xref: /netbsd-src/sys/kern/kern_event.c (revision 288bb96063654ec504ca8732afc683d3ebc514b5)
1 /*	$NetBSD: kern_event.c,v 1.72 2011/06/26 16:42:42 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  * FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.72 2011/06/26 16:42:42 christos Exp $");
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/proc.h>
67 #include <sys/file.h>
68 #include <sys/select.h>
69 #include <sys/queue.h>
70 #include <sys/event.h>
71 #include <sys/eventvar.h>
72 #include <sys/poll.h>
73 #include <sys/kmem.h>
74 #include <sys/stat.h>
75 #include <sys/filedesc.h>
76 #include <sys/syscallargs.h>
77 #include <sys/kauth.h>
78 #include <sys/conf.h>
79 #include <sys/atomic.h>
80 
81 static int	kqueue_scan(file_t *, size_t, struct kevent *,
82 			    const struct timespec *, register_t *,
83 			    const struct kevent_ops *, struct kevent *,
84 			    size_t);
85 static int	kqueue_ioctl(file_t *, u_long, void *);
86 static int	kqueue_fcntl(file_t *, u_int, void *);
87 static int	kqueue_poll(file_t *, int);
88 static int	kqueue_kqfilter(file_t *, struct knote *);
89 static int	kqueue_stat(file_t *, struct stat *);
90 static int	kqueue_close(file_t *);
91 static int	kqueue_register(struct kqueue *, struct kevent *);
92 static void	kqueue_doclose(struct kqueue *, struct klist *, int);
93 
94 static void	knote_detach(struct knote *, filedesc_t *fdp, bool);
95 static void	knote_enqueue(struct knote *);
96 static void	knote_activate(struct knote *);
97 
98 static void	filt_kqdetach(struct knote *);
99 static int	filt_kqueue(struct knote *, long hint);
100 static int	filt_procattach(struct knote *);
101 static void	filt_procdetach(struct knote *);
102 static int	filt_proc(struct knote *, long hint);
103 static int	filt_fileattach(struct knote *);
104 static void	filt_timerexpire(void *x);
105 static int	filt_timerattach(struct knote *);
106 static void	filt_timerdetach(struct knote *);
107 static int	filt_timer(struct knote *, long hint);
108 
109 static const struct fileops kqueueops = {
110 	.fo_read = (void *)enxio,
111 	.fo_write = (void *)enxio,
112 	.fo_ioctl = kqueue_ioctl,
113 	.fo_fcntl = kqueue_fcntl,
114 	.fo_poll = kqueue_poll,
115 	.fo_stat = kqueue_stat,
116 	.fo_close = kqueue_close,
117 	.fo_kqfilter = kqueue_kqfilter,
118 	.fo_restart = fnullop_restart,
119 };
120 
121 static const struct filterops kqread_filtops =
122 	{ 1, NULL, filt_kqdetach, filt_kqueue };
123 static const struct filterops proc_filtops =
124 	{ 0, filt_procattach, filt_procdetach, filt_proc };
125 static const struct filterops file_filtops =
126 	{ 1, filt_fileattach, NULL, NULL };
127 static const struct filterops timer_filtops =
128 	{ 0, filt_timerattach, filt_timerdetach, filt_timer };
129 
130 static u_int	kq_ncallouts = 0;
131 static int	kq_calloutmax = (4 * 1024);
132 
133 #define	KN_HASHSIZE		64		/* XXX should be tunable */
134 #define	KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
135 
136 extern const struct filterops sig_filtops;
137 
138 /*
139  * Table for for all system-defined filters.
140  * These should be listed in the numeric order of the EVFILT_* defines.
141  * If filtops is NULL, the filter isn't implemented in NetBSD.
142  * End of list is when name is NULL.
143  *
144  * Note that 'refcnt' is meaningless for built-in filters.
145  */
146 struct kfilter {
147 	const char	*name;		/* name of filter */
148 	uint32_t	filter;		/* id of filter */
149 	unsigned	refcnt;		/* reference count */
150 	const struct filterops *filtops;/* operations for filter */
151 	size_t		namelen;	/* length of name string */
152 };
153 
154 /* System defined filters */
155 static struct kfilter sys_kfilters[] = {
156 	{ "EVFILT_READ",	EVFILT_READ,	0, &file_filtops, 0 },
157 	{ "EVFILT_WRITE",	EVFILT_WRITE,	0, &file_filtops, 0, },
158 	{ "EVFILT_AIO",		EVFILT_AIO,	0, NULL, 0 },
159 	{ "EVFILT_VNODE",	EVFILT_VNODE,	0, &file_filtops, 0 },
160 	{ "EVFILT_PROC",	EVFILT_PROC,	0, &proc_filtops, 0 },
161 	{ "EVFILT_SIGNAL",	EVFILT_SIGNAL,	0, &sig_filtops, 0 },
162 	{ "EVFILT_TIMER",	EVFILT_TIMER,	0, &timer_filtops, 0 },
163 	{ NULL,			0,		0, NULL, 0 },
164 };
165 
166 /* User defined kfilters */
167 static struct kfilter	*user_kfilters;		/* array */
168 static int		user_kfilterc;		/* current offset */
169 static int		user_kfiltermaxc;	/* max size so far */
170 static size_t		user_kfiltersz;		/* size of allocated memory */
171 
172 /* Locks */
173 static krwlock_t	kqueue_filter_lock;	/* lock on filter lists */
174 static kmutex_t		kqueue_misc_lock;	/* miscellaneous */
175 
176 static kauth_listener_t	kqueue_listener;
177 
178 static int
179 kqueue_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
180     void *arg0, void *arg1, void *arg2, void *arg3)
181 {
182 	struct proc *p;
183 	int result;
184 
185 	result = KAUTH_RESULT_DEFER;
186 	p = arg0;
187 
188 	if (action != KAUTH_PROCESS_KEVENT_FILTER)
189 		return result;
190 
191 	if ((kauth_cred_getuid(p->p_cred) != kauth_cred_getuid(cred) ||
192 	    ISSET(p->p_flag, PK_SUGID)))
193 		return result;
194 
195 	result = KAUTH_RESULT_ALLOW;
196 
197 	return result;
198 }
199 
200 /*
201  * Initialize the kqueue subsystem.
202  */
203 void
204 kqueue_init(void)
205 {
206 
207 	rw_init(&kqueue_filter_lock);
208 	mutex_init(&kqueue_misc_lock, MUTEX_DEFAULT, IPL_NONE);
209 
210 	kqueue_listener = kauth_listen_scope(KAUTH_SCOPE_PROCESS,
211 	    kqueue_listener_cb, NULL);
212 }
213 
214 /*
215  * Find kfilter entry by name, or NULL if not found.
216  */
217 static struct kfilter *
218 kfilter_byname_sys(const char *name)
219 {
220 	int i;
221 
222 	KASSERT(rw_lock_held(&kqueue_filter_lock));
223 
224 	for (i = 0; sys_kfilters[i].name != NULL; i++) {
225 		if (strcmp(name, sys_kfilters[i].name) == 0)
226 			return &sys_kfilters[i];
227 	}
228 	return NULL;
229 }
230 
231 static struct kfilter *
232 kfilter_byname_user(const char *name)
233 {
234 	int i;
235 
236 	KASSERT(rw_lock_held(&kqueue_filter_lock));
237 
238 	/* user filter slots have a NULL name if previously deregistered */
239 	for (i = 0; i < user_kfilterc ; i++) {
240 		if (user_kfilters[i].name != NULL &&
241 		    strcmp(name, user_kfilters[i].name) == 0)
242 			return &user_kfilters[i];
243 	}
244 	return NULL;
245 }
246 
247 static struct kfilter *
248 kfilter_byname(const char *name)
249 {
250 	struct kfilter *kfilter;
251 
252 	KASSERT(rw_lock_held(&kqueue_filter_lock));
253 
254 	if ((kfilter = kfilter_byname_sys(name)) != NULL)
255 		return kfilter;
256 
257 	return kfilter_byname_user(name);
258 }
259 
260 /*
261  * Find kfilter entry by filter id, or NULL if not found.
262  * Assumes entries are indexed in filter id order, for speed.
263  */
264 static struct kfilter *
265 kfilter_byfilter(uint32_t filter)
266 {
267 	struct kfilter *kfilter;
268 
269 	KASSERT(rw_lock_held(&kqueue_filter_lock));
270 
271 	if (filter < EVFILT_SYSCOUNT)	/* it's a system filter */
272 		kfilter = &sys_kfilters[filter];
273 	else if (user_kfilters != NULL &&
274 	    filter < EVFILT_SYSCOUNT + user_kfilterc)
275 					/* it's a user filter */
276 		kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT];
277 	else
278 		return (NULL);		/* out of range */
279 	KASSERT(kfilter->filter == filter);	/* sanity check! */
280 	return (kfilter);
281 }
282 
283 /*
284  * Register a new kfilter. Stores the entry in user_kfilters.
285  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
286  * If retfilter != NULL, the new filterid is returned in it.
287  */
288 int
289 kfilter_register(const char *name, const struct filterops *filtops,
290 		 int *retfilter)
291 {
292 	struct kfilter *kfilter;
293 	size_t len;
294 	int i;
295 
296 	if (name == NULL || name[0] == '\0' || filtops == NULL)
297 		return (EINVAL);	/* invalid args */
298 
299 	rw_enter(&kqueue_filter_lock, RW_WRITER);
300 	if (kfilter_byname(name) != NULL) {
301 		rw_exit(&kqueue_filter_lock);
302 		return (EEXIST);	/* already exists */
303 	}
304 	if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) {
305 		rw_exit(&kqueue_filter_lock);
306 		return (EINVAL);	/* too many */
307 	}
308 
309 	for (i = 0; i < user_kfilterc; i++) {
310 		kfilter = &user_kfilters[i];
311 		if (kfilter->name == NULL) {
312 			/* Previously deregistered slot.  Reuse. */
313 			goto reuse;
314 		}
315 	}
316 
317 	/* check if need to grow user_kfilters */
318 	if (user_kfilterc + 1 > user_kfiltermaxc) {
319 		/* Grow in KFILTER_EXTENT chunks. */
320 		user_kfiltermaxc += KFILTER_EXTENT;
321 		len = user_kfiltermaxc * sizeof(*kfilter);
322 		kfilter = kmem_alloc(len, KM_SLEEP);
323 		memset((char *)kfilter + user_kfiltersz, 0, len - user_kfiltersz);
324 		if (user_kfilters != NULL) {
325 			memcpy(kfilter, user_kfilters, user_kfiltersz);
326 			kmem_free(user_kfilters, user_kfiltersz);
327 		}
328 		user_kfiltersz = len;
329 		user_kfilters = kfilter;
330 	}
331 	/* Adding new slot */
332 	kfilter = &user_kfilters[user_kfilterc++];
333 reuse:
334 	kfilter->namelen = strlen(name) + 1;
335 	kfilter->name = kmem_alloc(kfilter->namelen, KM_SLEEP);
336 	memcpy(__UNCONST(kfilter->name), name, kfilter->namelen);
337 
338 	kfilter->filter = (kfilter - user_kfilters) + EVFILT_SYSCOUNT;
339 
340 	kfilter->filtops = kmem_alloc(sizeof(*filtops), KM_SLEEP);
341 	memcpy(__UNCONST(kfilter->filtops), filtops, sizeof(*filtops));
342 
343 	if (retfilter != NULL)
344 		*retfilter = kfilter->filter;
345 	rw_exit(&kqueue_filter_lock);
346 
347 	return (0);
348 }
349 
350 /*
351  * Unregister a kfilter previously registered with kfilter_register.
352  * This retains the filter id, but clears the name and frees filtops (filter
353  * operations), so that the number isn't reused during a boot.
354  * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise.
355  */
356 int
357 kfilter_unregister(const char *name)
358 {
359 	struct kfilter *kfilter;
360 
361 	if (name == NULL || name[0] == '\0')
362 		return (EINVAL);	/* invalid name */
363 
364 	rw_enter(&kqueue_filter_lock, RW_WRITER);
365 	if (kfilter_byname_sys(name) != NULL) {
366 		rw_exit(&kqueue_filter_lock);
367 		return (EINVAL);	/* can't detach system filters */
368 	}
369 
370 	kfilter = kfilter_byname_user(name);
371 	if (kfilter == NULL) {
372 		rw_exit(&kqueue_filter_lock);
373 		return (ENOENT);
374 	}
375 	if (kfilter->refcnt != 0) {
376 		rw_exit(&kqueue_filter_lock);
377 		return (EBUSY);
378 	}
379 
380 	/* Cast away const (but we know it's safe. */
381 	kmem_free(__UNCONST(kfilter->name), kfilter->namelen);
382 	kfilter->name = NULL;	/* mark as `not implemented' */
383 
384 	if (kfilter->filtops != NULL) {
385 		/* Cast away const (but we know it's safe. */
386 		kmem_free(__UNCONST(kfilter->filtops),
387 		    sizeof(*kfilter->filtops));
388 		kfilter->filtops = NULL; /* mark as `not implemented' */
389 	}
390 	rw_exit(&kqueue_filter_lock);
391 
392 	return (0);
393 }
394 
395 
396 /*
397  * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file
398  * descriptors. Calls fileops kqfilter method for given file descriptor.
399  */
400 static int
401 filt_fileattach(struct knote *kn)
402 {
403 	file_t *fp;
404 
405 	fp = kn->kn_obj;
406 
407 	return (*fp->f_ops->fo_kqfilter)(fp, kn);
408 }
409 
410 /*
411  * Filter detach method for EVFILT_READ on kqueue descriptor.
412  */
413 static void
414 filt_kqdetach(struct knote *kn)
415 {
416 	struct kqueue *kq;
417 
418 	kq = ((file_t *)kn->kn_obj)->f_data;
419 
420 	mutex_spin_enter(&kq->kq_lock);
421 	SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext);
422 	mutex_spin_exit(&kq->kq_lock);
423 }
424 
425 /*
426  * Filter event method for EVFILT_READ on kqueue descriptor.
427  */
428 /*ARGSUSED*/
429 static int
430 filt_kqueue(struct knote *kn, long hint)
431 {
432 	struct kqueue *kq;
433 	int rv;
434 
435 	kq = ((file_t *)kn->kn_obj)->f_data;
436 
437 	if (hint != NOTE_SUBMIT)
438 		mutex_spin_enter(&kq->kq_lock);
439 	kn->kn_data = kq->kq_count;
440 	rv = (kn->kn_data > 0);
441 	if (hint != NOTE_SUBMIT)
442 		mutex_spin_exit(&kq->kq_lock);
443 
444 	return rv;
445 }
446 
447 /*
448  * Filter attach method for EVFILT_PROC.
449  */
450 static int
451 filt_procattach(struct knote *kn)
452 {
453 	struct proc *p, *curp;
454 	struct lwp *curl;
455 
456 	curl = curlwp;
457 	curp = curl->l_proc;
458 
459 	mutex_enter(proc_lock);
460 	p = proc_find(kn->kn_id);
461 	if (p == NULL) {
462 		mutex_exit(proc_lock);
463 		return ESRCH;
464 	}
465 
466 	/*
467 	 * Fail if it's not owned by you, or the last exec gave us
468 	 * setuid/setgid privs (unless you're root).
469 	 */
470 	mutex_enter(p->p_lock);
471 	mutex_exit(proc_lock);
472 	if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
473 	    p, NULL, NULL, NULL) != 0) {
474 	    	mutex_exit(p->p_lock);
475 		return EACCES;
476 	}
477 
478 	kn->kn_obj = p;
479 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
480 
481 	/*
482 	 * internal flag indicating registration done by kernel
483 	 */
484 	if (kn->kn_flags & EV_FLAG1) {
485 		kn->kn_data = kn->kn_sdata;	/* ppid */
486 		kn->kn_fflags = NOTE_CHILD;
487 		kn->kn_flags &= ~EV_FLAG1;
488 	}
489 	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
490     	mutex_exit(p->p_lock);
491 
492 	return 0;
493 }
494 
495 /*
496  * Filter detach method for EVFILT_PROC.
497  *
498  * The knote may be attached to a different process, which may exit,
499  * leaving nothing for the knote to be attached to.  So when the process
500  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
501  * it will be deleted when read out.  However, as part of the knote deletion,
502  * this routine is called, so a check is needed to avoid actually performing
503  * a detach, because the original process might not exist any more.
504  */
505 static void
506 filt_procdetach(struct knote *kn)
507 {
508 	struct proc *p;
509 
510 	if (kn->kn_status & KN_DETACHED)
511 		return;
512 
513 	p = kn->kn_obj;
514 
515 	mutex_enter(p->p_lock);
516 	SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext);
517 	mutex_exit(p->p_lock);
518 }
519 
520 /*
521  * Filter event method for EVFILT_PROC.
522  */
523 static int
524 filt_proc(struct knote *kn, long hint)
525 {
526 	u_int event, fflag;
527 	struct kevent kev;
528 	struct kqueue *kq;
529 	int error;
530 
531 	event = (u_int)hint & NOTE_PCTRLMASK;
532 	kq = kn->kn_kq;
533 	fflag = 0;
534 
535 	/* If the user is interested in this event, record it. */
536 	if (kn->kn_sfflags & event)
537 		fflag |= event;
538 
539 	if (event == NOTE_EXIT) {
540 		/*
541 		 * Process is gone, so flag the event as finished.
542 		 *
543 		 * Detach the knote from watched process and mark
544 		 * it as such. We can't leave this to kqueue_scan(),
545 		 * since the process might not exist by then. And we
546 		 * have to do this now, since psignal KNOTE() is called
547 		 * also for zombies and we might end up reading freed
548 		 * memory if the kevent would already be picked up
549 		 * and knote g/c'ed.
550 		 */
551 		filt_procdetach(kn);
552 
553 		mutex_spin_enter(&kq->kq_lock);
554 		kn->kn_status |= KN_DETACHED;
555 		/* Mark as ONESHOT, so that the knote it g/c'ed when read */
556 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
557 		kn->kn_fflags |= fflag;
558 		mutex_spin_exit(&kq->kq_lock);
559 
560 		return 1;
561 	}
562 
563 	mutex_spin_enter(&kq->kq_lock);
564 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
565 		/*
566 		 * Process forked, and user wants to track the new process,
567 		 * so attach a new knote to it, and immediately report an
568 		 * event with the parent's pid.  Register knote with new
569 		 * process.
570 		 */
571 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
572 		kev.filter = kn->kn_filter;
573 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
574 		kev.fflags = kn->kn_sfflags;
575 		kev.data = kn->kn_id;			/* parent */
576 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
577 		mutex_spin_exit(&kq->kq_lock);
578 		error = kqueue_register(kq, &kev);
579 		mutex_spin_enter(&kq->kq_lock);
580 		if (error != 0)
581 			kn->kn_fflags |= NOTE_TRACKERR;
582 	}
583 	kn->kn_fflags |= fflag;
584 	fflag = kn->kn_fflags;
585 	mutex_spin_exit(&kq->kq_lock);
586 
587 	return fflag != 0;
588 }
589 
590 static void
591 filt_timerexpire(void *knx)
592 {
593 	struct knote *kn = knx;
594 	int tticks;
595 
596 	mutex_enter(&kqueue_misc_lock);
597 	kn->kn_data++;
598 	knote_activate(kn);
599 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
600 		tticks = mstohz(kn->kn_sdata);
601 		callout_schedule((callout_t *)kn->kn_hook, tticks);
602 	}
603 	mutex_exit(&kqueue_misc_lock);
604 }
605 
606 /*
607  * data contains amount of time to sleep, in milliseconds
608  */
609 static int
610 filt_timerattach(struct knote *kn)
611 {
612 	callout_t *calloutp;
613 	struct kqueue *kq;
614 	int tticks;
615 
616 	tticks = mstohz(kn->kn_sdata);
617 
618 	/* if the supplied value is under our resolution, use 1 tick */
619 	if (tticks == 0) {
620 		if (kn->kn_sdata == 0)
621 			return EINVAL;
622 		tticks = 1;
623 	}
624 
625 	if (atomic_inc_uint_nv(&kq_ncallouts) >= kq_calloutmax ||
626 	    (calloutp = kmem_alloc(sizeof(*calloutp), KM_NOSLEEP)) == NULL) {
627 		atomic_dec_uint(&kq_ncallouts);
628 		return ENOMEM;
629 	}
630 	callout_init(calloutp, CALLOUT_MPSAFE);
631 
632 	kq = kn->kn_kq;
633 	mutex_spin_enter(&kq->kq_lock);
634 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
635 	kn->kn_hook = calloutp;
636 	mutex_spin_exit(&kq->kq_lock);
637 
638 	callout_reset(calloutp, tticks, filt_timerexpire, kn);
639 
640 	return (0);
641 }
642 
643 static void
644 filt_timerdetach(struct knote *kn)
645 {
646 	callout_t *calloutp;
647 
648 	calloutp = (callout_t *)kn->kn_hook;
649 	callout_halt(calloutp, NULL);
650 	callout_destroy(calloutp);
651 	kmem_free(calloutp, sizeof(*calloutp));
652 	atomic_dec_uint(&kq_ncallouts);
653 }
654 
655 static int
656 filt_timer(struct knote *kn, long hint)
657 {
658 	int rv;
659 
660 	mutex_enter(&kqueue_misc_lock);
661 	rv = (kn->kn_data != 0);
662 	mutex_exit(&kqueue_misc_lock);
663 
664 	return rv;
665 }
666 
667 /*
668  * filt_seltrue:
669  *
670  *	This filter "event" routine simulates seltrue().
671  */
672 int
673 filt_seltrue(struct knote *kn, long hint)
674 {
675 
676 	/*
677 	 * We don't know how much data can be read/written,
678 	 * but we know that it *can* be.  This is about as
679 	 * good as select/poll does as well.
680 	 */
681 	kn->kn_data = 0;
682 	return (1);
683 }
684 
685 /*
686  * This provides full kqfilter entry for device switch tables, which
687  * has same effect as filter using filt_seltrue() as filter method.
688  */
689 static void
690 filt_seltruedetach(struct knote *kn)
691 {
692 	/* Nothing to do */
693 }
694 
695 const struct filterops seltrue_filtops =
696 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
697 
698 int
699 seltrue_kqfilter(dev_t dev, struct knote *kn)
700 {
701 	switch (kn->kn_filter) {
702 	case EVFILT_READ:
703 	case EVFILT_WRITE:
704 		kn->kn_fop = &seltrue_filtops;
705 		break;
706 	default:
707 		return (EINVAL);
708 	}
709 
710 	/* Nothing more to do */
711 	return (0);
712 }
713 
714 /*
715  * kqueue(2) system call.
716  */
717 static int
718 kqueue1(struct lwp *l, int flags, register_t *retval)
719 {
720 	struct kqueue *kq;
721 	file_t *fp;
722 	int fd, error;
723 
724 	if ((error = fd_allocfile(&fp, &fd)) != 0)
725 		return error;
726 	fp->f_flag = FREAD | FWRITE | (flags & FNONBLOCK);
727 	fp->f_type = DTYPE_KQUEUE;
728 	fp->f_ops = &kqueueops;
729 	kq = kmem_zalloc(sizeof(*kq), KM_SLEEP);
730 	mutex_init(&kq->kq_lock, MUTEX_DEFAULT, IPL_SCHED);
731 	cv_init(&kq->kq_cv, "kqueue");
732 	selinit(&kq->kq_sel);
733 	TAILQ_INIT(&kq->kq_head);
734 	fp->f_data = kq;
735 	*retval = fd;
736 	kq->kq_fdp = curlwp->l_fd;
737 	fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
738 	fd_affix(curproc, fp, fd);
739 	return error;
740 }
741 
742 /*
743  * kqueue(2) system call.
744  */
745 int
746 sys_kqueue(struct lwp *l, const void *v, register_t *retval)
747 {
748 	return kqueue1(l, 0, retval);
749 }
750 
751 int
752 sys_kqueue1(struct lwp *l, const struct sys_kqueue1_args *uap,
753     register_t *retval)
754 {
755 	/* {
756 		syscallarg(int) flags;
757 	} */
758 	return kqueue1(l, SCARG(uap, flags), retval);
759 }
760 
761 /*
762  * kevent(2) system call.
763  */
764 int
765 kevent_fetch_changes(void *private, const struct kevent *changelist,
766     struct kevent *changes, size_t index, int n)
767 {
768 
769 	return copyin(changelist + index, changes, n * sizeof(*changes));
770 }
771 
772 int
773 kevent_put_events(void *private, struct kevent *events,
774     struct kevent *eventlist, size_t index, int n)
775 {
776 
777 	return copyout(events, eventlist + index, n * sizeof(*events));
778 }
779 
780 static const struct kevent_ops kevent_native_ops = {
781 	.keo_private = NULL,
782 	.keo_fetch_timeout = copyin,
783 	.keo_fetch_changes = kevent_fetch_changes,
784 	.keo_put_events = kevent_put_events,
785 };
786 
787 int
788 sys___kevent50(struct lwp *l, const struct sys___kevent50_args *uap,
789     register_t *retval)
790 {
791 	/* {
792 		syscallarg(int) fd;
793 		syscallarg(const struct kevent *) changelist;
794 		syscallarg(size_t) nchanges;
795 		syscallarg(struct kevent *) eventlist;
796 		syscallarg(size_t) nevents;
797 		syscallarg(const struct timespec *) timeout;
798 	} */
799 
800 	return kevent1(retval, SCARG(uap, fd), SCARG(uap, changelist),
801 	    SCARG(uap, nchanges), SCARG(uap, eventlist), SCARG(uap, nevents),
802 	    SCARG(uap, timeout), &kevent_native_ops);
803 }
804 
805 int
806 kevent1(register_t *retval, int fd,
807 	const struct kevent *changelist, size_t nchanges,
808 	struct kevent *eventlist, size_t nevents,
809 	const struct timespec *timeout,
810 	const struct kevent_ops *keops)
811 {
812 	struct kevent *kevp;
813 	struct kqueue *kq;
814 	struct timespec	ts;
815 	size_t i, n, ichange;
816 	int nerrors, error;
817 	struct kevent kevbuf[8];	/* approx 300 bytes on 64-bit */
818 	file_t *fp;
819 
820 	/* check that we're dealing with a kq */
821 	fp = fd_getfile(fd);
822 	if (fp == NULL)
823 		return (EBADF);
824 
825 	if (fp->f_type != DTYPE_KQUEUE) {
826 		fd_putfile(fd);
827 		return (EBADF);
828 	}
829 
830 	if (timeout != NULL) {
831 		error = (*keops->keo_fetch_timeout)(timeout, &ts, sizeof(ts));
832 		if (error)
833 			goto done;
834 		timeout = &ts;
835 	}
836 
837 	kq = (struct kqueue *)fp->f_data;
838 	nerrors = 0;
839 	ichange = 0;
840 
841 	/* traverse list of events to register */
842 	while (nchanges > 0) {
843 		n = MIN(nchanges, __arraycount(kevbuf));
844 		error = (*keops->keo_fetch_changes)(keops->keo_private,
845 		    changelist, kevbuf, ichange, n);
846 		if (error)
847 			goto done;
848 		for (i = 0; i < n; i++) {
849 			kevp = &kevbuf[i];
850 			kevp->flags &= ~EV_SYSFLAGS;
851 			/* register each knote */
852 			error = kqueue_register(kq, kevp);
853 			if (error) {
854 				if (nevents != 0) {
855 					kevp->flags = EV_ERROR;
856 					kevp->data = error;
857 					error = (*keops->keo_put_events)
858 					    (keops->keo_private, kevp,
859 					    eventlist, nerrors, 1);
860 					if (error)
861 						goto done;
862 					nevents--;
863 					nerrors++;
864 				} else {
865 					goto done;
866 				}
867 			}
868 		}
869 		nchanges -= n;	/* update the results */
870 		ichange += n;
871 	}
872 	if (nerrors) {
873 		*retval = nerrors;
874 		error = 0;
875 		goto done;
876 	}
877 
878 	/* actually scan through the events */
879 	error = kqueue_scan(fp, nevents, eventlist, timeout, retval, keops,
880 	    kevbuf, __arraycount(kevbuf));
881  done:
882 	fd_putfile(fd);
883 	return (error);
884 }
885 
886 /*
887  * Register a given kevent kev onto the kqueue
888  */
889 static int
890 kqueue_register(struct kqueue *kq, struct kevent *kev)
891 {
892 	struct kfilter *kfilter;
893 	filedesc_t *fdp;
894 	file_t *fp;
895 	fdfile_t *ff;
896 	struct knote *kn, *newkn;
897 	struct klist *list;
898 	int error, fd, rv;
899 
900 	fdp = kq->kq_fdp;
901 	fp = NULL;
902 	kn = NULL;
903 	error = 0;
904 	fd = 0;
905 
906 	newkn = kmem_zalloc(sizeof(*newkn), KM_SLEEP);
907 
908 	rw_enter(&kqueue_filter_lock, RW_READER);
909 	kfilter = kfilter_byfilter(kev->filter);
910 	if (kfilter == NULL || kfilter->filtops == NULL) {
911 		/* filter not found nor implemented */
912 		rw_exit(&kqueue_filter_lock);
913 		kmem_free(newkn, sizeof(*newkn));
914 		return (EINVAL);
915 	}
916 
917  	mutex_enter(&fdp->fd_lock);
918 
919 	/* search if knote already exists */
920 	if (kfilter->filtops->f_isfd) {
921 		/* monitoring a file descriptor */
922 		fd = kev->ident;
923 		if ((fp = fd_getfile(fd)) == NULL) {
924 		 	mutex_exit(&fdp->fd_lock);
925 			rw_exit(&kqueue_filter_lock);
926 			kmem_free(newkn, sizeof(*newkn));
927 			return EBADF;
928 		}
929 		ff = fdp->fd_dt->dt_ff[fd];
930 		if (fd <= fdp->fd_lastkqfile) {
931 			SLIST_FOREACH(kn, &ff->ff_knlist, kn_link) {
932 				if (kq == kn->kn_kq &&
933 				    kev->filter == kn->kn_filter)
934 					break;
935 			}
936 		}
937 	} else {
938 		/*
939 		 * not monitoring a file descriptor, so
940 		 * lookup knotes in internal hash table
941 		 */
942 		if (fdp->fd_knhashmask != 0) {
943 			list = &fdp->fd_knhash[
944 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
945 			SLIST_FOREACH(kn, list, kn_link) {
946 				if (kev->ident == kn->kn_id &&
947 				    kq == kn->kn_kq &&
948 				    kev->filter == kn->kn_filter)
949 					break;
950 			}
951 		}
952 	}
953 
954 	/*
955 	 * kn now contains the matching knote, or NULL if no match
956 	 */
957 	if (kev->flags & EV_ADD) {
958 		if (kn == NULL) {
959 			/* create new knote */
960 			kn = newkn;
961 			newkn = NULL;
962 			kn->kn_obj = fp;
963 			kn->kn_kq = kq;
964 			kn->kn_fop = kfilter->filtops;
965 			kn->kn_kfilter = kfilter;
966 			kn->kn_sfflags = kev->fflags;
967 			kn->kn_sdata = kev->data;
968 			kev->fflags = 0;
969 			kev->data = 0;
970 			kn->kn_kevent = *kev;
971 
972 			/*
973 			 * apply reference count to knote structure, and
974 			 * do not release it at the end of this routine.
975 			 */
976 			fp = NULL;
977 
978 			if (!kn->kn_fop->f_isfd) {
979 				/*
980 				 * If knote is not on an fd, store on
981 				 * internal hash table.
982 				 */
983 				if (fdp->fd_knhashmask == 0) {
984 					/* XXXAD can block with fd_lock held */
985 					fdp->fd_knhash = hashinit(KN_HASHSIZE,
986 					    HASH_LIST, true,
987 					    &fdp->fd_knhashmask);
988 				}
989 				list = &fdp->fd_knhash[KN_HASH(kn->kn_id,
990 				    fdp->fd_knhashmask)];
991 			} else {
992 				/* Otherwise, knote is on an fd. */
993 				list = (struct klist *)
994 				    &fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
995 				if ((int)kn->kn_id > fdp->fd_lastkqfile)
996 					fdp->fd_lastkqfile = kn->kn_id;
997 			}
998 			SLIST_INSERT_HEAD(list, kn, kn_link);
999 
1000 			KERNEL_LOCK(1, NULL);		/* XXXSMP */
1001 			error = (*kfilter->filtops->f_attach)(kn);
1002 			KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1003 			if (error != 0) {
1004 				/* knote_detach() drops fdp->fd_lock */
1005 				knote_detach(kn, fdp, false);
1006 				goto done;
1007 			}
1008 			atomic_inc_uint(&kfilter->refcnt);
1009 		} else {
1010 			/*
1011 			 * The user may change some filter values after the
1012 			 * initial EV_ADD, but doing so will not reset any
1013 			 * filter which have already been triggered.
1014 			 */
1015 			kn->kn_sfflags = kev->fflags;
1016 			kn->kn_sdata = kev->data;
1017 			kn->kn_kevent.udata = kev->udata;
1018 		}
1019 		KERNEL_LOCK(1, NULL);			/* XXXSMP */
1020 		rv = (*kn->kn_fop->f_event)(kn, 0);
1021 		KERNEL_UNLOCK_ONE(NULL);		/* XXXSMP */
1022 		if (rv)
1023 			knote_activate(kn);
1024 	} else {
1025 		if (kn == NULL) {
1026 			error = ENOENT;
1027 		 	mutex_exit(&fdp->fd_lock);
1028 			goto done;
1029 		}
1030 		if (kev->flags & EV_DELETE) {
1031 			/* knote_detach() drops fdp->fd_lock */
1032 			knote_detach(kn, fdp, true);
1033 			goto done;
1034 		}
1035 	}
1036 
1037 	/* disable knote */
1038 	if ((kev->flags & EV_DISABLE)) {
1039 		mutex_spin_enter(&kq->kq_lock);
1040 		if ((kn->kn_status & KN_DISABLED) == 0)
1041 			kn->kn_status |= KN_DISABLED;
1042 		mutex_spin_exit(&kq->kq_lock);
1043 	}
1044 
1045 	/* enable knote */
1046 	if ((kev->flags & EV_ENABLE)) {
1047 		knote_enqueue(kn);
1048 	}
1049 	mutex_exit(&fdp->fd_lock);
1050  done:
1051 	rw_exit(&kqueue_filter_lock);
1052 	if (newkn != NULL)
1053 		kmem_free(newkn, sizeof(*newkn));
1054 	if (fp != NULL)
1055 		fd_putfile(fd);
1056 	return (error);
1057 }
1058 
1059 #if defined(DEBUG)
1060 static void
1061 kq_check(struct kqueue *kq)
1062 {
1063 	const struct knote *kn;
1064 	int count;
1065 	int nmarker;
1066 
1067 	KASSERT(mutex_owned(&kq->kq_lock));
1068 	KASSERT(kq->kq_count >= 0);
1069 
1070 	count = 0;
1071 	nmarker = 0;
1072 	TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
1073 		if ((kn->kn_status & (KN_MARKER | KN_QUEUED)) == 0) {
1074 			panic("%s: kq=%p kn=%p inconsist 1", __func__, kq, kn);
1075 		}
1076 		if ((kn->kn_status & KN_MARKER) == 0) {
1077 			if (kn->kn_kq != kq) {
1078 				panic("%s: kq=%p kn=%p inconsist 2",
1079 				    __func__, kq, kn);
1080 			}
1081 			if ((kn->kn_status & KN_ACTIVE) == 0) {
1082 				panic("%s: kq=%p kn=%p: not active",
1083 				    __func__, kq, kn);
1084 			}
1085 			count++;
1086 			if (count > kq->kq_count) {
1087 				goto bad;
1088 			}
1089 		} else {
1090 			nmarker++;
1091 #if 0
1092 			if (nmarker > 10000) {
1093 				panic("%s: kq=%p too many markers: %d != %d, "
1094 				    "nmarker=%d",
1095 				    __func__, kq, kq->kq_count, count, nmarker);
1096 			}
1097 #endif
1098 		}
1099 	}
1100 	if (kq->kq_count != count) {
1101 bad:
1102 		panic("%s: kq=%p inconsist 3: %d != %d, nmarker=%d",
1103 		    __func__, kq, kq->kq_count, count, nmarker);
1104 	}
1105 }
1106 #else /* defined(DEBUG) */
1107 #define	kq_check(a)	/* nothing */
1108 #endif /* defined(DEBUG) */
1109 
1110 /*
1111  * Scan through the list of events on fp (for a maximum of maxevents),
1112  * returning the results in to ulistp. Timeout is determined by tsp; if
1113  * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait
1114  * as appropriate.
1115  */
1116 static int
1117 kqueue_scan(file_t *fp, size_t maxevents, struct kevent *ulistp,
1118 	    const struct timespec *tsp, register_t *retval,
1119 	    const struct kevent_ops *keops, struct kevent *kevbuf,
1120 	    size_t kevcnt)
1121 {
1122 	struct kqueue	*kq;
1123 	struct kevent	*kevp;
1124 	struct timespec	ats, sleepts;
1125 	struct knote	*kn, *marker;
1126 	size_t		count, nkev, nevents;
1127 	int		timeout, error, rv;
1128 	filedesc_t	*fdp;
1129 
1130 	fdp = curlwp->l_fd;
1131 	kq = fp->f_data;
1132 	count = maxevents;
1133 	nkev = nevents = error = 0;
1134 	if (count == 0) {
1135 		*retval = 0;
1136 		return 0;
1137 	}
1138 
1139 	if (tsp) {				/* timeout supplied */
1140 		ats = *tsp;
1141 		if (inittimeleft(&ats, &sleepts) == -1) {
1142 			*retval = maxevents;
1143 			return EINVAL;
1144 		}
1145 		timeout = tstohz(&ats);
1146 		if (timeout <= 0)
1147 			timeout = -1;           /* do poll */
1148 	} else {
1149 		/* no timeout, wait forever */
1150 		timeout = 0;
1151 	}
1152 
1153 	marker = kmem_zalloc(sizeof(*marker), KM_SLEEP);
1154 	marker->kn_status = KN_MARKER;
1155 	mutex_spin_enter(&kq->kq_lock);
1156  retry:
1157 	kevp = kevbuf;
1158 	if (kq->kq_count == 0) {
1159 		if (timeout >= 0) {
1160 			error = cv_timedwait_sig(&kq->kq_cv,
1161 			    &kq->kq_lock, timeout);
1162 			if (error == 0) {
1163 				 if (tsp == NULL || (timeout =
1164 				     gettimeleft(&ats, &sleepts)) > 0)
1165 					goto retry;
1166 			} else {
1167 				/* don't restart after signals... */
1168 				if (error == ERESTART)
1169 					error = EINTR;
1170 				if (error == EWOULDBLOCK)
1171 					error = 0;
1172 			}
1173 		}
1174 	} else {
1175 		/* mark end of knote list */
1176 		TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe);
1177 
1178 		while (count != 0) {
1179 			kn = TAILQ_FIRST(&kq->kq_head);	/* get next knote */
1180 			while ((kn->kn_status & KN_MARKER) != 0) {
1181 				if (kn == marker) {
1182 					/* it's our marker, stop */
1183 					TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1184 					if (count < maxevents || (tsp != NULL &&
1185 					    (timeout = gettimeleft(&ats,
1186 					    &sleepts)) <= 0))
1187 						goto done;
1188 					goto retry;
1189 				}
1190 				/* someone else's marker. */
1191 				kn = TAILQ_NEXT(kn, kn_tqe);
1192 			}
1193 			kq_check(kq);
1194 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1195 			kq->kq_count--;
1196 			kn->kn_status &= ~KN_QUEUED;
1197 			kq_check(kq);
1198 			if (kn->kn_status & KN_DISABLED) {
1199 				/* don't want disabled events */
1200 				continue;
1201 			}
1202 			if ((kn->kn_flags & EV_ONESHOT) == 0) {
1203 				mutex_spin_exit(&kq->kq_lock);
1204 				KERNEL_LOCK(1, NULL);		/* XXXSMP */
1205 				rv = (*kn->kn_fop->f_event)(kn, 0);
1206 				KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1207 				mutex_spin_enter(&kq->kq_lock);
1208 				/* Re-poll if note was re-enqueued. */
1209 				if ((kn->kn_status & KN_QUEUED) != 0)
1210 					continue;
1211 				if (rv == 0) {
1212 					/*
1213 					 * non-ONESHOT event that hasn't
1214 					 * triggered again, so de-queue.
1215 					 */
1216 					kn->kn_status &= ~KN_ACTIVE;
1217 					continue;
1218 				}
1219 			}
1220 			/* XXXAD should be got from f_event if !oneshot. */
1221 			*kevp++ = kn->kn_kevent;
1222 			nkev++;
1223 			if (kn->kn_flags & EV_ONESHOT) {
1224 				/* delete ONESHOT events after retrieval */
1225 				mutex_spin_exit(&kq->kq_lock);
1226 				mutex_enter(&fdp->fd_lock);
1227 				knote_detach(kn, fdp, true);
1228 				mutex_spin_enter(&kq->kq_lock);
1229 			} else if (kn->kn_flags & EV_CLEAR) {
1230 				/* clear state after retrieval */
1231 				kn->kn_data = 0;
1232 				kn->kn_fflags = 0;
1233 				kn->kn_status &= ~KN_ACTIVE;
1234 			} else {
1235 				/* add event back on list */
1236 				kq_check(kq);
1237 				TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1238 				kq->kq_count++;
1239 				kn->kn_status |= KN_QUEUED;
1240 				kq_check(kq);
1241 			}
1242 			if (nkev == kevcnt) {
1243 				/* do copyouts in kevcnt chunks */
1244 				mutex_spin_exit(&kq->kq_lock);
1245 				error = (*keops->keo_put_events)
1246 				    (keops->keo_private,
1247 				    kevbuf, ulistp, nevents, nkev);
1248 				mutex_spin_enter(&kq->kq_lock);
1249 				nevents += nkev;
1250 				nkev = 0;
1251 				kevp = kevbuf;
1252 			}
1253 			count--;
1254 			if (error != 0 || count == 0) {
1255 				/* remove marker */
1256 				TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe);
1257 				break;
1258 			}
1259 		}
1260 	}
1261  done:
1262  	mutex_spin_exit(&kq->kq_lock);
1263 	if (marker != NULL)
1264 		kmem_free(marker, sizeof(*marker));
1265 	if (nkev != 0) {
1266 		/* copyout remaining events */
1267 		error = (*keops->keo_put_events)(keops->keo_private,
1268 		    kevbuf, ulistp, nevents, nkev);
1269 	}
1270 	*retval = maxevents - count;
1271 
1272 	return error;
1273 }
1274 
1275 /*
1276  * fileops ioctl method for a kqueue descriptor.
1277  *
1278  * Two ioctls are currently supported. They both use struct kfilter_mapping:
1279  *	KFILTER_BYNAME		find name for filter, and return result in
1280  *				name, which is of size len.
1281  *	KFILTER_BYFILTER	find filter for name. len is ignored.
1282  */
1283 /*ARGSUSED*/
1284 static int
1285 kqueue_ioctl(file_t *fp, u_long com, void *data)
1286 {
1287 	struct kfilter_mapping	*km;
1288 	const struct kfilter	*kfilter;
1289 	char			*name;
1290 	int			error;
1291 
1292 	km = data;
1293 	error = 0;
1294 	name = kmem_alloc(KFILTER_MAXNAME, KM_SLEEP);
1295 
1296 	switch (com) {
1297 	case KFILTER_BYFILTER:	/* convert filter -> name */
1298 		rw_enter(&kqueue_filter_lock, RW_READER);
1299 		kfilter = kfilter_byfilter(km->filter);
1300 		if (kfilter != NULL) {
1301 			strlcpy(name, kfilter->name, KFILTER_MAXNAME);
1302 			rw_exit(&kqueue_filter_lock);
1303 			error = copyoutstr(name, km->name, km->len, NULL);
1304 		} else {
1305 			rw_exit(&kqueue_filter_lock);
1306 			error = ENOENT;
1307 		}
1308 		break;
1309 
1310 	case KFILTER_BYNAME:	/* convert name -> filter */
1311 		error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL);
1312 		if (error) {
1313 			break;
1314 		}
1315 		rw_enter(&kqueue_filter_lock, RW_READER);
1316 		kfilter = kfilter_byname(name);
1317 		if (kfilter != NULL)
1318 			km->filter = kfilter->filter;
1319 		else
1320 			error = ENOENT;
1321 		rw_exit(&kqueue_filter_lock);
1322 		break;
1323 
1324 	default:
1325 		error = ENOTTY;
1326 		break;
1327 
1328 	}
1329 	kmem_free(name, KFILTER_MAXNAME);
1330 	return (error);
1331 }
1332 
1333 /*
1334  * fileops fcntl method for a kqueue descriptor.
1335  */
1336 static int
1337 kqueue_fcntl(file_t *fp, u_int com, void *data)
1338 {
1339 
1340 	return (ENOTTY);
1341 }
1342 
1343 /*
1344  * fileops poll method for a kqueue descriptor.
1345  * Determine if kqueue has events pending.
1346  */
1347 static int
1348 kqueue_poll(file_t *fp, int events)
1349 {
1350 	struct kqueue	*kq;
1351 	int		revents;
1352 
1353 	kq = fp->f_data;
1354 
1355 	revents = 0;
1356 	if (events & (POLLIN | POLLRDNORM)) {
1357 		mutex_spin_enter(&kq->kq_lock);
1358 		if (kq->kq_count != 0) {
1359 			revents |= events & (POLLIN | POLLRDNORM);
1360 		} else {
1361 			selrecord(curlwp, &kq->kq_sel);
1362 		}
1363 		kq_check(kq);
1364 		mutex_spin_exit(&kq->kq_lock);
1365 	}
1366 
1367 	return revents;
1368 }
1369 
1370 /*
1371  * fileops stat method for a kqueue descriptor.
1372  * Returns dummy info, with st_size being number of events pending.
1373  */
1374 static int
1375 kqueue_stat(file_t *fp, struct stat *st)
1376 {
1377 	struct kqueue *kq;
1378 
1379 	kq = fp->f_data;
1380 
1381 	memset(st, 0, sizeof(*st));
1382 	st->st_size = kq->kq_count;
1383 	st->st_blksize = sizeof(struct kevent);
1384 	st->st_mode = S_IFIFO;
1385 
1386 	return 0;
1387 }
1388 
1389 static void
1390 kqueue_doclose(struct kqueue *kq, struct klist *list, int fd)
1391 {
1392 	struct knote *kn;
1393 	filedesc_t *fdp;
1394 
1395 	fdp = kq->kq_fdp;
1396 
1397 	KASSERT(mutex_owned(&fdp->fd_lock));
1398 
1399 	for (kn = SLIST_FIRST(list); kn != NULL;) {
1400 		if (kq != kn->kn_kq) {
1401 			kn = SLIST_NEXT(kn, kn_link);
1402 			continue;
1403 		}
1404 		knote_detach(kn, fdp, true);
1405 		mutex_enter(&fdp->fd_lock);
1406 		kn = SLIST_FIRST(list);
1407 	}
1408 }
1409 
1410 
1411 /*
1412  * fileops close method for a kqueue descriptor.
1413  */
1414 static int
1415 kqueue_close(file_t *fp)
1416 {
1417 	struct kqueue *kq;
1418 	filedesc_t *fdp;
1419 	fdfile_t *ff;
1420 	int i;
1421 
1422 	kq = fp->f_data;
1423 	fdp = curlwp->l_fd;
1424 
1425 	mutex_enter(&fdp->fd_lock);
1426 	for (i = 0; i <= fdp->fd_lastkqfile; i++) {
1427 		if ((ff = fdp->fd_dt->dt_ff[i]) == NULL)
1428 			continue;
1429 		kqueue_doclose(kq, (struct klist *)&ff->ff_knlist, i);
1430 	}
1431 	if (fdp->fd_knhashmask != 0) {
1432 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
1433 			kqueue_doclose(kq, &fdp->fd_knhash[i], -1);
1434 		}
1435 	}
1436 	mutex_exit(&fdp->fd_lock);
1437 
1438 	KASSERT(kq->kq_count == 0);
1439 	mutex_destroy(&kq->kq_lock);
1440 	cv_destroy(&kq->kq_cv);
1441 	seldestroy(&kq->kq_sel);
1442 	kmem_free(kq, sizeof(*kq));
1443 	fp->f_data = NULL;
1444 
1445 	return (0);
1446 }
1447 
1448 /*
1449  * struct fileops kqfilter method for a kqueue descriptor.
1450  * Event triggered when monitored kqueue changes.
1451  */
1452 static int
1453 kqueue_kqfilter(file_t *fp, struct knote *kn)
1454 {
1455 	struct kqueue *kq;
1456 	filedesc_t *fdp;
1457 
1458 	kq = ((file_t *)kn->kn_obj)->f_data;
1459 
1460 	KASSERT(fp == kn->kn_obj);
1461 
1462 	if (kn->kn_filter != EVFILT_READ)
1463 		return 1;
1464 
1465 	kn->kn_fop = &kqread_filtops;
1466 	fdp = curlwp->l_fd;
1467 	mutex_enter(&kq->kq_lock);
1468 	SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext);
1469 	mutex_exit(&kq->kq_lock);
1470 
1471 	return 0;
1472 }
1473 
1474 
1475 /*
1476  * Walk down a list of knotes, activating them if their event has
1477  * triggered.  The caller's object lock (e.g. device driver lock)
1478  * must be held.
1479  */
1480 void
1481 knote(struct klist *list, long hint)
1482 {
1483 	struct knote *kn, *tmpkn;
1484 
1485 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, tmpkn) {
1486 		if ((*kn->kn_fop->f_event)(kn, hint))
1487 			knote_activate(kn);
1488 	}
1489 }
1490 
1491 /*
1492  * Remove all knotes referencing a specified fd
1493  */
1494 void
1495 knote_fdclose(int fd)
1496 {
1497 	struct klist *list;
1498 	struct knote *kn;
1499 	filedesc_t *fdp;
1500 
1501 	fdp = curlwp->l_fd;
1502 	list = (struct klist *)&fdp->fd_dt->dt_ff[fd]->ff_knlist;
1503 	mutex_enter(&fdp->fd_lock);
1504 	while ((kn = SLIST_FIRST(list)) != NULL) {
1505 		knote_detach(kn, fdp, true);
1506 		mutex_enter(&fdp->fd_lock);
1507 	}
1508 	mutex_exit(&fdp->fd_lock);
1509 }
1510 
1511 /*
1512  * Drop knote.  Called with fdp->fd_lock held, and will drop before
1513  * returning.
1514  */
1515 static void
1516 knote_detach(struct knote *kn, filedesc_t *fdp, bool dofop)
1517 {
1518 	struct klist *list;
1519 	struct kqueue *kq;
1520 
1521 	kq = kn->kn_kq;
1522 
1523 	KASSERT((kn->kn_status & KN_MARKER) == 0);
1524 	KASSERT(mutex_owned(&fdp->fd_lock));
1525 
1526 	/* Remove from monitored object. */
1527 	if (dofop) {
1528 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1529 		(*kn->kn_fop->f_detach)(kn);
1530 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1531 	}
1532 
1533 	/* Remove from descriptor table. */
1534 	if (kn->kn_fop->f_isfd)
1535 		list = (struct klist *)&fdp->fd_dt->dt_ff[kn->kn_id]->ff_knlist;
1536 	else
1537 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1538 
1539 	SLIST_REMOVE(list, kn, knote, kn_link);
1540 
1541 	/* Remove from kqueue. */
1542 	/* XXXAD should verify not in use by kqueue_scan. */
1543 	mutex_spin_enter(&kq->kq_lock);
1544 	if ((kn->kn_status & KN_QUEUED) != 0) {
1545 		kq_check(kq);
1546 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1547 		kn->kn_status &= ~KN_QUEUED;
1548 		kq->kq_count--;
1549 		kq_check(kq);
1550 	}
1551 	mutex_spin_exit(&kq->kq_lock);
1552 
1553 	mutex_exit(&fdp->fd_lock);
1554 	if (kn->kn_fop->f_isfd)
1555 		fd_putfile(kn->kn_id);
1556 	atomic_dec_uint(&kn->kn_kfilter->refcnt);
1557 	kmem_free(kn, sizeof(*kn));
1558 }
1559 
1560 /*
1561  * Queue new event for knote.
1562  */
1563 static void
1564 knote_enqueue(struct knote *kn)
1565 {
1566 	struct kqueue *kq;
1567 
1568 	KASSERT((kn->kn_status & KN_MARKER) == 0);
1569 
1570 	kq = kn->kn_kq;
1571 
1572 	mutex_spin_enter(&kq->kq_lock);
1573 	if ((kn->kn_status & KN_DISABLED) != 0) {
1574 		kn->kn_status &= ~KN_DISABLED;
1575 	}
1576 	if ((kn->kn_status & (KN_ACTIVE | KN_QUEUED)) == KN_ACTIVE) {
1577 		kq_check(kq);
1578 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1579 		kn->kn_status |= KN_QUEUED;
1580 		kq->kq_count++;
1581 		kq_check(kq);
1582 		cv_broadcast(&kq->kq_cv);
1583 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1584 	}
1585 	mutex_spin_exit(&kq->kq_lock);
1586 }
1587 /*
1588  * Queue new event for knote.
1589  */
1590 static void
1591 knote_activate(struct knote *kn)
1592 {
1593 	struct kqueue *kq;
1594 
1595 	KASSERT((kn->kn_status & KN_MARKER) == 0);
1596 
1597 	kq = kn->kn_kq;
1598 
1599 	mutex_spin_enter(&kq->kq_lock);
1600 	kn->kn_status |= KN_ACTIVE;
1601 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) {
1602 		kq_check(kq);
1603 		TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1604 		kn->kn_status |= KN_QUEUED;
1605 		kq->kq_count++;
1606 		kq_check(kq);
1607 		cv_broadcast(&kq->kq_cv);
1608 		selnotify(&kq->kq_sel, 0, NOTE_SUBMIT);
1609 	}
1610 	mutex_spin_exit(&kq->kq_lock);
1611 }
1612