xref: /netbsd-src/sys/kern/kern_event.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: kern_event.c,v 1.138 2021/10/23 18:46:26 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
34  * Copyright (c) 2009 Apple, Inc
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
47  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
50  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
51  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
52  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
53  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
54  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
55  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56  * SUCH DAMAGE.
57  *
58  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
59  */
60 
61 #ifdef _KERNEL_OPT
62 #include "opt_ddb.h"
63 #endif /* _KERNEL_OPT */
64 
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.138 2021/10/23 18:46:26 thorpej Exp $");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/wait.h>
72 #include <sys/proc.h>
73 #include <sys/file.h>
74 #include <sys/select.h>
75 #include <sys/queue.h>
76 #include <sys/event.h>
77 #include <sys/eventvar.h>
78 #include <sys/poll.h>
79 #include <sys/kmem.h>
80 #include <sys/stat.h>
81 #include <sys/filedesc.h>
82 #include <sys/syscallargs.h>
83 #include <sys/kauth.h>
84 #include <sys/conf.h>
85 #include <sys/atomic.h>
86 
87 static int	kqueue_scan(file_t *, size_t, struct kevent *,
88 			    const struct timespec *, register_t *,
89 			    const struct kevent_ops *, struct kevent *,
90 			    size_t);
91 static int	kqueue_ioctl(file_t *, u_long, void *);
92 static int	kqueue_fcntl(file_t *, u_int, void *);
93 static int	kqueue_poll(file_t *, int);
94 static int	kqueue_kqfilter(file_t *, struct knote *);
95 static int	kqueue_stat(file_t *, struct stat *);
96 static int	kqueue_close(file_t *);
97 static void	kqueue_restart(file_t *);
98 static int	kqueue_register(struct kqueue *, struct kevent *);
99 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
100 
101 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
102 static void	knote_enqueue(struct knote *);
103 static void	knote_activate(struct knote *);
104 static void	knote_activate_locked(struct knote *);
105 static void	knote_deactivate_locked(struct knote *);
106 
107 static void	filt_kqdetach(struct knote *);
108 static int	filt_kqueue(struct knote *, long hint);
109 static int	filt_procattach(struct knote *);
110 static void	filt_procdetach(struct knote *);
111 static int	filt_proc(struct knote *, long hint);
112 static int	filt_fileattach(struct knote *);
113 static void	filt_timerexpire(void *x);
114 static int	filt_timerattach(struct knote *);
115 static void	filt_timerdetach(struct knote *);
116 static int	filt_timer(struct knote *, long hint);
117 static int	filt_timertouch(struct knote *, struct kevent *, long type);
118 static int	filt_userattach(struct knote *);
119 static void	filt_userdetach(struct knote *);
120 static int	filt_user(struct knote *, long hint);
121 static int	filt_usertouch(struct knote *, struct kevent *, long type);
122 
123 static const struct fileops kqueueops = {
124 	.fo_name = "kqueue",
125 	.fo_read = (void *)enxio,
126 	.fo_write = (void *)enxio,
127 	.fo_ioctl = kqueue_ioctl,
128 	.fo_fcntl = kqueue_fcntl,
129 	.fo_poll = kqueue_poll,
130 	.fo_stat = kqueue_stat,
131 	.fo_close = kqueue_close,
132 	.fo_kqfilter = kqueue_kqfilter,
133 	.fo_restart = kqueue_restart,
134 };
135 
136 static const struct filterops kqread_filtops = {
137 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
138 	.f_attach = NULL,
139 	.f_detach = filt_kqdetach,
140 	.f_event = filt_kqueue,
141 };
142 
143 static const struct filterops proc_filtops = {
144 	.f_flags = FILTEROP_MPSAFE,
145 	.f_attach = filt_procattach,
146 	.f_detach = filt_procdetach,
147 	.f_event = filt_proc,
148 };
149 
150 /*
151  * file_filtops is not marked MPSAFE because it's going to call
152  * fileops::fo_kqfilter(), which might not be.  That function,
153  * however, will override the knote's filterops, and thus will
154  * inherit the MPSAFE-ness of the back-end at that time.
155  */
156 static const struct filterops file_filtops = {
157 	.f_flags = FILTEROP_ISFD,
158 	.f_attach = filt_fileattach,
159 	.f_detach = NULL,
160 	.f_event = NULL,
161 };
162 
163 static const struct filterops timer_filtops = {
164 	.f_flags = FILTEROP_MPSAFE,
165 	.f_attach = filt_timerattach,
166 	.f_detach = filt_timerdetach,
167 	.f_event = filt_timer,
168 	.f_touch = filt_timertouch,
169 };
170 
171 static const struct filterops user_filtops = {
172 	.f_flags = FILTEROP_MPSAFE,
173 	.f_attach = filt_userattach,
174 	.f_detach = filt_userdetach,
175 	.f_event = filt_user,
176 	.f_touch = filt_usertouch,
177 };
178 
179 static u_int	kq_ncallouts = 0;
180 static int	kq_calloutmax = (4 * 1024);
181 
182 #define	KN_HASHSIZE		64		/* XXX should be tunable */
183 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
184 
185 extern const struct filterops fs_filtops;	/* vfs_syscalls.c */
186 extern const struct filterops sig_filtops;	/* kern_sig.c */
187 
188 /*
189  * Table for for all system-defined filters.
190  * These should be listed in the numeric order of the EVFILT_* defines.
191  * If filtops is NULL, the filter isn't implemented in NetBSD.
192  * End of list is when name is NULL.
193  *
194  * Note that 'refcnt' is meaningless for built-in filters.
195  */
196 struct kfilter {
197 	const char	*name;		/* name of filter */
198 	uint32_t	filter;		/* id of filter */
199 	unsigned	refcnt;		/* reference count */
200 	const struct filterops *filtops;/* operations for filter */
201 	size_t		namelen;	/* length of name string */
202 };
203 
204 /* System defined filters */
205 static struct kfilter sys_kfilters[] = {
206 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
207 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
208 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
209 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
210 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
211 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
212 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
213 	{ "EVFILT_FS",		EVFILT_FS,	0, &fs_filtops, 0 },
214 	{ "EVFILT_USER",	EVFILT_USER,	0, &user_filtops, 0 },
215 	{ "EVFILT_EMPTY",	EVFILT_EMPTY,	0, &file_filtops, 0 },
216 	{ NULL,			0,		0, NULL, 0 },
217 };
218 
219 /* User defined kfilters */
220 static struct kfilter	*user_kfilters;		/* array */
221 static int		user_kfilterc;		/* current offset */
222 static int		user_kfiltermaxc;	/* max size so far */
223 static size_t		user_kfiltersz;		/* size of allocated memory */
224 
225 /*
226  * Global Locks.
227  *
228  * Lock order:
229  *
230  *	kqueue_filter_lock
231  *	-> kn_kq->kq_fdp->fd_lock
232  *	-> object lock (e.g., device driver lock, &c.)
233  *	-> kn_kq->kq_lock
234  *
235  * Locking rules:
236  *
237  *	f_attach: fdp->fd_lock, KERNEL_LOCK
238  *	f_detach: fdp->fd_lock, KERNEL_LOCK
239  *	f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock
240  *	f_event via knote: whatever caller guarantees
241  *		Typically,	f_event(NOTE_SUBMIT) via knote: object lock
242  *				f_event(!NOTE_SUBMIT) via knote: nothing,
243  *					acquires/releases object lock inside.
244  *
245  * Locking rules when detaching knotes:
246  *
247  * There are some situations where knote submission may require dropping
248  * locks (see knote_proc_fork()).  In order to support this, it's possible
249  * to mark a knote as being 'in-flux'.  Such a knote is guaranteed not to
250  * be detached while it remains in-flux.  Because it will not be detached,
251  * locks can be dropped so e.g. memory can be allocated, locks on other
252  * data structures can be acquired, etc.  During this time, any attempt to
253  * detach an in-flux knote must wait until the knote is no longer in-flux.
254  * When this happens, the knote is marked for death (KN_WILLDETACH) and the
255  * LWP who gets to finish the detach operation is recorded in the knote's
256  * 'udata' field (which is no longer required for its original purpose once
257  * a knote is so marked).  Code paths that lead to knote_detach() must ensure
258  * that their LWP is the one tasked with its final demise after waiting for
259  * the in-flux status of the knote to clear.  Note that once a knote is
260  * marked KN_WILLDETACH, no code paths may put it into an in-flux state.
261  *
262  * Once the special circumstances have been handled, the locks are re-
263  * acquired in the proper order (object lock -> kq_lock), the knote taken
264  * out of flux, and any waiters are notified.  Because waiters must have
265  * also dropped *their* locks in order to safely block, they must re-
266  * validate all of their assumptions; see knote_detach_quiesce().  See also
267  * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT)
268  * cases.
269  *
270  * When kqueue_scan() encounters an in-flux knote, the situation is
271  * treated like another LWP's list marker.
272  *
273  * LISTEN WELL: It is important to not hold knotes in flux for an
274  * extended period of time! In-flux knotes effectively block any
275  * progress of the kqueue_scan() operation.  Any code paths that place
276  * knotes in-flux should be careful to not block for indefinite periods
277  * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but
278  * KM_SLEEP is not).
279  */
280 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
281 
282 #define	KQ_FLUX_WAIT(kq)	(void)cv_wait(&kq->kq_cv, &kq->kq_lock)
283 #define	KQ_FLUX_WAKEUP(kq)	cv_broadcast(&kq->kq_cv)
284 
285 static inline bool
286 kn_in_flux(struct knote *kn)
287 {
288 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
289 	return kn->kn_influx != 0;
290 }
291 
292 static inline bool
293 kn_enter_flux(struct knote *kn)
294 {
295 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
296 
297 	if (kn->kn_status & KN_WILLDETACH) {
298 		return false;
299 	}
300 
301 	KASSERT(kn->kn_influx < UINT_MAX);
302 	kn->kn_influx++;
303 
304 	return true;
305 }
306 
307 static inline bool
308 kn_leave_flux(struct knote *kn)
309 {
310 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
311 	KASSERT(kn->kn_influx > 0);
312 	kn->kn_influx--;
313 	return kn->kn_influx == 0;
314 }
315 
316 static void
317 kn_wait_flux(struct knote *kn, bool can_loop)
318 {
319 	bool loop;
320 
321 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
322 
323 	/*
324 	 * It may not be safe for us to touch the knote again after
325 	 * dropping the kq_lock.  The caller has let us know in
326 	 * 'can_loop'.
327 	 */
328 	for (loop = true; loop && kn->kn_influx != 0; loop = can_loop) {
329 		KQ_FLUX_WAIT(kn->kn_kq);
330 	}
331 }
332 
333 #define	KNOTE_WILLDETACH(kn)						\
334 do {									\
335 	(kn)->kn_status |= KN_WILLDETACH;				\
336 	(kn)->kn_kevent.udata = curlwp;					\
337 } while (/*CONSTCOND*/0)
338 
339 /*
340  * Wait until the specified knote is in a quiescent state and
341  * safe to detach.  Returns true if we potentially blocked (and
342  * thus dropped our locks).
343  */
344 static bool
345 knote_detach_quiesce(struct knote *kn)
346 {
347 	struct kqueue *kq = kn->kn_kq;
348 	filedesc_t *fdp = kq->kq_fdp;
349 
350 	KASSERT(mutex_owned(&fdp->fd_lock));
351 
352 	mutex_spin_enter(&kq->kq_lock);
353 	/*
354 	 * There are two cases where we might see KN_WILLDETACH here:
355 	 *
356 	 * 1. Someone else has already started detaching the knote but
357 	 *    had to wait for it to settle first.
358 	 *
359 	 * 2. We had to wait for it to settle, and had to come back
360 	 *    around after re-acquiring the locks.
361 	 *
362 	 * When KN_WILLDETACH is set, we also set the LWP that claimed
363 	 * the prize of finishing the detach in the 'udata' field of the
364 	 * knote (which will never be used again for its usual purpose
365 	 * once the note is in this state).  If it doesn't point to us,
366 	 * we must drop the locks and let them in to finish the job.
367 	 *
368 	 * Otherwise, once we have claimed the knote for ourselves, we
369 	 * can finish waiting for it to settle.  The is the only scenario
370 	 * where touching a detaching knote is safe after dropping the
371 	 * locks.
372 	 */
373 	if ((kn->kn_status & KN_WILLDETACH) != 0 &&
374 	    kn->kn_kevent.udata != curlwp) {
375 		/*
376 		 * N.B. it is NOT safe for us to touch the knote again
377 		 * after dropping the locks here.  The caller must go
378 		 * back around and re-validate everything.  However, if
379 		 * the knote is in-flux, we want to block to minimize
380 		 * busy-looping.
381 		 */
382 		mutex_exit(&fdp->fd_lock);
383 		if (kn_in_flux(kn)) {
384 			kn_wait_flux(kn, false);
385 			mutex_spin_exit(&kq->kq_lock);
386 			return true;
387 		}
388 		mutex_spin_exit(&kq->kq_lock);
389 		preempt_point();
390 		return true;
391 	}
392 	/*
393 	 * If we get here, we know that we will be claiming the
394 	 * detach responsibilies, or that we already have and
395 	 * this is the second attempt after re-validation.
396 	 */
397 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
398 		kn->kn_kevent.udata == curlwp);
399 	/*
400 	 * Similarly, if we get here, either we are just claiming it
401 	 * and may have to wait for it to settle, or if this is the
402 	 * second attempt after re-validation that no other code paths
403 	 * have put it in-flux.
404 	 */
405 	KASSERT((kn->kn_status & KN_WILLDETACH) == 0 ||
406 		kn_in_flux(kn) == false);
407 	KNOTE_WILLDETACH(kn);
408 	if (kn_in_flux(kn)) {
409 		mutex_exit(&fdp->fd_lock);
410 		kn_wait_flux(kn, true);
411 		/*
412 		 * It is safe for us to touch the knote again after
413 		 * dropping the locks, but the caller must still
414 		 * re-validate everything because other aspects of
415 		 * the environment may have changed while we blocked.
416 		 */
417 		KASSERT(kn_in_flux(kn) == false);
418 		mutex_spin_exit(&kq->kq_lock);
419 		return true;
420 	}
421 	mutex_spin_exit(&kq->kq_lock);
422 
423 	return false;
424 }
425 
426 static int
427 filter_attach(struct knote *kn)
428 {
429 	int rv;
430 
431 	KASSERT(kn->kn_fop != NULL);
432 	KASSERT(kn->kn_fop->f_attach != NULL);
433 
434 	/*
435 	 * N.B. that kn->kn_fop may change as the result of calling
436 	 * f_attach().
437 	 */
438 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
439 		rv = kn->kn_fop->f_attach(kn);
440 	} else {
441 		KERNEL_LOCK(1, NULL);
442 		rv = kn->kn_fop->f_attach(kn);
443 		KERNEL_UNLOCK_ONE(NULL);
444 	}
445 
446 	return rv;
447 }
448 
449 static void
450 filter_detach(struct knote *kn)
451 {
452 	KASSERT(kn->kn_fop != NULL);
453 	KASSERT(kn->kn_fop->f_detach != NULL);
454 
455 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
456 		kn->kn_fop->f_detach(kn);
457 	} else {
458 		KERNEL_LOCK(1, NULL);
459 		kn->kn_fop->f_detach(kn);
460 		KERNEL_UNLOCK_ONE(NULL);
461 	}
462 }
463 
464 static int
465 filter_event(struct knote *kn, long hint)
466 {
467 	int rv;
468 
469 	KASSERT(kn->kn_fop != NULL);
470 	KASSERT(kn->kn_fop->f_event != NULL);
471 
472 	if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) {
473 		rv = kn->kn_fop->f_event(kn, hint);
474 	} else {
475 		KERNEL_LOCK(1, NULL);
476 		rv = kn->kn_fop->f_event(kn, hint);
477 		KERNEL_UNLOCK_ONE(NULL);
478 	}
479 
480 	return rv;
481 }
482 
483 static int
484 filter_touch(struct knote *kn, struct kevent *kev, long type)
485 {
486 	return kn->kn_fop->f_touch(kn, kev, type);
487 }
488 
489 static kauth_listener_t	kqueue_listener;
490 
491 static int
492 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
493     void *arg0, void *arg1, void *arg2, void *arg3)
494 {
495 	struct proc *p;
496 	int result;
497 
498 	result = KAUTH_RESULT_DEFER;
499 	p = arg0;
500 
501 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
502 		return result;
503 
504 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
505 	    ISSET(p->p_flag, PK_SUGID)))
506 		return result;
507 
508 	result = KAUTH_RESULT_ALLOW;
509 
510 	return result;
511 }
512 
513 /*
514  * Initialize the kqueue subsystem.
515  */
516 void
517 kqueue_init(void)
518 {
519 
520 	rw_init(&kqueue_filter_lock);
521 
522 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
523 	    kqueue_listener_cb, NULL);
524 }
525 
526 /*
527  * Find kfilter entry by name, or NULL if not found.
528  */
529 static struct kfilter *
530 kfilter_byname_sys(const char *name)
531 {
532 	int i;
533 
534 	KASSERT(rw_lock_held(&kqueue_filter_lock));
535 
536 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
537 		if (strcmp(name, sys_kfilters[i].name) == 0)
538 			return &sys_kfilters[i];
539 	}
540 	return NULL;
541 }
542 
543 static struct kfilter *
544 kfilter_byname_user(const char *name)
545 {
546 	int i;
547 
548 	KASSERT(rw_lock_held(&kqueue_filter_lock));
549 
550 	/* user filter slots have a NULL name if previously deregistered */
551 	for (i = 0; i < user_kfilterc ; i++) {
552 		if (user_kfilters[i].name != NULL &&
553 		    strcmp(name, user_kfilters[i].name) == 0)
554 			return &user_kfilters[i];
555 	}
556 	return NULL;
557 }
558 
559 static struct kfilter *
560 kfilter_byname(const char *name)
561 {
562 	struct kfilter *kfilter;
563 
564 	KASSERT(rw_lock_held(&kqueue_filter_lock));
565 
566 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
567 		return kfilter;
568 
569 	return kfilter_byname_user(name);
570 }
571 
572 /*
573  * Find kfilter entry by filter id, or NULL if not found.
574  * Assumes entries are indexed in filter id order, for speed.
575  */
576 static struct kfilter *
577 kfilter_byfilter(uint32_t filter)
578 {
579 	struct kfilter *kfilter;
580 
581 	KASSERT(rw_lock_held(&kqueue_filter_lock));
582 
583 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
584 		kfilter = &sys_kfilters[filter];
585 	else if (user_kfilters != NULL &&
586 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
587 					/* it's a user filter */
588 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
589 	else
590 		return (NULL);		/* out of range */
591 	KASSERT(kfilter->filter == filter);	/* sanity check! */
592 	return (kfilter);
593 }
594 
595 /*
596  * Register a new kfilter. Stores the entry in user_kfilters.
597  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
598  * If retfilter != NULL, the new filterid is returned in it.
599  */
600 int
601 kfilter_register(const char *name, const struct filterops *filtops,
602 		 int *retfilter)
603 {
604 	struct kfilter *kfilter;
605 	size_t len;
606 	int i;
607 
608 	if (name == NULL || name[0] == '\0' || filtops == NULL)
609 		return (EINVAL);	/* invalid args */
610 
611 	rw_enter(&kqueue_filter_lock, RW_WRITER);
612 	if (kfilter_byname(name) != NULL) {
613 		rw_exit(&kqueue_filter_lock);
614 		return (EEXIST);	/* already exists */
615 	}
616 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
617 		rw_exit(&kqueue_filter_lock);
618 		return (EINVAL);	/* too many */
619 	}
620 
621 	for (i = 0; i < user_kfilterc; i++) {
622 		kfilter = &user_kfilters[i];
623 		if (kfilter->name == NULL) {
624 			/* Previously deregistered slot.  Reuse. */
625 			goto reuse;
626 		}
627 	}
628 
629 	/* check if need to grow user_kfilters */
630 	if (user_kfilterc + 1 > user_kfiltermaxc) {
631 		/* Grow in KFILTER_EXTENT chunks. */
632 		user_kfiltermaxc += KFILTER_EXTENT;
633 		len = user_kfiltermaxc * sizeof(*kfilter);
634 		kfilter = kmem_alloc(len, KM_SLEEP);
635 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
636 		if (user_kfilters != NULL) {
637 			memcpy(kfilter, user_kfilters, user_kfiltersz);
638 			kmem_free(user_kfilters, user_kfiltersz);
639 		}
640 		user_kfiltersz = len;
641 		user_kfilters = kfilter;
642 	}
643 	/* Adding new slot */
644 	kfilter = &user_kfilters[user_kfilterc++];
645 reuse:
646 	kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP);
647 
648 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
649 
650 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
651 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
652 
653 	if (retfilter != NULL)
654 		*retfilter = kfilter->filter;
655 	rw_exit(&kqueue_filter_lock);
656 
657 	return (0);
658 }
659 
660 /*
661  * Unregister a kfilter previously registered with kfilter_register.
662  * This retains the filter id, but clears the name and frees filtops (filter
663  * operations), so that the number isn't reused during a boot.
664  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
665  */
666 int
667 kfilter_unregister(const char *name)
668 {
669 	struct kfilter *kfilter;
670 
671 	if (name == NULL || name[0] == '\0')
672 		return (EINVAL);	/* invalid name */
673 
674 	rw_enter(&kqueue_filter_lock, RW_WRITER);
675 	if (kfilter_byname_sys(name) != NULL) {
676 		rw_exit(&kqueue_filter_lock);
677 		return (EINVAL);	/* can't detach system filters */
678 	}
679 
680 	kfilter = kfilter_byname_user(name);
681 	if (kfilter == NULL) {
682 		rw_exit(&kqueue_filter_lock);
683 		return (ENOENT);
684 	}
685 	if (kfilter->refcnt != 0) {
686 		rw_exit(&kqueue_filter_lock);
687 		return (EBUSY);
688 	}
689 
690 	/* Cast away const (but we know it's safe. */
691 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
692 	kfilter->name = NULL;	/* mark as `not implemented' */
693 
694 	if (kfilter->filtops != NULL) {
695 		/* Cast away const (but we know it's safe. */
696 		kmem_free(__UNCONST(kfilter->filtops),
697 		    sizeof(*kfilter->filtops));
698 		kfilter->filtops = NULL; /* mark as `not implemented' */
699 	}
700 	rw_exit(&kqueue_filter_lock);
701 
702 	return (0);
703 }
704 
705 
706 /*
707  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
708  * descriptors. Calls fileops kqfilter method for given file descriptor.
709  */
710 static int
711 filt_fileattach(struct knote *kn)
712 {
713 	file_t *fp;
714 
715 	fp = kn->kn_obj;
716 
717 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
718 }
719 
720 /*
721  * Filter detach method for EVFILT_READ on kqueue descriptor.
722  */
723 static void
724 filt_kqdetach(struct knote *kn)
725 {
726 	struct kqueue *kq;
727 
728 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
729 
730 	mutex_spin_enter(&kq->kq_lock);
731 	selremove_knote(&kq->kq_sel, kn);
732 	mutex_spin_exit(&kq->kq_lock);
733 }
734 
735 /*
736  * Filter event method for EVFILT_READ on kqueue descriptor.
737  */
738 /*ARGSUSED*/
739 static int
740 filt_kqueue(struct knote *kn, long hint)
741 {
742 	struct kqueue *kq;
743 	int rv;
744 
745 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
746 
747 	if (hint != NOTE_SUBMIT)
748 		mutex_spin_enter(&kq->kq_lock);
749 	kn->kn_data = KQ_COUNT(kq);
750 	rv = (kn->kn_data > 0);
751 	if (hint != NOTE_SUBMIT)
752 		mutex_spin_exit(&kq->kq_lock);
753 
754 	return rv;
755 }
756 
757 /*
758  * Filter attach method for EVFILT_PROC.
759  */
760 static int
761 filt_procattach(struct knote *kn)
762 {
763 	struct proc *p;
764 
765 	mutex_enter(&proc_lock);
766 	p = proc_find(kn->kn_id);
767 	if (p == NULL) {
768 		mutex_exit(&proc_lock);
769 		return ESRCH;
770 	}
771 
772 	/*
773 	 * Fail if it's not owned by you, or the last exec gave us
774 	 * setuid/setgid privs (unless you're root).
775 	 */
776 	mutex_enter(p->p_lock);
777 	mutex_exit(&proc_lock);
778 	if (kauth_authorize_process(curlwp->l_cred,
779 	    KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) {
780 	    	mutex_exit(p->p_lock);
781 		return EACCES;
782 	}
783 
784 	kn->kn_obj = p;
785 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
786 
787 	/*
788 	 * NOTE_CHILD is only ever generated internally; don't let it
789 	 * leak in from user-space.  See knote_proc_fork_track().
790 	 */
791 	kn->kn_sfflags &= ~NOTE_CHILD;
792 
793 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
794     	mutex_exit(p->p_lock);
795 
796 	return 0;
797 }
798 
799 /*
800  * Filter detach method for EVFILT_PROC.
801  *
802  * The knote may be attached to a different process, which may exit,
803  * leaving nothing for the knote to be attached to.  So when the process
804  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
805  * it will be deleted when read out.  However, as part of the knote deletion,
806  * this routine is called, so a check is needed to avoid actually performing
807  * a detach, because the original process might not exist any more.
808  */
809 static void
810 filt_procdetach(struct knote *kn)
811 {
812 	struct kqueue *kq = kn->kn_kq;
813 	struct proc *p;
814 
815 	/*
816 	 * We have to synchronize with knote_proc_exit(), but we
817 	 * are forced to acquire the locks in the wrong order here
818 	 * because we can't be sure kn->kn_obj is valid unless
819 	 * KN_DETACHED is not set.
820 	 */
821  again:
822 	mutex_spin_enter(&kq->kq_lock);
823 	if ((kn->kn_status & KN_DETACHED) == 0) {
824 		p = kn->kn_obj;
825 		if (!mutex_tryenter(p->p_lock)) {
826 			mutex_spin_exit(&kq->kq_lock);
827 			preempt_point();
828 			goto again;
829 		}
830 		kn->kn_status |= KN_DETACHED;
831 		SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
832 		mutex_exit(p->p_lock);
833 	}
834 	mutex_spin_exit(&kq->kq_lock);
835 }
836 
837 /*
838  * Filter event method for EVFILT_PROC.
839  *
840  * Due to some of the complexities of process locking, we have special
841  * entry points for delivering knote submissions.  filt_proc() is used
842  * only to check for activation from kqueue_register() and kqueue_scan().
843  */
844 static int
845 filt_proc(struct knote *kn, long hint)
846 {
847 	struct kqueue *kq = kn->kn_kq;
848 	uint32_t fflags;
849 
850 	/*
851 	 * Because we share the same klist with signal knotes, just
852 	 * ensure that we're not being invoked for the proc-related
853 	 * submissions.
854 	 */
855 	KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0);
856 
857 	mutex_spin_enter(&kq->kq_lock);
858 	fflags = kn->kn_fflags;
859 	mutex_spin_exit(&kq->kq_lock);
860 
861 	return fflags != 0;
862 }
863 
864 void
865 knote_proc_exec(struct proc *p)
866 {
867 	struct knote *kn, *tmpkn;
868 	struct kqueue *kq;
869 	uint32_t fflags;
870 
871 	mutex_enter(p->p_lock);
872 
873 	SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) {
874 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
875 		if (kn->kn_fop == &sig_filtops) {
876 			continue;
877 		}
878 		KASSERT(kn->kn_fop == &proc_filtops);
879 
880 		kq = kn->kn_kq;
881 		mutex_spin_enter(&kq->kq_lock);
882 		fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC));
883 		if (fflags) {
884 			knote_activate_locked(kn);
885 		}
886 		mutex_spin_exit(&kq->kq_lock);
887 	}
888 
889 	mutex_exit(p->p_lock);
890 }
891 
892 static int __noinline
893 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn)
894 {
895 	struct kqueue *kq = okn->kn_kq;
896 
897 	KASSERT(mutex_owned(&kq->kq_lock));
898 	KASSERT(mutex_owned(p1->p_lock));
899 
900 	/*
901 	 * We're going to put this knote into flux while we drop
902 	 * the locks and create and attach a new knote to track the
903 	 * child.  If we are not able to enter flux, then this knote
904 	 * is about to go away, so skip the notification.
905 	 */
906 	if (!kn_enter_flux(okn)) {
907 		return 0;
908 	}
909 
910 	mutex_spin_exit(&kq->kq_lock);
911 	mutex_exit(p1->p_lock);
912 
913 	/*
914 	 * We actually have to register *two* new knotes:
915 	 *
916 	 * ==> One for the NOTE_CHILD notification.  This is a forced
917 	 *     ONESHOT note.
918 	 *
919 	 * ==> One to actually track the child process as it subsequently
920 	 *     forks, execs, and, ultimately, exits.
921 	 *
922 	 * If we only register a single knote, then it's possible for
923 	 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single
924 	 * notification if the child exits before the tracking process
925 	 * has received the NOTE_CHILD notification, which applications
926 	 * aren't expecting (the event's 'data' field would be clobbered,
927 	 * for exmaple).
928 	 *
929 	 * To do this, what we have here is an **extremely** stripped-down
930 	 * version of kqueue_register() that has the following properties:
931 	 *
932 	 * ==> Does not block to allocate memory.  If we are unable
933 	 *     to allocate memory, we return ENOMEM.
934 	 *
935 	 * ==> Does not search for existing knotes; we know there
936 	 *     are not any because this is a new process that isn't
937 	 *     even visible to other processes yet.
938 	 *
939 	 * ==> Assumes that the knhash for our kq's descriptor table
940 	 *     already exists (after all, we're already tracking
941 	 *     processes with knotes if we got here).
942 	 *
943 	 * ==> Directly attaches the new tracking knote to the child
944 	 *     process.
945 	 *
946 	 * The whole point is to do the minimum amount of work while the
947 	 * knote is held in-flux, and to avoid doing extra work in general
948 	 * (we already have the new child process; why bother looking it
949 	 * up again?).
950 	 */
951 	filedesc_t *fdp = kq->kq_fdp;
952 	struct knote *knchild, *kntrack;
953 	int error = 0;
954 
955 	knchild = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
956 	kntrack = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP);
957 	if (__predict_false(knchild == NULL || kntrack == NULL)) {
958 		error = ENOMEM;
959 		goto out;
960 	}
961 
962 	kntrack->kn_obj = p2;
963 	kntrack->kn_id = p2->p_pid;
964 	kntrack->kn_kq = kq;
965 	kntrack->kn_fop = okn->kn_fop;
966 	kntrack->kn_kfilter = okn->kn_kfilter;
967 	kntrack->kn_sfflags = okn->kn_sfflags;
968 	kntrack->kn_sdata = p1->p_pid;
969 
970 	kntrack->kn_kevent.ident = p2->p_pid;
971 	kntrack->kn_kevent.filter = okn->kn_filter;
972 	kntrack->kn_kevent.flags =
973 	    okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR;
974 	kntrack->kn_kevent.fflags = 0;
975 	kntrack->kn_kevent.data = 0;
976 	kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */
977 
978 	/*
979 	 * The child note does not need to be attached to the
980 	 * new proc's klist at all.
981 	 */
982 	*knchild = *kntrack;
983 	knchild->kn_status = KN_DETACHED;
984 	knchild->kn_sfflags = 0;
985 	knchild->kn_kevent.flags |= EV_ONESHOT;
986 	knchild->kn_kevent.fflags = NOTE_CHILD;
987 	knchild->kn_kevent.data = p1->p_pid;		 /* parent */
988 
989 	mutex_enter(&fdp->fd_lock);
990 
991 	/*
992 	 * We need to check to see if the kq is closing, and skip
993 	 * attaching the knote if so.  Normally, this isn't necessary
994 	 * when coming in the front door because the file descriptor
995 	 * layer will synchronize this.
996 	 *
997 	 * It's safe to test KQ_CLOSING without taking the kq_lock
998 	 * here because that flag is only ever set when the fd_lock
999 	 * is also held.
1000 	 */
1001 	if (__predict_false(kq->kq_count & KQ_CLOSING)) {
1002 		mutex_exit(&fdp->fd_lock);
1003 		goto out;
1004 	}
1005 
1006 	/*
1007 	 * We do the "insert into FD table" and "attach to klist" steps
1008 	 * in the opposite order of kqueue_register() here to avoid
1009 	 * having to take p2->p_lock twice.  But this is OK because we
1010 	 * hold fd_lock across the entire operation.
1011 	 */
1012 
1013 	mutex_enter(p2->p_lock);
1014 	error = kauth_authorize_process(curlwp->l_cred,
1015 	    KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL);
1016 	if (__predict_false(error != 0)) {
1017 		mutex_exit(p2->p_lock);
1018 		mutex_exit(&fdp->fd_lock);
1019 		error = EACCES;
1020 		goto out;
1021 	}
1022 	SLIST_INSERT_HEAD(&p2->p_klist, kntrack, kn_selnext);
1023 	mutex_exit(p2->p_lock);
1024 
1025 	KASSERT(fdp->fd_knhashmask != 0);
1026 	KASSERT(fdp->fd_knhash != NULL);
1027 	struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id,
1028 	    fdp->fd_knhashmask)];
1029 	SLIST_INSERT_HEAD(list, kntrack, kn_link);
1030 	SLIST_INSERT_HEAD(list, knchild, kn_link);
1031 
1032 	/* This adds references for knchild *and* kntrack. */
1033 	atomic_add_int(&kntrack->kn_kfilter->refcnt, 2);
1034 
1035 	knote_activate(knchild);
1036 
1037 	kntrack = NULL;
1038 	knchild = NULL;
1039 
1040 	mutex_exit(&fdp->fd_lock);
1041 
1042  out:
1043 	if (__predict_false(knchild != NULL)) {
1044 		kmem_free(knchild, sizeof(*knchild));
1045 	}
1046 	if (__predict_false(kntrack != NULL)) {
1047 		kmem_free(kntrack, sizeof(*kntrack));
1048 	}
1049 	mutex_enter(p1->p_lock);
1050 	mutex_spin_enter(&kq->kq_lock);
1051 
1052 	if (kn_leave_flux(okn)) {
1053 		KQ_FLUX_WAKEUP(kq);
1054 	}
1055 
1056 	return error;
1057 }
1058 
1059 void
1060 knote_proc_fork(struct proc *p1, struct proc *p2)
1061 {
1062 	struct knote *kn;
1063 	struct kqueue *kq;
1064 	uint32_t fflags;
1065 
1066 	mutex_enter(p1->p_lock);
1067 
1068 	/*
1069 	 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we
1070 	 * don't want to pre-fetch the next knote; in the event we
1071 	 * have to drop p_lock, we will have put the knote in-flux,
1072 	 * meaning that no one will be able to detach it until we
1073 	 * have taken the knote out of flux.  However, that does
1074 	 * NOT stop someone else from detaching the next note in the
1075 	 * list while we have it unlocked.  Thus, we want to fetch
1076 	 * the next note in the list only after we have re-acquired
1077 	 * the lock, and using SLIST_FOREACH() will satisfy that.
1078 	 */
1079 	SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) {
1080 		/* N.B. EVFILT_SIGNAL knotes are on this same list. */
1081 		if (kn->kn_fop == &sig_filtops) {
1082 			continue;
1083 		}
1084 		KASSERT(kn->kn_fop == &proc_filtops);
1085 
1086 		kq = kn->kn_kq;
1087 		mutex_spin_enter(&kq->kq_lock);
1088 		kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK);
1089 		if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) {
1090 			/*
1091 			 * This will drop kq_lock and p_lock and
1092 			 * re-acquire them before it returns.
1093 			 */
1094 			if (knote_proc_fork_track(p1, p2, kn)) {
1095 				kn->kn_fflags |= NOTE_TRACKERR;
1096 			}
1097 			KASSERT(mutex_owned(p1->p_lock));
1098 			KASSERT(mutex_owned(&kq->kq_lock));
1099 		}
1100 		fflags = kn->kn_fflags;
1101 		if (fflags) {
1102 			knote_activate_locked(kn);
1103 		}
1104 		mutex_spin_exit(&kq->kq_lock);
1105 	}
1106 
1107 	mutex_exit(p1->p_lock);
1108 }
1109 
1110 void
1111 knote_proc_exit(struct proc *p)
1112 {
1113 	struct knote *kn;
1114 	struct kqueue *kq;
1115 
1116 	KASSERT(mutex_owned(p->p_lock));
1117 
1118 	while (!SLIST_EMPTY(&p->p_klist)) {
1119 		kn = SLIST_FIRST(&p->p_klist);
1120 		kq = kn->kn_kq;
1121 
1122 		KASSERT(kn->kn_obj == p);
1123 
1124 		mutex_spin_enter(&kq->kq_lock);
1125 		kn->kn_data = P_WAITSTATUS(p);
1126 		/*
1127 		 * Mark as ONESHOT, so that the knote is g/c'ed
1128 		 * when read.
1129 		 */
1130 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
1131 		kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT;
1132 
1133 		/*
1134 		 * Detach the knote from the process and mark it as such.
1135 		 * N.B. EVFILT_SIGNAL are also on p_klist, but by the
1136 		 * time we get here, all open file descriptors for this
1137 		 * process have been released, meaning that signal knotes
1138 		 * will have already been detached.
1139 		 *
1140 		 * We need to synchronize this with filt_procdetach().
1141 		 */
1142 		KASSERT(kn->kn_fop == &proc_filtops);
1143 		if ((kn->kn_status & KN_DETACHED) == 0) {
1144 			kn->kn_status |= KN_DETACHED;
1145 			SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext);
1146 		}
1147 
1148 		/*
1149 		 * Always activate the knote for NOTE_EXIT regardless
1150 		 * of whether or not the listener cares about it.
1151 		 * This matches historical behavior.
1152 		 */
1153 		knote_activate_locked(kn);
1154 		mutex_spin_exit(&kq->kq_lock);
1155 	}
1156 }
1157 
1158 #define	FILT_TIMER_NOSCHED	((uintptr_t)-1)
1159 
1160 static int
1161 filt_timercompute(struct kevent *kev, uintptr_t *tticksp)
1162 {
1163 	struct timespec ts;
1164 	uintptr_t tticks;
1165 
1166 	if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) {
1167 		return EINVAL;
1168 	}
1169 
1170 	/*
1171 	 * Convert the event 'data' to a timespec, then convert the
1172 	 * timespec to callout ticks.
1173 	 */
1174 	switch (kev->fflags & NOTE_TIMER_UNITMASK) {
1175 	case NOTE_SECONDS:
1176 		ts.tv_sec = kev->data;
1177 		ts.tv_nsec = 0;
1178 		break;
1179 
1180 	case NOTE_MSECONDS:		/* == historical value 0 */
1181 		ts.tv_sec = kev->data / 1000;
1182 		ts.tv_nsec = (kev->data % 1000) * 1000000;
1183 		break;
1184 
1185 	case NOTE_USECONDS:
1186 		ts.tv_sec = kev->data / 1000000;
1187 		ts.tv_nsec = (kev->data % 1000000) * 1000;
1188 		break;
1189 
1190 	case NOTE_NSECONDS:
1191 		ts.tv_sec = kev->data / 1000000000;
1192 		ts.tv_nsec = kev->data % 1000000000;
1193 		break;
1194 
1195 	default:
1196 		return EINVAL;
1197 	}
1198 
1199 	if (kev->fflags & NOTE_ABSTIME) {
1200 		struct timespec deadline = ts;
1201 
1202 		/*
1203 		 * Get current time.
1204 		 *
1205 		 * XXX This is CLOCK_REALTIME.  There is no way to
1206 		 * XXX specify CLOCK_MONOTONIC.
1207 		 */
1208 		nanotime(&ts);
1209 
1210 		/* Absolute timers do not repeat. */
1211 		kev->data = FILT_TIMER_NOSCHED;
1212 
1213 		/* If we're past the deadline, then the event will fire. */
1214 		if (timespeccmp(&deadline, &ts, <=)) {
1215 			tticks = FILT_TIMER_NOSCHED;
1216 			goto out;
1217 		}
1218 
1219 		/* Calculate how much time is left. */
1220 		timespecsub(&deadline, &ts, &ts);
1221 	} else {
1222 		/* EV_CLEAR automatically set for relative timers. */
1223 		kev->flags |= EV_CLEAR;
1224 	}
1225 
1226 	tticks = tstohz(&ts);
1227 
1228 	/* if the supplied value is under our resolution, use 1 tick */
1229 	if (tticks == 0) {
1230 		if (kev->data == 0)
1231 			return EINVAL;
1232 		tticks = 1;
1233 	} else if (tticks > INT_MAX) {
1234 		return EINVAL;
1235 	}
1236 
1237 	if ((kev->flags & EV_ONESHOT) != 0) {
1238 		/* Timer does not repeat. */
1239 		kev->data = FILT_TIMER_NOSCHED;
1240 	} else {
1241 		KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED);
1242 		kev->data = tticks;
1243 	}
1244 
1245  out:
1246 	*tticksp = tticks;
1247 
1248 	return 0;
1249 }
1250 
1251 static void
1252 filt_timerexpire(void *knx)
1253 {
1254 	struct knote *kn = knx;
1255 	struct kqueue *kq = kn->kn_kq;
1256 
1257 	mutex_spin_enter(&kq->kq_lock);
1258 	kn->kn_data++;
1259 	knote_activate_locked(kn);
1260 	if (kn->kn_sdata != FILT_TIMER_NOSCHED) {
1261 		KASSERT(kn->kn_sdata > 0 && kn->kn_sdata <= INT_MAX);
1262 		callout_schedule((callout_t *)kn->kn_hook,
1263 		    (int)kn->kn_sdata);
1264 	}
1265 	mutex_spin_exit(&kq->kq_lock);
1266 }
1267 
1268 static inline void
1269 filt_timerstart(struct knote *kn, uintptr_t tticks)
1270 {
1271 	callout_t *calloutp = kn->kn_hook;
1272 
1273 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1274 	KASSERT(!callout_pending(calloutp));
1275 
1276 	if (__predict_false(tticks == FILT_TIMER_NOSCHED)) {
1277 		kn->kn_data = 1;
1278 	} else {
1279 		KASSERT(tticks <= INT_MAX);
1280 		callout_reset(calloutp, (int)tticks, filt_timerexpire, kn);
1281 	}
1282 }
1283 
1284 static int
1285 filt_timerattach(struct knote *kn)
1286 {
1287 	callout_t *calloutp;
1288 	struct kqueue *kq;
1289 	uintptr_t tticks;
1290 	int error;
1291 
1292 	struct kevent kev = {
1293 		.flags = kn->kn_flags,
1294 		.fflags = kn->kn_sfflags,
1295 		.data = kn->kn_sdata,
1296 	};
1297 
1298 	error = filt_timercompute(&kev, &tticks);
1299 	if (error) {
1300 		return error;
1301 	}
1302 
1303 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
1304 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
1305 		atomic_dec_uint(&kq_ncallouts);
1306 		return ENOMEM;
1307 	}
1308 	callout_init(calloutp, CALLOUT_MPSAFE);
1309 
1310 	kq = kn->kn_kq;
1311 	mutex_spin_enter(&kq->kq_lock);
1312 
1313 	kn->kn_sdata = kev.data;
1314 	kn->kn_flags = kev.flags;
1315 	KASSERT(kn->kn_sfflags == kev.fflags);
1316 	kn->kn_hook = calloutp;
1317 
1318 	filt_timerstart(kn, tticks);
1319 
1320 	mutex_spin_exit(&kq->kq_lock);
1321 
1322 	return (0);
1323 }
1324 
1325 static void
1326 filt_timerdetach(struct knote *kn)
1327 {
1328 	callout_t *calloutp;
1329 	struct kqueue *kq = kn->kn_kq;
1330 
1331 	/* prevent rescheduling when we expire */
1332 	mutex_spin_enter(&kq->kq_lock);
1333 	kn->kn_sdata = FILT_TIMER_NOSCHED;
1334 	mutex_spin_exit(&kq->kq_lock);
1335 
1336 	calloutp = (callout_t *)kn->kn_hook;
1337 
1338 	/*
1339 	 * Attempt to stop the callout.  This will block if it's
1340 	 * already running.
1341 	 */
1342 	callout_halt(calloutp, NULL);
1343 
1344 	callout_destroy(calloutp);
1345 	kmem_free(calloutp, sizeof(*calloutp));
1346 	atomic_dec_uint(&kq_ncallouts);
1347 }
1348 
1349 static int
1350 filt_timertouch(struct knote *kn, struct kevent *kev, long type)
1351 {
1352 	struct kqueue *kq = kn->kn_kq;
1353 	callout_t *calloutp;
1354 	uintptr_t tticks;
1355 	int error;
1356 
1357 	KASSERT(mutex_owned(&kq->kq_lock));
1358 
1359 	switch (type) {
1360 	case EVENT_REGISTER:
1361 		/* Only relevant for EV_ADD. */
1362 		if ((kev->flags & EV_ADD) == 0) {
1363 			return 0;
1364 		}
1365 
1366 		/*
1367 		 * Stop the timer, under the assumption that if
1368 		 * an application is re-configuring the timer,
1369 		 * they no longer care about the old one.  We
1370 		 * can safely drop the kq_lock while we wait
1371 		 * because fdp->fd_lock will be held throughout,
1372 		 * ensuring that no one can sneak in with an
1373 		 * EV_DELETE or close the kq.
1374 		 */
1375 		KASSERT(mutex_owned(&kq->kq_fdp->fd_lock));
1376 
1377 		calloutp = kn->kn_hook;
1378 		callout_halt(calloutp, &kq->kq_lock);
1379 		KASSERT(mutex_owned(&kq->kq_lock));
1380 		knote_deactivate_locked(kn);
1381 		kn->kn_data = 0;
1382 
1383 		error = filt_timercompute(kev, &tticks);
1384 		if (error) {
1385 			return error;
1386 		}
1387 		kn->kn_sdata = kev->data;
1388 		kn->kn_flags = kev->flags;
1389 		kn->kn_sfflags = kev->fflags;
1390 		filt_timerstart(kn, tticks);
1391 		break;
1392 
1393 	case EVENT_PROCESS:
1394 		*kev = kn->kn_kevent;
1395 		break;
1396 
1397 	default:
1398 		panic("%s: invalid type (%ld)", __func__, type);
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static int
1405 filt_timer(struct knote *kn, long hint)
1406 {
1407 	struct kqueue *kq = kn->kn_kq;
1408 	int rv;
1409 
1410 	mutex_spin_enter(&kq->kq_lock);
1411 	rv = (kn->kn_data != 0);
1412 	mutex_spin_exit(&kq->kq_lock);
1413 
1414 	return rv;
1415 }
1416 
1417 static int
1418 filt_userattach(struct knote *kn)
1419 {
1420 	struct kqueue *kq = kn->kn_kq;
1421 
1422 	/*
1423 	 * EVFILT_USER knotes are not attached to anything in the kernel.
1424 	 */
1425 	mutex_spin_enter(&kq->kq_lock);
1426 	kn->kn_hook = NULL;
1427 	if (kn->kn_fflags & NOTE_TRIGGER)
1428 		kn->kn_hookid = 1;
1429 	else
1430 		kn->kn_hookid = 0;
1431 	mutex_spin_exit(&kq->kq_lock);
1432 	return (0);
1433 }
1434 
1435 static void
1436 filt_userdetach(struct knote *kn)
1437 {
1438 
1439 	/*
1440 	 * EVFILT_USER knotes are not attached to anything in the kernel.
1441 	 */
1442 }
1443 
1444 static int
1445 filt_user(struct knote *kn, long hint)
1446 {
1447 	struct kqueue *kq = kn->kn_kq;
1448 	int hookid;
1449 
1450 	mutex_spin_enter(&kq->kq_lock);
1451 	hookid = kn->kn_hookid;
1452 	mutex_spin_exit(&kq->kq_lock);
1453 
1454 	return hookid;
1455 }
1456 
1457 static int
1458 filt_usertouch(struct knote *kn, struct kevent *kev, long type)
1459 {
1460 	int ffctrl;
1461 
1462 	KASSERT(mutex_owned(&kn->kn_kq->kq_lock));
1463 
1464 	switch (type) {
1465 	case EVENT_REGISTER:
1466 		if (kev->fflags & NOTE_TRIGGER)
1467 			kn->kn_hookid = 1;
1468 
1469 		ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1470 		kev->fflags &= NOTE_FFLAGSMASK;
1471 		switch (ffctrl) {
1472 		case NOTE_FFNOP:
1473 			break;
1474 
1475 		case NOTE_FFAND:
1476 			kn->kn_sfflags &= kev->fflags;
1477 			break;
1478 
1479 		case NOTE_FFOR:
1480 			kn->kn_sfflags |= kev->fflags;
1481 			break;
1482 
1483 		case NOTE_FFCOPY:
1484 			kn->kn_sfflags = kev->fflags;
1485 			break;
1486 
1487 		default:
1488 			/* XXX Return error? */
1489 			break;
1490 		}
1491 		kn->kn_sdata = kev->data;
1492 		if (kev->flags & EV_CLEAR) {
1493 			kn->kn_hookid = 0;
1494 			kn->kn_data = 0;
1495 			kn->kn_fflags = 0;
1496 		}
1497 		break;
1498 
1499 	case EVENT_PROCESS:
1500 		*kev = kn->kn_kevent;
1501 		kev->fflags = kn->kn_sfflags;
1502 		kev->data = kn->kn_sdata;
1503 		if (kn->kn_flags & EV_CLEAR) {
1504 			kn->kn_hookid = 0;
1505 			kn->kn_data = 0;
1506 			kn->kn_fflags = 0;
1507 		}
1508 		break;
1509 
1510 	default:
1511 		panic("filt_usertouch() - invalid type (%ld)", type);
1512 		break;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 /*
1519  * filt_seltrue:
1520  *
1521  *	This filter "event" routine simulates seltrue().
1522  */
1523 int
1524 filt_seltrue(struct knote *kn, long hint)
1525 {
1526 
1527 	/*
1528 	 * We don't know how much data can be read/written,
1529 	 * but we know that it *can* be.  This is about as
1530 	 * good as select/poll does as well.
1531 	 */
1532 	kn->kn_data = 0;
1533 	return (1);
1534 }
1535 
1536 /*
1537  * This provides full kqfilter entry for device switch tables, which
1538  * has same effect as filter using filt_seltrue() as filter method.
1539  */
1540 static void
1541 filt_seltruedetach(struct knote *kn)
1542 {
1543 	/* Nothing to do */
1544 }
1545 
1546 const struct filterops seltrue_filtops = {
1547 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1548 	.f_attach = NULL,
1549 	.f_detach = filt_seltruedetach,
1550 	.f_event = filt_seltrue,
1551 };
1552 
1553 int
1554 seltrue_kqfilter(dev_t dev, struct knote *kn)
1555 {
1556 	switch (kn->kn_filter) {
1557 	case EVFILT_READ:
1558 	case EVFILT_WRITE:
1559 		kn->kn_fop = &seltrue_filtops;
1560 		break;
1561 	default:
1562 		return (EINVAL);
1563 	}
1564 
1565 	/* Nothing more to do */
1566 	return (0);
1567 }
1568 
1569 /*
1570  * kqueue(2) system call.
1571  */
1572 static int
1573 kqueue1(struct lwp *l, int flags, register_t *retval)
1574 {
1575 	struct kqueue *kq;
1576 	file_t *fp;
1577 	int fd, error;
1578 
1579 	if ((error = fd_allocfile(&fp, &fd)) != 0)
1580 		return error;
1581 	fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE));
1582 	fp->f_type = DTYPE_KQUEUE;
1583 	fp->f_ops = &kqueueops;
1584 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
1585 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
1586 	cv_init(&kq->kq_cv, "kqueue");
1587 	selinit(&kq->kq_sel);
1588 	TAILQ_INIT(&kq->kq_head);
1589 	fp->f_kqueue = kq;
1590 	*retval = fd;
1591 	kq->kq_fdp = curlwp->l_fd;
1592 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1593 	fd_affix(curproc, fp, fd);
1594 	return error;
1595 }
1596 
1597 /*
1598  * kqueue(2) system call.
1599  */
1600 int
1601 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
1602 {
1603 	return kqueue1(l, 0, retval);
1604 }
1605 
1606 int
1607 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
1608     register_t *retval)
1609 {
1610 	/* {
1611 		syscallarg(int) flags;
1612 	} */
1613 	return kqueue1(l, SCARG(uap, flags), retval);
1614 }
1615 
1616 /*
1617  * kevent(2) system call.
1618  */
1619 int
1620 kevent_fetch_changes(void *ctx, const struct kevent *changelist,
1621     struct kevent *changes, size_t index, int n)
1622 {
1623 
1624 	return copyin(changelist + index, changes, n * sizeof(*changes));
1625 }
1626 
1627 int
1628 kevent_put_events(void *ctx, struct kevent *events,
1629     struct kevent *eventlist, size_t index, int n)
1630 {
1631 
1632 	return copyout(events, eventlist + index, n * sizeof(*events));
1633 }
1634 
1635 static const struct kevent_ops kevent_native_ops = {
1636 	.keo_private = NULL,
1637 	.keo_fetch_timeout = copyin,
1638 	.keo_fetch_changes = kevent_fetch_changes,
1639 	.keo_put_events = kevent_put_events,
1640 };
1641 
1642 int
1643 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
1644     register_t *retval)
1645 {
1646 	/* {
1647 		syscallarg(int) fd;
1648 		syscallarg(const struct kevent *) changelist;
1649 		syscallarg(size_t) nchanges;
1650 		syscallarg(struct kevent *) eventlist;
1651 		syscallarg(size_t) nevents;
1652 		syscallarg(const struct timespec *) timeout;
1653 	} */
1654 
1655 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
1656 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
1657 	    SCARG(uap, timeout), &kevent_native_ops);
1658 }
1659 
1660 int
1661 kevent1(register_t *retval, int fd,
1662 	const struct kevent *changelist, size_t nchanges,
1663 	struct kevent *eventlist, size_t nevents,
1664 	const struct timespec *timeout,
1665 	const struct kevent_ops *keops)
1666 {
1667 	struct kevent *kevp;
1668 	struct kqueue *kq;
1669 	struct timespec	ts;
1670 	size_t i, n, ichange;
1671 	int nerrors, error;
1672 	struct kevent kevbuf[KQ_NEVENTS];	/* approx 300 bytes on 64-bit */
1673 	file_t *fp;
1674 
1675 	/* check that we're dealing with a kq */
1676 	fp = fd_getfile(fd);
1677 	if (fp == NULL)
1678 		return (EBADF);
1679 
1680 	if (fp->f_type != DTYPE_KQUEUE) {
1681 		fd_putfile(fd);
1682 		return (EBADF);
1683 	}
1684 
1685 	if (timeout != NULL) {
1686 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
1687 		if (error)
1688 			goto done;
1689 		timeout = &ts;
1690 	}
1691 
1692 	kq = fp->f_kqueue;
1693 	nerrors = 0;
1694 	ichange = 0;
1695 
1696 	/* traverse list of events to register */
1697 	while (nchanges > 0) {
1698 		n = MIN(nchanges, __arraycount(kevbuf));
1699 		error = (*keops->keo_fetch_changes)(keops->keo_private,
1700 		    changelist, kevbuf, ichange, n);
1701 		if (error)
1702 			goto done;
1703 		for (i = 0; i < n; i++) {
1704 			kevp = &kevbuf[i];
1705 			kevp->flags &= ~EV_SYSFLAGS;
1706 			/* register each knote */
1707 			error = kqueue_register(kq, kevp);
1708 			if (!error && !(kevp->flags & EV_RECEIPT))
1709 				continue;
1710 			if (nevents == 0)
1711 				goto done;
1712 			kevp->flags = EV_ERROR;
1713 			kevp->data = error;
1714 			error = (*keops->keo_put_events)
1715 				(keops->keo_private, kevp,
1716 				 eventlist, nerrors, 1);
1717 			if (error)
1718 				goto done;
1719 			nevents--;
1720 			nerrors++;
1721 		}
1722 		nchanges -= n;	/* update the results */
1723 		ichange += n;
1724 	}
1725 	if (nerrors) {
1726 		*retval = nerrors;
1727 		error = 0;
1728 		goto done;
1729 	}
1730 
1731 	/* actually scan through the events */
1732 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
1733 	    kevbuf, __arraycount(kevbuf));
1734  done:
1735 	fd_putfile(fd);
1736 	return (error);
1737 }
1738 
1739 /*
1740  * Register a given kevent kev onto the kqueue
1741  */
1742 static int
1743 kqueue_register(struct kqueue *kq, struct kevent *kev)
1744 {
1745 	struct kfilter *kfilter;
1746 	filedesc_t *fdp;
1747 	file_t *fp;
1748 	fdfile_t *ff;
1749 	struct knote *kn, *newkn;
1750 	struct klist *list;
1751 	int error, fd, rv;
1752 
1753 	fdp = kq->kq_fdp;
1754 	fp = NULL;
1755 	kn = NULL;
1756 	error = 0;
1757 	fd = 0;
1758 
1759 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
1760 
1761 	rw_enter(&kqueue_filter_lock, RW_READER);
1762 	kfilter = kfilter_byfilter(kev->filter);
1763 	if (kfilter == NULL || kfilter->filtops == NULL) {
1764 		/* filter not found nor implemented */
1765 		rw_exit(&kqueue_filter_lock);
1766 		kmem_free(newkn, sizeof(*newkn));
1767 		return (EINVAL);
1768 	}
1769 
1770 	/* search if knote already exists */
1771 	if (kfilter->filtops->f_flags & FILTEROP_ISFD) {
1772 		/* monitoring a file descriptor */
1773 		/* validate descriptor */
1774 		if (kev->ident > INT_MAX
1775 		    || (fp = fd_getfile(fd = kev->ident)) == NULL) {
1776 			rw_exit(&kqueue_filter_lock);
1777 			kmem_free(newkn, sizeof(*newkn));
1778 			return EBADF;
1779 		}
1780 		mutex_enter(&fdp->fd_lock);
1781 		ff = fdp->fd_dt->dt_ff[fd];
1782 		if (ff->ff_refcnt & FR_CLOSING) {
1783 			error = EBADF;
1784 			goto doneunlock;
1785 		}
1786 		if (fd <= fdp->fd_lastkqfile) {
1787 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
1788 				if (kq == kn->kn_kq &&
1789 				    kev->filter == kn->kn_filter)
1790 					break;
1791 			}
1792 		}
1793 	} else {
1794 		/*
1795 		 * not monitoring a file descriptor, so
1796 		 * lookup knotes in internal hash table
1797 		 */
1798 		mutex_enter(&fdp->fd_lock);
1799 		if (fdp->fd_knhashmask != 0) {
1800 			list = &fdp->fd_knhash[
1801 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1802 			SLIST_FOREACH(kn, list, kn_link) {
1803 				if (kev->ident == kn->kn_id &&
1804 				    kq == kn->kn_kq &&
1805 				    kev->filter == kn->kn_filter)
1806 					break;
1807 			}
1808 		}
1809 	}
1810 
1811 	/* It's safe to test KQ_CLOSING while holding only the fd_lock. */
1812 	KASSERT(mutex_owned(&fdp->fd_lock));
1813 	KASSERT((kq->kq_count & KQ_CLOSING) == 0);
1814 
1815 	/*
1816 	 * kn now contains the matching knote, or NULL if no match
1817 	 */
1818 	if (kn == NULL) {
1819 		if (kev->flags & EV_ADD) {
1820 			/* create new knote */
1821 			kn = newkn;
1822 			newkn = NULL;
1823 			kn->kn_obj = fp;
1824 			kn->kn_id = kev->ident;
1825 			kn->kn_kq = kq;
1826 			kn->kn_fop = kfilter->filtops;
1827 			kn->kn_kfilter = kfilter;
1828 			kn->kn_sfflags = kev->fflags;
1829 			kn->kn_sdata = kev->data;
1830 			kev->fflags = 0;
1831 			kev->data = 0;
1832 			kn->kn_kevent = *kev;
1833 
1834 			KASSERT(kn->kn_fop != NULL);
1835 			/*
1836 			 * apply reference count to knote structure, and
1837 			 * do not release it at the end of this routine.
1838 			 */
1839 			fp = NULL;
1840 
1841 			if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) {
1842 				/*
1843 				 * If knote is not on an fd, store on
1844 				 * internal hash table.
1845 				 */
1846 				if (fdp->fd_knhashmask == 0) {
1847 					/* XXXAD can block with fd_lock held */
1848 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
1849 					    HASH_LIST, true,
1850 					    &fdp->fd_knhashmask);
1851 				}
1852 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
1853 				    fdp->fd_knhashmask)];
1854 			} else {
1855 				/* Otherwise, knote is on an fd. */
1856 				list = (struct klist *)
1857 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1858 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
1859 					fdp->fd_lastkqfile = kn->kn_id;
1860 			}
1861 			SLIST_INSERT_HEAD(list, kn, kn_link);
1862 
1863 			/*
1864 			 * N.B. kn->kn_fop may change as the result
1865 			 * of filter_attach()!
1866 			 */
1867 			error = filter_attach(kn);
1868 			if (error != 0) {
1869 #ifdef DEBUG
1870 				struct proc *p = curlwp->l_proc;
1871 				const file_t *ft = kn->kn_obj;
1872 				printf("%s: %s[%d]: event type %d not "
1873 				    "supported for file type %d/%s "
1874 				    "(error %d)\n", __func__,
1875 				    p->p_comm, p->p_pid,
1876 				    kn->kn_filter, ft ? ft->f_type : -1,
1877 				    ft ? ft->f_ops->fo_name : "?", error);
1878 #endif
1879 
1880 				/*
1881 				 * N.B. no need to check for this note to
1882 				 * be in-flux, since it was never visible
1883 				 * to the monitored object.
1884 				 *
1885 				 * knote_detach() drops fdp->fd_lock
1886 				 */
1887 				mutex_enter(&kq->kq_lock);
1888 				KNOTE_WILLDETACH(kn);
1889 				KASSERT(kn_in_flux(kn) == false);
1890 				mutex_exit(&kq->kq_lock);
1891 				knote_detach(kn, fdp, false);
1892 				goto done;
1893 			}
1894 			atomic_inc_uint(&kfilter->refcnt);
1895 			goto done_ev_add;
1896 		} else {
1897 			/* No matching knote and the EV_ADD flag is not set. */
1898 			error = ENOENT;
1899 			goto doneunlock;
1900 		}
1901 	}
1902 
1903 	if (kev->flags & EV_DELETE) {
1904 		/*
1905 		 * Let the world know that this knote is about to go
1906 		 * away, and wait for it to settle if it's currently
1907 		 * in-flux.
1908 		 */
1909 		mutex_spin_enter(&kq->kq_lock);
1910 		if (kn->kn_status & KN_WILLDETACH) {
1911 			/*
1912 			 * This knote is already on its way out,
1913 			 * so just be done.
1914 			 */
1915 			mutex_spin_exit(&kq->kq_lock);
1916 			goto doneunlock;
1917 		}
1918 		KNOTE_WILLDETACH(kn);
1919 		if (kn_in_flux(kn)) {
1920 			mutex_exit(&fdp->fd_lock);
1921 			/*
1922 			 * It's safe for us to conclusively wait for
1923 			 * this knote to settle because we know we'll
1924 			 * be completing the detach.
1925 			 */
1926 			kn_wait_flux(kn, true);
1927 			KASSERT(kn_in_flux(kn) == false);
1928 			mutex_spin_exit(&kq->kq_lock);
1929 			mutex_enter(&fdp->fd_lock);
1930 		} else {
1931 			mutex_spin_exit(&kq->kq_lock);
1932 		}
1933 
1934 		/* knote_detach() drops fdp->fd_lock */
1935 		knote_detach(kn, fdp, true);
1936 		goto done;
1937 	}
1938 
1939 	/*
1940 	 * The user may change some filter values after the
1941 	 * initial EV_ADD, but doing so will not reset any
1942 	 * filter which have already been triggered.
1943 	 */
1944 	kn->kn_kevent.udata = kev->udata;
1945 	KASSERT(kn->kn_fop != NULL);
1946 	if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
1947 	    kn->kn_fop->f_touch != NULL) {
1948 		mutex_spin_enter(&kq->kq_lock);
1949 		error = filter_touch(kn, kev, EVENT_REGISTER);
1950 		mutex_spin_exit(&kq->kq_lock);
1951 		if (__predict_false(error != 0)) {
1952 			/* Never a new knote (which would consume newkn). */
1953 			KASSERT(newkn != NULL);
1954 			goto doneunlock;
1955 		}
1956 	} else {
1957 		kn->kn_sfflags = kev->fflags;
1958 		kn->kn_sdata = kev->data;
1959 	}
1960 
1961 	/*
1962 	 * We can get here if we are trying to attach
1963 	 * an event to a file descriptor that does not
1964 	 * support events, and the attach routine is
1965 	 * broken and does not return an error.
1966 	 */
1967  done_ev_add:
1968 	rv = filter_event(kn, 0);
1969 	if (rv)
1970 		knote_activate(kn);
1971 
1972 	/* disable knote */
1973 	if ((kev->flags & EV_DISABLE)) {
1974 		mutex_spin_enter(&kq->kq_lock);
1975 		if ((kn->kn_status & KN_DISABLED) == 0)
1976 			kn->kn_status |= KN_DISABLED;
1977 		mutex_spin_exit(&kq->kq_lock);
1978 	}
1979 
1980 	/* enable knote */
1981 	if ((kev->flags & EV_ENABLE)) {
1982 		knote_enqueue(kn);
1983 	}
1984  doneunlock:
1985 	mutex_exit(&fdp->fd_lock);
1986  done:
1987 	rw_exit(&kqueue_filter_lock);
1988 	if (newkn != NULL)
1989 		kmem_free(newkn, sizeof(*newkn));
1990 	if (fp != NULL)
1991 		fd_putfile(fd);
1992 	return (error);
1993 }
1994 
1995 #define KN_FMT(buf, kn) \
1996     (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf)
1997 
1998 #if defined(DDB)
1999 void
2000 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...))
2001 {
2002 	const struct knote *kn;
2003 	u_int count;
2004 	int nmarker;
2005 	char buf[128];
2006 
2007 	count = 0;
2008 	nmarker = 0;
2009 
2010 	(*pr)("kqueue %p (restart=%d count=%u):\n", kq,
2011 	    !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq));
2012 	(*pr)("  Queued knotes:\n");
2013 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
2014 		if (kn->kn_status & KN_MARKER) {
2015 			nmarker++;
2016 		} else {
2017 			count++;
2018 		}
2019 		(*pr)("    knote %p: kq=%p status=%s\n",
2020 		    kn, kn->kn_kq, KN_FMT(buf, kn));
2021 		(*pr)("      id=0x%lx (%lu) filter=%d\n",
2022 		    (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter);
2023 		if (kn->kn_kq != kq) {
2024 			(*pr)("      !!! kn->kn_kq != kq\n");
2025 		}
2026 	}
2027 	if (count != KQ_COUNT(kq)) {
2028 		(*pr)("  !!! count(%u) != KQ_COUNT(%u)\n",
2029 		    count, KQ_COUNT(kq));
2030 	}
2031 }
2032 #endif /* DDB */
2033 
2034 #if defined(DEBUG)
2035 static void
2036 kqueue_check(const char *func, size_t line, const struct kqueue *kq)
2037 {
2038 	const struct knote *kn;
2039 	u_int count;
2040 	int nmarker;
2041 	char buf[128];
2042 
2043 	KASSERT(mutex_owned(&kq->kq_lock));
2044 
2045 	count = 0;
2046 	nmarker = 0;
2047 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
2048 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
2049 			panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s",
2050 			    func, line, kq, kn, KN_FMT(buf, kn));
2051 		}
2052 		if ((kn->kn_status & KN_MARKER) == 0) {
2053 			if (kn->kn_kq != kq) {
2054 				panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s",
2055 				    func, line, kq, kn, kn->kn_kq,
2056 				    KN_FMT(buf, kn));
2057 			}
2058 			if ((kn->kn_status & KN_ACTIVE) == 0) {
2059 				panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s",
2060 				    func, line, kq, kn, KN_FMT(buf, kn));
2061 			}
2062 			count++;
2063 			if (count > KQ_COUNT(kq)) {
2064 				panic("%s,%zu: kq=%p kq->kq_count(%u) != "
2065 				    "count(%d), nmarker=%d",
2066 		    		    func, line, kq, KQ_COUNT(kq), count,
2067 				    nmarker);
2068 			}
2069 		} else {
2070 			nmarker++;
2071 		}
2072 	}
2073 }
2074 #define kq_check(a) kqueue_check(__func__, __LINE__, (a))
2075 #else /* defined(DEBUG) */
2076 #define	kq_check(a)	/* nothing */
2077 #endif /* defined(DEBUG) */
2078 
2079 static void
2080 kqueue_restart(file_t *fp)
2081 {
2082 	struct kqueue *kq = fp->f_kqueue;
2083 	KASSERT(kq != NULL);
2084 
2085 	mutex_spin_enter(&kq->kq_lock);
2086 	kq->kq_count |= KQ_RESTART;
2087 	cv_broadcast(&kq->kq_cv);
2088 	mutex_spin_exit(&kq->kq_lock);
2089 }
2090 
2091 /*
2092  * Scan through the list of events on fp (for a maximum of maxevents),
2093  * returning the results in to ulistp. Timeout is determined by tsp; if
2094  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
2095  * as appropriate.
2096  */
2097 static int
2098 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
2099 	    const struct timespec *tsp, register_t *retval,
2100 	    const struct kevent_ops *keops, struct kevent *kevbuf,
2101 	    size_t kevcnt)
2102 {
2103 	struct kqueue	*kq;
2104 	struct kevent	*kevp;
2105 	struct timespec	ats, sleepts;
2106 	struct knote	*kn, *marker, morker;
2107 	size_t		count, nkev, nevents;
2108 	int		timeout, error, touch, rv, influx;
2109 	filedesc_t	*fdp;
2110 
2111 	fdp = curlwp->l_fd;
2112 	kq = fp->f_kqueue;
2113 	count = maxevents;
2114 	nkev = nevents = error = 0;
2115 	if (count == 0) {
2116 		*retval = 0;
2117 		return 0;
2118 	}
2119 
2120 	if (tsp) {				/* timeout supplied */
2121 		ats = *tsp;
2122 		if (inittimeleft(&ats, &sleepts) == -1) {
2123 			*retval = maxevents;
2124 			return EINVAL;
2125 		}
2126 		timeout = tstohz(&ats);
2127 		if (timeout <= 0)
2128 			timeout = -1;           /* do poll */
2129 	} else {
2130 		/* no timeout, wait forever */
2131 		timeout = 0;
2132 	}
2133 
2134 	memset(&morker, 0, sizeof(morker));
2135 	marker = &morker;
2136 	marker->kn_kq = kq;
2137 	marker->kn_status = KN_MARKER;
2138 	mutex_spin_enter(&kq->kq_lock);
2139  retry:
2140 	kevp = kevbuf;
2141 	if (KQ_COUNT(kq) == 0) {
2142 		if (timeout >= 0) {
2143 			error = cv_timedwait_sig(&kq->kq_cv,
2144 			    &kq->kq_lock, timeout);
2145 			if (error == 0) {
2146 				if (KQ_COUNT(kq) == 0 &&
2147 				    (kq->kq_count & KQ_RESTART)) {
2148 					/* return to clear file reference */
2149 					error = ERESTART;
2150 				} else if (tsp == NULL || (timeout =
2151 				    gettimeleft(&ats, &sleepts)) > 0) {
2152 					goto retry;
2153 				}
2154 			} else {
2155 				/* don't restart after signals... */
2156 				if (error == ERESTART)
2157 					error = EINTR;
2158 				if (error == EWOULDBLOCK)
2159 					error = 0;
2160 			}
2161 		}
2162 		mutex_spin_exit(&kq->kq_lock);
2163 		goto done;
2164 	}
2165 
2166 	/* mark end of knote list */
2167 	TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
2168 	influx = 0;
2169 
2170 	/*
2171 	 * Acquire the fdp->fd_lock interlock to avoid races with
2172 	 * file creation/destruction from other threads.
2173 	 */
2174 	mutex_spin_exit(&kq->kq_lock);
2175 relock:
2176 	mutex_enter(&fdp->fd_lock);
2177 	mutex_spin_enter(&kq->kq_lock);
2178 
2179 	while (count != 0) {
2180 		/*
2181 		 * Get next knote.  We are guaranteed this will never
2182 		 * be NULL because of the marker we inserted above.
2183 		 */
2184 		kn = TAILQ_FIRST(&kq->kq_head);
2185 
2186 		bool kn_is_other_marker =
2187 		    (kn->kn_status & KN_MARKER) != 0 && kn != marker;
2188 		bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0;
2189 		bool kn_is_in_flux = kn_in_flux(kn);
2190 
2191 		/*
2192 		 * If we found a marker that's not ours, or this knote
2193 		 * is in a state of flux, then wait for everything to
2194 		 * settle down and go around again.
2195 		 */
2196 		if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) {
2197 			if (influx) {
2198 				influx = 0;
2199 				KQ_FLUX_WAKEUP(kq);
2200 			}
2201 			mutex_exit(&fdp->fd_lock);
2202 			if (kn_is_other_marker || kn_is_in_flux) {
2203 				KQ_FLUX_WAIT(kq);
2204 				mutex_spin_exit(&kq->kq_lock);
2205 			} else {
2206 				/*
2207 				 * Detaching but not in-flux?  Someone is
2208 				 * actively trying to finish the job; just
2209 				 * go around and try again.
2210 				 */
2211 				KASSERT(kn_is_detaching);
2212 				mutex_spin_exit(&kq->kq_lock);
2213 				preempt_point();
2214 			}
2215 			goto relock;
2216 		}
2217 
2218 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2219 		if (kn == marker) {
2220 			/* it's our marker, stop */
2221 			KQ_FLUX_WAKEUP(kq);
2222 			if (count == maxevents) {
2223 				mutex_exit(&fdp->fd_lock);
2224 				goto retry;
2225 			}
2226 			break;
2227 		}
2228 		KASSERT((kn->kn_status & KN_BUSY) == 0);
2229 
2230 		kq_check(kq);
2231 		kn->kn_status &= ~KN_QUEUED;
2232 		kn->kn_status |= KN_BUSY;
2233 		kq_check(kq);
2234 		if (kn->kn_status & KN_DISABLED) {
2235 			kn->kn_status &= ~KN_BUSY;
2236 			kq->kq_count--;
2237 			/* don't want disabled events */
2238 			continue;
2239 		}
2240 		if ((kn->kn_flags & EV_ONESHOT) == 0) {
2241 			mutex_spin_exit(&kq->kq_lock);
2242 			KASSERT(mutex_owned(&fdp->fd_lock));
2243 			rv = filter_event(kn, 0);
2244 			mutex_spin_enter(&kq->kq_lock);
2245 			/* Re-poll if note was re-enqueued. */
2246 			if ((kn->kn_status & KN_QUEUED) != 0) {
2247 				kn->kn_status &= ~KN_BUSY;
2248 				/* Re-enqueue raised kq_count, lower it again */
2249 				kq->kq_count--;
2250 				influx = 1;
2251 				continue;
2252 			}
2253 			if (rv == 0) {
2254 				/*
2255 				 * non-ONESHOT event that hasn't triggered
2256 				 * again, so it will remain de-queued.
2257 				 */
2258 				kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2259 				kq->kq_count--;
2260 				influx = 1;
2261 				continue;
2262 			}
2263 		} else {
2264 			/*
2265 			 * Must NOT drop kq_lock until we can do
2266 			 * the KNOTE_WILLDETACH() below.
2267 			 */
2268 		}
2269 		KASSERT(kn->kn_fop != NULL);
2270 		touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) &&
2271 				kn->kn_fop->f_touch != NULL);
2272 		/* XXXAD should be got from f_event if !oneshot. */
2273 		KASSERT((kn->kn_status & KN_WILLDETACH) == 0);
2274 		if (touch) {
2275 			(void)filter_touch(kn, kevp, EVENT_PROCESS);
2276 		} else {
2277 			*kevp = kn->kn_kevent;
2278 		}
2279 		kevp++;
2280 		nkev++;
2281 		influx = 1;
2282 		if (kn->kn_flags & EV_ONESHOT) {
2283 			/* delete ONESHOT events after retrieval */
2284 			KNOTE_WILLDETACH(kn);
2285 			kn->kn_status &= ~KN_BUSY;
2286 			kq->kq_count--;
2287 			KASSERT(kn_in_flux(kn) == false);
2288 			KASSERT((kn->kn_status & KN_WILLDETACH) != 0 &&
2289 				kn->kn_kevent.udata == curlwp);
2290 			mutex_spin_exit(&kq->kq_lock);
2291 			knote_detach(kn, fdp, true);
2292 			mutex_enter(&fdp->fd_lock);
2293 			mutex_spin_enter(&kq->kq_lock);
2294 		} else if (kn->kn_flags & EV_CLEAR) {
2295 			/* clear state after retrieval */
2296 			kn->kn_data = 0;
2297 			kn->kn_fflags = 0;
2298 			/*
2299 			 * Manually clear knotes who weren't
2300 			 * 'touch'ed.
2301 			 */
2302 			if (touch == 0) {
2303 				kn->kn_data = 0;
2304 				kn->kn_fflags = 0;
2305 			}
2306 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2307 			kq->kq_count--;
2308 		} else if (kn->kn_flags & EV_DISPATCH) {
2309 			kn->kn_status |= KN_DISABLED;
2310 			kn->kn_status &= ~(KN_ACTIVE|KN_BUSY);
2311 			kq->kq_count--;
2312 		} else {
2313 			/* add event back on list */
2314 			kq_check(kq);
2315 			kn->kn_status |= KN_QUEUED;
2316 			kn->kn_status &= ~KN_BUSY;
2317 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2318 			kq_check(kq);
2319 		}
2320 
2321 		if (nkev == kevcnt) {
2322 			/* do copyouts in kevcnt chunks */
2323 			influx = 0;
2324 			KQ_FLUX_WAKEUP(kq);
2325 			mutex_spin_exit(&kq->kq_lock);
2326 			mutex_exit(&fdp->fd_lock);
2327 			error = (*keops->keo_put_events)
2328 			    (keops->keo_private,
2329 			    kevbuf, ulistp, nevents, nkev);
2330 			mutex_enter(&fdp->fd_lock);
2331 			mutex_spin_enter(&kq->kq_lock);
2332 			nevents += nkev;
2333 			nkev = 0;
2334 			kevp = kevbuf;
2335 		}
2336 		count--;
2337 		if (error != 0 || count == 0) {
2338 			/* remove marker */
2339 			TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
2340 			break;
2341 		}
2342 	}
2343 	KQ_FLUX_WAKEUP(kq);
2344 	mutex_spin_exit(&kq->kq_lock);
2345 	mutex_exit(&fdp->fd_lock);
2346 
2347 done:
2348 	if (nkev != 0) {
2349 		/* copyout remaining events */
2350 		error = (*keops->keo_put_events)(keops->keo_private,
2351 		    kevbuf, ulistp, nevents, nkev);
2352 	}
2353 	*retval = maxevents - count;
2354 
2355 	return error;
2356 }
2357 
2358 /*
2359  * fileops ioctl method for a kqueue descriptor.
2360  *
2361  * Two ioctls are currently supported. They both use struct kfilter_mapping:
2362  *	KFILTER_BYNAME		find name for filter, and return result in
2363  *				name, which is of size len.
2364  *	KFILTER_BYFILTER	find filter for name. len is ignored.
2365  */
2366 /*ARGSUSED*/
2367 static int
2368 kqueue_ioctl(file_t *fp, u_long com, void *data)
2369 {
2370 	struct kfilter_mapping	*km;
2371 	const struct kfilter	*kfilter;
2372 	char			*name;
2373 	int			error;
2374 
2375 	km = data;
2376 	error = 0;
2377 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
2378 
2379 	switch (com) {
2380 	case KFILTER_BYFILTER:	/* convert filter -> name */
2381 		rw_enter(&kqueue_filter_lock, RW_READER);
2382 		kfilter = kfilter_byfilter(km->filter);
2383 		if (kfilter != NULL) {
2384 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
2385 			rw_exit(&kqueue_filter_lock);
2386 			error = copyoutstr(name, km->name, km->len, NULL);
2387 		} else {
2388 			rw_exit(&kqueue_filter_lock);
2389 			error = ENOENT;
2390 		}
2391 		break;
2392 
2393 	case KFILTER_BYNAME:	/* convert name -> filter */
2394 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
2395 		if (error) {
2396 			break;
2397 		}
2398 		rw_enter(&kqueue_filter_lock, RW_READER);
2399 		kfilter = kfilter_byname(name);
2400 		if (kfilter != NULL)
2401 			km->filter = kfilter->filter;
2402 		else
2403 			error = ENOENT;
2404 		rw_exit(&kqueue_filter_lock);
2405 		break;
2406 
2407 	default:
2408 		error = ENOTTY;
2409 		break;
2410 
2411 	}
2412 	kmem_free(name, KFILTER_MAXNAME);
2413 	return (error);
2414 }
2415 
2416 /*
2417  * fileops fcntl method for a kqueue descriptor.
2418  */
2419 static int
2420 kqueue_fcntl(file_t *fp, u_int com, void *data)
2421 {
2422 
2423 	return (ENOTTY);
2424 }
2425 
2426 /*
2427  * fileops poll method for a kqueue descriptor.
2428  * Determine if kqueue has events pending.
2429  */
2430 static int
2431 kqueue_poll(file_t *fp, int events)
2432 {
2433 	struct kqueue	*kq;
2434 	int		revents;
2435 
2436 	kq = fp->f_kqueue;
2437 
2438 	revents = 0;
2439 	if (events & (POLLIN | POLLRDNORM)) {
2440 		mutex_spin_enter(&kq->kq_lock);
2441 		if (KQ_COUNT(kq) != 0) {
2442 			revents |= events & (POLLIN | POLLRDNORM);
2443 		} else {
2444 			selrecord(curlwp, &kq->kq_sel);
2445 		}
2446 		kq_check(kq);
2447 		mutex_spin_exit(&kq->kq_lock);
2448 	}
2449 
2450 	return revents;
2451 }
2452 
2453 /*
2454  * fileops stat method for a kqueue descriptor.
2455  * Returns dummy info, with st_size being number of events pending.
2456  */
2457 static int
2458 kqueue_stat(file_t *fp, struct stat *st)
2459 {
2460 	struct kqueue *kq;
2461 
2462 	kq = fp->f_kqueue;
2463 
2464 	memset(st, 0, sizeof(*st));
2465 	st->st_size = KQ_COUNT(kq);
2466 	st->st_blksize = sizeof(struct kevent);
2467 	st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
2468 	st->st_blocks = 1;
2469 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
2470 	st->st_gid = kauth_cred_getegid(fp->f_cred);
2471 
2472 	return 0;
2473 }
2474 
2475 static void
2476 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
2477 {
2478 	struct knote *kn;
2479 	filedesc_t *fdp;
2480 
2481 	fdp = kq->kq_fdp;
2482 
2483 	KASSERT(mutex_owned(&fdp->fd_lock));
2484 
2485  again:
2486 	for (kn = SLIST_FIRST(list); kn != NULL;) {
2487 		if (kq != kn->kn_kq) {
2488 			kn = SLIST_NEXT(kn, kn_link);
2489 			continue;
2490 		}
2491 		if (knote_detach_quiesce(kn)) {
2492 			mutex_enter(&fdp->fd_lock);
2493 			goto again;
2494 		}
2495 		knote_detach(kn, fdp, true);
2496 		mutex_enter(&fdp->fd_lock);
2497 		kn = SLIST_FIRST(list);
2498 	}
2499 }
2500 
2501 /*
2502  * fileops close method for a kqueue descriptor.
2503  */
2504 static int
2505 kqueue_close(file_t *fp)
2506 {
2507 	struct kqueue *kq;
2508 	filedesc_t *fdp;
2509 	fdfile_t *ff;
2510 	int i;
2511 
2512 	kq = fp->f_kqueue;
2513 	fp->f_kqueue = NULL;
2514 	fp->f_type = 0;
2515 	fdp = curlwp->l_fd;
2516 
2517 	KASSERT(kq->kq_fdp == fdp);
2518 
2519 	mutex_enter(&fdp->fd_lock);
2520 
2521 	/*
2522 	 * We're doing to drop the fd_lock multiple times while
2523 	 * we detach knotes.  During this time, attempts to register
2524 	 * knotes via the back door (e.g. knote_proc_fork_track())
2525 	 * need to fail, lest they sneak in to attach a knote after
2526 	 * we've already drained the list it's destined for.
2527 	 *
2528 	 * We must aquire kq_lock here to set KQ_CLOSING (to serialize
2529 	 * with other code paths that modify kq_count without holding
2530 	 * the fd_lock), but once this bit is set, it's only safe to
2531 	 * test it while holding the fd_lock, and holding kq_lock while
2532 	 * doing so is not necessary.
2533 	 */
2534 	mutex_enter(&kq->kq_lock);
2535 	kq->kq_count |= KQ_CLOSING;
2536 	mutex_exit(&kq->kq_lock);
2537 
2538 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
2539 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
2540 			continue;
2541 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
2542 	}
2543 	if (fdp->fd_knhashmask != 0) {
2544 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
2545 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
2546 		}
2547 	}
2548 
2549 	mutex_exit(&fdp->fd_lock);
2550 
2551 #if defined(DEBUG)
2552 	mutex_enter(&kq->kq_lock);
2553 	kq_check(kq);
2554 	mutex_exit(&kq->kq_lock);
2555 #endif /* DEBUG */
2556 	KASSERT(TAILQ_EMPTY(&kq->kq_head));
2557 	KASSERT(KQ_COUNT(kq) == 0);
2558 	mutex_destroy(&kq->kq_lock);
2559 	cv_destroy(&kq->kq_cv);
2560 	seldestroy(&kq->kq_sel);
2561 	kmem_free(kq, sizeof(*kq));
2562 
2563 	return (0);
2564 }
2565 
2566 /*
2567  * struct fileops kqfilter method for a kqueue descriptor.
2568  * Event triggered when monitored kqueue changes.
2569  */
2570 static int
2571 kqueue_kqfilter(file_t *fp, struct knote *kn)
2572 {
2573 	struct kqueue *kq;
2574 
2575 	kq = ((file_t *)kn->kn_obj)->f_kqueue;
2576 
2577 	KASSERT(fp == kn->kn_obj);
2578 
2579 	if (kn->kn_filter != EVFILT_READ)
2580 		return EINVAL;
2581 
2582 	kn->kn_fop = &kqread_filtops;
2583 	mutex_enter(&kq->kq_lock);
2584 	selrecord_knote(&kq->kq_sel, kn);
2585 	mutex_exit(&kq->kq_lock);
2586 
2587 	return 0;
2588 }
2589 
2590 
2591 /*
2592  * Walk down a list of knotes, activating them if their event has
2593  * triggered.  The caller's object lock (e.g. device driver lock)
2594  * must be held.
2595  */
2596 void
2597 knote(struct klist *list, long hint)
2598 {
2599 	struct knote *kn, *tmpkn;
2600 
2601 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
2602 		if (filter_event(kn, hint)) {
2603 			knote_activate(kn);
2604 		}
2605 	}
2606 }
2607 
2608 /*
2609  * Remove all knotes referencing a specified fd
2610  */
2611 void
2612 knote_fdclose(int fd)
2613 {
2614 	struct klist *list;
2615 	struct knote *kn;
2616 	filedesc_t *fdp;
2617 
2618  again:
2619 	fdp = curlwp->l_fd;
2620 	mutex_enter(&fdp->fd_lock);
2621 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
2622 	while ((kn = SLIST_FIRST(list)) != NULL) {
2623 		if (knote_detach_quiesce(kn)) {
2624 			goto again;
2625 		}
2626 		knote_detach(kn, fdp, true);
2627 		mutex_enter(&fdp->fd_lock);
2628 	}
2629 	mutex_exit(&fdp->fd_lock);
2630 }
2631 
2632 /*
2633  * Drop knote.  Called with fdp->fd_lock held, and will drop before
2634  * returning.
2635  */
2636 static void
2637 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
2638 {
2639 	struct klist *list;
2640 	struct kqueue *kq;
2641 
2642 	kq = kn->kn_kq;
2643 
2644 	KASSERT((kn->kn_status & KN_MARKER) == 0);
2645 	KASSERT((kn->kn_status & KN_WILLDETACH) != 0);
2646 	KASSERT(kn->kn_fop != NULL);
2647 	KASSERT(mutex_owned(&fdp->fd_lock));
2648 
2649 	/* Remove from monitored object. */
2650 	if (dofop) {
2651 		filter_detach(kn);
2652 	}
2653 
2654 	/* Remove from descriptor table. */
2655 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2656 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
2657 	else
2658 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2659 
2660 	SLIST_REMOVE(list, kn, knote, kn_link);
2661 
2662 	/* Remove from kqueue. */
2663 again:
2664 	mutex_spin_enter(&kq->kq_lock);
2665 	KASSERT(kn_in_flux(kn) == false);
2666 	if ((kn->kn_status & KN_QUEUED) != 0) {
2667 		kq_check(kq);
2668 		KASSERT(KQ_COUNT(kq) != 0);
2669 		kq->kq_count--;
2670 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2671 		kn->kn_status &= ~KN_QUEUED;
2672 		kq_check(kq);
2673 	} else if (kn->kn_status & KN_BUSY) {
2674 		mutex_spin_exit(&kq->kq_lock);
2675 		goto again;
2676 	}
2677 	mutex_spin_exit(&kq->kq_lock);
2678 
2679 	mutex_exit(&fdp->fd_lock);
2680 	if (kn->kn_fop->f_flags & FILTEROP_ISFD)
2681 		fd_putfile(kn->kn_id);
2682 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
2683 	kmem_free(kn, sizeof(*kn));
2684 }
2685 
2686 /*
2687  * Queue new event for knote.
2688  */
2689 static void
2690 knote_enqueue(struct knote *kn)
2691 {
2692 	struct kqueue *kq;
2693 
2694 	KASSERT((kn->kn_status & KN_MARKER) == 0);
2695 
2696 	kq = kn->kn_kq;
2697 
2698 	mutex_spin_enter(&kq->kq_lock);
2699 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2700 		/* Don't bother enqueueing a dying knote. */
2701 		goto out;
2702 	}
2703 	if ((kn->kn_status & KN_DISABLED) != 0) {
2704 		kn->kn_status &= ~KN_DISABLED;
2705 	}
2706 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
2707 		kq_check(kq);
2708 		kn->kn_status |= KN_QUEUED;
2709 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2710 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2711 		kq->kq_count++;
2712 		kq_check(kq);
2713 		cv_broadcast(&kq->kq_cv);
2714 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2715 	}
2716  out:
2717 	mutex_spin_exit(&kq->kq_lock);
2718 }
2719 /*
2720  * Queue new event for knote.
2721  */
2722 static void
2723 knote_activate_locked(struct knote *kn)
2724 {
2725 	struct kqueue *kq;
2726 
2727 	KASSERT((kn->kn_status & KN_MARKER) == 0);
2728 
2729 	kq = kn->kn_kq;
2730 
2731 	if (__predict_false(kn->kn_status & KN_WILLDETACH)) {
2732 		/* Don't bother enqueueing a dying knote. */
2733 		return;
2734 	}
2735 	kn->kn_status |= KN_ACTIVE;
2736 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
2737 		kq_check(kq);
2738 		kn->kn_status |= KN_QUEUED;
2739 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2740 		KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT);
2741 		kq->kq_count++;
2742 		kq_check(kq);
2743 		cv_broadcast(&kq->kq_cv);
2744 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
2745 	}
2746 }
2747 
2748 static void
2749 knote_activate(struct knote *kn)
2750 {
2751 	struct kqueue *kq = kn->kn_kq;
2752 
2753 	mutex_spin_enter(&kq->kq_lock);
2754 	knote_activate_locked(kn);
2755 	mutex_spin_exit(&kq->kq_lock);
2756 }
2757 
2758 static void
2759 knote_deactivate_locked(struct knote *kn)
2760 {
2761 	struct kqueue *kq = kn->kn_kq;
2762 
2763 	if (kn->kn_status & KN_QUEUED) {
2764 		kq_check(kq);
2765 		kn->kn_status &= ~KN_QUEUED;
2766 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2767 		KASSERT(KQ_COUNT(kq) > 0);
2768 		kq->kq_count--;
2769 		kq_check(kq);
2770 	}
2771 	kn->kn_status &= ~KN_ACTIVE;
2772 }
2773 
2774 /*
2775  * Set EV_EOF on the specified knote.  Also allows additional
2776  * EV_* flags to be set (e.g. EV_ONESHOT).
2777  */
2778 void
2779 knote_set_eof(struct knote *kn, uint32_t flags)
2780 {
2781 	struct kqueue *kq = kn->kn_kq;
2782 
2783 	mutex_spin_enter(&kq->kq_lock);
2784 	kn->kn_flags |= EV_EOF | flags;
2785 	mutex_spin_exit(&kq->kq_lock);
2786 }
2787 
2788 /*
2789  * Clear EV_EOF on the specified knote.
2790  */
2791 void
2792 knote_clear_eof(struct knote *kn)
2793 {
2794 	struct kqueue *kq = kn->kn_kq;
2795 
2796 	mutex_spin_enter(&kq->kq_lock);
2797 	kn->kn_flags &= ~EV_EOF;
2798 	mutex_spin_exit(&kq->kq_lock);
2799 }
2800