1 /* $NetBSD: kern_event.c,v 1.138 2021/10/23 18:46:26 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2008, 2009, 2021 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 34 * Copyright (c) 2009 Apple, Inc 35 * All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 46 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 47 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 49 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 50 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 51 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 52 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 53 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 54 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 55 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 56 * SUCH DAMAGE. 57 * 58 * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp 59 */ 60 61 #ifdef _KERNEL_OPT 62 #include "opt_ddb.h" 63 #endif /* _KERNEL_OPT */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.138 2021/10/23 18:46:26 thorpej Exp $"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/wait.h> 72 #include <sys/proc.h> 73 #include <sys/file.h> 74 #include <sys/select.h> 75 #include <sys/queue.h> 76 #include <sys/event.h> 77 #include <sys/eventvar.h> 78 #include <sys/poll.h> 79 #include <sys/kmem.h> 80 #include <sys/stat.h> 81 #include <sys/filedesc.h> 82 #include <sys/syscallargs.h> 83 #include <sys/kauth.h> 84 #include <sys/conf.h> 85 #include <sys/atomic.h> 86 87 static int kqueue_scan(file_t *, size_t, struct kevent *, 88 const struct timespec *, register_t *, 89 const struct kevent_ops *, struct kevent *, 90 size_t); 91 static int kqueue_ioctl(file_t *, u_long, void *); 92 static int kqueue_fcntl(file_t *, u_int, void *); 93 static int kqueue_poll(file_t *, int); 94 static int kqueue_kqfilter(file_t *, struct knote *); 95 static int kqueue_stat(file_t *, struct stat *); 96 static int kqueue_close(file_t *); 97 static void kqueue_restart(file_t *); 98 static int kqueue_register(struct kqueue *, struct kevent *); 99 static void kqueue_doclose(struct kqueue *, struct klist *, int); 100 101 static void knote_detach(struct knote *, filedesc_t *fdp, bool); 102 static void knote_enqueue(struct knote *); 103 static void knote_activate(struct knote *); 104 static void knote_activate_locked(struct knote *); 105 static void knote_deactivate_locked(struct knote *); 106 107 static void filt_kqdetach(struct knote *); 108 static int filt_kqueue(struct knote *, long hint); 109 static int filt_procattach(struct knote *); 110 static void filt_procdetach(struct knote *); 111 static int filt_proc(struct knote *, long hint); 112 static int filt_fileattach(struct knote *); 113 static void filt_timerexpire(void *x); 114 static int filt_timerattach(struct knote *); 115 static void filt_timerdetach(struct knote *); 116 static int filt_timer(struct knote *, long hint); 117 static int filt_timertouch(struct knote *, struct kevent *, long type); 118 static int filt_userattach(struct knote *); 119 static void filt_userdetach(struct knote *); 120 static int filt_user(struct knote *, long hint); 121 static int filt_usertouch(struct knote *, struct kevent *, long type); 122 123 static const struct fileops kqueueops = { 124 .fo_name = "kqueue", 125 .fo_read = (void *)enxio, 126 .fo_write = (void *)enxio, 127 .fo_ioctl = kqueue_ioctl, 128 .fo_fcntl = kqueue_fcntl, 129 .fo_poll = kqueue_poll, 130 .fo_stat = kqueue_stat, 131 .fo_close = kqueue_close, 132 .fo_kqfilter = kqueue_kqfilter, 133 .fo_restart = kqueue_restart, 134 }; 135 136 static const struct filterops kqread_filtops = { 137 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 138 .f_attach = NULL, 139 .f_detach = filt_kqdetach, 140 .f_event = filt_kqueue, 141 }; 142 143 static const struct filterops proc_filtops = { 144 .f_flags = FILTEROP_MPSAFE, 145 .f_attach = filt_procattach, 146 .f_detach = filt_procdetach, 147 .f_event = filt_proc, 148 }; 149 150 /* 151 * file_filtops is not marked MPSAFE because it's going to call 152 * fileops::fo_kqfilter(), which might not be. That function, 153 * however, will override the knote's filterops, and thus will 154 * inherit the MPSAFE-ness of the back-end at that time. 155 */ 156 static const struct filterops file_filtops = { 157 .f_flags = FILTEROP_ISFD, 158 .f_attach = filt_fileattach, 159 .f_detach = NULL, 160 .f_event = NULL, 161 }; 162 163 static const struct filterops timer_filtops = { 164 .f_flags = FILTEROP_MPSAFE, 165 .f_attach = filt_timerattach, 166 .f_detach = filt_timerdetach, 167 .f_event = filt_timer, 168 .f_touch = filt_timertouch, 169 }; 170 171 static const struct filterops user_filtops = { 172 .f_flags = FILTEROP_MPSAFE, 173 .f_attach = filt_userattach, 174 .f_detach = filt_userdetach, 175 .f_event = filt_user, 176 .f_touch = filt_usertouch, 177 }; 178 179 static u_int kq_ncallouts = 0; 180 static int kq_calloutmax = (4 * 1024); 181 182 #define KN_HASHSIZE 64 /* XXX should be tunable */ 183 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 184 185 extern const struct filterops fs_filtops; /* vfs_syscalls.c */ 186 extern const struct filterops sig_filtops; /* kern_sig.c */ 187 188 /* 189 * Table for for all system-defined filters. 190 * These should be listed in the numeric order of the EVFILT_* defines. 191 * If filtops is NULL, the filter isn't implemented in NetBSD. 192 * End of list is when name is NULL. 193 * 194 * Note that 'refcnt' is meaningless for built-in filters. 195 */ 196 struct kfilter { 197 const char *name; /* name of filter */ 198 uint32_t filter; /* id of filter */ 199 unsigned refcnt; /* reference count */ 200 const struct filterops *filtops;/* operations for filter */ 201 size_t namelen; /* length of name string */ 202 }; 203 204 /* System defined filters */ 205 static struct kfilter sys_kfilters[] = { 206 { "EVFILT_READ", EVFILT_READ, 0, &file_filtops, 0 }, 207 { "EVFILT_WRITE", EVFILT_WRITE, 0, &file_filtops, 0, }, 208 { "EVFILT_AIO", EVFILT_AIO, 0, NULL, 0 }, 209 { "EVFILT_VNODE", EVFILT_VNODE, 0, &file_filtops, 0 }, 210 { "EVFILT_PROC", EVFILT_PROC, 0, &proc_filtops, 0 }, 211 { "EVFILT_SIGNAL", EVFILT_SIGNAL, 0, &sig_filtops, 0 }, 212 { "EVFILT_TIMER", EVFILT_TIMER, 0, &timer_filtops, 0 }, 213 { "EVFILT_FS", EVFILT_FS, 0, &fs_filtops, 0 }, 214 { "EVFILT_USER", EVFILT_USER, 0, &user_filtops, 0 }, 215 { "EVFILT_EMPTY", EVFILT_EMPTY, 0, &file_filtops, 0 }, 216 { NULL, 0, 0, NULL, 0 }, 217 }; 218 219 /* User defined kfilters */ 220 static struct kfilter *user_kfilters; /* array */ 221 static int user_kfilterc; /* current offset */ 222 static int user_kfiltermaxc; /* max size so far */ 223 static size_t user_kfiltersz; /* size of allocated memory */ 224 225 /* 226 * Global Locks. 227 * 228 * Lock order: 229 * 230 * kqueue_filter_lock 231 * -> kn_kq->kq_fdp->fd_lock 232 * -> object lock (e.g., device driver lock, &c.) 233 * -> kn_kq->kq_lock 234 * 235 * Locking rules: 236 * 237 * f_attach: fdp->fd_lock, KERNEL_LOCK 238 * f_detach: fdp->fd_lock, KERNEL_LOCK 239 * f_event(!NOTE_SUBMIT) via kevent: fdp->fd_lock, _no_ object lock 240 * f_event via knote: whatever caller guarantees 241 * Typically, f_event(NOTE_SUBMIT) via knote: object lock 242 * f_event(!NOTE_SUBMIT) via knote: nothing, 243 * acquires/releases object lock inside. 244 * 245 * Locking rules when detaching knotes: 246 * 247 * There are some situations where knote submission may require dropping 248 * locks (see knote_proc_fork()). In order to support this, it's possible 249 * to mark a knote as being 'in-flux'. Such a knote is guaranteed not to 250 * be detached while it remains in-flux. Because it will not be detached, 251 * locks can be dropped so e.g. memory can be allocated, locks on other 252 * data structures can be acquired, etc. During this time, any attempt to 253 * detach an in-flux knote must wait until the knote is no longer in-flux. 254 * When this happens, the knote is marked for death (KN_WILLDETACH) and the 255 * LWP who gets to finish the detach operation is recorded in the knote's 256 * 'udata' field (which is no longer required for its original purpose once 257 * a knote is so marked). Code paths that lead to knote_detach() must ensure 258 * that their LWP is the one tasked with its final demise after waiting for 259 * the in-flux status of the knote to clear. Note that once a knote is 260 * marked KN_WILLDETACH, no code paths may put it into an in-flux state. 261 * 262 * Once the special circumstances have been handled, the locks are re- 263 * acquired in the proper order (object lock -> kq_lock), the knote taken 264 * out of flux, and any waiters are notified. Because waiters must have 265 * also dropped *their* locks in order to safely block, they must re- 266 * validate all of their assumptions; see knote_detach_quiesce(). See also 267 * the kqueue_register() (EV_ADD, EV_DELETE) and kqueue_scan() (EV_ONESHOT) 268 * cases. 269 * 270 * When kqueue_scan() encounters an in-flux knote, the situation is 271 * treated like another LWP's list marker. 272 * 273 * LISTEN WELL: It is important to not hold knotes in flux for an 274 * extended period of time! In-flux knotes effectively block any 275 * progress of the kqueue_scan() operation. Any code paths that place 276 * knotes in-flux should be careful to not block for indefinite periods 277 * of time, such as for memory allocation (i.e. KM_NOSLEEP is OK, but 278 * KM_SLEEP is not). 279 */ 280 static krwlock_t kqueue_filter_lock; /* lock on filter lists */ 281 282 #define KQ_FLUX_WAIT(kq) (void)cv_wait(&kq->kq_cv, &kq->kq_lock) 283 #define KQ_FLUX_WAKEUP(kq) cv_broadcast(&kq->kq_cv) 284 285 static inline bool 286 kn_in_flux(struct knote *kn) 287 { 288 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 289 return kn->kn_influx != 0; 290 } 291 292 static inline bool 293 kn_enter_flux(struct knote *kn) 294 { 295 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 296 297 if (kn->kn_status & KN_WILLDETACH) { 298 return false; 299 } 300 301 KASSERT(kn->kn_influx < UINT_MAX); 302 kn->kn_influx++; 303 304 return true; 305 } 306 307 static inline bool 308 kn_leave_flux(struct knote *kn) 309 { 310 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 311 KASSERT(kn->kn_influx > 0); 312 kn->kn_influx--; 313 return kn->kn_influx == 0; 314 } 315 316 static void 317 kn_wait_flux(struct knote *kn, bool can_loop) 318 { 319 bool loop; 320 321 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 322 323 /* 324 * It may not be safe for us to touch the knote again after 325 * dropping the kq_lock. The caller has let us know in 326 * 'can_loop'. 327 */ 328 for (loop = true; loop && kn->kn_influx != 0; loop = can_loop) { 329 KQ_FLUX_WAIT(kn->kn_kq); 330 } 331 } 332 333 #define KNOTE_WILLDETACH(kn) \ 334 do { \ 335 (kn)->kn_status |= KN_WILLDETACH; \ 336 (kn)->kn_kevent.udata = curlwp; \ 337 } while (/*CONSTCOND*/0) 338 339 /* 340 * Wait until the specified knote is in a quiescent state and 341 * safe to detach. Returns true if we potentially blocked (and 342 * thus dropped our locks). 343 */ 344 static bool 345 knote_detach_quiesce(struct knote *kn) 346 { 347 struct kqueue *kq = kn->kn_kq; 348 filedesc_t *fdp = kq->kq_fdp; 349 350 KASSERT(mutex_owned(&fdp->fd_lock)); 351 352 mutex_spin_enter(&kq->kq_lock); 353 /* 354 * There are two cases where we might see KN_WILLDETACH here: 355 * 356 * 1. Someone else has already started detaching the knote but 357 * had to wait for it to settle first. 358 * 359 * 2. We had to wait for it to settle, and had to come back 360 * around after re-acquiring the locks. 361 * 362 * When KN_WILLDETACH is set, we also set the LWP that claimed 363 * the prize of finishing the detach in the 'udata' field of the 364 * knote (which will never be used again for its usual purpose 365 * once the note is in this state). If it doesn't point to us, 366 * we must drop the locks and let them in to finish the job. 367 * 368 * Otherwise, once we have claimed the knote for ourselves, we 369 * can finish waiting for it to settle. The is the only scenario 370 * where touching a detaching knote is safe after dropping the 371 * locks. 372 */ 373 if ((kn->kn_status & KN_WILLDETACH) != 0 && 374 kn->kn_kevent.udata != curlwp) { 375 /* 376 * N.B. it is NOT safe for us to touch the knote again 377 * after dropping the locks here. The caller must go 378 * back around and re-validate everything. However, if 379 * the knote is in-flux, we want to block to minimize 380 * busy-looping. 381 */ 382 mutex_exit(&fdp->fd_lock); 383 if (kn_in_flux(kn)) { 384 kn_wait_flux(kn, false); 385 mutex_spin_exit(&kq->kq_lock); 386 return true; 387 } 388 mutex_spin_exit(&kq->kq_lock); 389 preempt_point(); 390 return true; 391 } 392 /* 393 * If we get here, we know that we will be claiming the 394 * detach responsibilies, or that we already have and 395 * this is the second attempt after re-validation. 396 */ 397 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || 398 kn->kn_kevent.udata == curlwp); 399 /* 400 * Similarly, if we get here, either we are just claiming it 401 * and may have to wait for it to settle, or if this is the 402 * second attempt after re-validation that no other code paths 403 * have put it in-flux. 404 */ 405 KASSERT((kn->kn_status & KN_WILLDETACH) == 0 || 406 kn_in_flux(kn) == false); 407 KNOTE_WILLDETACH(kn); 408 if (kn_in_flux(kn)) { 409 mutex_exit(&fdp->fd_lock); 410 kn_wait_flux(kn, true); 411 /* 412 * It is safe for us to touch the knote again after 413 * dropping the locks, but the caller must still 414 * re-validate everything because other aspects of 415 * the environment may have changed while we blocked. 416 */ 417 KASSERT(kn_in_flux(kn) == false); 418 mutex_spin_exit(&kq->kq_lock); 419 return true; 420 } 421 mutex_spin_exit(&kq->kq_lock); 422 423 return false; 424 } 425 426 static int 427 filter_attach(struct knote *kn) 428 { 429 int rv; 430 431 KASSERT(kn->kn_fop != NULL); 432 KASSERT(kn->kn_fop->f_attach != NULL); 433 434 /* 435 * N.B. that kn->kn_fop may change as the result of calling 436 * f_attach(). 437 */ 438 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 439 rv = kn->kn_fop->f_attach(kn); 440 } else { 441 KERNEL_LOCK(1, NULL); 442 rv = kn->kn_fop->f_attach(kn); 443 KERNEL_UNLOCK_ONE(NULL); 444 } 445 446 return rv; 447 } 448 449 static void 450 filter_detach(struct knote *kn) 451 { 452 KASSERT(kn->kn_fop != NULL); 453 KASSERT(kn->kn_fop->f_detach != NULL); 454 455 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 456 kn->kn_fop->f_detach(kn); 457 } else { 458 KERNEL_LOCK(1, NULL); 459 kn->kn_fop->f_detach(kn); 460 KERNEL_UNLOCK_ONE(NULL); 461 } 462 } 463 464 static int 465 filter_event(struct knote *kn, long hint) 466 { 467 int rv; 468 469 KASSERT(kn->kn_fop != NULL); 470 KASSERT(kn->kn_fop->f_event != NULL); 471 472 if (kn->kn_fop->f_flags & FILTEROP_MPSAFE) { 473 rv = kn->kn_fop->f_event(kn, hint); 474 } else { 475 KERNEL_LOCK(1, NULL); 476 rv = kn->kn_fop->f_event(kn, hint); 477 KERNEL_UNLOCK_ONE(NULL); 478 } 479 480 return rv; 481 } 482 483 static int 484 filter_touch(struct knote *kn, struct kevent *kev, long type) 485 { 486 return kn->kn_fop->f_touch(kn, kev, type); 487 } 488 489 static kauth_listener_t kqueue_listener; 490 491 static int 492 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 493 void *arg0, void *arg1, void *arg2, void *arg3) 494 { 495 struct proc *p; 496 int result; 497 498 result = KAUTH_RESULT_DEFER; 499 p = arg0; 500 501 if (action != KAUTH_PROCESS_KEVENT_FILTER) 502 return result; 503 504 if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) || 505 ISSET(p->p_flag, PK_SUGID))) 506 return result; 507 508 result = KAUTH_RESULT_ALLOW; 509 510 return result; 511 } 512 513 /* 514 * Initialize the kqueue subsystem. 515 */ 516 void 517 kqueue_init(void) 518 { 519 520 rw_init(&kqueue_filter_lock); 521 522 kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS, 523 kqueue_listener_cb, NULL); 524 } 525 526 /* 527 * Find kfilter entry by name, or NULL if not found. 528 */ 529 static struct kfilter * 530 kfilter_byname_sys(const char *name) 531 { 532 int i; 533 534 KASSERT(rw_lock_held(&kqueue_filter_lock)); 535 536 for (i = 0; sys_kfilters[i].name != NULL; i++) { 537 if (strcmp(name, sys_kfilters[i].name) == 0) 538 return &sys_kfilters[i]; 539 } 540 return NULL; 541 } 542 543 static struct kfilter * 544 kfilter_byname_user(const char *name) 545 { 546 int i; 547 548 KASSERT(rw_lock_held(&kqueue_filter_lock)); 549 550 /* user filter slots have a NULL name if previously deregistered */ 551 for (i = 0; i < user_kfilterc ; i++) { 552 if (user_kfilters[i].name != NULL && 553 strcmp(name, user_kfilters[i].name) == 0) 554 return &user_kfilters[i]; 555 } 556 return NULL; 557 } 558 559 static struct kfilter * 560 kfilter_byname(const char *name) 561 { 562 struct kfilter *kfilter; 563 564 KASSERT(rw_lock_held(&kqueue_filter_lock)); 565 566 if ((kfilter = kfilter_byname_sys(name)) != NULL) 567 return kfilter; 568 569 return kfilter_byname_user(name); 570 } 571 572 /* 573 * Find kfilter entry by filter id, or NULL if not found. 574 * Assumes entries are indexed in filter id order, for speed. 575 */ 576 static struct kfilter * 577 kfilter_byfilter(uint32_t filter) 578 { 579 struct kfilter *kfilter; 580 581 KASSERT(rw_lock_held(&kqueue_filter_lock)); 582 583 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */ 584 kfilter = &sys_kfilters[filter]; 585 else if (user_kfilters != NULL && 586 filter < EVFILT_SYSCOUNT + user_kfilterc) 587 /* it's a user filter */ 588 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT]; 589 else 590 return (NULL); /* out of range */ 591 KASSERT(kfilter->filter == filter); /* sanity check! */ 592 return (kfilter); 593 } 594 595 /* 596 * Register a new kfilter. Stores the entry in user_kfilters. 597 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 598 * If retfilter != NULL, the new filterid is returned in it. 599 */ 600 int 601 kfilter_register(const char *name, const struct filterops *filtops, 602 int *retfilter) 603 { 604 struct kfilter *kfilter; 605 size_t len; 606 int i; 607 608 if (name == NULL || name[0] == '\0' || filtops == NULL) 609 return (EINVAL); /* invalid args */ 610 611 rw_enter(&kqueue_filter_lock, RW_WRITER); 612 if (kfilter_byname(name) != NULL) { 613 rw_exit(&kqueue_filter_lock); 614 return (EEXIST); /* already exists */ 615 } 616 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) { 617 rw_exit(&kqueue_filter_lock); 618 return (EINVAL); /* too many */ 619 } 620 621 for (i = 0; i < user_kfilterc; i++) { 622 kfilter = &user_kfilters[i]; 623 if (kfilter->name == NULL) { 624 /* Previously deregistered slot. Reuse. */ 625 goto reuse; 626 } 627 } 628 629 /* check if need to grow user_kfilters */ 630 if (user_kfilterc + 1 > user_kfiltermaxc) { 631 /* Grow in KFILTER_EXTENT chunks. */ 632 user_kfiltermaxc += KFILTER_EXTENT; 633 len = user_kfiltermaxc * sizeof(*kfilter); 634 kfilter = kmem_alloc(len, KM_SLEEP); 635 memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz); 636 if (user_kfilters != NULL) { 637 memcpy(kfilter, user_kfilters, user_kfiltersz); 638 kmem_free(user_kfilters, user_kfiltersz); 639 } 640 user_kfiltersz = len; 641 user_kfilters = kfilter; 642 } 643 /* Adding new slot */ 644 kfilter = &user_kfilters[user_kfilterc++]; 645 reuse: 646 kfilter->name = kmem_strdupsize(name, &kfilter->namelen, KM_SLEEP); 647 648 kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT; 649 650 kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP); 651 memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops)); 652 653 if (retfilter != NULL) 654 *retfilter = kfilter->filter; 655 rw_exit(&kqueue_filter_lock); 656 657 return (0); 658 } 659 660 /* 661 * Unregister a kfilter previously registered with kfilter_register. 662 * This retains the filter id, but clears the name and frees filtops (filter 663 * operations), so that the number isn't reused during a boot. 664 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 665 */ 666 int 667 kfilter_unregister(const char *name) 668 { 669 struct kfilter *kfilter; 670 671 if (name == NULL || name[0] == '\0') 672 return (EINVAL); /* invalid name */ 673 674 rw_enter(&kqueue_filter_lock, RW_WRITER); 675 if (kfilter_byname_sys(name) != NULL) { 676 rw_exit(&kqueue_filter_lock); 677 return (EINVAL); /* can't detach system filters */ 678 } 679 680 kfilter = kfilter_byname_user(name); 681 if (kfilter == NULL) { 682 rw_exit(&kqueue_filter_lock); 683 return (ENOENT); 684 } 685 if (kfilter->refcnt != 0) { 686 rw_exit(&kqueue_filter_lock); 687 return (EBUSY); 688 } 689 690 /* Cast away const (but we know it's safe. */ 691 kmem_free(__UNCONST(kfilter->name), kfilter->namelen); 692 kfilter->name = NULL; /* mark as `not implemented' */ 693 694 if (kfilter->filtops != NULL) { 695 /* Cast away const (but we know it's safe. */ 696 kmem_free(__UNCONST(kfilter->filtops), 697 sizeof(*kfilter->filtops)); 698 kfilter->filtops = NULL; /* mark as `not implemented' */ 699 } 700 rw_exit(&kqueue_filter_lock); 701 702 return (0); 703 } 704 705 706 /* 707 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file 708 * descriptors. Calls fileops kqfilter method for given file descriptor. 709 */ 710 static int 711 filt_fileattach(struct knote *kn) 712 { 713 file_t *fp; 714 715 fp = kn->kn_obj; 716 717 return (*fp->f_ops->fo_kqfilter)(fp, kn); 718 } 719 720 /* 721 * Filter detach method for EVFILT_READ on kqueue descriptor. 722 */ 723 static void 724 filt_kqdetach(struct knote *kn) 725 { 726 struct kqueue *kq; 727 728 kq = ((file_t *)kn->kn_obj)->f_kqueue; 729 730 mutex_spin_enter(&kq->kq_lock); 731 selremove_knote(&kq->kq_sel, kn); 732 mutex_spin_exit(&kq->kq_lock); 733 } 734 735 /* 736 * Filter event method for EVFILT_READ on kqueue descriptor. 737 */ 738 /*ARGSUSED*/ 739 static int 740 filt_kqueue(struct knote *kn, long hint) 741 { 742 struct kqueue *kq; 743 int rv; 744 745 kq = ((file_t *)kn->kn_obj)->f_kqueue; 746 747 if (hint != NOTE_SUBMIT) 748 mutex_spin_enter(&kq->kq_lock); 749 kn->kn_data = KQ_COUNT(kq); 750 rv = (kn->kn_data > 0); 751 if (hint != NOTE_SUBMIT) 752 mutex_spin_exit(&kq->kq_lock); 753 754 return rv; 755 } 756 757 /* 758 * Filter attach method for EVFILT_PROC. 759 */ 760 static int 761 filt_procattach(struct knote *kn) 762 { 763 struct proc *p; 764 765 mutex_enter(&proc_lock); 766 p = proc_find(kn->kn_id); 767 if (p == NULL) { 768 mutex_exit(&proc_lock); 769 return ESRCH; 770 } 771 772 /* 773 * Fail if it's not owned by you, or the last exec gave us 774 * setuid/setgid privs (unless you're root). 775 */ 776 mutex_enter(p->p_lock); 777 mutex_exit(&proc_lock); 778 if (kauth_authorize_process(curlwp->l_cred, 779 KAUTH_PROCESS_KEVENT_FILTER, p, NULL, NULL, NULL) != 0) { 780 mutex_exit(p->p_lock); 781 return EACCES; 782 } 783 784 kn->kn_obj = p; 785 kn->kn_flags |= EV_CLEAR; /* automatically set */ 786 787 /* 788 * NOTE_CHILD is only ever generated internally; don't let it 789 * leak in from user-space. See knote_proc_fork_track(). 790 */ 791 kn->kn_sfflags &= ~NOTE_CHILD; 792 793 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 794 mutex_exit(p->p_lock); 795 796 return 0; 797 } 798 799 /* 800 * Filter detach method for EVFILT_PROC. 801 * 802 * The knote may be attached to a different process, which may exit, 803 * leaving nothing for the knote to be attached to. So when the process 804 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 805 * it will be deleted when read out. However, as part of the knote deletion, 806 * this routine is called, so a check is needed to avoid actually performing 807 * a detach, because the original process might not exist any more. 808 */ 809 static void 810 filt_procdetach(struct knote *kn) 811 { 812 struct kqueue *kq = kn->kn_kq; 813 struct proc *p; 814 815 /* 816 * We have to synchronize with knote_proc_exit(), but we 817 * are forced to acquire the locks in the wrong order here 818 * because we can't be sure kn->kn_obj is valid unless 819 * KN_DETACHED is not set. 820 */ 821 again: 822 mutex_spin_enter(&kq->kq_lock); 823 if ((kn->kn_status & KN_DETACHED) == 0) { 824 p = kn->kn_obj; 825 if (!mutex_tryenter(p->p_lock)) { 826 mutex_spin_exit(&kq->kq_lock); 827 preempt_point(); 828 goto again; 829 } 830 kn->kn_status |= KN_DETACHED; 831 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 832 mutex_exit(p->p_lock); 833 } 834 mutex_spin_exit(&kq->kq_lock); 835 } 836 837 /* 838 * Filter event method for EVFILT_PROC. 839 * 840 * Due to some of the complexities of process locking, we have special 841 * entry points for delivering knote submissions. filt_proc() is used 842 * only to check for activation from kqueue_register() and kqueue_scan(). 843 */ 844 static int 845 filt_proc(struct knote *kn, long hint) 846 { 847 struct kqueue *kq = kn->kn_kq; 848 uint32_t fflags; 849 850 /* 851 * Because we share the same klist with signal knotes, just 852 * ensure that we're not being invoked for the proc-related 853 * submissions. 854 */ 855 KASSERT((hint & (NOTE_EXEC | NOTE_EXIT | NOTE_FORK)) == 0); 856 857 mutex_spin_enter(&kq->kq_lock); 858 fflags = kn->kn_fflags; 859 mutex_spin_exit(&kq->kq_lock); 860 861 return fflags != 0; 862 } 863 864 void 865 knote_proc_exec(struct proc *p) 866 { 867 struct knote *kn, *tmpkn; 868 struct kqueue *kq; 869 uint32_t fflags; 870 871 mutex_enter(p->p_lock); 872 873 SLIST_FOREACH_SAFE(kn, &p->p_klist, kn_selnext, tmpkn) { 874 /* N.B. EVFILT_SIGNAL knotes are on this same list. */ 875 if (kn->kn_fop == &sig_filtops) { 876 continue; 877 } 878 KASSERT(kn->kn_fop == &proc_filtops); 879 880 kq = kn->kn_kq; 881 mutex_spin_enter(&kq->kq_lock); 882 fflags = (kn->kn_fflags |= (kn->kn_sfflags & NOTE_EXEC)); 883 if (fflags) { 884 knote_activate_locked(kn); 885 } 886 mutex_spin_exit(&kq->kq_lock); 887 } 888 889 mutex_exit(p->p_lock); 890 } 891 892 static int __noinline 893 knote_proc_fork_track(struct proc *p1, struct proc *p2, struct knote *okn) 894 { 895 struct kqueue *kq = okn->kn_kq; 896 897 KASSERT(mutex_owned(&kq->kq_lock)); 898 KASSERT(mutex_owned(p1->p_lock)); 899 900 /* 901 * We're going to put this knote into flux while we drop 902 * the locks and create and attach a new knote to track the 903 * child. If we are not able to enter flux, then this knote 904 * is about to go away, so skip the notification. 905 */ 906 if (!kn_enter_flux(okn)) { 907 return 0; 908 } 909 910 mutex_spin_exit(&kq->kq_lock); 911 mutex_exit(p1->p_lock); 912 913 /* 914 * We actually have to register *two* new knotes: 915 * 916 * ==> One for the NOTE_CHILD notification. This is a forced 917 * ONESHOT note. 918 * 919 * ==> One to actually track the child process as it subsequently 920 * forks, execs, and, ultimately, exits. 921 * 922 * If we only register a single knote, then it's possible for 923 * for the NOTE_CHILD and NOTE_EXIT to be collapsed into a single 924 * notification if the child exits before the tracking process 925 * has received the NOTE_CHILD notification, which applications 926 * aren't expecting (the event's 'data' field would be clobbered, 927 * for exmaple). 928 * 929 * To do this, what we have here is an **extremely** stripped-down 930 * version of kqueue_register() that has the following properties: 931 * 932 * ==> Does not block to allocate memory. If we are unable 933 * to allocate memory, we return ENOMEM. 934 * 935 * ==> Does not search for existing knotes; we know there 936 * are not any because this is a new process that isn't 937 * even visible to other processes yet. 938 * 939 * ==> Assumes that the knhash for our kq's descriptor table 940 * already exists (after all, we're already tracking 941 * processes with knotes if we got here). 942 * 943 * ==> Directly attaches the new tracking knote to the child 944 * process. 945 * 946 * The whole point is to do the minimum amount of work while the 947 * knote is held in-flux, and to avoid doing extra work in general 948 * (we already have the new child process; why bother looking it 949 * up again?). 950 */ 951 filedesc_t *fdp = kq->kq_fdp; 952 struct knote *knchild, *kntrack; 953 int error = 0; 954 955 knchild = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP); 956 kntrack = kmem_zalloc(sizeof(*knchild), KM_NOSLEEP); 957 if (__predict_false(knchild == NULL || kntrack == NULL)) { 958 error = ENOMEM; 959 goto out; 960 } 961 962 kntrack->kn_obj = p2; 963 kntrack->kn_id = p2->p_pid; 964 kntrack->kn_kq = kq; 965 kntrack->kn_fop = okn->kn_fop; 966 kntrack->kn_kfilter = okn->kn_kfilter; 967 kntrack->kn_sfflags = okn->kn_sfflags; 968 kntrack->kn_sdata = p1->p_pid; 969 970 kntrack->kn_kevent.ident = p2->p_pid; 971 kntrack->kn_kevent.filter = okn->kn_filter; 972 kntrack->kn_kevent.flags = 973 okn->kn_flags | EV_ADD | EV_ENABLE | EV_CLEAR; 974 kntrack->kn_kevent.fflags = 0; 975 kntrack->kn_kevent.data = 0; 976 kntrack->kn_kevent.udata = okn->kn_kevent.udata; /* preserve udata */ 977 978 /* 979 * The child note does not need to be attached to the 980 * new proc's klist at all. 981 */ 982 *knchild = *kntrack; 983 knchild->kn_status = KN_DETACHED; 984 knchild->kn_sfflags = 0; 985 knchild->kn_kevent.flags |= EV_ONESHOT; 986 knchild->kn_kevent.fflags = NOTE_CHILD; 987 knchild->kn_kevent.data = p1->p_pid; /* parent */ 988 989 mutex_enter(&fdp->fd_lock); 990 991 /* 992 * We need to check to see if the kq is closing, and skip 993 * attaching the knote if so. Normally, this isn't necessary 994 * when coming in the front door because the file descriptor 995 * layer will synchronize this. 996 * 997 * It's safe to test KQ_CLOSING without taking the kq_lock 998 * here because that flag is only ever set when the fd_lock 999 * is also held. 1000 */ 1001 if (__predict_false(kq->kq_count & KQ_CLOSING)) { 1002 mutex_exit(&fdp->fd_lock); 1003 goto out; 1004 } 1005 1006 /* 1007 * We do the "insert into FD table" and "attach to klist" steps 1008 * in the opposite order of kqueue_register() here to avoid 1009 * having to take p2->p_lock twice. But this is OK because we 1010 * hold fd_lock across the entire operation. 1011 */ 1012 1013 mutex_enter(p2->p_lock); 1014 error = kauth_authorize_process(curlwp->l_cred, 1015 KAUTH_PROCESS_KEVENT_FILTER, p2, NULL, NULL, NULL); 1016 if (__predict_false(error != 0)) { 1017 mutex_exit(p2->p_lock); 1018 mutex_exit(&fdp->fd_lock); 1019 error = EACCES; 1020 goto out; 1021 } 1022 SLIST_INSERT_HEAD(&p2->p_klist, kntrack, kn_selnext); 1023 mutex_exit(p2->p_lock); 1024 1025 KASSERT(fdp->fd_knhashmask != 0); 1026 KASSERT(fdp->fd_knhash != NULL); 1027 struct klist *list = &fdp->fd_knhash[KN_HASH(kntrack->kn_id, 1028 fdp->fd_knhashmask)]; 1029 SLIST_INSERT_HEAD(list, kntrack, kn_link); 1030 SLIST_INSERT_HEAD(list, knchild, kn_link); 1031 1032 /* This adds references for knchild *and* kntrack. */ 1033 atomic_add_int(&kntrack->kn_kfilter->refcnt, 2); 1034 1035 knote_activate(knchild); 1036 1037 kntrack = NULL; 1038 knchild = NULL; 1039 1040 mutex_exit(&fdp->fd_lock); 1041 1042 out: 1043 if (__predict_false(knchild != NULL)) { 1044 kmem_free(knchild, sizeof(*knchild)); 1045 } 1046 if (__predict_false(kntrack != NULL)) { 1047 kmem_free(kntrack, sizeof(*kntrack)); 1048 } 1049 mutex_enter(p1->p_lock); 1050 mutex_spin_enter(&kq->kq_lock); 1051 1052 if (kn_leave_flux(okn)) { 1053 KQ_FLUX_WAKEUP(kq); 1054 } 1055 1056 return error; 1057 } 1058 1059 void 1060 knote_proc_fork(struct proc *p1, struct proc *p2) 1061 { 1062 struct knote *kn; 1063 struct kqueue *kq; 1064 uint32_t fflags; 1065 1066 mutex_enter(p1->p_lock); 1067 1068 /* 1069 * N.B. We DO NOT use SLIST_FOREACH_SAFE() here because we 1070 * don't want to pre-fetch the next knote; in the event we 1071 * have to drop p_lock, we will have put the knote in-flux, 1072 * meaning that no one will be able to detach it until we 1073 * have taken the knote out of flux. However, that does 1074 * NOT stop someone else from detaching the next note in the 1075 * list while we have it unlocked. Thus, we want to fetch 1076 * the next note in the list only after we have re-acquired 1077 * the lock, and using SLIST_FOREACH() will satisfy that. 1078 */ 1079 SLIST_FOREACH(kn, &p1->p_klist, kn_selnext) { 1080 /* N.B. EVFILT_SIGNAL knotes are on this same list. */ 1081 if (kn->kn_fop == &sig_filtops) { 1082 continue; 1083 } 1084 KASSERT(kn->kn_fop == &proc_filtops); 1085 1086 kq = kn->kn_kq; 1087 mutex_spin_enter(&kq->kq_lock); 1088 kn->kn_fflags |= (kn->kn_sfflags & NOTE_FORK); 1089 if (__predict_false(kn->kn_sfflags & NOTE_TRACK)) { 1090 /* 1091 * This will drop kq_lock and p_lock and 1092 * re-acquire them before it returns. 1093 */ 1094 if (knote_proc_fork_track(p1, p2, kn)) { 1095 kn->kn_fflags |= NOTE_TRACKERR; 1096 } 1097 KASSERT(mutex_owned(p1->p_lock)); 1098 KASSERT(mutex_owned(&kq->kq_lock)); 1099 } 1100 fflags = kn->kn_fflags; 1101 if (fflags) { 1102 knote_activate_locked(kn); 1103 } 1104 mutex_spin_exit(&kq->kq_lock); 1105 } 1106 1107 mutex_exit(p1->p_lock); 1108 } 1109 1110 void 1111 knote_proc_exit(struct proc *p) 1112 { 1113 struct knote *kn; 1114 struct kqueue *kq; 1115 1116 KASSERT(mutex_owned(p->p_lock)); 1117 1118 while (!SLIST_EMPTY(&p->p_klist)) { 1119 kn = SLIST_FIRST(&p->p_klist); 1120 kq = kn->kn_kq; 1121 1122 KASSERT(kn->kn_obj == p); 1123 1124 mutex_spin_enter(&kq->kq_lock); 1125 kn->kn_data = P_WAITSTATUS(p); 1126 /* 1127 * Mark as ONESHOT, so that the knote is g/c'ed 1128 * when read. 1129 */ 1130 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 1131 kn->kn_fflags |= kn->kn_sfflags & NOTE_EXIT; 1132 1133 /* 1134 * Detach the knote from the process and mark it as such. 1135 * N.B. EVFILT_SIGNAL are also on p_klist, but by the 1136 * time we get here, all open file descriptors for this 1137 * process have been released, meaning that signal knotes 1138 * will have already been detached. 1139 * 1140 * We need to synchronize this with filt_procdetach(). 1141 */ 1142 KASSERT(kn->kn_fop == &proc_filtops); 1143 if ((kn->kn_status & KN_DETACHED) == 0) { 1144 kn->kn_status |= KN_DETACHED; 1145 SLIST_REMOVE_HEAD(&p->p_klist, kn_selnext); 1146 } 1147 1148 /* 1149 * Always activate the knote for NOTE_EXIT regardless 1150 * of whether or not the listener cares about it. 1151 * This matches historical behavior. 1152 */ 1153 knote_activate_locked(kn); 1154 mutex_spin_exit(&kq->kq_lock); 1155 } 1156 } 1157 1158 #define FILT_TIMER_NOSCHED ((uintptr_t)-1) 1159 1160 static int 1161 filt_timercompute(struct kevent *kev, uintptr_t *tticksp) 1162 { 1163 struct timespec ts; 1164 uintptr_t tticks; 1165 1166 if (kev->fflags & ~(NOTE_TIMER_UNITMASK | NOTE_ABSTIME)) { 1167 return EINVAL; 1168 } 1169 1170 /* 1171 * Convert the event 'data' to a timespec, then convert the 1172 * timespec to callout ticks. 1173 */ 1174 switch (kev->fflags & NOTE_TIMER_UNITMASK) { 1175 case NOTE_SECONDS: 1176 ts.tv_sec = kev->data; 1177 ts.tv_nsec = 0; 1178 break; 1179 1180 case NOTE_MSECONDS: /* == historical value 0 */ 1181 ts.tv_sec = kev->data / 1000; 1182 ts.tv_nsec = (kev->data % 1000) * 1000000; 1183 break; 1184 1185 case NOTE_USECONDS: 1186 ts.tv_sec = kev->data / 1000000; 1187 ts.tv_nsec = (kev->data % 1000000) * 1000; 1188 break; 1189 1190 case NOTE_NSECONDS: 1191 ts.tv_sec = kev->data / 1000000000; 1192 ts.tv_nsec = kev->data % 1000000000; 1193 break; 1194 1195 default: 1196 return EINVAL; 1197 } 1198 1199 if (kev->fflags & NOTE_ABSTIME) { 1200 struct timespec deadline = ts; 1201 1202 /* 1203 * Get current time. 1204 * 1205 * XXX This is CLOCK_REALTIME. There is no way to 1206 * XXX specify CLOCK_MONOTONIC. 1207 */ 1208 nanotime(&ts); 1209 1210 /* Absolute timers do not repeat. */ 1211 kev->data = FILT_TIMER_NOSCHED; 1212 1213 /* If we're past the deadline, then the event will fire. */ 1214 if (timespeccmp(&deadline, &ts, <=)) { 1215 tticks = FILT_TIMER_NOSCHED; 1216 goto out; 1217 } 1218 1219 /* Calculate how much time is left. */ 1220 timespecsub(&deadline, &ts, &ts); 1221 } else { 1222 /* EV_CLEAR automatically set for relative timers. */ 1223 kev->flags |= EV_CLEAR; 1224 } 1225 1226 tticks = tstohz(&ts); 1227 1228 /* if the supplied value is under our resolution, use 1 tick */ 1229 if (tticks == 0) { 1230 if (kev->data == 0) 1231 return EINVAL; 1232 tticks = 1; 1233 } else if (tticks > INT_MAX) { 1234 return EINVAL; 1235 } 1236 1237 if ((kev->flags & EV_ONESHOT) != 0) { 1238 /* Timer does not repeat. */ 1239 kev->data = FILT_TIMER_NOSCHED; 1240 } else { 1241 KASSERT((uintptr_t)tticks != FILT_TIMER_NOSCHED); 1242 kev->data = tticks; 1243 } 1244 1245 out: 1246 *tticksp = tticks; 1247 1248 return 0; 1249 } 1250 1251 static void 1252 filt_timerexpire(void *knx) 1253 { 1254 struct knote *kn = knx; 1255 struct kqueue *kq = kn->kn_kq; 1256 1257 mutex_spin_enter(&kq->kq_lock); 1258 kn->kn_data++; 1259 knote_activate_locked(kn); 1260 if (kn->kn_sdata != FILT_TIMER_NOSCHED) { 1261 KASSERT(kn->kn_sdata > 0 && kn->kn_sdata <= INT_MAX); 1262 callout_schedule((callout_t *)kn->kn_hook, 1263 (int)kn->kn_sdata); 1264 } 1265 mutex_spin_exit(&kq->kq_lock); 1266 } 1267 1268 static inline void 1269 filt_timerstart(struct knote *kn, uintptr_t tticks) 1270 { 1271 callout_t *calloutp = kn->kn_hook; 1272 1273 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 1274 KASSERT(!callout_pending(calloutp)); 1275 1276 if (__predict_false(tticks == FILT_TIMER_NOSCHED)) { 1277 kn->kn_data = 1; 1278 } else { 1279 KASSERT(tticks <= INT_MAX); 1280 callout_reset(calloutp, (int)tticks, filt_timerexpire, kn); 1281 } 1282 } 1283 1284 static int 1285 filt_timerattach(struct knote *kn) 1286 { 1287 callout_t *calloutp; 1288 struct kqueue *kq; 1289 uintptr_t tticks; 1290 int error; 1291 1292 struct kevent kev = { 1293 .flags = kn->kn_flags, 1294 .fflags = kn->kn_sfflags, 1295 .data = kn->kn_sdata, 1296 }; 1297 1298 error = filt_timercompute(&kev, &tticks); 1299 if (error) { 1300 return error; 1301 } 1302 1303 if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax || 1304 (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) { 1305 atomic_dec_uint(&kq_ncallouts); 1306 return ENOMEM; 1307 } 1308 callout_init(calloutp, CALLOUT_MPSAFE); 1309 1310 kq = kn->kn_kq; 1311 mutex_spin_enter(&kq->kq_lock); 1312 1313 kn->kn_sdata = kev.data; 1314 kn->kn_flags = kev.flags; 1315 KASSERT(kn->kn_sfflags == kev.fflags); 1316 kn->kn_hook = calloutp; 1317 1318 filt_timerstart(kn, tticks); 1319 1320 mutex_spin_exit(&kq->kq_lock); 1321 1322 return (0); 1323 } 1324 1325 static void 1326 filt_timerdetach(struct knote *kn) 1327 { 1328 callout_t *calloutp; 1329 struct kqueue *kq = kn->kn_kq; 1330 1331 /* prevent rescheduling when we expire */ 1332 mutex_spin_enter(&kq->kq_lock); 1333 kn->kn_sdata = FILT_TIMER_NOSCHED; 1334 mutex_spin_exit(&kq->kq_lock); 1335 1336 calloutp = (callout_t *)kn->kn_hook; 1337 1338 /* 1339 * Attempt to stop the callout. This will block if it's 1340 * already running. 1341 */ 1342 callout_halt(calloutp, NULL); 1343 1344 callout_destroy(calloutp); 1345 kmem_free(calloutp, sizeof(*calloutp)); 1346 atomic_dec_uint(&kq_ncallouts); 1347 } 1348 1349 static int 1350 filt_timertouch(struct knote *kn, struct kevent *kev, long type) 1351 { 1352 struct kqueue *kq = kn->kn_kq; 1353 callout_t *calloutp; 1354 uintptr_t tticks; 1355 int error; 1356 1357 KASSERT(mutex_owned(&kq->kq_lock)); 1358 1359 switch (type) { 1360 case EVENT_REGISTER: 1361 /* Only relevant for EV_ADD. */ 1362 if ((kev->flags & EV_ADD) == 0) { 1363 return 0; 1364 } 1365 1366 /* 1367 * Stop the timer, under the assumption that if 1368 * an application is re-configuring the timer, 1369 * they no longer care about the old one. We 1370 * can safely drop the kq_lock while we wait 1371 * because fdp->fd_lock will be held throughout, 1372 * ensuring that no one can sneak in with an 1373 * EV_DELETE or close the kq. 1374 */ 1375 KASSERT(mutex_owned(&kq->kq_fdp->fd_lock)); 1376 1377 calloutp = kn->kn_hook; 1378 callout_halt(calloutp, &kq->kq_lock); 1379 KASSERT(mutex_owned(&kq->kq_lock)); 1380 knote_deactivate_locked(kn); 1381 kn->kn_data = 0; 1382 1383 error = filt_timercompute(kev, &tticks); 1384 if (error) { 1385 return error; 1386 } 1387 kn->kn_sdata = kev->data; 1388 kn->kn_flags = kev->flags; 1389 kn->kn_sfflags = kev->fflags; 1390 filt_timerstart(kn, tticks); 1391 break; 1392 1393 case EVENT_PROCESS: 1394 *kev = kn->kn_kevent; 1395 break; 1396 1397 default: 1398 panic("%s: invalid type (%ld)", __func__, type); 1399 } 1400 1401 return 0; 1402 } 1403 1404 static int 1405 filt_timer(struct knote *kn, long hint) 1406 { 1407 struct kqueue *kq = kn->kn_kq; 1408 int rv; 1409 1410 mutex_spin_enter(&kq->kq_lock); 1411 rv = (kn->kn_data != 0); 1412 mutex_spin_exit(&kq->kq_lock); 1413 1414 return rv; 1415 } 1416 1417 static int 1418 filt_userattach(struct knote *kn) 1419 { 1420 struct kqueue *kq = kn->kn_kq; 1421 1422 /* 1423 * EVFILT_USER knotes are not attached to anything in the kernel. 1424 */ 1425 mutex_spin_enter(&kq->kq_lock); 1426 kn->kn_hook = NULL; 1427 if (kn->kn_fflags & NOTE_TRIGGER) 1428 kn->kn_hookid = 1; 1429 else 1430 kn->kn_hookid = 0; 1431 mutex_spin_exit(&kq->kq_lock); 1432 return (0); 1433 } 1434 1435 static void 1436 filt_userdetach(struct knote *kn) 1437 { 1438 1439 /* 1440 * EVFILT_USER knotes are not attached to anything in the kernel. 1441 */ 1442 } 1443 1444 static int 1445 filt_user(struct knote *kn, long hint) 1446 { 1447 struct kqueue *kq = kn->kn_kq; 1448 int hookid; 1449 1450 mutex_spin_enter(&kq->kq_lock); 1451 hookid = kn->kn_hookid; 1452 mutex_spin_exit(&kq->kq_lock); 1453 1454 return hookid; 1455 } 1456 1457 static int 1458 filt_usertouch(struct knote *kn, struct kevent *kev, long type) 1459 { 1460 int ffctrl; 1461 1462 KASSERT(mutex_owned(&kn->kn_kq->kq_lock)); 1463 1464 switch (type) { 1465 case EVENT_REGISTER: 1466 if (kev->fflags & NOTE_TRIGGER) 1467 kn->kn_hookid = 1; 1468 1469 ffctrl = kev->fflags & NOTE_FFCTRLMASK; 1470 kev->fflags &= NOTE_FFLAGSMASK; 1471 switch (ffctrl) { 1472 case NOTE_FFNOP: 1473 break; 1474 1475 case NOTE_FFAND: 1476 kn->kn_sfflags &= kev->fflags; 1477 break; 1478 1479 case NOTE_FFOR: 1480 kn->kn_sfflags |= kev->fflags; 1481 break; 1482 1483 case NOTE_FFCOPY: 1484 kn->kn_sfflags = kev->fflags; 1485 break; 1486 1487 default: 1488 /* XXX Return error? */ 1489 break; 1490 } 1491 kn->kn_sdata = kev->data; 1492 if (kev->flags & EV_CLEAR) { 1493 kn->kn_hookid = 0; 1494 kn->kn_data = 0; 1495 kn->kn_fflags = 0; 1496 } 1497 break; 1498 1499 case EVENT_PROCESS: 1500 *kev = kn->kn_kevent; 1501 kev->fflags = kn->kn_sfflags; 1502 kev->data = kn->kn_sdata; 1503 if (kn->kn_flags & EV_CLEAR) { 1504 kn->kn_hookid = 0; 1505 kn->kn_data = 0; 1506 kn->kn_fflags = 0; 1507 } 1508 break; 1509 1510 default: 1511 panic("filt_usertouch() - invalid type (%ld)", type); 1512 break; 1513 } 1514 1515 return 0; 1516 } 1517 1518 /* 1519 * filt_seltrue: 1520 * 1521 * This filter "event" routine simulates seltrue(). 1522 */ 1523 int 1524 filt_seltrue(struct knote *kn, long hint) 1525 { 1526 1527 /* 1528 * We don't know how much data can be read/written, 1529 * but we know that it *can* be. This is about as 1530 * good as select/poll does as well. 1531 */ 1532 kn->kn_data = 0; 1533 return (1); 1534 } 1535 1536 /* 1537 * This provides full kqfilter entry for device switch tables, which 1538 * has same effect as filter using filt_seltrue() as filter method. 1539 */ 1540 static void 1541 filt_seltruedetach(struct knote *kn) 1542 { 1543 /* Nothing to do */ 1544 } 1545 1546 const struct filterops seltrue_filtops = { 1547 .f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE, 1548 .f_attach = NULL, 1549 .f_detach = filt_seltruedetach, 1550 .f_event = filt_seltrue, 1551 }; 1552 1553 int 1554 seltrue_kqfilter(dev_t dev, struct knote *kn) 1555 { 1556 switch (kn->kn_filter) { 1557 case EVFILT_READ: 1558 case EVFILT_WRITE: 1559 kn->kn_fop = &seltrue_filtops; 1560 break; 1561 default: 1562 return (EINVAL); 1563 } 1564 1565 /* Nothing more to do */ 1566 return (0); 1567 } 1568 1569 /* 1570 * kqueue(2) system call. 1571 */ 1572 static int 1573 kqueue1(struct lwp *l, int flags, register_t *retval) 1574 { 1575 struct kqueue *kq; 1576 file_t *fp; 1577 int fd, error; 1578 1579 if ((error = fd_allocfile(&fp, &fd)) != 0) 1580 return error; 1581 fp->f_flag = FREAD | FWRITE | (flags & (FNONBLOCK|FNOSIGPIPE)); 1582 fp->f_type = DTYPE_KQUEUE; 1583 fp->f_ops = &kqueueops; 1584 kq = kmem_zalloc(sizeof(*kq), KM_SLEEP); 1585 mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED); 1586 cv_init(&kq->kq_cv, "kqueue"); 1587 selinit(&kq->kq_sel); 1588 TAILQ_INIT(&kq->kq_head); 1589 fp->f_kqueue = kq; 1590 *retval = fd; 1591 kq->kq_fdp = curlwp->l_fd; 1592 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0); 1593 fd_affix(curproc, fp, fd); 1594 return error; 1595 } 1596 1597 /* 1598 * kqueue(2) system call. 1599 */ 1600 int 1601 sys_kqueue(struct lwp *l, const void *v, register_t *retval) 1602 { 1603 return kqueue1(l, 0, retval); 1604 } 1605 1606 int 1607 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap, 1608 register_t *retval) 1609 { 1610 /* { 1611 syscallarg(int) flags; 1612 } */ 1613 return kqueue1(l, SCARG(uap, flags), retval); 1614 } 1615 1616 /* 1617 * kevent(2) system call. 1618 */ 1619 int 1620 kevent_fetch_changes(void *ctx, const struct kevent *changelist, 1621 struct kevent *changes, size_t index, int n) 1622 { 1623 1624 return copyin(changelist + index, changes, n * sizeof(*changes)); 1625 } 1626 1627 int 1628 kevent_put_events(void *ctx, struct kevent *events, 1629 struct kevent *eventlist, size_t index, int n) 1630 { 1631 1632 return copyout(events, eventlist + index, n * sizeof(*events)); 1633 } 1634 1635 static const struct kevent_ops kevent_native_ops = { 1636 .keo_private = NULL, 1637 .keo_fetch_timeout = copyin, 1638 .keo_fetch_changes = kevent_fetch_changes, 1639 .keo_put_events = kevent_put_events, 1640 }; 1641 1642 int 1643 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap, 1644 register_t *retval) 1645 { 1646 /* { 1647 syscallarg(int) fd; 1648 syscallarg(const struct kevent *) changelist; 1649 syscallarg(size_t) nchanges; 1650 syscallarg(struct kevent *) eventlist; 1651 syscallarg(size_t) nevents; 1652 syscallarg(const struct timespec *) timeout; 1653 } */ 1654 1655 return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist), 1656 SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents), 1657 SCARG(uap, timeout), &kevent_native_ops); 1658 } 1659 1660 int 1661 kevent1(register_t *retval, int fd, 1662 const struct kevent *changelist, size_t nchanges, 1663 struct kevent *eventlist, size_t nevents, 1664 const struct timespec *timeout, 1665 const struct kevent_ops *keops) 1666 { 1667 struct kevent *kevp; 1668 struct kqueue *kq; 1669 struct timespec ts; 1670 size_t i, n, ichange; 1671 int nerrors, error; 1672 struct kevent kevbuf[KQ_NEVENTS]; /* approx 300 bytes on 64-bit */ 1673 file_t *fp; 1674 1675 /* check that we're dealing with a kq */ 1676 fp = fd_getfile(fd); 1677 if (fp == NULL) 1678 return (EBADF); 1679 1680 if (fp->f_type != DTYPE_KQUEUE) { 1681 fd_putfile(fd); 1682 return (EBADF); 1683 } 1684 1685 if (timeout != NULL) { 1686 error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts)); 1687 if (error) 1688 goto done; 1689 timeout = &ts; 1690 } 1691 1692 kq = fp->f_kqueue; 1693 nerrors = 0; 1694 ichange = 0; 1695 1696 /* traverse list of events to register */ 1697 while (nchanges > 0) { 1698 n = MIN(nchanges, __arraycount(kevbuf)); 1699 error = (*keops->keo_fetch_changes)(keops->keo_private, 1700 changelist, kevbuf, ichange, n); 1701 if (error) 1702 goto done; 1703 for (i = 0; i < n; i++) { 1704 kevp = &kevbuf[i]; 1705 kevp->flags &= ~EV_SYSFLAGS; 1706 /* register each knote */ 1707 error = kqueue_register(kq, kevp); 1708 if (!error && !(kevp->flags & EV_RECEIPT)) 1709 continue; 1710 if (nevents == 0) 1711 goto done; 1712 kevp->flags = EV_ERROR; 1713 kevp->data = error; 1714 error = (*keops->keo_put_events) 1715 (keops->keo_private, kevp, 1716 eventlist, nerrors, 1); 1717 if (error) 1718 goto done; 1719 nevents--; 1720 nerrors++; 1721 } 1722 nchanges -= n; /* update the results */ 1723 ichange += n; 1724 } 1725 if (nerrors) { 1726 *retval = nerrors; 1727 error = 0; 1728 goto done; 1729 } 1730 1731 /* actually scan through the events */ 1732 error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops, 1733 kevbuf, __arraycount(kevbuf)); 1734 done: 1735 fd_putfile(fd); 1736 return (error); 1737 } 1738 1739 /* 1740 * Register a given kevent kev onto the kqueue 1741 */ 1742 static int 1743 kqueue_register(struct kqueue *kq, struct kevent *kev) 1744 { 1745 struct kfilter *kfilter; 1746 filedesc_t *fdp; 1747 file_t *fp; 1748 fdfile_t *ff; 1749 struct knote *kn, *newkn; 1750 struct klist *list; 1751 int error, fd, rv; 1752 1753 fdp = kq->kq_fdp; 1754 fp = NULL; 1755 kn = NULL; 1756 error = 0; 1757 fd = 0; 1758 1759 newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP); 1760 1761 rw_enter(&kqueue_filter_lock, RW_READER); 1762 kfilter = kfilter_byfilter(kev->filter); 1763 if (kfilter == NULL || kfilter->filtops == NULL) { 1764 /* filter not found nor implemented */ 1765 rw_exit(&kqueue_filter_lock); 1766 kmem_free(newkn, sizeof(*newkn)); 1767 return (EINVAL); 1768 } 1769 1770 /* search if knote already exists */ 1771 if (kfilter->filtops->f_flags & FILTEROP_ISFD) { 1772 /* monitoring a file descriptor */ 1773 /* validate descriptor */ 1774 if (kev->ident > INT_MAX 1775 || (fp = fd_getfile(fd = kev->ident)) == NULL) { 1776 rw_exit(&kqueue_filter_lock); 1777 kmem_free(newkn, sizeof(*newkn)); 1778 return EBADF; 1779 } 1780 mutex_enter(&fdp->fd_lock); 1781 ff = fdp->fd_dt->dt_ff[fd]; 1782 if (ff->ff_refcnt & FR_CLOSING) { 1783 error = EBADF; 1784 goto doneunlock; 1785 } 1786 if (fd <= fdp->fd_lastkqfile) { 1787 SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) { 1788 if (kq == kn->kn_kq && 1789 kev->filter == kn->kn_filter) 1790 break; 1791 } 1792 } 1793 } else { 1794 /* 1795 * not monitoring a file descriptor, so 1796 * lookup knotes in internal hash table 1797 */ 1798 mutex_enter(&fdp->fd_lock); 1799 if (fdp->fd_knhashmask != 0) { 1800 list = &fdp->fd_knhash[ 1801 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; 1802 SLIST_FOREACH(kn, list, kn_link) { 1803 if (kev->ident == kn->kn_id && 1804 kq == kn->kn_kq && 1805 kev->filter == kn->kn_filter) 1806 break; 1807 } 1808 } 1809 } 1810 1811 /* It's safe to test KQ_CLOSING while holding only the fd_lock. */ 1812 KASSERT(mutex_owned(&fdp->fd_lock)); 1813 KASSERT((kq->kq_count & KQ_CLOSING) == 0); 1814 1815 /* 1816 * kn now contains the matching knote, or NULL if no match 1817 */ 1818 if (kn == NULL) { 1819 if (kev->flags & EV_ADD) { 1820 /* create new knote */ 1821 kn = newkn; 1822 newkn = NULL; 1823 kn->kn_obj = fp; 1824 kn->kn_id = kev->ident; 1825 kn->kn_kq = kq; 1826 kn->kn_fop = kfilter->filtops; 1827 kn->kn_kfilter = kfilter; 1828 kn->kn_sfflags = kev->fflags; 1829 kn->kn_sdata = kev->data; 1830 kev->fflags = 0; 1831 kev->data = 0; 1832 kn->kn_kevent = *kev; 1833 1834 KASSERT(kn->kn_fop != NULL); 1835 /* 1836 * apply reference count to knote structure, and 1837 * do not release it at the end of this routine. 1838 */ 1839 fp = NULL; 1840 1841 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD)) { 1842 /* 1843 * If knote is not on an fd, store on 1844 * internal hash table. 1845 */ 1846 if (fdp->fd_knhashmask == 0) { 1847 /* XXXAD can block with fd_lock held */ 1848 fdp->fd_knhash = hashinit(KN_HASHSIZE, 1849 HASH_LIST, true, 1850 &fdp->fd_knhashmask); 1851 } 1852 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, 1853 fdp->fd_knhashmask)]; 1854 } else { 1855 /* Otherwise, knote is on an fd. */ 1856 list = (struct klist *) 1857 &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; 1858 if ((int)kn->kn_id > fdp->fd_lastkqfile) 1859 fdp->fd_lastkqfile = kn->kn_id; 1860 } 1861 SLIST_INSERT_HEAD(list, kn, kn_link); 1862 1863 /* 1864 * N.B. kn->kn_fop may change as the result 1865 * of filter_attach()! 1866 */ 1867 error = filter_attach(kn); 1868 if (error != 0) { 1869 #ifdef DEBUG 1870 struct proc *p = curlwp->l_proc; 1871 const file_t *ft = kn->kn_obj; 1872 printf("%s: %s[%d]: event type %d not " 1873 "supported for file type %d/%s " 1874 "(error %d)\n", __func__, 1875 p->p_comm, p->p_pid, 1876 kn->kn_filter, ft ? ft->f_type : -1, 1877 ft ? ft->f_ops->fo_name : "?", error); 1878 #endif 1879 1880 /* 1881 * N.B. no need to check for this note to 1882 * be in-flux, since it was never visible 1883 * to the monitored object. 1884 * 1885 * knote_detach() drops fdp->fd_lock 1886 */ 1887 mutex_enter(&kq->kq_lock); 1888 KNOTE_WILLDETACH(kn); 1889 KASSERT(kn_in_flux(kn) == false); 1890 mutex_exit(&kq->kq_lock); 1891 knote_detach(kn, fdp, false); 1892 goto done; 1893 } 1894 atomic_inc_uint(&kfilter->refcnt); 1895 goto done_ev_add; 1896 } else { 1897 /* No matching knote and the EV_ADD flag is not set. */ 1898 error = ENOENT; 1899 goto doneunlock; 1900 } 1901 } 1902 1903 if (kev->flags & EV_DELETE) { 1904 /* 1905 * Let the world know that this knote is about to go 1906 * away, and wait for it to settle if it's currently 1907 * in-flux. 1908 */ 1909 mutex_spin_enter(&kq->kq_lock); 1910 if (kn->kn_status & KN_WILLDETACH) { 1911 /* 1912 * This knote is already on its way out, 1913 * so just be done. 1914 */ 1915 mutex_spin_exit(&kq->kq_lock); 1916 goto doneunlock; 1917 } 1918 KNOTE_WILLDETACH(kn); 1919 if (kn_in_flux(kn)) { 1920 mutex_exit(&fdp->fd_lock); 1921 /* 1922 * It's safe for us to conclusively wait for 1923 * this knote to settle because we know we'll 1924 * be completing the detach. 1925 */ 1926 kn_wait_flux(kn, true); 1927 KASSERT(kn_in_flux(kn) == false); 1928 mutex_spin_exit(&kq->kq_lock); 1929 mutex_enter(&fdp->fd_lock); 1930 } else { 1931 mutex_spin_exit(&kq->kq_lock); 1932 } 1933 1934 /* knote_detach() drops fdp->fd_lock */ 1935 knote_detach(kn, fdp, true); 1936 goto done; 1937 } 1938 1939 /* 1940 * The user may change some filter values after the 1941 * initial EV_ADD, but doing so will not reset any 1942 * filter which have already been triggered. 1943 */ 1944 kn->kn_kevent.udata = kev->udata; 1945 KASSERT(kn->kn_fop != NULL); 1946 if (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && 1947 kn->kn_fop->f_touch != NULL) { 1948 mutex_spin_enter(&kq->kq_lock); 1949 error = filter_touch(kn, kev, EVENT_REGISTER); 1950 mutex_spin_exit(&kq->kq_lock); 1951 if (__predict_false(error != 0)) { 1952 /* Never a new knote (which would consume newkn). */ 1953 KASSERT(newkn != NULL); 1954 goto doneunlock; 1955 } 1956 } else { 1957 kn->kn_sfflags = kev->fflags; 1958 kn->kn_sdata = kev->data; 1959 } 1960 1961 /* 1962 * We can get here if we are trying to attach 1963 * an event to a file descriptor that does not 1964 * support events, and the attach routine is 1965 * broken and does not return an error. 1966 */ 1967 done_ev_add: 1968 rv = filter_event(kn, 0); 1969 if (rv) 1970 knote_activate(kn); 1971 1972 /* disable knote */ 1973 if ((kev->flags & EV_DISABLE)) { 1974 mutex_spin_enter(&kq->kq_lock); 1975 if ((kn->kn_status & KN_DISABLED) == 0) 1976 kn->kn_status |= KN_DISABLED; 1977 mutex_spin_exit(&kq->kq_lock); 1978 } 1979 1980 /* enable knote */ 1981 if ((kev->flags & EV_ENABLE)) { 1982 knote_enqueue(kn); 1983 } 1984 doneunlock: 1985 mutex_exit(&fdp->fd_lock); 1986 done: 1987 rw_exit(&kqueue_filter_lock); 1988 if (newkn != NULL) 1989 kmem_free(newkn, sizeof(*newkn)); 1990 if (fp != NULL) 1991 fd_putfile(fd); 1992 return (error); 1993 } 1994 1995 #define KN_FMT(buf, kn) \ 1996 (snprintb((buf), sizeof(buf), __KN_FLAG_BITS, (kn)->kn_status), buf) 1997 1998 #if defined(DDB) 1999 void 2000 kqueue_printit(struct kqueue *kq, bool full, void (*pr)(const char *, ...)) 2001 { 2002 const struct knote *kn; 2003 u_int count; 2004 int nmarker; 2005 char buf[128]; 2006 2007 count = 0; 2008 nmarker = 0; 2009 2010 (*pr)("kqueue %p (restart=%d count=%u):\n", kq, 2011 !!(kq->kq_count & KQ_RESTART), KQ_COUNT(kq)); 2012 (*pr)(" Queued knotes:\n"); 2013 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { 2014 if (kn->kn_status & KN_MARKER) { 2015 nmarker++; 2016 } else { 2017 count++; 2018 } 2019 (*pr)(" knote %p: kq=%p status=%s\n", 2020 kn, kn->kn_kq, KN_FMT(buf, kn)); 2021 (*pr)(" id=0x%lx (%lu) filter=%d\n", 2022 (u_long)kn->kn_id, (u_long)kn->kn_id, kn->kn_filter); 2023 if (kn->kn_kq != kq) { 2024 (*pr)(" !!! kn->kn_kq != kq\n"); 2025 } 2026 } 2027 if (count != KQ_COUNT(kq)) { 2028 (*pr)(" !!! count(%u) != KQ_COUNT(%u)\n", 2029 count, KQ_COUNT(kq)); 2030 } 2031 } 2032 #endif /* DDB */ 2033 2034 #if defined(DEBUG) 2035 static void 2036 kqueue_check(const char *func, size_t line, const struct kqueue *kq) 2037 { 2038 const struct knote *kn; 2039 u_int count; 2040 int nmarker; 2041 char buf[128]; 2042 2043 KASSERT(mutex_owned(&kq->kq_lock)); 2044 2045 count = 0; 2046 nmarker = 0; 2047 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) { 2048 if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) { 2049 panic("%s,%zu: kq=%p kn=%p !(MARKER|QUEUED) %s", 2050 func, line, kq, kn, KN_FMT(buf, kn)); 2051 } 2052 if ((kn->kn_status & KN_MARKER) == 0) { 2053 if (kn->kn_kq != kq) { 2054 panic("%s,%zu: kq=%p kn(%p) != kn->kq(%p): %s", 2055 func, line, kq, kn, kn->kn_kq, 2056 KN_FMT(buf, kn)); 2057 } 2058 if ((kn->kn_status & KN_ACTIVE) == 0) { 2059 panic("%s,%zu: kq=%p kn=%p: !ACTIVE %s", 2060 func, line, kq, kn, KN_FMT(buf, kn)); 2061 } 2062 count++; 2063 if (count > KQ_COUNT(kq)) { 2064 panic("%s,%zu: kq=%p kq->kq_count(%u) != " 2065 "count(%d), nmarker=%d", 2066 func, line, kq, KQ_COUNT(kq), count, 2067 nmarker); 2068 } 2069 } else { 2070 nmarker++; 2071 } 2072 } 2073 } 2074 #define kq_check(a) kqueue_check(__func__, __LINE__, (a)) 2075 #else /* defined(DEBUG) */ 2076 #define kq_check(a) /* nothing */ 2077 #endif /* defined(DEBUG) */ 2078 2079 static void 2080 kqueue_restart(file_t *fp) 2081 { 2082 struct kqueue *kq = fp->f_kqueue; 2083 KASSERT(kq != NULL); 2084 2085 mutex_spin_enter(&kq->kq_lock); 2086 kq->kq_count |= KQ_RESTART; 2087 cv_broadcast(&kq->kq_cv); 2088 mutex_spin_exit(&kq->kq_lock); 2089 } 2090 2091 /* 2092 * Scan through the list of events on fp (for a maximum of maxevents), 2093 * returning the results in to ulistp. Timeout is determined by tsp; if 2094 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait 2095 * as appropriate. 2096 */ 2097 static int 2098 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp, 2099 const struct timespec *tsp, register_t *retval, 2100 const struct kevent_ops *keops, struct kevent *kevbuf, 2101 size_t kevcnt) 2102 { 2103 struct kqueue *kq; 2104 struct kevent *kevp; 2105 struct timespec ats, sleepts; 2106 struct knote *kn, *marker, morker; 2107 size_t count, nkev, nevents; 2108 int timeout, error, touch, rv, influx; 2109 filedesc_t *fdp; 2110 2111 fdp = curlwp->l_fd; 2112 kq = fp->f_kqueue; 2113 count = maxevents; 2114 nkev = nevents = error = 0; 2115 if (count == 0) { 2116 *retval = 0; 2117 return 0; 2118 } 2119 2120 if (tsp) { /* timeout supplied */ 2121 ats = *tsp; 2122 if (inittimeleft(&ats, &sleepts) == -1) { 2123 *retval = maxevents; 2124 return EINVAL; 2125 } 2126 timeout = tstohz(&ats); 2127 if (timeout <= 0) 2128 timeout = -1; /* do poll */ 2129 } else { 2130 /* no timeout, wait forever */ 2131 timeout = 0; 2132 } 2133 2134 memset(&morker, 0, sizeof(morker)); 2135 marker = &morker; 2136 marker->kn_kq = kq; 2137 marker->kn_status = KN_MARKER; 2138 mutex_spin_enter(&kq->kq_lock); 2139 retry: 2140 kevp = kevbuf; 2141 if (KQ_COUNT(kq) == 0) { 2142 if (timeout >= 0) { 2143 error = cv_timedwait_sig(&kq->kq_cv, 2144 &kq->kq_lock, timeout); 2145 if (error == 0) { 2146 if (KQ_COUNT(kq) == 0 && 2147 (kq->kq_count & KQ_RESTART)) { 2148 /* return to clear file reference */ 2149 error = ERESTART; 2150 } else if (tsp == NULL || (timeout = 2151 gettimeleft(&ats, &sleepts)) > 0) { 2152 goto retry; 2153 } 2154 } else { 2155 /* don't restart after signals... */ 2156 if (error == ERESTART) 2157 error = EINTR; 2158 if (error == EWOULDBLOCK) 2159 error = 0; 2160 } 2161 } 2162 mutex_spin_exit(&kq->kq_lock); 2163 goto done; 2164 } 2165 2166 /* mark end of knote list */ 2167 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); 2168 influx = 0; 2169 2170 /* 2171 * Acquire the fdp->fd_lock interlock to avoid races with 2172 * file creation/destruction from other threads. 2173 */ 2174 mutex_spin_exit(&kq->kq_lock); 2175 relock: 2176 mutex_enter(&fdp->fd_lock); 2177 mutex_spin_enter(&kq->kq_lock); 2178 2179 while (count != 0) { 2180 /* 2181 * Get next knote. We are guaranteed this will never 2182 * be NULL because of the marker we inserted above. 2183 */ 2184 kn = TAILQ_FIRST(&kq->kq_head); 2185 2186 bool kn_is_other_marker = 2187 (kn->kn_status & KN_MARKER) != 0 && kn != marker; 2188 bool kn_is_detaching = (kn->kn_status & KN_WILLDETACH) != 0; 2189 bool kn_is_in_flux = kn_in_flux(kn); 2190 2191 /* 2192 * If we found a marker that's not ours, or this knote 2193 * is in a state of flux, then wait for everything to 2194 * settle down and go around again. 2195 */ 2196 if (kn_is_other_marker || kn_is_detaching || kn_is_in_flux) { 2197 if (influx) { 2198 influx = 0; 2199 KQ_FLUX_WAKEUP(kq); 2200 } 2201 mutex_exit(&fdp->fd_lock); 2202 if (kn_is_other_marker || kn_is_in_flux) { 2203 KQ_FLUX_WAIT(kq); 2204 mutex_spin_exit(&kq->kq_lock); 2205 } else { 2206 /* 2207 * Detaching but not in-flux? Someone is 2208 * actively trying to finish the job; just 2209 * go around and try again. 2210 */ 2211 KASSERT(kn_is_detaching); 2212 mutex_spin_exit(&kq->kq_lock); 2213 preempt_point(); 2214 } 2215 goto relock; 2216 } 2217 2218 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2219 if (kn == marker) { 2220 /* it's our marker, stop */ 2221 KQ_FLUX_WAKEUP(kq); 2222 if (count == maxevents) { 2223 mutex_exit(&fdp->fd_lock); 2224 goto retry; 2225 } 2226 break; 2227 } 2228 KASSERT((kn->kn_status & KN_BUSY) == 0); 2229 2230 kq_check(kq); 2231 kn->kn_status &= ~KN_QUEUED; 2232 kn->kn_status |= KN_BUSY; 2233 kq_check(kq); 2234 if (kn->kn_status & KN_DISABLED) { 2235 kn->kn_status &= ~KN_BUSY; 2236 kq->kq_count--; 2237 /* don't want disabled events */ 2238 continue; 2239 } 2240 if ((kn->kn_flags & EV_ONESHOT) == 0) { 2241 mutex_spin_exit(&kq->kq_lock); 2242 KASSERT(mutex_owned(&fdp->fd_lock)); 2243 rv = filter_event(kn, 0); 2244 mutex_spin_enter(&kq->kq_lock); 2245 /* Re-poll if note was re-enqueued. */ 2246 if ((kn->kn_status & KN_QUEUED) != 0) { 2247 kn->kn_status &= ~KN_BUSY; 2248 /* Re-enqueue raised kq_count, lower it again */ 2249 kq->kq_count--; 2250 influx = 1; 2251 continue; 2252 } 2253 if (rv == 0) { 2254 /* 2255 * non-ONESHOT event that hasn't triggered 2256 * again, so it will remain de-queued. 2257 */ 2258 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2259 kq->kq_count--; 2260 influx = 1; 2261 continue; 2262 } 2263 } else { 2264 /* 2265 * Must NOT drop kq_lock until we can do 2266 * the KNOTE_WILLDETACH() below. 2267 */ 2268 } 2269 KASSERT(kn->kn_fop != NULL); 2270 touch = (!(kn->kn_fop->f_flags & FILTEROP_ISFD) && 2271 kn->kn_fop->f_touch != NULL); 2272 /* XXXAD should be got from f_event if !oneshot. */ 2273 KASSERT((kn->kn_status & KN_WILLDETACH) == 0); 2274 if (touch) { 2275 (void)filter_touch(kn, kevp, EVENT_PROCESS); 2276 } else { 2277 *kevp = kn->kn_kevent; 2278 } 2279 kevp++; 2280 nkev++; 2281 influx = 1; 2282 if (kn->kn_flags & EV_ONESHOT) { 2283 /* delete ONESHOT events after retrieval */ 2284 KNOTE_WILLDETACH(kn); 2285 kn->kn_status &= ~KN_BUSY; 2286 kq->kq_count--; 2287 KASSERT(kn_in_flux(kn) == false); 2288 KASSERT((kn->kn_status & KN_WILLDETACH) != 0 && 2289 kn->kn_kevent.udata == curlwp); 2290 mutex_spin_exit(&kq->kq_lock); 2291 knote_detach(kn, fdp, true); 2292 mutex_enter(&fdp->fd_lock); 2293 mutex_spin_enter(&kq->kq_lock); 2294 } else if (kn->kn_flags & EV_CLEAR) { 2295 /* clear state after retrieval */ 2296 kn->kn_data = 0; 2297 kn->kn_fflags = 0; 2298 /* 2299 * Manually clear knotes who weren't 2300 * 'touch'ed. 2301 */ 2302 if (touch == 0) { 2303 kn->kn_data = 0; 2304 kn->kn_fflags = 0; 2305 } 2306 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2307 kq->kq_count--; 2308 } else if (kn->kn_flags & EV_DISPATCH) { 2309 kn->kn_status |= KN_DISABLED; 2310 kn->kn_status &= ~(KN_ACTIVE|KN_BUSY); 2311 kq->kq_count--; 2312 } else { 2313 /* add event back on list */ 2314 kq_check(kq); 2315 kn->kn_status |= KN_QUEUED; 2316 kn->kn_status &= ~KN_BUSY; 2317 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2318 kq_check(kq); 2319 } 2320 2321 if (nkev == kevcnt) { 2322 /* do copyouts in kevcnt chunks */ 2323 influx = 0; 2324 KQ_FLUX_WAKEUP(kq); 2325 mutex_spin_exit(&kq->kq_lock); 2326 mutex_exit(&fdp->fd_lock); 2327 error = (*keops->keo_put_events) 2328 (keops->keo_private, 2329 kevbuf, ulistp, nevents, nkev); 2330 mutex_enter(&fdp->fd_lock); 2331 mutex_spin_enter(&kq->kq_lock); 2332 nevents += nkev; 2333 nkev = 0; 2334 kevp = kevbuf; 2335 } 2336 count--; 2337 if (error != 0 || count == 0) { 2338 /* remove marker */ 2339 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); 2340 break; 2341 } 2342 } 2343 KQ_FLUX_WAKEUP(kq); 2344 mutex_spin_exit(&kq->kq_lock); 2345 mutex_exit(&fdp->fd_lock); 2346 2347 done: 2348 if (nkev != 0) { 2349 /* copyout remaining events */ 2350 error = (*keops->keo_put_events)(keops->keo_private, 2351 kevbuf, ulistp, nevents, nkev); 2352 } 2353 *retval = maxevents - count; 2354 2355 return error; 2356 } 2357 2358 /* 2359 * fileops ioctl method for a kqueue descriptor. 2360 * 2361 * Two ioctls are currently supported. They both use struct kfilter_mapping: 2362 * KFILTER_BYNAME find name for filter, and return result in 2363 * name, which is of size len. 2364 * KFILTER_BYFILTER find filter for name. len is ignored. 2365 */ 2366 /*ARGSUSED*/ 2367 static int 2368 kqueue_ioctl(file_t *fp, u_long com, void *data) 2369 { 2370 struct kfilter_mapping *km; 2371 const struct kfilter *kfilter; 2372 char *name; 2373 int error; 2374 2375 km = data; 2376 error = 0; 2377 name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP); 2378 2379 switch (com) { 2380 case KFILTER_BYFILTER: /* convert filter -> name */ 2381 rw_enter(&kqueue_filter_lock, RW_READER); 2382 kfilter = kfilter_byfilter(km->filter); 2383 if (kfilter != NULL) { 2384 strlcpy(name, kfilter->name, KFILTER_MAXNAME); 2385 rw_exit(&kqueue_filter_lock); 2386 error = copyoutstr(name, km->name, km->len, NULL); 2387 } else { 2388 rw_exit(&kqueue_filter_lock); 2389 error = ENOENT; 2390 } 2391 break; 2392 2393 case KFILTER_BYNAME: /* convert name -> filter */ 2394 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL); 2395 if (error) { 2396 break; 2397 } 2398 rw_enter(&kqueue_filter_lock, RW_READER); 2399 kfilter = kfilter_byname(name); 2400 if (kfilter != NULL) 2401 km->filter = kfilter->filter; 2402 else 2403 error = ENOENT; 2404 rw_exit(&kqueue_filter_lock); 2405 break; 2406 2407 default: 2408 error = ENOTTY; 2409 break; 2410 2411 } 2412 kmem_free(name, KFILTER_MAXNAME); 2413 return (error); 2414 } 2415 2416 /* 2417 * fileops fcntl method for a kqueue descriptor. 2418 */ 2419 static int 2420 kqueue_fcntl(file_t *fp, u_int com, void *data) 2421 { 2422 2423 return (ENOTTY); 2424 } 2425 2426 /* 2427 * fileops poll method for a kqueue descriptor. 2428 * Determine if kqueue has events pending. 2429 */ 2430 static int 2431 kqueue_poll(file_t *fp, int events) 2432 { 2433 struct kqueue *kq; 2434 int revents; 2435 2436 kq = fp->f_kqueue; 2437 2438 revents = 0; 2439 if (events & (POLLIN | POLLRDNORM)) { 2440 mutex_spin_enter(&kq->kq_lock); 2441 if (KQ_COUNT(kq) != 0) { 2442 revents |= events & (POLLIN | POLLRDNORM); 2443 } else { 2444 selrecord(curlwp, &kq->kq_sel); 2445 } 2446 kq_check(kq); 2447 mutex_spin_exit(&kq->kq_lock); 2448 } 2449 2450 return revents; 2451 } 2452 2453 /* 2454 * fileops stat method for a kqueue descriptor. 2455 * Returns dummy info, with st_size being number of events pending. 2456 */ 2457 static int 2458 kqueue_stat(file_t *fp, struct stat *st) 2459 { 2460 struct kqueue *kq; 2461 2462 kq = fp->f_kqueue; 2463 2464 memset(st, 0, sizeof(*st)); 2465 st->st_size = KQ_COUNT(kq); 2466 st->st_blksize = sizeof(struct kevent); 2467 st->st_mode = S_IFIFO | S_IRUSR | S_IWUSR; 2468 st->st_blocks = 1; 2469 st->st_uid = kauth_cred_geteuid(fp->f_cred); 2470 st->st_gid = kauth_cred_getegid(fp->f_cred); 2471 2472 return 0; 2473 } 2474 2475 static void 2476 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd) 2477 { 2478 struct knote *kn; 2479 filedesc_t *fdp; 2480 2481 fdp = kq->kq_fdp; 2482 2483 KASSERT(mutex_owned(&fdp->fd_lock)); 2484 2485 again: 2486 for (kn = SLIST_FIRST(list); kn != NULL;) { 2487 if (kq != kn->kn_kq) { 2488 kn = SLIST_NEXT(kn, kn_link); 2489 continue; 2490 } 2491 if (knote_detach_quiesce(kn)) { 2492 mutex_enter(&fdp->fd_lock); 2493 goto again; 2494 } 2495 knote_detach(kn, fdp, true); 2496 mutex_enter(&fdp->fd_lock); 2497 kn = SLIST_FIRST(list); 2498 } 2499 } 2500 2501 /* 2502 * fileops close method for a kqueue descriptor. 2503 */ 2504 static int 2505 kqueue_close(file_t *fp) 2506 { 2507 struct kqueue *kq; 2508 filedesc_t *fdp; 2509 fdfile_t *ff; 2510 int i; 2511 2512 kq = fp->f_kqueue; 2513 fp->f_kqueue = NULL; 2514 fp->f_type = 0; 2515 fdp = curlwp->l_fd; 2516 2517 KASSERT(kq->kq_fdp == fdp); 2518 2519 mutex_enter(&fdp->fd_lock); 2520 2521 /* 2522 * We're doing to drop the fd_lock multiple times while 2523 * we detach knotes. During this time, attempts to register 2524 * knotes via the back door (e.g. knote_proc_fork_track()) 2525 * need to fail, lest they sneak in to attach a knote after 2526 * we've already drained the list it's destined for. 2527 * 2528 * We must aquire kq_lock here to set KQ_CLOSING (to serialize 2529 * with other code paths that modify kq_count without holding 2530 * the fd_lock), but once this bit is set, it's only safe to 2531 * test it while holding the fd_lock, and holding kq_lock while 2532 * doing so is not necessary. 2533 */ 2534 mutex_enter(&kq->kq_lock); 2535 kq->kq_count |= KQ_CLOSING; 2536 mutex_exit(&kq->kq_lock); 2537 2538 for (i = 0; i <= fdp->fd_lastkqfile; i++) { 2539 if ((ff = fdp->fd_dt->dt_ff[i]) == NULL) 2540 continue; 2541 kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i); 2542 } 2543 if (fdp->fd_knhashmask != 0) { 2544 for (i = 0; i < fdp->fd_knhashmask + 1; i++) { 2545 kqueue_doclose(kq, &fdp->fd_knhash[i], -1); 2546 } 2547 } 2548 2549 mutex_exit(&fdp->fd_lock); 2550 2551 #if defined(DEBUG) 2552 mutex_enter(&kq->kq_lock); 2553 kq_check(kq); 2554 mutex_exit(&kq->kq_lock); 2555 #endif /* DEBUG */ 2556 KASSERT(TAILQ_EMPTY(&kq->kq_head)); 2557 KASSERT(KQ_COUNT(kq) == 0); 2558 mutex_destroy(&kq->kq_lock); 2559 cv_destroy(&kq->kq_cv); 2560 seldestroy(&kq->kq_sel); 2561 kmem_free(kq, sizeof(*kq)); 2562 2563 return (0); 2564 } 2565 2566 /* 2567 * struct fileops kqfilter method for a kqueue descriptor. 2568 * Event triggered when monitored kqueue changes. 2569 */ 2570 static int 2571 kqueue_kqfilter(file_t *fp, struct knote *kn) 2572 { 2573 struct kqueue *kq; 2574 2575 kq = ((file_t *)kn->kn_obj)->f_kqueue; 2576 2577 KASSERT(fp == kn->kn_obj); 2578 2579 if (kn->kn_filter != EVFILT_READ) 2580 return EINVAL; 2581 2582 kn->kn_fop = &kqread_filtops; 2583 mutex_enter(&kq->kq_lock); 2584 selrecord_knote(&kq->kq_sel, kn); 2585 mutex_exit(&kq->kq_lock); 2586 2587 return 0; 2588 } 2589 2590 2591 /* 2592 * Walk down a list of knotes, activating them if their event has 2593 * triggered. The caller's object lock (e.g. device driver lock) 2594 * must be held. 2595 */ 2596 void 2597 knote(struct klist *list, long hint) 2598 { 2599 struct knote *kn, *tmpkn; 2600 2601 SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) { 2602 if (filter_event(kn, hint)) { 2603 knote_activate(kn); 2604 } 2605 } 2606 } 2607 2608 /* 2609 * Remove all knotes referencing a specified fd 2610 */ 2611 void 2612 knote_fdclose(int fd) 2613 { 2614 struct klist *list; 2615 struct knote *kn; 2616 filedesc_t *fdp; 2617 2618 again: 2619 fdp = curlwp->l_fd; 2620 mutex_enter(&fdp->fd_lock); 2621 list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist; 2622 while ((kn = SLIST_FIRST(list)) != NULL) { 2623 if (knote_detach_quiesce(kn)) { 2624 goto again; 2625 } 2626 knote_detach(kn, fdp, true); 2627 mutex_enter(&fdp->fd_lock); 2628 } 2629 mutex_exit(&fdp->fd_lock); 2630 } 2631 2632 /* 2633 * Drop knote. Called with fdp->fd_lock held, and will drop before 2634 * returning. 2635 */ 2636 static void 2637 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop) 2638 { 2639 struct klist *list; 2640 struct kqueue *kq; 2641 2642 kq = kn->kn_kq; 2643 2644 KASSERT((kn->kn_status & KN_MARKER) == 0); 2645 KASSERT((kn->kn_status & KN_WILLDETACH) != 0); 2646 KASSERT(kn->kn_fop != NULL); 2647 KASSERT(mutex_owned(&fdp->fd_lock)); 2648 2649 /* Remove from monitored object. */ 2650 if (dofop) { 2651 filter_detach(kn); 2652 } 2653 2654 /* Remove from descriptor table. */ 2655 if (kn->kn_fop->f_flags & FILTEROP_ISFD) 2656 list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist; 2657 else 2658 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; 2659 2660 SLIST_REMOVE(list, kn, knote, kn_link); 2661 2662 /* Remove from kqueue. */ 2663 again: 2664 mutex_spin_enter(&kq->kq_lock); 2665 KASSERT(kn_in_flux(kn) == false); 2666 if ((kn->kn_status & KN_QUEUED) != 0) { 2667 kq_check(kq); 2668 KASSERT(KQ_COUNT(kq) != 0); 2669 kq->kq_count--; 2670 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2671 kn->kn_status &= ~KN_QUEUED; 2672 kq_check(kq); 2673 } else if (kn->kn_status & KN_BUSY) { 2674 mutex_spin_exit(&kq->kq_lock); 2675 goto again; 2676 } 2677 mutex_spin_exit(&kq->kq_lock); 2678 2679 mutex_exit(&fdp->fd_lock); 2680 if (kn->kn_fop->f_flags & FILTEROP_ISFD) 2681 fd_putfile(kn->kn_id); 2682 atomic_dec_uint(&kn->kn_kfilter->refcnt); 2683 kmem_free(kn, sizeof(*kn)); 2684 } 2685 2686 /* 2687 * Queue new event for knote. 2688 */ 2689 static void 2690 knote_enqueue(struct knote *kn) 2691 { 2692 struct kqueue *kq; 2693 2694 KASSERT((kn->kn_status & KN_MARKER) == 0); 2695 2696 kq = kn->kn_kq; 2697 2698 mutex_spin_enter(&kq->kq_lock); 2699 if (__predict_false(kn->kn_status & KN_WILLDETACH)) { 2700 /* Don't bother enqueueing a dying knote. */ 2701 goto out; 2702 } 2703 if ((kn->kn_status & KN_DISABLED) != 0) { 2704 kn->kn_status &= ~KN_DISABLED; 2705 } 2706 if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) { 2707 kq_check(kq); 2708 kn->kn_status |= KN_QUEUED; 2709 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2710 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); 2711 kq->kq_count++; 2712 kq_check(kq); 2713 cv_broadcast(&kq->kq_cv); 2714 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); 2715 } 2716 out: 2717 mutex_spin_exit(&kq->kq_lock); 2718 } 2719 /* 2720 * Queue new event for knote. 2721 */ 2722 static void 2723 knote_activate_locked(struct knote *kn) 2724 { 2725 struct kqueue *kq; 2726 2727 KASSERT((kn->kn_status & KN_MARKER) == 0); 2728 2729 kq = kn->kn_kq; 2730 2731 if (__predict_false(kn->kn_status & KN_WILLDETACH)) { 2732 /* Don't bother enqueueing a dying knote. */ 2733 return; 2734 } 2735 kn->kn_status |= KN_ACTIVE; 2736 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) { 2737 kq_check(kq); 2738 kn->kn_status |= KN_QUEUED; 2739 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 2740 KASSERT(KQ_COUNT(kq) < KQ_MAXCOUNT); 2741 kq->kq_count++; 2742 kq_check(kq); 2743 cv_broadcast(&kq->kq_cv); 2744 selnotify(&kq->kq_sel, 0, NOTE_SUBMIT); 2745 } 2746 } 2747 2748 static void 2749 knote_activate(struct knote *kn) 2750 { 2751 struct kqueue *kq = kn->kn_kq; 2752 2753 mutex_spin_enter(&kq->kq_lock); 2754 knote_activate_locked(kn); 2755 mutex_spin_exit(&kq->kq_lock); 2756 } 2757 2758 static void 2759 knote_deactivate_locked(struct knote *kn) 2760 { 2761 struct kqueue *kq = kn->kn_kq; 2762 2763 if (kn->kn_status & KN_QUEUED) { 2764 kq_check(kq); 2765 kn->kn_status &= ~KN_QUEUED; 2766 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 2767 KASSERT(KQ_COUNT(kq) > 0); 2768 kq->kq_count--; 2769 kq_check(kq); 2770 } 2771 kn->kn_status &= ~KN_ACTIVE; 2772 } 2773 2774 /* 2775 * Set EV_EOF on the specified knote. Also allows additional 2776 * EV_* flags to be set (e.g. EV_ONESHOT). 2777 */ 2778 void 2779 knote_set_eof(struct knote *kn, uint32_t flags) 2780 { 2781 struct kqueue *kq = kn->kn_kq; 2782 2783 mutex_spin_enter(&kq->kq_lock); 2784 kn->kn_flags |= EV_EOF | flags; 2785 mutex_spin_exit(&kq->kq_lock); 2786 } 2787 2788 /* 2789 * Clear EV_EOF on the specified knote. 2790 */ 2791 void 2792 knote_clear_eof(struct knote *kn) 2793 { 2794 struct kqueue *kq = kn->kn_kq; 2795 2796 mutex_spin_enter(&kq->kq_lock); 2797 kn->kn_flags &= ~EV_EOF; 2798 mutex_spin_exit(&kq->kq_lock); 2799 } 2800