xref: /netbsd-src/sys/kern/kern_event.c (revision 5f2f42719cd62ff11fd913b40b7ce19f07c4fd25)
1 /*	$NetBSD: kern_event.c,v 1.146 2022/07/24 19:23:44 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
34  * Copyright (c) 2009 Apple, Inc
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59  */
60 
61 #ifdef _KERNEL_OPT
62 #include "opt_ddb.h"
63 #endif /* _KERNEL_OPT */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.146 2022/07/24 19:23:44 riastradh Exp $");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/wait.h>
72 #include <sys/proc.h>
73 #include <sys/file.h>
74 #include <sys/select.h>
75 #include <sys/queue.h>
76 #include <sys/event.h>
77 #include <sys/eventvar.h>
78 #include <sys/poll.h>
79 #include <sys/kmem.h>
80 #include <sys/stat.h>
81 #include <sys/filedesc.h>
82 #include <sys/syscallargs.h>
83 #include <sys/kauth.h>
84 #include <sys/conf.h>
85 #include <sys/atomic.h>
86 
87 static int	kqueue_scan(file_t *, size_t, struct kevent *,
88 			    const struct timespec *, register_t *,
89 			    const struct kevent_ops *, struct kevent *,
90 			    size_t);
91 static int	kqueue_ioctl(file_t *, u_long, void *);
92 static int	kqueue_fcntl(file_t *, u_int, void *);
93 static int	kqueue_poll(file_t *, int);
94 static int	kqueue_kqfilter(file_t *, struct knote *);
95 static int	kqueue_stat(file_t *, struct stat *);
96 static int	kqueue_close(file_t *);
97 static void	kqueue_restart(file_t *);
98 static int	kqueue_register(struct kqueue *, struct kevent *);
99 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
100 
101 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
102 static void	knote_enqueue(struct knote *);
103 static void	knote_activate(struct knote *);
104 static void	knote_activate_locked(struct knote *);
105 static void	knote_deactivate_locked(struct knote *);
106 
107 static void	filt_kqdetach(struct knote *);
108 static int	filt_kqueue(struct knote *, long hint);
109 static int	filt_procattach(struct knote *);
110 static void	filt_procdetach(struct knote *);
111 static int	filt_proc(struct knote *, long hint);
112 static int	filt_fileattach(struct knote *);
113 static void	filt_timerexpire(void *x);
114 static int	filt_timerattach(struct knote *);
115 static void	filt_timerdetach(struct knote *);
116 static int	filt_timer(struct knote *, long hint);
117 static int	filt_timertouch(struct knote *, struct kevent *, long type);
118 static int	filt_userattach(struct knote *);
119 static void	filt_userdetach(struct knote *);
120 static int	filt_user(struct knote *, long hint);
121 static int	filt_usertouch(struct knote *, struct kevent *, long type);
122 
123 /*
124  * Private knote state that should never be exposed outside
125  * of kern_event.c
126  *
127  * Field locking:
128  *
129  * q	kn_kq->kq_lock
130  */
131 struct knote_impl {
132 	struct knote	ki_knote;
133 	unsigned int	ki_influx;	/* q: in-flux counter */
134 	kmutex_t	ki_foplock;	/* for kn_filterops */
135 };
136 
137 #define	KIMPL_TO_KNOTE(kip)	(&(kip)->ki_knote)
138 #define	KNOTE_TO_KIMPL(knp)	container_of((knp), struct knote_impl, ki_knote)
139 
140 static inline struct knote *
141 knote_alloc(bool sleepok)
142 {
143 	struct knote_impl *ki;
144 
145 	ki = kmem_zalloc(sizeof(*ki), sleepok ? KM_SLEEP : KM_NOSLEEP);
146 	mutex_init(&ki->ki_foplock, MUTEX_DEFAULT, IPL_NONE);
147 
148 	return KIMPL_TO_KNOTE(ki);
149 }
150 
151 static inline void
152 knote_free(struct knote *kn)
153 {
154 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
155 
156 	mutex_destroy(&ki->ki_foplock);
157 	kmem_free(ki, sizeof(*ki));
158 }
159 
160 static inline void
161 knote_foplock_enter(struct knote *kn)
162 {
163 	mutex_enter(&KNOTE_TO_KIMPL(kn)->ki_foplock);
164 }
165 
166 static inline void
167 knote_foplock_exit(struct knote *kn)
168 {
169 	mutex_exit(&KNOTE_TO_KIMPL(kn)->ki_foplock);
170 }
171 
172 static inline bool __diagused
173 knote_foplock_owned(struct knote *kn)
174 {
175 	return mutex_owned(&KNOTE_TO_KIMPL(kn)->ki_foplock);
176 }
177 
178 static const struct fileops kqueueops = {
179 	.fo_name = "kqueue",
180 	.fo_read = (void *)enxio,
181 	.fo_write = (void *)enxio,
182 	.fo_ioctl = kqueue_ioctl,
183 	.fo_fcntl = kqueue_fcntl,
184 	.fo_poll = kqueue_poll,
185 	.fo_stat = kqueue_stat,
186 	.fo_close = kqueue_close,
187 	.fo_kqfilter = kqueue_kqfilter,
188 	.fo_restart = kqueue_restart,
189 };
190 
191 static void
192 filt_nopdetach(struct knote *kn __unused)
193 {
194 }
195 
196 static int
197 filt_nopevent(struct knote *kn __unused, long hint __unused)
198 {
199 	return 0;
200 }
201 
202 static const struct filterops nop_fd_filtops = {
203 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
204 	.f_attach = NULL,
205 	.f_detach = filt_nopdetach,
206 	.f_event = filt_nopevent,
207 };
208 
209 static const struct filterops nop_filtops = {
210 	.f_flags = FILTEROP_MPSAFE,
211 	.f_attach = NULL,
212 	.f_detach = filt_nopdetach,
213 	.f_event = filt_nopevent,
214 };
215 
216 static const struct filterops kqread_filtops = {
217 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
218 	.f_attach = NULL,
219 	.f_detach = filt_kqdetach,
220 	.f_event = filt_kqueue,
221 };
222 
223 static const struct filterops proc_filtops = {
224 	.f_flags = FILTEROP_MPSAFE,
225 	.f_attach = filt_procattach,
226 	.f_detach = filt_procdetach,
227 	.f_event = filt_proc,
228 };
229 
230 /*
231  * file_filtops is not marked MPSAFE because it's going to call
232  * fileops::fo_kqfilter(), which might not be.  That function,
233  * however, will override the knote's filterops, and thus will
234  * inherit the MPSAFE-ness of the back-end at that time.
235  */
236 static const struct filterops file_filtops = {
237 	.f_flags = FILTEROP_ISFD,
238 	.f_attach = filt_fileattach,
239 	.f_detach = NULL,
240 	.f_event = NULL,
241 };
242 
243 static const struct filterops timer_filtops = {
244 	.f_flags = FILTEROP_MPSAFE,
245 	.f_attach = filt_timerattach,
246 	.f_detach = filt_timerdetach,
247 	.f_event = filt_timer,
248 	.f_touch = filt_timertouch,
249 };
250 
251 static const struct filterops user_filtops = {
252 	.f_flags = FILTEROP_MPSAFE,
253 	.f_attach = filt_userattach,
254 	.f_detach = filt_userdetach,
255 	.f_event = filt_user,
256 	.f_touch = filt_usertouch,
257 };
258 
259 static u_int	kq_ncallouts = 0;
260 static int	kq_calloutmax = (4 * 1024);
261 
262 #define	KN_HASHSIZE		64		/* XXX should be tunable */
263 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
264 
265 extern const struct filterops fs_filtops;	/* vfs_syscalls.c */
266 extern const struct filterops sig_filtops;	/* kern_sig.c */
267 
268 /*
269  * Table for for all system-defined filters.
270  * These should be listed in the numeric order of the EVFILT_* defines.
271  * If filtops is NULL, the filter isn't implemented in NetBSD.
272  * End of list is when name is NULL.
273  *
274  * Note that 'refcnt' is meaningless for built-in filters.
275  */
276 struct kfilter {
277 	const char	*name;		/* name of filter */
278 	uint32_t	filter;		/* id of filter */
279 	unsigned	refcnt;		/* reference count */
280 	const struct filterops *filtops;/* operations for filter */
281 	size_t		namelen;	/* length of name string */
282 };
283 
284 /* System defined filters */
285 static struct kfilter sys_kfilters[] = {
286 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
287 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
288 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
289 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
290 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
291 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
292 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
293 	{ "EVFILT_FS",		EVFILT_FS,	0, &fs_filtops, 0 },
294 	{ "EVFILT_USER",	EVFILT_USER,	0, &user_filtops, 0 },
295 	{ "EVFILT_EMPTY",	EVFILT_EMPTY,	0, &file_filtops, 0 },
296 	{ NULL,			0,		0, NULL, 0 },
297 };
298 
299 /* User defined kfilters */
300 static struct kfilter	*user_kfilters;		/* array */
301 static int		user_kfilterc;		/* current offset */
302 static int		user_kfiltermaxc;	/* max size so far */
303 static size_t		user_kfiltersz;		/* size of allocated memory */
304 
305 /*
306  * Global Locks.
307  *
308  * Lock order:
309  *
310  *	kqueue_filter_lock
311  *	-> kn_kq->kq_fdp->fd_lock
312  *	-> knote foplock (if taken)
313  *	-> object lock (e.g., device driver lock, &c.)
314  *	-> kn_kq->kq_lock
315  *
316  * Locking rules.  ==> indicates the lock is acquired by the backing
317  * object, locks prior are acquired before calling filter ops:
318  *
319  *	f_attach: fdp->fd_lock -> knote foplock ->
320  *	  (maybe) KERNEL_LOCK ==> backing object lock
321  *
322  *	f_detach: fdp->fd_lock -> knote foplock ->
323  *	   (maybe) KERNEL_LOCK ==> backing object lock
324  *
325  *	f_event via kevent: fdp->fd_lock -> knote foplock ->
326  *	   (maybe) KERNEL_LOCK ==> backing object lock
327  *	   N.B. NOTE_SUBMIT will never be set in the "hint" argument
328  *	   in this case.
329  *
330  *	f_event via knote (via backing object: Whatever caller guarantees.
331  *	Typically:
332  *		f_event(NOTE_SUBMIT): caller has already acquired backing
333  *		    object lock.
334  *		f_event(!NOTE_SUBMIT): caller has not acquired backing object,
335  *		    lock or has possibly acquired KERNEL_LOCK.  Backing object
336  *		    lock may or may not be acquired as-needed.
337  *	N.B. the knote foplock will **not** be acquired in this case.  The
338  *	caller guarantees that klist_fini() will not be called concurrently
339  *	with knote().
340  *
341  *	f_touch: fdp->fd_lock -> kn_kq->kq_lock (spin lock)
342  *	    N.B. knote foplock is **not** acquired in this case and
343  *	    the caller must guarantee that klist_fini() will never
344  *	    be called.  kevent_register() restricts filters that
345  *	    provide f_touch to known-safe cases.
346  *
347  *	klist_fini(): Caller must guarantee that no more knotes can
348  *	    be attached to the klist, and must **not** hold the backing
349  *	    object's lock; klist_fini() itself will acquire the foplock
350  *	    of each knote on the klist.
351  *
352  * Locking rules when detaching knotes:
353  *
354  * There are some situations where knote submission may require dropping
355  * locks (see knote_proc_fork()).  In order to support this, it's possible
356  * to mark a knote as being 'in-flux'.  Such a knote is guaranteed not to
357  * be detached while it remains in-flux.  Because it will not be detached,
358  * locks can be dropped so e.g. memory can be allocated, locks on other
359  * data structures can be acquired, etc.  During this time, any attempt to
360  * detach an in-flux knote must wait until the knote is no longer in-flux.
361  * When this happens, the knote is marked for death (KN_WILLDETACH) and the
362  * LWP who gets to finish the detach operation is recorded in the knote's
363  * 'udata' field (which is no longer required for its original purpose once
364  * a knote is so marked).  Code paths that lead to knote_detach() must ensure
365  * that their LWP is the one tasked with its final demise after waiting for
366  * the in-flux status of the knote to clear.  Note that once a knote is
367  * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
368  *
369  * Once the special circumstances have been handled, the locks are re-
370  * acquired in the proper order (object lock -> kq_lock), the knote taken
371  * out of flux, and any waiters are notified.  Because waiters must have
372  * also dropped *their* locks in order to safely block, they must re-
373  * validate all of their assumptions; see knote_detach_quiesce().  See also
374  * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
375  * cases.
376  *
377  * When kqueue_scan() encounters an in-flux knote, the situation is
378  * treated like another LWP's list marker.
379  *
380  * LISTEN WELL: It is important to not hold knotes in flux for an
381  * extended period of time! In-flux knotes effectively block any
382  * progress of the kqueue_scan() operation.  Any code paths that place
383  * knotes in-flux should be careful to not block for indefinite periods
384  * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
385  * KM_SLEEP is not).
386  */
387 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
388 
389 #define	KQ_FLUX_WAIT(kq)	(void)cv_wait(&kq->kq_cv, &kq->kq_lock)
390 #define	KQ_FLUX_WAKEUP(kq)	cv_broadcast(&kq->kq_cv)
391 
392 static inline bool
393 kn_in_flux(struct knote *kn)
394 {
395 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
396 	return KNOTE_TO_KIMPL(kn)->ki_influx != 0;
397 }
398 
399 static inline bool
400 kn_enter_flux(struct knote *kn)
401 {
402 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
403 
404 	if (kn->kn_status & KN_WILLDETACH) {
405 		return false;
406 	}
407 
408 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
409 	KASSERT(ki->ki_influx < UINT_MAX);
410 	ki->ki_influx++;
411 
412 	return true;
413 }
414 
415 static inline bool
416 kn_leave_flux(struct knote *kn)
417 {
418 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
419 
420 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
421 	KASSERT(ki->ki_influx > 0);
422 	ki->ki_influx--;
423 	return ki->ki_influx == 0;
424 }
425 
426 static void
427 kn_wait_flux(struct knote *kn, bool can_loop)
428 {
429 	struct knote_impl *ki = KNOTE_TO_KIMPL(kn);
430 	bool loop;
431 
432 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
433 
434 	/*
435 	 * It may not be safe for us to touch the knote again after
436 	 * dropping the kq_lock.  The caller has let us know in
437 	 * 'can_loop'.
438 	 */
439 	for (loop = true; loop && ki->ki_influx != 0; loop = can_loop) {
440 		KQ_FLUX_WAIT(kn->kn_kq);
441 	}
442 }
443 
444 #define	KNOTE_WILLDETACH(kn)						\
445 do {									\
446 	(kn)->kn_status |= KN_WILLDETACH;				\
447 	(kn)->kn_kevent.udata = curlwp;					\
448 } while (/*CONSTCOND*/0)
449 
450 /*
451  * Wait until the specified knote is in a quiescent state and
452  * safe to detach.  Returns true if we potentially blocked (and
453  * thus dropped our locks).
454  */
455 static bool
456 knote_detach_quiesce(struct knote *kn)
457 {
458 	struct kqueue *kq = kn->kn_kq;
459 	filedesc_t *fdp = kq->kq_fdp;
460 
461 	KASSERT(mutex_owned(&fdp->fd_lock));
462 
463 	mutex_spin_enter(&kq->kq_lock);
464 	/*
465 	 * There are two cases where we might see KN_WILLDETACH here:
466 	 *
467 	 * 1. Someone else has already started detaching the knote but
468 	 *    had to wait for it to settle first.
469 	 *
470 	 * 2. We had to wait for it to settle, and had to come back
471 	 *    around after re-acquiring the locks.
472 	 *
473 	 * When KN_WILLDETACH is set, we also set the LWP that claimed
474 	 * the prize of finishing the detach in the 'udata' field of the
475 	 * knote (which will never be used again for its usual purpose
476 	 * once the note is in this state).  If it doesn't point to us,
477 	 * we must drop the locks and let them in to finish the job.
478 	 *
479 	 * Otherwise, once we have claimed the knote for ourselves, we
480 	 * can finish waiting for it to settle.  The is the only scenario
481 	 * where touching a detaching knote is safe after dropping the
482 	 * locks.
483 	 */
484 	if ((kn->kn_status & KN_WILLDETACH) != 0 &&
485 	    kn->kn_kevent.udata != curlwp) {
486 		/*
487 		 * N.B. it is NOT safe for us to touch the knote again
488 		 * after dropping the locks here.  The caller must go
489 		 * back around and re-validate everything.  However, if
490 		 * the knote is in-flux, we want to block to minimize
491 		 * busy-looping.
492 		 */
493 		mutex_exit(&fdp->fd_lock);
494 		if (kn_in_flux(kn)) {
495 			kn_wait_flux(kn, false);
496 			mutex_spin_exit(&kq->kq_lock);
497 			return true;
498 		}
499 		mutex_spin_exit(&kq->kq_lock);
500 		preempt_point();
501 		return true;
502 	}
503 	/*
504 	 * If we get here, we know that we will be claiming the
505 	 * detach responsibilies, or that we already have and
506 	 * this is the second attempt after re-validation.
507 	 */
508 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
509 		kn->kn_kevent.udata == curlwp);
510 	/*
511 	 * Similarly, if we get here, either we are just claiming it
512 	 * and may have to wait for it to settle, or if this is the
513 	 * second attempt after re-validation that no other code paths
514 	 * have put it in-flux.
515 	 */
516 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
517 		kn_in_flux(kn) == false);
518 	KNOTE_WILLDETACH(kn);
519 	if (kn_in_flux(kn)) {
520 		mutex_exit(&fdp->fd_lock);
521 		kn_wait_flux(kn, true);
522 		/*
523 		 * It is safe for us to touch the knote again after
524 		 * dropping the locks, but the caller must still
525 		 * re-validate everything because other aspects of
526 		 * the environment may have changed while we blocked.
527 		 */
528 		KASSERT(kn_in_flux(kn) == false);
529 		mutex_spin_exit(&kq->kq_lock);
530 		return true;
531 	}
532 	mutex_spin_exit(&kq->kq_lock);
533 
534 	return false;
535 }
536 
537 /*
538  * Calls into the filterops need to be resilient against things which
539  * destroy a klist, e.g. device detach, freeing a vnode, etc., to avoid
540  * chasing garbage pointers (to data, or even potentially code in a
541  * module about to be unloaded).  To that end, we acquire the
542  * knote foplock before calling into the filter ops.  When a driver
543  * (or anything else) is tearing down its klist, klist_fini() enumerates
544  * each knote, acquires its foplock, and replaces the filterops with a
545  * nop stub, allowing knote detach (when descriptors are closed) to safely
546  * proceed.
547  */
548 
549 static int
550 filter_attach(struct knote *kn)
551 {
552 	int rv;
553 
554 	KASSERT(knote_foplock_owned(kn));
555 	KASSERT(kn->kn_fop != NULL);
556 	KASSERT(kn->kn_fop->f_attach != NULL);
557 
558 	/*
559 	 * N.B. that kn->kn_fop may change as the result of calling
560 	 * f_attach().  After f_attach() returns, kn->kn_fop may not
561 	 * be modified by code outside of klist_fini().
562 	 */
563 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
564 		rv = kn->kn_fop->f_attach(kn);
565 	} else {
566 		KERNEL_LOCK(1, NULL);
567 		rv = kn->kn_fop->f_attach(kn);
568 		KERNEL_UNLOCK_ONE(NULL);
569 	}
570 
571 	return rv;
572 }
573 
574 static void
575 filter_detach(struct knote *kn)
576 {
577 
578 	KASSERT(knote_foplock_owned(kn));
579 	KASSERT(kn->kn_fop != NULL);
580 	KASSERT(kn->kn_fop->f_detach != NULL);
581 
582 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
583 		kn->kn_fop->f_detach(kn);
584 	} else {
585 		KERNEL_LOCK(1, NULL);
586 		kn->kn_fop->f_detach(kn);
587 		KERNEL_UNLOCK_ONE(NULL);
588 	}
589 }
590 
591 static int
592 filter_event(struct knote *kn, long hint, bool submitting)
593 {
594 	int rv;
595 
596 	/* See knote(). */
597 	KASSERT(submitting || knote_foplock_owned(kn));
598 	KASSERT(kn->kn_fop != NULL);
599 	KASSERT(kn->kn_fop->f_event != NULL);
600 
601 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
602 		rv = kn->kn_fop->f_event(kn, hint);
603 	} else {
604 		KERNEL_LOCK(1, NULL);
605 		rv = kn->kn_fop->f_event(kn, hint);
606 		KERNEL_UNLOCK_ONE(NULL);
607 	}
608 
609 	return rv;
610 }
611 
612 static int
613 filter_touch(struct knote *kn, struct kevent *kev, long type)
614 {
615 
616 	/*
617 	 * XXX We cannot assert that the knote foplock is held here
618 	 * XXX beause we cannot safely acquire it in all cases
619 	 * XXX where "touch" will be used in kqueue_scan().  We just
620 	 * XXX have to assume that f_touch will always be safe to call,
621 	 * XXX and kqueue_register() allows only the two known-safe
622 	 * XXX users of that op.
623 	 */
624 
625 	KASSERT(kn->kn_fop != NULL);
626 	KASSERT(kn->kn_fop->f_touch != NULL);
627 
628 	return kn->kn_fop->f_touch(kn, kev, type);
629 }
630 
631 static kauth_listener_t	kqueue_listener;
632 
633 static int
634 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
635     void *arg0, void *arg1, void *arg2, void *arg3)
636 {
637 	struct proc *p;
638 	int result;
639 
640 	result = KAUTH_RESULT_DEFER;
641 	p = arg0;
642 
643 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
644 		return result;
645 
646 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
647 	    ISSET(p->p_flag, PK_SUGID)))
648 		return result;
649 
650 	result = KAUTH_RESULT_ALLOW;
651 
652 	return result;
653 }
654 
655 /*
656  * Initialize the kqueue subsystem.
657  */
658 void
659 kqueue_init(void)
660 {
661 
662 	rw_init(&kqueue_filter_lock);
663 
664 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
665 	    kqueue_listener_cb, NULL);
666 }
667 
668 /*
669  * Find kfilter entry by name, or NULL if not found.
670  */
671 static struct kfilter *
672 kfilter_byname_sys(const char *name)
673 {
674 	int i;
675 
676 	KASSERT(rw_lock_held(&kqueue_filter_lock));
677 
678 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
679 		if (strcmp(name, sys_kfilters[i].name) == 0)
680 			return &sys_kfilters[i];
681 	}
682 	return NULL;
683 }
684 
685 static struct kfilter *
686 kfilter_byname_user(const char *name)
687 {
688 	int i;
689 
690 	KASSERT(rw_lock_held(&kqueue_filter_lock));
691 
692 	/* user filter slots have a NULL name if previously deregistered */
693 	for (i = 0; i < user_kfilterc ; i++) {
694 		if (user_kfilters[i].name != NULL &&
695 		    strcmp(name, user_kfilters[i].name) == 0)
696 			return &user_kfilters[i];
697 	}
698 	return NULL;
699 }
700 
701 static struct kfilter *
702 kfilter_byname(const char *name)
703 {
704 	struct kfilter *kfilter;
705 
706 	KASSERT(rw_lock_held(&kqueue_filter_lock));
707 
708 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
709 		return kfilter;
710 
711 	return kfilter_byname_user(name);
712 }
713 
714 /*
715  * Find kfilter entry by filter id, or NULL if not found.
716  * Assumes entries are indexed in filter id order, for speed.
717  */
718 static struct kfilter *
719 kfilter_byfilter(uint32_t filter)
720 {
721 	struct kfilter *kfilter;
722 
723 	KASSERT(rw_lock_held(&kqueue_filter_lock));
724 
725 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
726 		kfilter = &sys_kfilters[filter];
727 	else if (user_kfilters != NULL &&
728 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
729 					/* it's a user filter */
730 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
731 	else
732 		return (NULL);		/* out of range */
733 	KASSERT(kfilter->filter == filter);	/* sanity check! */
734 	return (kfilter);
735 }
736 
737 /*
738  * Register a new kfilter. Stores the entry in user_kfilters.
739  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
740  * If retfilter != NULL, the new filterid is returned in it.
741  */
742 int
743 kfilter_register(const char *name, const struct filterops *filtops,
744 		 int *retfilter)
745 {
746 	struct kfilter *kfilter;
747 	size_t len;
748 	int i;
749 
750 	if (name == NULL || name[0] == '\0' || filtops == NULL)
751 		return (EINVAL);	/* invalid args */
752 
753 	rw_enter(&kqueue_filter_lock, RW_WRITER);
754 	if (kfilter_byname(name) != NULL) {
755 		rw_exit(&kqueue_filter_lock);
756 		return (EEXIST);	/* already exists */
757 	}
758 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
759 		rw_exit(&kqueue_filter_lock);
760 		return (EINVAL);	/* too many */
761 	}
762 
763 	for (i = 0; i < user_kfilterc; i++) {
764 		kfilter = &user_kfilters[i];
765 		if (kfilter->name == NULL) {
766 			/* Previously deregistered slot.  Reuse. */
767 			goto reuse;
768 		}
769 	}
770 
771 	/* check if need to grow user_kfilters */
772 	if (user_kfilterc + 1 > user_kfiltermaxc) {
773 		/* Grow in KFILTER_EXTENT chunks. */
774 		user_kfiltermaxc += KFILTER_EXTENT;
775 		len = user_kfiltermaxc * sizeof(*kfilter);
776 		kfilter = kmem_alloc(len, KM_SLEEP);
777 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
778 		if (user_kfilters != NULL) {
779 			memcpy(kfilter, user_kfilters, user_kfiltersz);
780 			kmem_free(user_kfilters, user_kfiltersz);
781 		}
782 		user_kfiltersz = len;
783 		user_kfilters = kfilter;
784 	}
785 	/* Adding new slot */
786 	kfilter = &user_kfilters[user_kfilterc++];
787 reuse:
788 	kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
789 
790 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
791 
792 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
793 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
794 
795 	if (retfilter != NULL)
796 		*retfilter = kfilter->filter;
797 	rw_exit(&kqueue_filter_lock);
798 
799 	return (0);
800 }
801 
802 /*
803  * Unregister a kfilter previously registered with kfilter_register.
804  * This retains the filter id, but clears the name and frees filtops (filter
805  * operations), so that the number isn't reused during a boot.
806  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
807  */
808 int
809 kfilter_unregister(const char *name)
810 {
811 	struct kfilter *kfilter;
812 
813 	if (name == NULL || name[0] == '\0')
814 		return (EINVAL);	/* invalid name */
815 
816 	rw_enter(&kqueue_filter_lock, RW_WRITER);
817 	if (kfilter_byname_sys(name) != NULL) {
818 		rw_exit(&kqueue_filter_lock);
819 		return (EINVAL);	/* can't detach system filters */
820 	}
821 
822 	kfilter = kfilter_byname_user(name);
823 	if (kfilter == NULL) {
824 		rw_exit(&kqueue_filter_lock);
825 		return (ENOENT);
826 	}
827 	if (kfilter->refcnt != 0) {
828 		rw_exit(&kqueue_filter_lock);
829 		return (EBUSY);
830 	}
831 
832 	/* Cast away const (but we know it's safe. */
833 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
834 	kfilter->name = NULL;	/* mark as `not implemented' */
835 
836 	if (kfilter->filtops != NULL) {
837 		/* Cast away const (but we know it's safe. */
838 		kmem_free(__UNCONST(kfilter->filtops),
839 		    sizeof(*kfilter->filtops));
840 		kfilter->filtops = NULL; /* mark as `not implemented' */
841 	}
842 	rw_exit(&kqueue_filter_lock);
843 
844 	return (0);
845 }
846 
847 
848 /*
849  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
850  * descriptors. Calls fileops kqfilter method for given file descriptor.
851  */
852 static int
853 filt_fileattach(struct knote *kn)
854 {
855 	file_t *fp;
856 
857 	fp = kn->kn_obj;
858 
859 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
860 }
861 
862 /*
863  * Filter detach method for EVFILT_READ on kqueue descriptor.
864  */
865 static void
866 filt_kqdetach(struct knote *kn)
867 {
868 	struct kqueue *kq;
869 
870 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
871 
872 	mutex_spin_enter(&kq->kq_lock);
873 	selremove_knote(&kq->kq_sel, kn);
874 	mutex_spin_exit(&kq->kq_lock);
875 }
876 
877 /*
878  * Filter event method for EVFILT_READ on kqueue descriptor.
879  */
880 /*ARGSUSED*/
881 static int
882 filt_kqueue(struct knote *kn, long hint)
883 {
884 	struct kqueue *kq;
885 	int rv;
886 
887 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
888 
889 	if (hint != NOTE_SUBMIT)
890 		mutex_spin_enter(&kq->kq_lock);
891 	kn->kn_data = KQ_COUNT(kq);
892 	rv = (kn->kn_data > 0);
893 	if (hint != NOTE_SUBMIT)
894 		mutex_spin_exit(&kq->kq_lock);
895 
896 	return rv;
897 }
898 
899 /*
900  * Filter attach method for EVFILT_PROC.
901  */
902 static int
903 filt_procattach(struct knote *kn)
904 {
905 	struct proc *p;
906 
907 	mutex_enter(&proc_lock);
908 	p = proc_find(kn->kn_id);
909 	if (p == NULL) {
910 		mutex_exit(&proc_lock);
911 		return ESRCH;
912 	}
913 
914 	/*
915 	 * Fail if it's not owned by you, or the last exec gave us
916 	 * setuid/setgid privs (unless you're root).
917 	 */
918 	mutex_enter(p->p_lock);
919 	mutex_exit(&proc_lock);
920 	if (kauth_authorize_process(curlwp->l_cred,
921 	    KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
922 	    	mutex_exit(p->p_lock);
923 		return EACCES;
924 	}
925 
926 	kn->kn_obj = p;
927 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
928 
929 	/*
930 	 * NOTE_CHILD is only ever generated internally; don't let it
931 	 * leak in from user-space.  See knote_proc_fork_track().
932 	 */
933 	kn->kn_sfflags &= ~NOTE_CHILD;
934 
935 	klist_insert(&p->p_klist, kn);
936     	mutex_exit(p->p_lock);
937 
938 	return 0;
939 }
940 
941 /*
942  * Filter detach method for EVFILT_PROC.
943  *
944  * The knote may be attached to a different process, which may exit,
945  * leaving nothing for the knote to be attached to.  So when the process
946  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
947  * it will be deleted when read out.  However, as part of the knote deletion,
948  * this routine is called, so a check is needed to avoid actually performing
949  * a detach, because the original process might not exist any more.
950  */
951 static void
952 filt_procdetach(struct knote *kn)
953 {
954 	struct kqueue *kq = kn->kn_kq;
955 	struct proc *p;
956 
957 	/*
958 	 * We have to synchronize with knote_proc_exit(), but we
959 	 * are forced to acquire the locks in the wrong order here
960 	 * because we can't be sure kn->kn_obj is valid unless
961 	 * KN_DETACHED is not set.
962 	 */
963  again:
964 	mutex_spin_enter(&kq->kq_lock);
965 	if ((kn->kn_status & KN_DETACHED) == 0) {
966 		p = kn->kn_obj;
967 		if (!mutex_tryenter(p->p_lock)) {
968 			mutex_spin_exit(&kq->kq_lock);
969 			preempt_point();
970 			goto again;
971 		}
972 		kn->kn_status |= KN_DETACHED;
973 		klist_remove(&p->p_klist, kn);
974 		mutex_exit(p->p_lock);
975 	}
976 	mutex_spin_exit(&kq->kq_lock);
977 }
978 
979 /*
980  * Filter event method for EVFILT_PROC.
981  *
982  * Due to some of the complexities of process locking, we have special
983  * entry points for delivering knote submissions.  filt_proc() is used
984  * only to check for activation from kqueue_register() and kqueue_scan().
985  */
986 static int
987 filt_proc(struct knote *kn, long hint)
988 {
989 	struct kqueue *kq = kn->kn_kq;
990 	uint32_t fflags;
991 
992 	/*
993 	 * Because we share the same klist with signal knotes, just
994 	 * ensure that we're not being invoked for the proc-related
995 	 * submissions.
996 	 */
997 	KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
998 
999 	mutex_spin_enter(&kq->kq_lock);
1000 	fflags = kn->kn_fflags;
1001 	mutex_spin_exit(&kq->kq_lock);
1002 
1003 	return fflags != 0;
1004 }
1005 
1006 void
1007 knote_proc_exec(struct proc *p)
1008 {
1009 	struct knote *kn, *tmpkn;
1010 	struct kqueue *kq;
1011 	uint32_t fflags;
1012 
1013 	mutex_enter(p->p_lock);
1014 
1015 	SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
1016 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
1017 		if (kn->kn_fop == &sig_filtops) {
1018 			continue;
1019 		}
1020 		KASSERT(kn->kn_fop == &proc_filtops);
1021 
1022 		kq = kn->kn_kq;
1023 		mutex_spin_enter(&kq->kq_lock);
1024 		fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
1025 		if (fflags) {
1026 			knote_activate_locked(kn);
1027 		}
1028 		mutex_spin_exit(&kq->kq_lock);
1029 	}
1030 
1031 	mutex_exit(p->p_lock);
1032 }
1033 
1034 static int __noinline
1035 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
1036 {
1037 	struct kqueue *kq = okn->kn_kq;
1038 
1039 	KASSERT(mutex_owned(&kq->kq_lock));
1040 	KASSERT(mutex_owned(p1->p_lock));
1041 
1042 	/*
1043 	 * We're going to put this knote into flux while we drop
1044 	 * the locks and create and attach a new knote to track the
1045 	 * child.  If we are not able to enter flux, then this knote
1046 	 * is about to go away, so skip the notification.
1047 	 */
1048 	if (!kn_enter_flux(okn)) {
1049 		return 0;
1050 	}
1051 
1052 	mutex_spin_exit(&kq->kq_lock);
1053 	mutex_exit(p1->p_lock);
1054 
1055 	/*
1056 	 * We actually have to register *two* new knotes:
1057 	 *
1058 	 * ==> One for the NOTE_CHILD notification.  This is a forced
1059 	 *     ONESHOT note.
1060 	 *
1061 	 * ==> One to actually track the child process as it subsequently
1062 	 *     forks, execs, and, ultimately, exits.
1063 	 *
1064 	 * If we only register a single knote, then it's possible for
1065 	 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
1066 	 * notification if the child exits before the tracking process
1067 	 * has received the NOTE_CHILD notification, which applications
1068 	 * aren't expecting (the event's 'data' field would be clobbered,
1069 	 * for example).
1070 	 *
1071 	 * To do this, what we have here is an **extremely** stripped-down
1072 	 * version of kqueue_register() that has the following properties:
1073 	 *
1074 	 * ==> Does not block to allocate memory.  If we are unable
1075 	 *     to allocate memory, we return ENOMEM.
1076 	 *
1077 	 * ==> Does not search for existing knotes; we know there
1078 	 *     are not any because this is a new process that isn't
1079 	 *     even visible to other processes yet.
1080 	 *
1081 	 * ==> Assumes that the knhash for our kq's descriptor table
1082 	 *     already exists (after all, we're already tracking
1083 	 *     processes with knotes if we got here).
1084 	 *
1085 	 * ==> Directly attaches the new tracking knote to the child
1086 	 *     process.
1087 	 *
1088 	 * The whole point is to do the minimum amount of work while the
1089 	 * knote is held in-flux, and to avoid doing extra work in general
1090 	 * (we already have the new child process; why bother looking it
1091 	 * up again?).
1092 	 */
1093 	filedesc_t *fdp = kq->kq_fdp;
1094 	struct knote *knchild, *kntrack;
1095 	int error = 0;
1096 
1097 	knchild = knote_alloc(false);
1098 	kntrack = knote_alloc(false);
1099 	if (__predict_false(knchild == NULL || kntrack == NULL)) {
1100 		error = ENOMEM;
1101 		goto out;
1102 	}
1103 
1104 	kntrack->kn_obj = p2;
1105 	kntrack->kn_id = p2->p_pid;
1106 	kntrack->kn_kq = kq;
1107 	kntrack->kn_fop = okn->kn_fop;
1108 	kntrack->kn_kfilter = okn->kn_kfilter;
1109 	kntrack->kn_sfflags = okn->kn_sfflags;
1110 	kntrack->kn_sdata = p1->p_pid;
1111 
1112 	kntrack->kn_kevent.ident = p2->p_pid;
1113 	kntrack->kn_kevent.filter = okn->kn_filter;
1114 	kntrack->kn_kevent.flags =
1115 	    okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
1116 	kntrack->kn_kevent.fflags = 0;
1117 	kntrack->kn_kevent.data = 0;
1118 	kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
1119 
1120 	/*
1121 	 * The child note does not need to be attached to the
1122 	 * new proc's klist at all.
1123 	 */
1124 	*knchild = *kntrack;
1125 	knchild->kn_status = KN_DETACHED;
1126 	knchild->kn_sfflags = 0;
1127 	knchild->kn_kevent.flags |= EV_ONESHOT;
1128 	knchild->kn_kevent.fflags = NOTE_CHILD;
1129 	knchild->kn_kevent.data = p1->p_pid;		 /* parent */
1130 
1131 	mutex_enter(&fdp->fd_lock);
1132 
1133 	/*
1134 	 * We need to check to see if the kq is closing, and skip
1135 	 * attaching the knote if so.  Normally, this isn't necessary
1136 	 * when coming in the front door because the file descriptor
1137 	 * layer will synchronize this.
1138 	 *
1139 	 * It's safe to test KQ_CLOSING without taking the kq_lock
1140 	 * here because that flag is only ever set when the fd_lock
1141 	 * is also held.
1142 	 */
1143 	if (__predict_false(kq->kq_count & KQ_CLOSING)) {
1144 		mutex_exit(&fdp->fd_lock);
1145 		goto out;
1146 	}
1147 
1148 	/*
1149 	 * We do the "insert into FD table" and "attach to klist" steps
1150 	 * in the opposite order of kqueue_register() here to avoid
1151 	 * having to take p2->p_lock twice.  But this is OK because we
1152 	 * hold fd_lock across the entire operation.
1153 	 */
1154 
1155 	mutex_enter(p2->p_lock);
1156 	error = kauth_authorize_process(curlwp->l_cred,
1157 	    KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
1158 	if (__predict_false(error != 0)) {
1159 		mutex_exit(p2->p_lock);
1160 		mutex_exit(&fdp->fd_lock);
1161 		error = EACCES;
1162 		goto out;
1163 	}
1164 	klist_insert(&p2->p_klist, kntrack);
1165 	mutex_exit(p2->p_lock);
1166 
1167 	KASSERT(fdp->fd_knhashmask != 0);
1168 	KASSERT(fdp->fd_knhash != NULL);
1169 	struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
1170 	    fdp->fd_knhashmask)];
1171 	SLIST_INSERT_HEAD(list, kntrack, kn_link);
1172 	SLIST_INSERT_HEAD(list, knchild, kn_link);
1173 
1174 	/* This adds references for knchild *and* kntrack. */
1175 	atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
1176 
1177 	knote_activate(knchild);
1178 
1179 	kntrack = NULL;
1180 	knchild = NULL;
1181 
1182 	mutex_exit(&fdp->fd_lock);
1183 
1184  out:
1185 	if (__predict_false(knchild != NULL)) {
1186 		knote_free(knchild);
1187 	}
1188 	if (__predict_false(kntrack != NULL)) {
1189 		knote_free(kntrack);
1190 	}
1191 	mutex_enter(p1->p_lock);
1192 	mutex_spin_enter(&kq->kq_lock);
1193 
1194 	if (kn_leave_flux(okn)) {
1195 		KQ_FLUX_WAKEUP(kq);
1196 	}
1197 
1198 	return error;
1199 }
1200 
1201 void
1202 knote_proc_fork(struct proc *p1, struct proc *p2)
1203 {
1204 	struct knote *kn;
1205 	struct kqueue *kq;
1206 	uint32_t fflags;
1207 
1208 	mutex_enter(p1->p_lock);
1209 
1210 	/*
1211 	 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
1212 	 * don't want to pre-fetch the next knote; in the event we
1213 	 * have to drop p_lock, we will have put the knote in-flux,
1214 	 * meaning that no one will be able to detach it until we
1215 	 * have taken the knote out of flux.  However, that does
1216 	 * NOT stop someone else from detaching the next note in the
1217 	 * list while we have it unlocked.  Thus, we want to fetch
1218 	 * the next note in the list only after we have re-acquired
1219 	 * the lock, and using SLIST_FOREACH() will satisfy that.
1220 	 */
1221 	SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
1222 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
1223 		if (kn->kn_fop == &sig_filtops) {
1224 			continue;
1225 		}
1226 		KASSERT(kn->kn_fop == &proc_filtops);
1227 
1228 		kq = kn->kn_kq;
1229 		mutex_spin_enter(&kq->kq_lock);
1230 		kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
1231 		if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
1232 			/*
1233 			 * This will drop kq_lock and p_lock and
1234 			 * re-acquire them before it returns.
1235 			 */
1236 			if (knote_proc_fork_track(p1, p2, kn)) {
1237 				kn->kn_fflags |= NOTE_TRACKERR;
1238 			}
1239 			KASSERT(mutex_owned(p1->p_lock));
1240 			KASSERT(mutex_owned(&kq->kq_lock));
1241 		}
1242 		fflags = kn->kn_fflags;
1243 		if (fflags) {
1244 			knote_activate_locked(kn);
1245 		}
1246 		mutex_spin_exit(&kq->kq_lock);
1247 	}
1248 
1249 	mutex_exit(p1->p_lock);
1250 }
1251 
1252 void
1253 knote_proc_exit(struct proc *p)
1254 {
1255 	struct knote *kn;
1256 	struct kqueue *kq;
1257 
1258 	KASSERT(mutex_owned(p->p_lock));
1259 
1260 	while (!SLIST_EMPTY(&p->p_klist)) {
1261 		kn = SLIST_FIRST(&p->p_klist);
1262 		kq = kn->kn_kq;
1263 
1264 		KASSERT(kn->kn_obj == p);
1265 
1266 		mutex_spin_enter(&kq->kq_lock);
1267 		kn->kn_data = P_WAITSTATUS(p);
1268 		/*
1269 		 * Mark as ONESHOT, so that the knote is g/c'ed
1270 		 * when read.
1271 		 */
1272 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1273 		kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
1274 
1275 		/*
1276 		 * Detach the knote from the process and mark it as such.
1277 		 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
1278 		 * time we get here, all open file descriptors for this
1279 		 * process have been released, meaning that signal knotes
1280 		 * will have already been detached.
1281 		 *
1282 		 * We need to synchronize this with filt_procdetach().
1283 		 */
1284 		KASSERT(kn->kn_fop == &proc_filtops);
1285 		if ((kn->kn_status & KN_DETACHED) == 0) {
1286 			kn->kn_status |= KN_DETACHED;
1287 			SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
1288 		}
1289 
1290 		/*
1291 		 * Always activate the knote for NOTE_EXIT regardless
1292 		 * of whether or not the listener cares about it.
1293 		 * This matches historical behavior.
1294 		 */
1295 		knote_activate_locked(kn);
1296 		mutex_spin_exit(&kq->kq_lock);
1297 	}
1298 }
1299 
1300 #define	FILT_TIMER_NOSCHED	((uintptr_t)-1)
1301 
1302 static int
1303 filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
1304 {
1305 	struct timespec ts;
1306 	uintptr_t tticks;
1307 
1308 	if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
1309 		return EINVAL;
1310 	}
1311 
1312 	/*
1313 	 * Convert the event 'data' to a timespec, then convert the
1314 	 * timespec to callout ticks.
1315 	 */
1316 	switch (kev->fflags & NOTE_TIMER_UNITMASK) {
1317 	case NOTE_SECONDS:
1318 		ts.tv_sec = kev->data;
1319 		ts.tv_nsec = 0;
1320 		break;
1321 
1322 	case NOTE_MSECONDS:		/* == historical value 0 */
1323 		ts.tv_sec = kev->data / 1000;
1324 		ts.tv_nsec = (kev->data % 1000) * 1000000;
1325 		break;
1326 
1327 	case NOTE_USECONDS:
1328 		ts.tv_sec = kev->data / 1000000;
1329 		ts.tv_nsec = (kev->data % 1000000) * 1000;
1330 		break;
1331 
1332 	case NOTE_NSECONDS:
1333 		ts.tv_sec = kev->data / 1000000000;
1334 		ts.tv_nsec = kev->data % 1000000000;
1335 		break;
1336 
1337 	default:
1338 		return EINVAL;
1339 	}
1340 
1341 	if (kev->fflags & NOTE_ABSTIME) {
1342 		struct timespec deadline = ts;
1343 
1344 		/*
1345 		 * Get current time.
1346 		 *
1347 		 * XXX This is CLOCK_REALTIME.  There is no way to
1348 		 * XXX specify CLOCK_MONOTONIC.
1349 		 */
1350 		nanotime(&ts);
1351 
1352 		/* Absolute timers do not repeat. */
1353 		kev->data = FILT_TIMER_NOSCHED;
1354 
1355 		/* If we're past the deadline, then the event will fire. */
1356 		if (timespeccmp(&deadline, &ts, <=)) {
1357 			tticks = FILT_TIMER_NOSCHED;
1358 			goto out;
1359 		}
1360 
1361 		/* Calculate how much time is left. */
1362 		timespecsub(&deadline, &ts, &ts);
1363 	} else {
1364 		/* EV_CLEAR automatically set for relative timers. */
1365 		kev->flags |= EV_CLEAR;
1366 	}
1367 
1368 	tticks = tstohz(&ts);
1369 
1370 	/* if the supplied value is under our resolution, use 1 tick */
1371 	if (tticks == 0) {
1372 		if (kev->data == 0)
1373 			return EINVAL;
1374 		tticks = 1;
1375 	} else if (tticks > INT_MAX) {
1376 		return EINVAL;
1377 	}
1378 
1379 	if ((kev->flags & EV_ONESHOT) != 0) {
1380 		/* Timer does not repeat. */
1381 		kev->data = FILT_TIMER_NOSCHED;
1382 	} else {
1383 		KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
1384 		kev->data = tticks;
1385 	}
1386 
1387  out:
1388 	*tticksp = tticks;
1389 
1390 	return 0;
1391 }
1392 
1393 static void
1394 filt_timerexpire(void *knx)
1395 {
1396 	struct knote *kn = knx;
1397 	struct kqueue *kq = kn->kn_kq;
1398 
1399 	mutex_spin_enter(&kq->kq_lock);
1400 	kn->kn_data++;
1401 	knote_activate_locked(kn);
1402 	if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
1403 		KASSERT(kn->kn_sdata > 0 && kn->kn_sdata <= INT_MAX);
1404 		callout_schedule((callout_t *)kn->kn_hook,
1405 		    (int)kn->kn_sdata);
1406 	}
1407 	mutex_spin_exit(&kq->kq_lock);
1408 }
1409 
1410 static inline void
1411 filt_timerstart(struct knote *kn, uintptr_t tticks)
1412 {
1413 	callout_t *calloutp = kn->kn_hook;
1414 
1415 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1416 	KASSERT(!callout_pending(calloutp));
1417 
1418 	if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
1419 		kn->kn_data = 1;
1420 	} else {
1421 		KASSERT(tticks <= INT_MAX);
1422 		callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
1423 	}
1424 }
1425 
1426 static int
1427 filt_timerattach(struct knote *kn)
1428 {
1429 	callout_t *calloutp;
1430 	struct kqueue *kq;
1431 	uintptr_t tticks;
1432 	int error;
1433 
1434 	struct kevent kev = {
1435 		.flags = kn->kn_flags,
1436 		.fflags = kn->kn_sfflags,
1437 		.data = kn->kn_sdata,
1438 	};
1439 
1440 	error = filt_timercompute(&kev, &tticks);
1441 	if (error) {
1442 		return error;
1443 	}
1444 
1445 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
1446 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
1447 		atomic_dec_uint(&kq_ncallouts);
1448 		return ENOMEM;
1449 	}
1450 	callout_init(calloutp, CALLOUT_MPSAFE);
1451 
1452 	kq = kn->kn_kq;
1453 	mutex_spin_enter(&kq->kq_lock);
1454 
1455 	kn->kn_sdata = kev.data;
1456 	kn->kn_flags = kev.flags;
1457 	KASSERT(kn->kn_sfflags == kev.fflags);
1458 	kn->kn_hook = calloutp;
1459 
1460 	filt_timerstart(kn, tticks);
1461 
1462 	mutex_spin_exit(&kq->kq_lock);
1463 
1464 	return (0);
1465 }
1466 
1467 static void
1468 filt_timerdetach(struct knote *kn)
1469 {
1470 	callout_t *calloutp;
1471 	struct kqueue *kq = kn->kn_kq;
1472 
1473 	/* prevent rescheduling when we expire */
1474 	mutex_spin_enter(&kq->kq_lock);
1475 	kn->kn_sdata = FILT_TIMER_NOSCHED;
1476 	mutex_spin_exit(&kq->kq_lock);
1477 
1478 	calloutp = (callout_t *)kn->kn_hook;
1479 
1480 	/*
1481 	 * Attempt to stop the callout.  This will block if it's
1482 	 * already running.
1483 	 */
1484 	callout_halt(calloutp, NULL);
1485 
1486 	callout_destroy(calloutp);
1487 	kmem_free(calloutp, sizeof(*calloutp));
1488 	atomic_dec_uint(&kq_ncallouts);
1489 }
1490 
1491 static int
1492 filt_timertouch(struct knote *kn, struct kevent *kev, long type)
1493 {
1494 	struct kqueue *kq = kn->kn_kq;
1495 	callout_t *calloutp;
1496 	uintptr_t tticks;
1497 	int error;
1498 
1499 	KASSERT(mutex_owned(&kq->kq_lock));
1500 
1501 	switch (type) {
1502 	case EVENT_REGISTER:
1503 		/* Only relevant for EV_ADD. */
1504 		if ((kev->flags & EV_ADD) == 0) {
1505 			return 0;
1506 		}
1507 
1508 		/*
1509 		 * Stop the timer, under the assumption that if
1510 		 * an application is re-configuring the timer,
1511 		 * they no longer care about the old one.  We
1512 		 * can safely drop the kq_lock while we wait
1513 		 * because fdp->fd_lock will be held throughout,
1514 		 * ensuring that no one can sneak in with an
1515 		 * EV_DELETE or close the kq.
1516 		 */
1517 		KASSERT(mutex_owned(&kq->kq_fdp->fd_lock));
1518 
1519 		calloutp = kn->kn_hook;
1520 		callout_halt(calloutp, &kq->kq_lock);
1521 		KASSERT(mutex_owned(&kq->kq_lock));
1522 		knote_deactivate_locked(kn);
1523 		kn->kn_data = 0;
1524 
1525 		error = filt_timercompute(kev, &tticks);
1526 		if (error) {
1527 			return error;
1528 		}
1529 		kn->kn_sdata = kev->data;
1530 		kn->kn_flags = kev->flags;
1531 		kn->kn_sfflags = kev->fflags;
1532 		filt_timerstart(kn, tticks);
1533 		break;
1534 
1535 	case EVENT_PROCESS:
1536 		*kev = kn->kn_kevent;
1537 		break;
1538 
1539 	default:
1540 		panic("%s: invalid type (%ld)", __func__, type);
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 static int
1547 filt_timer(struct knote *kn, long hint)
1548 {
1549 	struct kqueue *kq = kn->kn_kq;
1550 	int rv;
1551 
1552 	mutex_spin_enter(&kq->kq_lock);
1553 	rv = (kn->kn_data != 0);
1554 	mutex_spin_exit(&kq->kq_lock);
1555 
1556 	return rv;
1557 }
1558 
1559 static int
1560 filt_userattach(struct knote *kn)
1561 {
1562 	struct kqueue *kq = kn->kn_kq;
1563 
1564 	/*
1565 	 * EVFILT_USER knotes are not attached to anything in the kernel.
1566 	 */
1567 	mutex_spin_enter(&kq->kq_lock);
1568 	kn->kn_hook = NULL;
1569 	if (kn->kn_fflags & NOTE_TRIGGER)
1570 		kn->kn_hookid = 1;
1571 	else
1572 		kn->kn_hookid = 0;
1573 	mutex_spin_exit(&kq->kq_lock);
1574 	return (0);
1575 }
1576 
1577 static void
1578 filt_userdetach(struct knote *kn)
1579 {
1580 
1581 	/*
1582 	 * EVFILT_USER knotes are not attached to anything in the kernel.
1583 	 */
1584 }
1585 
1586 static int
1587 filt_user(struct knote *kn, long hint)
1588 {
1589 	struct kqueue *kq = kn->kn_kq;
1590 	int hookid;
1591 
1592 	mutex_spin_enter(&kq->kq_lock);
1593 	hookid = kn->kn_hookid;
1594 	mutex_spin_exit(&kq->kq_lock);
1595 
1596 	return hookid;
1597 }
1598 
1599 static int
1600 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
1601 {
1602 	int ffctrl;
1603 
1604 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1605 
1606 	switch (type) {
1607 	case EVENT_REGISTER:
1608 		if (kev->fflags & NOTE_TRIGGER)
1609 			kn->kn_hookid = 1;
1610 
1611 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1612 		kev->fflags &= NOTE_FFLAGSMASK;
1613 		switch (ffctrl) {
1614 		case NOTE_FFNOP:
1615 			break;
1616 
1617 		case NOTE_FFAND:
1618 			kn->kn_sfflags &= kev->fflags;
1619 			break;
1620 
1621 		case NOTE_FFOR:
1622 			kn->kn_sfflags |= kev->fflags;
1623 			break;
1624 
1625 		case NOTE_FFCOPY:
1626 			kn->kn_sfflags = kev->fflags;
1627 			break;
1628 
1629 		default:
1630 			/* XXX Return error? */
1631 			break;
1632 		}
1633 		kn->kn_sdata = kev->data;
1634 		if (kev->flags & EV_CLEAR) {
1635 			kn->kn_hookid = 0;
1636 			kn->kn_data = 0;
1637 			kn->kn_fflags = 0;
1638 		}
1639 		break;
1640 
1641 	case EVENT_PROCESS:
1642 		*kev = kn->kn_kevent;
1643 		kev->fflags = kn->kn_sfflags;
1644 		kev->data = kn->kn_sdata;
1645 		if (kn->kn_flags & EV_CLEAR) {
1646 			kn->kn_hookid = 0;
1647 			kn->kn_data = 0;
1648 			kn->kn_fflags = 0;
1649 		}
1650 		break;
1651 
1652 	default:
1653 		panic("filt_usertouch() - invalid type (%ld)", type);
1654 		break;
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 /*
1661  * filt_seltrue:
1662  *
1663  *	This filter "event" routine simulates seltrue().
1664  */
1665 int
1666 filt_seltrue(struct knote *kn, long hint)
1667 {
1668 
1669 	/*
1670 	 * We don't know how much data can be read/written,
1671 	 * but we know that it *can* be.  This is about as
1672 	 * good as select/poll does as well.
1673 	 */
1674 	kn->kn_data = 0;
1675 	return (1);
1676 }
1677 
1678 /*
1679  * This provides full kqfilter entry for device switch tables, which
1680  * has same effect as filter using filt_seltrue() as filter method.
1681  */
1682 static void
1683 filt_seltruedetach(struct knote *kn)
1684 {
1685 	/* Nothing to do */
1686 }
1687 
1688 const struct filterops seltrue_filtops = {
1689 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1690 	.f_attach = NULL,
1691 	.f_detach = filt_seltruedetach,
1692 	.f_event = filt_seltrue,
1693 };
1694 
1695 int
1696 seltrue_kqfilter(dev_t dev, struct knote *kn)
1697 {
1698 	switch (kn->kn_filter) {
1699 	case EVFILT_READ:
1700 	case EVFILT_WRITE:
1701 		kn->kn_fop = &seltrue_filtops;
1702 		break;
1703 	default:
1704 		return (EINVAL);
1705 	}
1706 
1707 	/* Nothing more to do */
1708 	return (0);
1709 }
1710 
1711 /*
1712  * kqueue(2) system call.
1713  */
1714 static int
1715 kqueue1(struct lwp *l, int flags, register_t *retval)
1716 {
1717 	struct kqueue *kq;
1718 	file_t *fp;
1719 	int fd, error;
1720 
1721 	if ((error = fd_allocfile(&fp, &fd)) != 0)
1722 		return error;
1723 	fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
1724 	fp->f_type = DTYPE_KQUEUE;
1725 	fp->f_ops = &kqueueops;
1726 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
1727 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
1728 	cv_init(&kq->kq_cv, "kqueue");
1729 	selinit(&kq->kq_sel);
1730 	TAILQ_INIT(&kq->kq_head);
1731 	fp->f_kqueue = kq;
1732 	*retval = fd;
1733 	kq->kq_fdp = curlwp->l_fd;
1734 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1735 	fd_affix(curproc, fp, fd);
1736 	return error;
1737 }
1738 
1739 /*
1740  * kqueue(2) system call.
1741  */
1742 int
1743 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1744 {
1745 	return kqueue1(l, 0, retval);
1746 }
1747 
1748 int
1749 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1750     register_t *retval)
1751 {
1752 	/* {
1753 		syscallarg(int) flags;
1754 	} */
1755 	return kqueue1(l, SCARG(uap, flags), retval);
1756 }
1757 
1758 /*
1759  * kevent(2) system call.
1760  */
1761 int
1762 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1763     struct kevent *changes, size_t index, int n)
1764 {
1765 
1766 	return copyin(changelist + index, changes, n * sizeof(*changes));
1767 }
1768 
1769 int
1770 kevent_put_events(void *ctx, struct kevent *events,
1771     struct kevent *eventlist, size_t index, int n)
1772 {
1773 
1774 	return copyout(events, eventlist + index, n * sizeof(*events));
1775 }
1776 
1777 static const struct kevent_ops kevent_native_ops = {
1778 	.keo_private = NULL,
1779 	.keo_fetch_timeout = copyin,
1780 	.keo_fetch_changes = kevent_fetch_changes,
1781 	.keo_put_events = kevent_put_events,
1782 };
1783 
1784 int
1785 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1786     register_t *retval)
1787 {
1788 	/* {
1789 		syscallarg(int) fd;
1790 		syscallarg(const struct kevent *) changelist;
1791 		syscallarg(size_t) nchanges;
1792 		syscallarg(struct kevent *) eventlist;
1793 		syscallarg(size_t) nevents;
1794 		syscallarg(const struct timespec *) timeout;
1795 	} */
1796 
1797 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1798 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1799 	    SCARG(uap, timeout), &kevent_native_ops);
1800 }
1801 
1802 int
1803 kevent1(register_t *retval, int fd,
1804 	const struct kevent *changelist, size_t nchanges,
1805 	struct kevent *eventlist, size_t nevents,
1806 	const struct timespec *timeout,
1807 	const struct kevent_ops *keops)
1808 {
1809 	struct kevent *kevp;
1810 	struct kqueue *kq;
1811 	struct timespec	ts;
1812 	size_t i, n, ichange;
1813 	int nerrors, error;
1814 	struct kevent kevbuf[KQ_NEVENTS];	/* approx 300 bytes on 64-bit */
1815 	file_t *fp;
1816 
1817 	/* check that we're dealing with a kq */
1818 	fp = fd_getfile(fd);
1819 	if (fp == NULL)
1820 		return (EBADF);
1821 
1822 	if (fp->f_type != DTYPE_KQUEUE) {
1823 		fd_putfile(fd);
1824 		return (EBADF);
1825 	}
1826 
1827 	if (timeout != NULL) {
1828 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1829 		if (error)
1830 			goto done;
1831 		timeout = &ts;
1832 	}
1833 
1834 	kq = fp->f_kqueue;
1835 	nerrors = 0;
1836 	ichange = 0;
1837 
1838 	/* traverse list of events to register */
1839 	while (nchanges > 0) {
1840 		n = MIN(nchanges, __arraycount(kevbuf));
1841 		error = (*keops->keo_fetch_changes)(keops->keo_private,
1842 		    changelist, kevbuf, ichange, n);
1843 		if (error)
1844 			goto done;
1845 		for (i = 0; i < n; i++) {
1846 			kevp = &kevbuf[i];
1847 			kevp->flags &= ~EV_SYSFLAGS;
1848 			/* register each knote */
1849 			error = kqueue_register(kq, kevp);
1850 			if (!error && !(kevp->flags & EV_RECEIPT))
1851 				continue;
1852 			if (nevents == 0)
1853 				goto done;
1854 			kevp->flags = EV_ERROR;
1855 			kevp->data = error;
1856 			error = (*keops->keo_put_events)
1857 				(keops->keo_private, kevp,
1858 				 eventlist, nerrors, 1);
1859 			if (error)
1860 				goto done;
1861 			nevents--;
1862 			nerrors++;
1863 		}
1864 		nchanges -= n;	/* update the results */
1865 		ichange += n;
1866 	}
1867 	if (nerrors) {
1868 		*retval = nerrors;
1869 		error = 0;
1870 		goto done;
1871 	}
1872 
1873 	/* actually scan through the events */
1874 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1875 	    kevbuf, __arraycount(kevbuf));
1876  done:
1877 	fd_putfile(fd);
1878 	return (error);
1879 }
1880 
1881 /*
1882  * Register a given kevent kev onto the kqueue
1883  */
1884 static int
1885 kqueue_register(struct kqueue *kq, struct kevent *kev)
1886 {
1887 	struct kfilter *kfilter;
1888 	filedesc_t *fdp;
1889 	file_t *fp;
1890 	fdfile_t *ff;
1891 	struct knote *kn, *newkn;
1892 	struct klist *list;
1893 	int error, fd, rv;
1894 
1895 	fdp = kq->kq_fdp;
1896 	fp = NULL;
1897 	kn = NULL;
1898 	error = 0;
1899 	fd = 0;
1900 
1901 	newkn = knote_alloc(true);
1902 
1903 	rw_enter(&kqueue_filter_lock, RW_READER);
1904 	kfilter = kfilter_byfilter(kev->filter);
1905 	if (kfilter == NULL || kfilter->filtops == NULL) {
1906 		/* filter not found nor implemented */
1907 		rw_exit(&kqueue_filter_lock);
1908 		knote_free(newkn);
1909 		return (EINVAL);
1910 	}
1911 
1912 	/* search if knote already exists */
1913 	if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1914 		/* monitoring a file descriptor */
1915 		/* validate descriptor */
1916 		if (kev->ident > INT_MAX
1917 		    || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1918 			rw_exit(&kqueue_filter_lock);
1919 			knote_free(newkn);
1920 			return EBADF;
1921 		}
1922 		mutex_enter(&fdp->fd_lock);
1923 		ff = fdp->fd_dt->dt_ff[fd];
1924 		if (ff->ff_refcnt & FR_CLOSING) {
1925 			error = EBADF;
1926 			goto doneunlock;
1927 		}
1928 		if (fd <= fdp->fd_lastkqfile) {
1929 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1930 				if (kq == kn->kn_kq &&
1931 				    kev->filter == kn->kn_filter)
1932 					break;
1933 			}
1934 		}
1935 	} else {
1936 		/*
1937 		 * not monitoring a file descriptor, so
1938 		 * lookup knotes in internal hash table
1939 		 */
1940 		mutex_enter(&fdp->fd_lock);
1941 		if (fdp->fd_knhashmask != 0) {
1942 			list = &fdp->fd_knhash[
1943 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1944 			SLIST_FOREACH(kn, list, kn_link) {
1945 				if (kev->ident == kn->kn_id &&
1946 				    kq == kn->kn_kq &&
1947 				    kev->filter == kn->kn_filter)
1948 					break;
1949 			}
1950 		}
1951 	}
1952 
1953 	/* It's safe to test KQ_CLOSING while holding only the fd_lock. */
1954 	KASSERT(mutex_owned(&fdp->fd_lock));
1955 	KASSERT((kq->kq_count & KQ_CLOSING) == 0);
1956 
1957 	/*
1958 	 * kn now contains the matching knote, or NULL if no match
1959 	 */
1960 	if (kn == NULL) {
1961 		if (kev->flags & EV_ADD) {
1962 			/* create new knote */
1963 			kn = newkn;
1964 			newkn = NULL;
1965 			kn->kn_obj = fp;
1966 			kn->kn_id = kev->ident;
1967 			kn->kn_kq = kq;
1968 			kn->kn_fop = kfilter->filtops;
1969 			kn->kn_kfilter = kfilter;
1970 			kn->kn_sfflags = kev->fflags;
1971 			kn->kn_sdata = kev->data;
1972 			kev->fflags = 0;
1973 			kev->data = 0;
1974 			kn->kn_kevent = *kev;
1975 
1976 			KASSERT(kn->kn_fop != NULL);
1977 			/*
1978 			 * XXX Allow only known-safe users of f_touch.
1979 			 * XXX See filter_touch() for details.
1980 			 */
1981 			if (kn->kn_fop->f_touch != NULL &&
1982 			    kn->kn_fop != &timer_filtops &&
1983 			    kn->kn_fop != &user_filtops) {
1984 				error = ENOTSUP;
1985 				goto fail_ev_add;
1986 			}
1987 
1988 			/*
1989 			 * apply reference count to knote structure, and
1990 			 * do not release it at the end of this routine.
1991 			 */
1992 			fp = NULL;
1993 
1994 			if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1995 				/*
1996 				 * If knote is not on an fd, store on
1997 				 * internal hash table.
1998 				 */
1999 				if (fdp->fd_knhashmask == 0) {
2000 					/* XXXAD can block with fd_lock held */
2001 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
2002 					    HASH_LIST, true,
2003 					    &fdp->fd_knhashmask);
2004 				}
2005 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
2006 				    fdp->fd_knhashmask)];
2007 			} else {
2008 				/* Otherwise, knote is on an fd. */
2009 				list = (struct klist *)
2010 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
2011 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
2012 					fdp->fd_lastkqfile = kn->kn_id;
2013 			}
2014 			SLIST_INSERT_HEAD(list, kn, kn_link);
2015 
2016 			/*
2017 			 * N.B. kn->kn_fop may change as the result
2018 			 * of filter_attach()!
2019 			 */
2020 			knote_foplock_enter(kn);
2021 			error = filter_attach(kn);
2022 			if (error != 0) {
2023 #ifdef DEBUG
2024 				struct proc *p = curlwp->l_proc;
2025 				const file_t *ft = kn->kn_obj;
2026 				printf("%s: %s[%d]: event type %d not "
2027 				    "supported for file type %d/%s "
2028 				    "(error %d)\n", __func__,
2029 				    p->p_comm, p->p_pid,
2030 				    kn->kn_filter, ft ? ft->f_type : -1,
2031 				    ft ? ft->f_ops->fo_name : "?", error);
2032 #endif
2033 
2034  fail_ev_add:
2035 				/*
2036 				 * N.B. no need to check for this note to
2037 				 * be in-flux, since it was never visible
2038 				 * to the monitored object.
2039 				 *
2040 				 * knote_detach() drops fdp->fd_lock
2041 				 */
2042 				knote_foplock_exit(kn);
2043 				mutex_enter(&kq->kq_lock);
2044 				KNOTE_WILLDETACH(kn);
2045 				KASSERT(kn_in_flux(kn) == false);
2046 				mutex_exit(&kq->kq_lock);
2047 				knote_detach(kn, fdp, false);
2048 				goto done;
2049 			}
2050 			atomic_inc_uint(&kfilter->refcnt);
2051 			goto done_ev_add;
2052 		} else {
2053 			/* No matching knote and the EV_ADD flag is not set. */
2054 			error = ENOENT;
2055 			goto doneunlock;
2056 		}
2057 	}
2058 
2059 	if (kev->flags & EV_DELETE) {
2060 		/*
2061 		 * Let the world know that this knote is about to go
2062 		 * away, and wait for it to settle if it's currently
2063 		 * in-flux.
2064 		 */
2065 		mutex_spin_enter(&kq->kq_lock);
2066 		if (kn->kn_status & KN_WILLDETACH) {
2067 			/*
2068 			 * This knote is already on its way out,
2069 			 * so just be done.
2070 			 */
2071 			mutex_spin_exit(&kq->kq_lock);
2072 			goto doneunlock;
2073 		}
2074 		KNOTE_WILLDETACH(kn);
2075 		if (kn_in_flux(kn)) {
2076 			mutex_exit(&fdp->fd_lock);
2077 			/*
2078 			 * It's safe for us to conclusively wait for
2079 			 * this knote to settle because we know we'll
2080 			 * be completing the detach.
2081 			 */
2082 			kn_wait_flux(kn, true);
2083 			KASSERT(kn_in_flux(kn) == false);
2084 			mutex_spin_exit(&kq->kq_lock);
2085 			mutex_enter(&fdp->fd_lock);
2086 		} else {
2087 			mutex_spin_exit(&kq->kq_lock);
2088 		}
2089 
2090 		/* knote_detach() drops fdp->fd_lock */
2091 		knote_detach(kn, fdp, true);
2092 		goto done;
2093 	}
2094 
2095 	/*
2096 	 * The user may change some filter values after the
2097 	 * initial EV_ADD, but doing so will not reset any
2098 	 * filter which have already been triggered.
2099 	 */
2100 	knote_foplock_enter(kn);
2101 	kn->kn_kevent.udata = kev->udata;
2102 	KASSERT(kn->kn_fop != NULL);
2103 	if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
2104 	    kn->kn_fop->f_touch != NULL) {
2105 		mutex_spin_enter(&kq->kq_lock);
2106 		error = filter_touch(kn, kev, EVENT_REGISTER);
2107 		mutex_spin_exit(&kq->kq_lock);
2108 		if (__predict_false(error != 0)) {
2109 			/* Never a new knote (which would consume newkn). */
2110 			KASSERT(newkn != NULL);
2111 			knote_foplock_exit(kn);
2112 			goto doneunlock;
2113 		}
2114 	} else {
2115 		kn->kn_sfflags = kev->fflags;
2116 		kn->kn_sdata = kev->data;
2117 	}
2118 
2119 	/*
2120 	 * We can get here if we are trying to attach
2121 	 * an event to a file descriptor that does not
2122 	 * support events, and the attach routine is
2123 	 * broken and does not return an error.
2124 	 */
2125  done_ev_add:
2126 	rv = filter_event(kn, 0, false);
2127 	if (rv)
2128 		knote_activate(kn);
2129 
2130 	knote_foplock_exit(kn);
2131 
2132 	/* disable knote */
2133 	if ((kev->flags & EV_DISABLE)) {
2134 		mutex_spin_enter(&kq->kq_lock);
2135 		if ((kn->kn_status & KN_DISABLED) == 0)
2136 			kn->kn_status |= KN_DISABLED;
2137 		mutex_spin_exit(&kq->kq_lock);
2138 	}
2139 
2140 	/* enable knote */
2141 	if ((kev->flags & EV_ENABLE)) {
2142 		knote_enqueue(kn);
2143 	}
2144  doneunlock:
2145 	mutex_exit(&fdp->fd_lock);
2146  done:
2147 	rw_exit(&kqueue_filter_lock);
2148 	if (newkn != NULL)
2149 		knote_free(newkn);
2150 	if (fp != NULL)
2151 		fd_putfile(fd);
2152 	return (error);
2153 }
2154 
2155 #define KN_FMT(buf, kn) \
2156     (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
2157 
2158 #if defined(DDB)
2159 void
2160 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
2161 {
2162 	const struct knote *kn;
2163 	u_int count;
2164 	int nmarker;
2165 	char buf[128];
2166 
2167 	count = 0;
2168 	nmarker = 0;
2169 
2170 	(*pr)("kqueue %p (restart=%d count=%u):\n", kq,
2171 	    !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
2172 	(*pr)("  Queued knotes:\n");
2173 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
2174 		if (kn->kn_status & KN_MARKER) {
2175 			nmarker++;
2176 		} else {
2177 			count++;
2178 		}
2179 		(*pr)("    knote %p: kq=%p status=%s\n",
2180 		    kn, kn->kn_kq, KN_FMT(buf, kn));
2181 		(*pr)("      id=0x%lx (%lu) filter=%d\n",
2182 		    (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
2183 		if (kn->kn_kq != kq) {
2184 			(*pr)("      !!! kn->kn_kq != kq\n");
2185 		}
2186 	}
2187 	if (count != KQ_COUNT(kq)) {
2188 		(*pr)("  !!! count(%u) != KQ_COUNT(%u)\n",
2189 		    count, KQ_COUNT(kq));
2190 	}
2191 }
2192 #endif /* DDB */
2193 
2194 #if defined(DEBUG)
2195 static void
2196 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
2197 {
2198 	const struct knote *kn;
2199 	u_int count;
2200 	int nmarker;
2201 	char buf[128];
2202 
2203 	KASSERT(mutex_owned(&kq->kq_lock));
2204 
2205 	count = 0;
2206 	nmarker = 0;
2207 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
2208 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
2209 			panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
2210 			    func, line, kq, kn, KN_FMT(buf, kn));
2211 		}
2212 		if ((kn->kn_status & KN_MARKER) == 0) {
2213 			if (kn->kn_kq != kq) {
2214 				panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
2215 				    func, line, kq, kn, kn->kn_kq,
2216 				    KN_FMT(buf, kn));
2217 			}
2218 			if ((kn->kn_status & KN_ACTIVE) == 0) {
2219 				panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
2220 				    func, line, kq, kn, KN_FMT(buf, kn));
2221 			}
2222 			count++;
2223 			if (count > KQ_COUNT(kq)) {
2224 				panic("%s,%zu: kq=%p kq->kq_count(%u) != "
2225 				    "count(%d), nmarker=%d",
2226 		    		    func, line, kq, KQ_COUNT(kq), count,
2227 				    nmarker);
2228 			}
2229 		} else {
2230 			nmarker++;
2231 		}
2232 	}
2233 }
2234 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
2235 #else /* defined(DEBUG) */
2236 #define	kq_check(a)	/* nothing */
2237 #endif /* defined(DEBUG) */
2238 
2239 static void
2240 kqueue_restart(file_t *fp)
2241 {
2242 	struct kqueue *kq = fp->f_kqueue;
2243 	KASSERT(kq != NULL);
2244 
2245 	mutex_spin_enter(&kq->kq_lock);
2246 	kq->kq_count |= KQ_RESTART;
2247 	cv_broadcast(&kq->kq_cv);
2248 	mutex_spin_exit(&kq->kq_lock);
2249 }
2250 
2251 /*
2252  * Scan through the list of events on fp (for a maximum of maxevents),
2253  * returning the results in to ulistp. Timeout is determined by tsp; if
2254  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
2255  * as appropriate.
2256  */
2257 static int
2258 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
2259 	    const struct timespec *tsp, register_t *retval,
2260 	    const struct kevent_ops *keops, struct kevent *kevbuf,
2261 	    size_t kevcnt)
2262 {
2263 	struct kqueue	*kq;
2264 	struct kevent	*kevp;
2265 	struct timespec	ats, sleepts;
2266 	struct knote	*kn, *marker;
2267 	struct knote_impl morker;
2268 	size_t		count, nkev, nevents;
2269 	int		timeout, error, touch, rv, influx;
2270 	filedesc_t	*fdp;
2271 
2272 	fdp = curlwp->l_fd;
2273 	kq = fp->f_kqueue;
2274 	count = maxevents;
2275 	nkev = nevents = error = 0;
2276 	if (count == 0) {
2277 		*retval = 0;
2278 		return 0;
2279 	}
2280 
2281 	if (tsp) {				/* timeout supplied */
2282 		ats = *tsp;
2283 		if (inittimeleft(&ats, &sleepts) == -1) {
2284 			*retval = maxevents;
2285 			return EINVAL;
2286 		}
2287 		timeout = tstohz(&ats);
2288 		if (timeout <= 0)
2289 			timeout = -1;           /* do poll */
2290 	} else {
2291 		/* no timeout, wait forever */
2292 		timeout = 0;
2293 	}
2294 
2295 	memset(&morker, 0, sizeof(morker));
2296 	marker = &morker.ki_knote;
2297 	marker->kn_kq = kq;
2298 	marker->kn_status = KN_MARKER;
2299 	mutex_spin_enter(&kq->kq_lock);
2300  retry:
2301 	kevp = kevbuf;
2302 	if (KQ_COUNT(kq) == 0) {
2303 		if (timeout >= 0) {
2304 			error = cv_timedwait_sig(&kq->kq_cv,
2305 			    &kq->kq_lock, timeout);
2306 			if (error == 0) {
2307 				if (KQ_COUNT(kq) == 0 &&
2308 				    (kq->kq_count & KQ_RESTART)) {
2309 					/* return to clear file reference */
2310 					error = ERESTART;
2311 				} else if (tsp == NULL || (timeout =
2312 				    gettimeleft(&ats, &sleepts)) > 0) {
2313 					goto retry;
2314 				}
2315 			} else {
2316 				/* don't restart after signals... */
2317 				if (error == ERESTART)
2318 					error = EINTR;
2319 				if (error == EWOULDBLOCK)
2320 					error = 0;
2321 			}
2322 		}
2323 		mutex_spin_exit(&kq->kq_lock);
2324 		goto done;
2325 	}
2326 
2327 	/* mark end of knote list */
2328 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
2329 	influx = 0;
2330 
2331 	/*
2332 	 * Acquire the fdp->fd_lock interlock to avoid races with
2333 	 * file creation/destruction from other threads.
2334 	 */
2335 	mutex_spin_exit(&kq->kq_lock);
2336 relock:
2337 	mutex_enter(&fdp->fd_lock);
2338 	mutex_spin_enter(&kq->kq_lock);
2339 
2340 	while (count != 0) {
2341 		/*
2342 		 * Get next knote.  We are guaranteed this will never
2343 		 * be NULL because of the marker we inserted above.
2344 		 */
2345 		kn = TAILQ_FIRST(&kq->kq_head);
2346 
2347 		bool kn_is_other_marker =
2348 		    (kn->kn_status & KN_MARKER) != 0 && kn != marker;
2349 		bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
2350 		bool kn_is_in_flux = kn_in_flux(kn);
2351 
2352 		/*
2353 		 * If we found a marker that's not ours, or this knote
2354 		 * is in a state of flux, then wait for everything to
2355 		 * settle down and go around again.
2356 		 */
2357 		if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
2358 			if (influx) {
2359 				influx = 0;
2360 				KQ_FLUX_WAKEUP(kq);
2361 			}
2362 			mutex_exit(&fdp->fd_lock);
2363 			if (kn_is_other_marker || kn_is_in_flux) {
2364 				KQ_FLUX_WAIT(kq);
2365 				mutex_spin_exit(&kq->kq_lock);
2366 			} else {
2367 				/*
2368 				 * Detaching but not in-flux?  Someone is
2369 				 * actively trying to finish the job; just
2370 				 * go around and try again.
2371 				 */
2372 				KASSERT(kn_is_detaching);
2373 				mutex_spin_exit(&kq->kq_lock);
2374 				preempt_point();
2375 			}
2376 			goto relock;
2377 		}
2378 
2379 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2380 		if (kn == marker) {
2381 			/* it's our marker, stop */
2382 			KQ_FLUX_WAKEUP(kq);
2383 			if (count == maxevents) {
2384 				mutex_exit(&fdp->fd_lock);
2385 				goto retry;
2386 			}
2387 			break;
2388 		}
2389 		KASSERT((kn->kn_status & KN_BUSY) == 0);
2390 
2391 		kq_check(kq);
2392 		kn->kn_status &= ~KN_QUEUED;
2393 		kn->kn_status |= KN_BUSY;
2394 		kq_check(kq);
2395 		if (kn->kn_status & KN_DISABLED) {
2396 			kn->kn_status &= ~KN_BUSY;
2397 			kq->kq_count--;
2398 			/* don't want disabled events */
2399 			continue;
2400 		}
2401 		if ((kn->kn_flags & EV_ONESHOT) == 0) {
2402 			mutex_spin_exit(&kq->kq_lock);
2403 			KASSERT(mutex_owned(&fdp->fd_lock));
2404 			knote_foplock_enter(kn);
2405 			rv = filter_event(kn, 0, false);
2406 			knote_foplock_exit(kn);
2407 			mutex_spin_enter(&kq->kq_lock);
2408 			/* Re-poll if note was re-enqueued. */
2409 			if ((kn->kn_status & KN_QUEUED) != 0) {
2410 				kn->kn_status &= ~KN_BUSY;
2411 				/* Re-enqueue raised kq_count, lower it again */
2412 				kq->kq_count--;
2413 				influx = 1;
2414 				continue;
2415 			}
2416 			if (rv == 0) {
2417 				/*
2418 				 * non-ONESHOT event that hasn't triggered
2419 				 * again, so it will remain de-queued.
2420 				 */
2421 				kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2422 				kq->kq_count--;
2423 				influx = 1;
2424 				continue;
2425 			}
2426 		} else {
2427 			/*
2428 			 * Must NOT drop kq_lock until we can do
2429 			 * the KNOTE_WILLDETACH() below.
2430 			 */
2431 		}
2432 		KASSERT(kn->kn_fop != NULL);
2433 		touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
2434 				kn->kn_fop->f_touch != NULL);
2435 		/* XXXAD should be got from f_event if !oneshot. */
2436 		KASSERT((kn->kn_status & KN_WILLDETACH) == 0);
2437 		if (touch) {
2438 			(void)filter_touch(kn, kevp, EVENT_PROCESS);
2439 		} else {
2440 			*kevp = kn->kn_kevent;
2441 		}
2442 		kevp++;
2443 		nkev++;
2444 		influx = 1;
2445 		if (kn->kn_flags & EV_ONESHOT) {
2446 			/* delete ONESHOT events after retrieval */
2447 			KNOTE_WILLDETACH(kn);
2448 			kn->kn_status &= ~KN_BUSY;
2449 			kq->kq_count--;
2450 			KASSERT(kn_in_flux(kn) == false);
2451 			KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
2452 				kn->kn_kevent.udata == curlwp);
2453 			mutex_spin_exit(&kq->kq_lock);
2454 			knote_detach(kn, fdp, true);
2455 			mutex_enter(&fdp->fd_lock);
2456 			mutex_spin_enter(&kq->kq_lock);
2457 		} else if (kn->kn_flags & EV_CLEAR) {
2458 			/* clear state after retrieval */
2459 			kn->kn_data = 0;
2460 			kn->kn_fflags = 0;
2461 			/*
2462 			 * Manually clear knotes who weren't
2463 			 * 'touch'ed.
2464 			 */
2465 			if (touch == 0) {
2466 				kn->kn_data = 0;
2467 				kn->kn_fflags = 0;
2468 			}
2469 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2470 			kq->kq_count--;
2471 		} else if (kn->kn_flags & EV_DISPATCH) {
2472 			kn->kn_status |= KN_DISABLED;
2473 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2474 			kq->kq_count--;
2475 		} else {
2476 			/* add event back on list */
2477 			kq_check(kq);
2478 			kn->kn_status |= KN_QUEUED;
2479 			kn->kn_status &= ~KN_BUSY;
2480 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2481 			kq_check(kq);
2482 		}
2483 
2484 		if (nkev == kevcnt) {
2485 			/* do copyouts in kevcnt chunks */
2486 			influx = 0;
2487 			KQ_FLUX_WAKEUP(kq);
2488 			mutex_spin_exit(&kq->kq_lock);
2489 			mutex_exit(&fdp->fd_lock);
2490 			error = (*keops->keo_put_events)
2491 			    (keops->keo_private,
2492 			    kevbuf, ulistp, nevents, nkev);
2493 			mutex_enter(&fdp->fd_lock);
2494 			mutex_spin_enter(&kq->kq_lock);
2495 			nevents += nkev;
2496 			nkev = 0;
2497 			kevp = kevbuf;
2498 		}
2499 		count--;
2500 		if (error != 0 || count == 0) {
2501 			/* remove marker */
2502 			TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2503 			break;
2504 		}
2505 	}
2506 	KQ_FLUX_WAKEUP(kq);
2507 	mutex_spin_exit(&kq->kq_lock);
2508 	mutex_exit(&fdp->fd_lock);
2509 
2510 done:
2511 	if (nkev != 0) {
2512 		/* copyout remaining events */
2513 		error = (*keops->keo_put_events)(keops->keo_private,
2514 		    kevbuf, ulistp, nevents, nkev);
2515 	}
2516 	*retval = maxevents - count;
2517 
2518 	return error;
2519 }
2520 
2521 /*
2522  * fileops ioctl method for a kqueue descriptor.
2523  *
2524  * Two ioctls are currently supported. They both use struct kfilter_mapping:
2525  *	KFILTER_BYNAME		find name for filter, and return result in
2526  *				name, which is of size len.
2527  *	KFILTER_BYFILTER	find filter for name. len is ignored.
2528  */
2529 /*ARGSUSED*/
2530 static int
2531 kqueue_ioctl(file_t *fp, u_long com, void *data)
2532 {
2533 	struct kfilter_mapping	*km;
2534 	const struct kfilter	*kfilter;
2535 	char			*name;
2536 	int			error;
2537 
2538 	km = data;
2539 	error = 0;
2540 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
2541 
2542 	switch (com) {
2543 	case KFILTER_BYFILTER:	/* convert filter -> name */
2544 		rw_enter(&kqueue_filter_lock, RW_READER);
2545 		kfilter = kfilter_byfilter(km->filter);
2546 		if (kfilter != NULL) {
2547 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
2548 			rw_exit(&kqueue_filter_lock);
2549 			error = copyoutstr(name, km->name, km->len, NULL);
2550 		} else {
2551 			rw_exit(&kqueue_filter_lock);
2552 			error = ENOENT;
2553 		}
2554 		break;
2555 
2556 	case KFILTER_BYNAME:	/* convert name -> filter */
2557 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
2558 		if (error) {
2559 			break;
2560 		}
2561 		rw_enter(&kqueue_filter_lock, RW_READER);
2562 		kfilter = kfilter_byname(name);
2563 		if (kfilter != NULL)
2564 			km->filter = kfilter->filter;
2565 		else
2566 			error = ENOENT;
2567 		rw_exit(&kqueue_filter_lock);
2568 		break;
2569 
2570 	default:
2571 		error = ENOTTY;
2572 		break;
2573 
2574 	}
2575 	kmem_free(name, KFILTER_MAXNAME);
2576 	return (error);
2577 }
2578 
2579 /*
2580  * fileops fcntl method for a kqueue descriptor.
2581  */
2582 static int
2583 kqueue_fcntl(file_t *fp, u_int com, void *data)
2584 {
2585 
2586 	return (ENOTTY);
2587 }
2588 
2589 /*
2590  * fileops poll method for a kqueue descriptor.
2591  * Determine if kqueue has events pending.
2592  */
2593 static int
2594 kqueue_poll(file_t *fp, int events)
2595 {
2596 	struct kqueue	*kq;
2597 	int		revents;
2598 
2599 	kq = fp->f_kqueue;
2600 
2601 	revents = 0;
2602 	if (events & (POLLIN | POLLRDNORM)) {
2603 		mutex_spin_enter(&kq->kq_lock);
2604 		if (KQ_COUNT(kq) != 0) {
2605 			revents |= events & (POLLIN | POLLRDNORM);
2606 		} else {
2607 			selrecord(curlwp, &kq->kq_sel);
2608 		}
2609 		kq_check(kq);
2610 		mutex_spin_exit(&kq->kq_lock);
2611 	}
2612 
2613 	return revents;
2614 }
2615 
2616 /*
2617  * fileops stat method for a kqueue descriptor.
2618  * Returns dummy info, with st_size being number of events pending.
2619  */
2620 static int
2621 kqueue_stat(file_t *fp, struct stat *st)
2622 {
2623 	struct kqueue *kq;
2624 
2625 	kq = fp->f_kqueue;
2626 
2627 	memset(st, 0, sizeof(*st));
2628 	st->st_size = KQ_COUNT(kq);
2629 	st->st_blksize = sizeof(struct kevent);
2630 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
2631 	st->st_blocks = 1;
2632 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
2633 	st->st_gid = kauth_cred_getegid(fp->f_cred);
2634 
2635 	return 0;
2636 }
2637 
2638 static void
2639 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
2640 {
2641 	struct knote *kn;
2642 	filedesc_t *fdp;
2643 
2644 	fdp = kq->kq_fdp;
2645 
2646 	KASSERT(mutex_owned(&fdp->fd_lock));
2647 
2648  again:
2649 	for (kn = SLIST_FIRST(list); kn != NULL;) {
2650 		if (kq != kn->kn_kq) {
2651 			kn = SLIST_NEXT(kn, kn_link);
2652 			continue;
2653 		}
2654 		if (knote_detach_quiesce(kn)) {
2655 			mutex_enter(&fdp->fd_lock);
2656 			goto again;
2657 		}
2658 		knote_detach(kn, fdp, true);
2659 		mutex_enter(&fdp->fd_lock);
2660 		kn = SLIST_FIRST(list);
2661 	}
2662 }
2663 
2664 /*
2665  * fileops close method for a kqueue descriptor.
2666  */
2667 static int
2668 kqueue_close(file_t *fp)
2669 {
2670 	struct kqueue *kq;
2671 	filedesc_t *fdp;
2672 	fdfile_t *ff;
2673 	int i;
2674 
2675 	kq = fp->f_kqueue;
2676 	fp->f_kqueue = NULL;
2677 	fp->f_type = 0;
2678 	fdp = curlwp->l_fd;
2679 
2680 	KASSERT(kq->kq_fdp == fdp);
2681 
2682 	mutex_enter(&fdp->fd_lock);
2683 
2684 	/*
2685 	 * We're doing to drop the fd_lock multiple times while
2686 	 * we detach knotes.  During this time, attempts to register
2687 	 * knotes via the back door (e.g. knote_proc_fork_track())
2688 	 * need to fail, lest they sneak in to attach a knote after
2689 	 * we've already drained the list it's destined for.
2690 	 *
2691 	 * We must acquire kq_lock here to set KQ_CLOSING (to serialize
2692 	 * with other code paths that modify kq_count without holding
2693 	 * the fd_lock), but once this bit is set, it's only safe to
2694 	 * test it while holding the fd_lock, and holding kq_lock while
2695 	 * doing so is not necessary.
2696 	 */
2697 	mutex_enter(&kq->kq_lock);
2698 	kq->kq_count |= KQ_CLOSING;
2699 	mutex_exit(&kq->kq_lock);
2700 
2701 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
2702 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
2703 			continue;
2704 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
2705 	}
2706 	if (fdp->fd_knhashmask != 0) {
2707 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
2708 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
2709 		}
2710 	}
2711 
2712 	mutex_exit(&fdp->fd_lock);
2713 
2714 #if defined(DEBUG)
2715 	mutex_enter(&kq->kq_lock);
2716 	kq_check(kq);
2717 	mutex_exit(&kq->kq_lock);
2718 #endif /* DEBUG */
2719 	KASSERT(TAILQ_EMPTY(&kq->kq_head));
2720 	KASSERT(KQ_COUNT(kq) == 0);
2721 	mutex_destroy(&kq->kq_lock);
2722 	cv_destroy(&kq->kq_cv);
2723 	seldestroy(&kq->kq_sel);
2724 	kmem_free(kq, sizeof(*kq));
2725 
2726 	return (0);
2727 }
2728 
2729 /*
2730  * struct fileops kqfilter method for a kqueue descriptor.
2731  * Event triggered when monitored kqueue changes.
2732  */
2733 static int
2734 kqueue_kqfilter(file_t *fp, struct knote *kn)
2735 {
2736 	struct kqueue *kq;
2737 
2738 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
2739 
2740 	KASSERT(fp == kn->kn_obj);
2741 
2742 	if (kn->kn_filter != EVFILT_READ)
2743 		return EINVAL;
2744 
2745 	kn->kn_fop = &kqread_filtops;
2746 	mutex_enter(&kq->kq_lock);
2747 	selrecord_knote(&kq->kq_sel, kn);
2748 	mutex_exit(&kq->kq_lock);
2749 
2750 	return 0;
2751 }
2752 
2753 
2754 /*
2755  * Walk down a list of knotes, activating them if their event has
2756  * triggered.  The caller's object lock (e.g. device driver lock)
2757  * must be held.
2758  */
2759 void
2760 knote(struct klist *list, long hint)
2761 {
2762 	struct knote *kn, *tmpkn;
2763 
2764 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
2765 		/*
2766 		 * We assume here that the backing object's lock is
2767 		 * already held if we're traversing the klist, and
2768 		 * so acquiring the knote foplock would create a
2769 		 * deadlock scenario.  But we also know that the klist
2770 		 * won't disappear on us while we're here, so not
2771 		 * acquiring it is safe.
2772 		 */
2773 		if (filter_event(kn, hint, true)) {
2774 			knote_activate(kn);
2775 		}
2776 	}
2777 }
2778 
2779 /*
2780  * Remove all knotes referencing a specified fd
2781  */
2782 void
2783 knote_fdclose(int fd)
2784 {
2785 	struct klist *list;
2786 	struct knote *kn;
2787 	filedesc_t *fdp;
2788 
2789  again:
2790 	fdp = curlwp->l_fd;
2791 	mutex_enter(&fdp->fd_lock);
2792 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
2793 	while ((kn = SLIST_FIRST(list)) != NULL) {
2794 		if (knote_detach_quiesce(kn)) {
2795 			goto again;
2796 		}
2797 		knote_detach(kn, fdp, true);
2798 		mutex_enter(&fdp->fd_lock);
2799 	}
2800 	mutex_exit(&fdp->fd_lock);
2801 }
2802 
2803 /*
2804  * Drop knote.  Called with fdp->fd_lock held, and will drop before
2805  * returning.
2806  */
2807 static void
2808 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
2809 {
2810 	struct klist *list;
2811 	struct kqueue *kq;
2812 
2813 	kq = kn->kn_kq;
2814 
2815 	KASSERT((kn->kn_status & KN_MARKER) == 0);
2816 	KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
2817 	KASSERT(kn->kn_fop != NULL);
2818 	KASSERT(mutex_owned(&fdp->fd_lock));
2819 
2820 	/* Remove from monitored object. */
2821 	if (dofop) {
2822 		knote_foplock_enter(kn);
2823 		filter_detach(kn);
2824 		knote_foplock_exit(kn);
2825 	}
2826 
2827 	/* Remove from descriptor table. */
2828 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2829 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
2830 	else
2831 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2832 
2833 	SLIST_REMOVE(list, kn, knote, kn_link);
2834 
2835 	/* Remove from kqueue. */
2836 again:
2837 	mutex_spin_enter(&kq->kq_lock);
2838 	KASSERT(kn_in_flux(kn) == false);
2839 	if ((kn->kn_status & KN_QUEUED) != 0) {
2840 		kq_check(kq);
2841 		KASSERT(KQ_COUNT(kq) != 0);
2842 		kq->kq_count--;
2843 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2844 		kn->kn_status &= ~KN_QUEUED;
2845 		kq_check(kq);
2846 	} else if (kn->kn_status & KN_BUSY) {
2847 		mutex_spin_exit(&kq->kq_lock);
2848 		goto again;
2849 	}
2850 	mutex_spin_exit(&kq->kq_lock);
2851 
2852 	mutex_exit(&fdp->fd_lock);
2853 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2854 		fd_putfile(kn->kn_id);
2855 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
2856 	knote_free(kn);
2857 }
2858 
2859 /*
2860  * Queue new event for knote.
2861  */
2862 static void
2863 knote_enqueue(struct knote *kn)
2864 {
2865 	struct kqueue *kq;
2866 
2867 	KASSERT((kn->kn_status & KN_MARKER) == 0);
2868 
2869 	kq = kn->kn_kq;
2870 
2871 	mutex_spin_enter(&kq->kq_lock);
2872 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2873 		/* Don't bother enqueueing a dying knote. */
2874 		goto out;
2875 	}
2876 	if ((kn->kn_status & KN_DISABLED) != 0) {
2877 		kn->kn_status &= ~KN_DISABLED;
2878 	}
2879 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
2880 		kq_check(kq);
2881 		kn->kn_status |= KN_QUEUED;
2882 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2883 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2884 		kq->kq_count++;
2885 		kq_check(kq);
2886 		cv_broadcast(&kq->kq_cv);
2887 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2888 	}
2889  out:
2890 	mutex_spin_exit(&kq->kq_lock);
2891 }
2892 /*
2893  * Queue new event for knote.
2894  */
2895 static void
2896 knote_activate_locked(struct knote *kn)
2897 {
2898 	struct kqueue *kq;
2899 
2900 	KASSERT((kn->kn_status & KN_MARKER) == 0);
2901 
2902 	kq = kn->kn_kq;
2903 
2904 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2905 		/* Don't bother enqueueing a dying knote. */
2906 		return;
2907 	}
2908 	kn->kn_status |= KN_ACTIVE;
2909 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
2910 		kq_check(kq);
2911 		kn->kn_status |= KN_QUEUED;
2912 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2913 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2914 		kq->kq_count++;
2915 		kq_check(kq);
2916 		cv_broadcast(&kq->kq_cv);
2917 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2918 	}
2919 }
2920 
2921 static void
2922 knote_activate(struct knote *kn)
2923 {
2924 	struct kqueue *kq = kn->kn_kq;
2925 
2926 	mutex_spin_enter(&kq->kq_lock);
2927 	knote_activate_locked(kn);
2928 	mutex_spin_exit(&kq->kq_lock);
2929 }
2930 
2931 static void
2932 knote_deactivate_locked(struct knote *kn)
2933 {
2934 	struct kqueue *kq = kn->kn_kq;
2935 
2936 	if (kn->kn_status & KN_QUEUED) {
2937 		kq_check(kq);
2938 		kn->kn_status &= ~KN_QUEUED;
2939 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2940 		KASSERT(KQ_COUNT(kq) > 0);
2941 		kq->kq_count--;
2942 		kq_check(kq);
2943 	}
2944 	kn->kn_status &= ~KN_ACTIVE;
2945 }
2946 
2947 /*
2948  * Set EV_EOF on the specified knote.  Also allows additional
2949  * EV_* flags to be set (e.g. EV_ONESHOT).
2950  */
2951 void
2952 knote_set_eof(struct knote *kn, uint32_t flags)
2953 {
2954 	struct kqueue *kq = kn->kn_kq;
2955 
2956 	mutex_spin_enter(&kq->kq_lock);
2957 	kn->kn_flags |= EV_EOF | flags;
2958 	mutex_spin_exit(&kq->kq_lock);
2959 }
2960 
2961 /*
2962  * Clear EV_EOF on the specified knote.
2963  */
2964 void
2965 knote_clear_eof(struct knote *kn)
2966 {
2967 	struct kqueue *kq = kn->kn_kq;
2968 
2969 	mutex_spin_enter(&kq->kq_lock);
2970 	kn->kn_flags &= ~EV_EOF;
2971 	mutex_spin_exit(&kq->kq_lock);
2972 }
2973 
2974 /*
2975  * Initialize a klist.
2976  */
2977 void
2978 klist_init(struct klist *list)
2979 {
2980 	SLIST_INIT(list);
2981 }
2982 
2983 /*
2984  * Finalize a klist.
2985  */
2986 void
2987 klist_fini(struct klist *list)
2988 {
2989 	struct knote *kn;
2990 
2991 	/*
2992 	 * Neuter all existing knotes on the klist because the list is
2993 	 * being destroyed.  The caller has guaranteed that no additional
2994 	 * knotes will be added to the list, that the backing object's
2995 	 * locks are not held (otherwise there is a locking order issue
2996 	 * with acquiring the knote foplock ), and that we can traverse
2997 	 * the list safely in this state.
2998 	 */
2999 	SLIST_FOREACH(kn, list, kn_selnext) {
3000 		knote_foplock_enter(kn);
3001 		KASSERT(kn->kn_fop != NULL);
3002 		if (kn->kn_fop->f_flags & FILTEROP_ISFD) {
3003 			kn->kn_fop = &nop_fd_filtops;
3004 		} else {
3005 			kn->kn_fop = &nop_filtops;
3006 		}
3007 		knote_foplock_exit(kn);
3008 	}
3009 }
3010 
3011 /*
3012  * Insert a knote into a klist.
3013  */
3014 void
3015 klist_insert(struct klist *list, struct knote *kn)
3016 {
3017 	SLIST_INSERT_HEAD(list, kn, kn_selnext);
3018 }
3019 
3020 /*
3021  * Remove a knote from a klist.  Returns true if the last
3022  * knote was removed and the list is now empty.
3023  */
3024 bool
3025 klist_remove(struct klist *list, struct knote *kn)
3026 {
3027 	SLIST_REMOVE(list, kn, knote, kn_selnext);
3028 	return SLIST_EMPTY(list);
3029 }
3030