returns true if the last 3022 * knote was removed and the list is now empty. 3023 */ 3024 bool 3025 klist_remove(struct klist *list, struct knote *kn) 3026 { 3027 SLIST_REMOVE(list, kn, knote, kn_selnext); 3028 return SLIST_EMPTY(list); 3029 } 3030