1 /* $NetBSD: kern_event.c,v 1.20 2004/04/25 16:42:41 simonb Exp $ */ 2 /*- 3 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org> 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 * $FreeBSD: src/sys/kern/kern_event.c,v 1.27 2001/07/05 17:10:44 rwatson Exp $ 28 */ 29 30 #include <sys/cdefs.h> 31 __KERNEL_RCSID(0, "$NetBSD: kern_event.c,v 1.20 2004/04/25 16:42:41 simonb Exp $"); 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/kernel.h> 36 #include <sys/proc.h> 37 #include <sys/malloc.h> 38 #include <sys/unistd.h> 39 #include <sys/file.h> 40 #include <sys/fcntl.h> 41 #include <sys/select.h> 42 #include <sys/queue.h> 43 #include <sys/event.h> 44 #include <sys/eventvar.h> 45 #include <sys/poll.h> 46 #include <sys/pool.h> 47 #include <sys/protosw.h> 48 #include <sys/socket.h> 49 #include <sys/socketvar.h> 50 #include <sys/stat.h> 51 #include <sys/uio.h> 52 #include <sys/mount.h> 53 #include <sys/filedesc.h> 54 #include <sys/sa.h> 55 #include <sys/syscallargs.h> 56 57 static int kqueue_scan(struct file *fp, size_t maxevents, 58 struct kevent *ulistp, const struct timespec *timeout, 59 struct proc *p, register_t *retval); 60 static void kqueue_wakeup(struct kqueue *kq); 61 62 static int kqueue_read(struct file *fp, off_t *offset, struct uio *uio, 63 struct ucred *cred, int flags); 64 static int kqueue_write(struct file *fp, off_t *offset, struct uio *uio, 65 struct ucred *cred, int flags); 66 static int kqueue_ioctl(struct file *fp, u_long com, void *data, 67 struct proc *p); 68 static int kqueue_fcntl(struct file *fp, u_int com, void *data, 69 struct proc *p); 70 static int kqueue_poll(struct file *fp, int events, struct proc *p); 71 static int kqueue_kqfilter(struct file *fp, struct knote *kn); 72 static int kqueue_stat(struct file *fp, struct stat *sp, struct proc *p); 73 static int kqueue_close(struct file *fp, struct proc *p); 74 75 static struct fileops kqueueops = { 76 kqueue_read, kqueue_write, kqueue_ioctl, kqueue_fcntl, kqueue_poll, 77 kqueue_stat, kqueue_close, kqueue_kqfilter 78 }; 79 80 static void knote_attach(struct knote *kn, struct filedesc *fdp); 81 static void knote_drop(struct knote *kn, struct proc *p, 82 struct filedesc *fdp); 83 static void knote_enqueue(struct knote *kn); 84 static void knote_dequeue(struct knote *kn); 85 86 static void filt_kqdetach(struct knote *kn); 87 static int filt_kqueue(struct knote *kn, long hint); 88 static int filt_procattach(struct knote *kn); 89 static void filt_procdetach(struct knote *kn); 90 static int filt_proc(struct knote *kn, long hint); 91 static int filt_fileattach(struct knote *kn); 92 static void filt_timerexpire(void *knx); 93 static int filt_timerattach(struct knote *kn); 94 static void filt_timerdetach(struct knote *kn); 95 static int filt_timer(struct knote *kn, long hint); 96 97 static const struct filterops kqread_filtops = 98 { 1, NULL, filt_kqdetach, filt_kqueue }; 99 static const struct filterops proc_filtops = 100 { 0, filt_procattach, filt_procdetach, filt_proc }; 101 static const struct filterops file_filtops = 102 { 1, filt_fileattach, NULL, NULL }; 103 static struct filterops timer_filtops = 104 { 0, filt_timerattach, filt_timerdetach, filt_timer }; 105 106 POOL_INIT(kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl", NULL); 107 POOL_INIT(knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl", NULL); 108 static int kq_ncallouts = 0; 109 static int kq_calloutmax = (4 * 1024); 110 111 MALLOC_DEFINE(M_KEVENT, "kevent", "kevents/knotes"); 112 113 #define KNOTE_ACTIVATE(kn) \ 114 do { \ 115 kn->kn_status |= KN_ACTIVE; \ 116 if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0) \ 117 knote_enqueue(kn); \ 118 } while(0) 119 120 #define KN_HASHSIZE 64 /* XXX should be tunable */ 121 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask)) 122 123 extern const struct filterops sig_filtops; 124 125 /* 126 * Table for for all system-defined filters. 127 * These should be listed in the numeric order of the EVFILT_* defines. 128 * If filtops is NULL, the filter isn't implemented in NetBSD. 129 * End of list is when name is NULL. 130 */ 131 struct kfilter { 132 const char *name; /* name of filter */ 133 uint32_t filter; /* id of filter */ 134 const struct filterops *filtops;/* operations for filter */ 135 }; 136 137 /* System defined filters */ 138 static const struct kfilter sys_kfilters[] = { 139 { "EVFILT_READ", EVFILT_READ, &file_filtops }, 140 { "EVFILT_WRITE", EVFILT_WRITE, &file_filtops }, 141 { "EVFILT_AIO", EVFILT_AIO, NULL }, 142 { "EVFILT_VNODE", EVFILT_VNODE, &file_filtops }, 143 { "EVFILT_PROC", EVFILT_PROC, &proc_filtops }, 144 { "EVFILT_SIGNAL", EVFILT_SIGNAL, &sig_filtops }, 145 { "EVFILT_TIMER", EVFILT_TIMER, &timer_filtops }, 146 { NULL, 0, NULL }, /* end of list */ 147 }; 148 149 /* User defined kfilters */ 150 static struct kfilter *user_kfilters; /* array */ 151 static int user_kfilterc; /* current offset */ 152 static int user_kfiltermaxc; /* max size so far */ 153 154 /* 155 * Find kfilter entry by name, or NULL if not found. 156 */ 157 static const struct kfilter * 158 kfilter_byname_sys(const char *name) 159 { 160 int i; 161 162 for (i = 0; sys_kfilters[i].name != NULL; i++) { 163 if (strcmp(name, sys_kfilters[i].name) == 0) 164 return (&sys_kfilters[i]); 165 } 166 return (NULL); 167 } 168 169 static struct kfilter * 170 kfilter_byname_user(const char *name) 171 { 172 int i; 173 174 /* user_kfilters[] could be NULL if no filters were registered */ 175 if (!user_kfilters) 176 return (NULL); 177 178 for (i = 0; user_kfilters[i].name != NULL; i++) { 179 if (user_kfilters[i].name != '\0' && 180 strcmp(name, user_kfilters[i].name) == 0) 181 return (&user_kfilters[i]); 182 } 183 return (NULL); 184 } 185 186 static const struct kfilter * 187 kfilter_byname(const char *name) 188 { 189 const struct kfilter *kfilter; 190 191 if ((kfilter = kfilter_byname_sys(name)) != NULL) 192 return (kfilter); 193 194 return (kfilter_byname_user(name)); 195 } 196 197 /* 198 * Find kfilter entry by filter id, or NULL if not found. 199 * Assumes entries are indexed in filter id order, for speed. 200 */ 201 static const struct kfilter * 202 kfilter_byfilter(uint32_t filter) 203 { 204 const struct kfilter *kfilter; 205 206 if (filter < EVFILT_SYSCOUNT) /* it's a system filter */ 207 kfilter = &sys_kfilters[filter]; 208 else if (user_kfilters != NULL && 209 filter < EVFILT_SYSCOUNT + user_kfilterc) 210 /* it's a user filter */ 211 kfilter = &user_kfilters[filter - EVFILT_SYSCOUNT]; 212 else 213 return (NULL); /* out of range */ 214 KASSERT(kfilter->filter == filter); /* sanity check! */ 215 return (kfilter); 216 } 217 218 /* 219 * Register a new kfilter. Stores the entry in user_kfilters. 220 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 221 * If retfilter != NULL, the new filterid is returned in it. 222 */ 223 int 224 kfilter_register(const char *name, const struct filterops *filtops, 225 int *retfilter) 226 { 227 struct kfilter *kfilter; 228 void *space; 229 int len; 230 231 if (name == NULL || name[0] == '\0' || filtops == NULL) 232 return (EINVAL); /* invalid args */ 233 if (kfilter_byname(name) != NULL) 234 return (EEXIST); /* already exists */ 235 if (user_kfilterc > 0xffffffff - EVFILT_SYSCOUNT) 236 return (EINVAL); /* too many */ 237 238 /* check if need to grow user_kfilters */ 239 if (user_kfilterc + 1 > user_kfiltermaxc) { 240 /* 241 * Grow in KFILTER_EXTENT chunks. Use malloc(9), because we 242 * want to traverse user_kfilters as an array. 243 */ 244 user_kfiltermaxc += KFILTER_EXTENT; 245 kfilter = malloc(user_kfiltermaxc * sizeof(struct filter *), 246 M_KEVENT, M_WAITOK); 247 248 /* copy existing user_kfilters */ 249 if (user_kfilters != NULL) 250 memcpy((caddr_t)kfilter, (caddr_t)user_kfilters, 251 user_kfilterc * sizeof(struct kfilter *)); 252 /* zero new sections */ 253 memset((caddr_t)kfilter + 254 user_kfilterc * sizeof(struct kfilter *), 0, 255 (user_kfiltermaxc - user_kfilterc) * 256 sizeof(struct kfilter *)); 257 /* switch to new kfilter */ 258 if (user_kfilters != NULL) 259 free(user_kfilters, M_KEVENT); 260 user_kfilters = kfilter; 261 } 262 len = strlen(name) + 1; /* copy name */ 263 space = malloc(len, M_KEVENT, M_WAITOK); 264 memcpy(space, name, len); 265 user_kfilters[user_kfilterc].name = space; 266 267 user_kfilters[user_kfilterc].filter = user_kfilterc + EVFILT_SYSCOUNT; 268 269 len = sizeof(struct filterops); /* copy filtops */ 270 space = malloc(len, M_KEVENT, M_WAITOK); 271 memcpy(space, filtops, len); 272 user_kfilters[user_kfilterc].filtops = space; 273 274 if (retfilter != NULL) 275 *retfilter = user_kfilters[user_kfilterc].filter; 276 user_kfilterc++; /* finally, increment count */ 277 return (0); 278 } 279 280 /* 281 * Unregister a kfilter previously registered with kfilter_register. 282 * This retains the filter id, but clears the name and frees filtops (filter 283 * operations), so that the number isn't reused during a boot. 284 * Returns 0 if operation succeeded, or an appropriate errno(2) otherwise. 285 */ 286 int 287 kfilter_unregister(const char *name) 288 { 289 struct kfilter *kfilter; 290 291 if (name == NULL || name[0] == '\0') 292 return (EINVAL); /* invalid name */ 293 294 if (kfilter_byname_sys(name) != NULL) 295 return (EINVAL); /* can't detach system filters */ 296 297 kfilter = kfilter_byname_user(name); 298 if (kfilter == NULL) /* not found */ 299 return (ENOENT); 300 301 if (kfilter->name[0] != '\0') { 302 /* XXX Cast away const (but we know it's safe. */ 303 free((void *) kfilter->name, M_KEVENT); 304 kfilter->name = ""; /* mark as `not implemented' */ 305 } 306 if (kfilter->filtops != NULL) { 307 /* XXX Cast away const (but we know it's safe. */ 308 free((void *) kfilter->filtops, M_KEVENT); 309 kfilter->filtops = NULL; /* mark as `not implemented' */ 310 } 311 return (0); 312 } 313 314 315 /* 316 * Filter attach method for EVFILT_READ and EVFILT_WRITE on normal file 317 * descriptors. Calls struct fileops kqfilter method for given file descriptor. 318 */ 319 static int 320 filt_fileattach(struct knote *kn) 321 { 322 struct file *fp; 323 324 fp = kn->kn_fp; 325 return ((*fp->f_ops->fo_kqfilter)(fp, kn)); 326 } 327 328 /* 329 * Filter detach method for EVFILT_READ on kqueue descriptor. 330 */ 331 static void 332 filt_kqdetach(struct knote *kn) 333 { 334 struct kqueue *kq; 335 336 kq = (struct kqueue *)kn->kn_fp->f_data; 337 SLIST_REMOVE(&kq->kq_sel.sel_klist, kn, knote, kn_selnext); 338 } 339 340 /* 341 * Filter event method for EVFILT_READ on kqueue descriptor. 342 */ 343 /*ARGSUSED*/ 344 static int 345 filt_kqueue(struct knote *kn, long hint) 346 { 347 struct kqueue *kq; 348 349 kq = (struct kqueue *)kn->kn_fp->f_data; 350 kn->kn_data = kq->kq_count; 351 return (kn->kn_data > 0); 352 } 353 354 /* 355 * Filter attach method for EVFILT_PROC. 356 */ 357 static int 358 filt_procattach(struct knote *kn) 359 { 360 struct proc *p; 361 362 p = pfind(kn->kn_id); 363 if (p == NULL) 364 return (ESRCH); 365 366 /* 367 * Fail if it's not owned by you, or the last exec gave us 368 * setuid/setgid privs (unless you're root). 369 */ 370 if ((p->p_cred->p_ruid != curproc->p_cred->p_ruid || 371 (p->p_flag & P_SUGID)) 372 && suser(curproc->p_ucred, &curproc->p_acflag) != 0) 373 return (EACCES); 374 375 kn->kn_ptr.p_proc = p; 376 kn->kn_flags |= EV_CLEAR; /* automatically set */ 377 378 /* 379 * internal flag indicating registration done by kernel 380 */ 381 if (kn->kn_flags & EV_FLAG1) { 382 kn->kn_data = kn->kn_sdata; /* ppid */ 383 kn->kn_fflags = NOTE_CHILD; 384 kn->kn_flags &= ~EV_FLAG1; 385 } 386 387 /* XXXSMP lock the process? */ 388 SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext); 389 390 return (0); 391 } 392 393 /* 394 * Filter detach method for EVFILT_PROC. 395 * 396 * The knote may be attached to a different process, which may exit, 397 * leaving nothing for the knote to be attached to. So when the process 398 * exits, the knote is marked as DETACHED and also flagged as ONESHOT so 399 * it will be deleted when read out. However, as part of the knote deletion, 400 * this routine is called, so a check is needed to avoid actually performing 401 * a detach, because the original process might not exist any more. 402 */ 403 static void 404 filt_procdetach(struct knote *kn) 405 { 406 struct proc *p; 407 408 if (kn->kn_status & KN_DETACHED) 409 return; 410 411 p = kn->kn_ptr.p_proc; 412 KASSERT(p->p_stat == SZOMB || pfind(kn->kn_id) == p); 413 414 /* XXXSMP lock the process? */ 415 SLIST_REMOVE(&p->p_klist, kn, knote, kn_selnext); 416 } 417 418 /* 419 * Filter event method for EVFILT_PROC. 420 */ 421 static int 422 filt_proc(struct knote *kn, long hint) 423 { 424 u_int event; 425 426 /* 427 * mask off extra data 428 */ 429 event = (u_int)hint & NOTE_PCTRLMASK; 430 431 /* 432 * if the user is interested in this event, record it. 433 */ 434 if (kn->kn_sfflags & event) 435 kn->kn_fflags |= event; 436 437 /* 438 * process is gone, so flag the event as finished. 439 */ 440 if (event == NOTE_EXIT) { 441 /* 442 * Detach the knote from watched process and mark 443 * it as such. We can't leave this to kqueue_scan(), 444 * since the process might not exist by then. And we 445 * have to do this now, since psignal KNOTE() is called 446 * also for zombies and we might end up reading freed 447 * memory if the kevent would already be picked up 448 * and knote g/c'ed. 449 */ 450 kn->kn_fop->f_detach(kn); 451 kn->kn_status |= KN_DETACHED; 452 453 /* Mark as ONESHOT, so that the knote it g/c'ed when read */ 454 kn->kn_flags |= (EV_EOF | EV_ONESHOT); 455 return (1); 456 } 457 458 /* 459 * process forked, and user wants to track the new process, 460 * so attach a new knote to it, and immediately report an 461 * event with the parent's pid. 462 */ 463 if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) { 464 struct kevent kev; 465 int error; 466 467 /* 468 * register knote with new process. 469 */ 470 kev.ident = hint & NOTE_PDATAMASK; /* pid */ 471 kev.filter = kn->kn_filter; 472 kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1; 473 kev.fflags = kn->kn_sfflags; 474 kev.data = kn->kn_id; /* parent */ 475 kev.udata = kn->kn_kevent.udata; /* preserve udata */ 476 error = kqueue_register(kn->kn_kq, &kev, NULL); 477 if (error) 478 kn->kn_fflags |= NOTE_TRACKERR; 479 } 480 481 return (kn->kn_fflags != 0); 482 } 483 484 static void 485 filt_timerexpire(void *knx) 486 { 487 struct knote *kn = knx; 488 int tticks; 489 490 kn->kn_data++; 491 KNOTE_ACTIVATE(kn); 492 493 if ((kn->kn_flags & EV_ONESHOT) == 0) { 494 tticks = mstohz(kn->kn_sdata); 495 callout_schedule((struct callout *)kn->kn_hook, tticks); 496 } 497 } 498 499 /* 500 * data contains amount of time to sleep, in milliseconds 501 */ 502 static int 503 filt_timerattach(struct knote *kn) 504 { 505 struct callout *calloutp; 506 int tticks; 507 508 if (kq_ncallouts >= kq_calloutmax) 509 return (ENOMEM); 510 kq_ncallouts++; 511 512 tticks = mstohz(kn->kn_sdata); 513 514 /* if the supplied value is under our resolution, use 1 tick */ 515 if (tticks == 0) { 516 if (kn->kn_sdata == 0) 517 return (EINVAL); 518 tticks = 1; 519 } 520 521 kn->kn_flags |= EV_CLEAR; /* automatically set */ 522 MALLOC(calloutp, struct callout *, sizeof(*calloutp), 523 M_KEVENT, 0); 524 callout_init(calloutp); 525 callout_reset(calloutp, tticks, filt_timerexpire, kn); 526 kn->kn_hook = calloutp; 527 528 return (0); 529 } 530 531 static void 532 filt_timerdetach(struct knote *kn) 533 { 534 struct callout *calloutp; 535 536 calloutp = (struct callout *)kn->kn_hook; 537 callout_stop(calloutp); 538 FREE(calloutp, M_KEVENT); 539 kq_ncallouts--; 540 } 541 542 static int 543 filt_timer(struct knote *kn, long hint) 544 { 545 return (kn->kn_data != 0); 546 } 547 548 /* 549 * filt_seltrue: 550 * 551 * This filter "event" routine simulates seltrue(). 552 */ 553 int 554 filt_seltrue(struct knote *kn, long hint) 555 { 556 557 /* 558 * We don't know how much data can be read/written, 559 * but we know that it *can* be. This is about as 560 * good as select/poll does as well. 561 */ 562 kn->kn_data = 0; 563 return (1); 564 } 565 566 /* 567 * This provides full kqfilter entry for device switch tables, which 568 * has same effect as filter using filt_seltrue() as filter method. 569 */ 570 static void 571 filt_seltruedetach(struct knote *kn) 572 { 573 /* Nothing to do */ 574 } 575 576 static const struct filterops seltrue_filtops = 577 { 1, NULL, filt_seltruedetach, filt_seltrue }; 578 579 int 580 seltrue_kqfilter(dev_t dev, struct knote *kn) 581 { 582 switch (kn->kn_filter) { 583 case EVFILT_READ: 584 case EVFILT_WRITE: 585 kn->kn_fop = &seltrue_filtops; 586 break; 587 default: 588 return (1); 589 } 590 591 /* Nothing more to do */ 592 return (0); 593 } 594 595 /* 596 * kqueue(2) system call. 597 */ 598 int 599 sys_kqueue(struct lwp *l, void *v, register_t *retval) 600 { 601 struct filedesc *fdp; 602 struct kqueue *kq; 603 struct file *fp; 604 struct proc *p; 605 int fd, error; 606 607 p = l->l_proc; 608 fdp = p->p_fd; 609 error = falloc(p, &fp, &fd); /* setup a new file descriptor */ 610 if (error) 611 return (error); 612 fp->f_flag = FREAD | FWRITE; 613 fp->f_type = DTYPE_KQUEUE; 614 fp->f_ops = &kqueueops; 615 kq = pool_get(&kqueue_pool, PR_WAITOK); 616 memset((char *)kq, 0, sizeof(struct kqueue)); 617 simple_lock_init(&kq->kq_lock); 618 TAILQ_INIT(&kq->kq_head); 619 fp->f_data = (caddr_t)kq; /* store the kqueue with the fp */ 620 *retval = fd; 621 if (fdp->fd_knlistsize < 0) 622 fdp->fd_knlistsize = 0; /* this process has a kq */ 623 kq->kq_fdp = fdp; 624 FILE_SET_MATURE(fp); 625 FILE_UNUSE(fp, p); /* falloc() does FILE_USE() */ 626 return (error); 627 } 628 629 /* 630 * kevent(2) system call. 631 */ 632 int 633 sys_kevent(struct lwp *l, void *v, register_t *retval) 634 { 635 struct sys_kevent_args /* { 636 syscallarg(int) fd; 637 syscallarg(const struct kevent *) changelist; 638 syscallarg(size_t) nchanges; 639 syscallarg(struct kevent *) eventlist; 640 syscallarg(size_t) nevents; 641 syscallarg(const struct timespec *) timeout; 642 } */ *uap = v; 643 struct kevent *kevp; 644 struct kqueue *kq; 645 struct file *fp; 646 struct timespec ts; 647 struct proc *p; 648 size_t i, n; 649 int nerrors, error; 650 651 p = l->l_proc; 652 /* check that we're dealing with a kq */ 653 fp = fd_getfile(p->p_fd, SCARG(uap, fd)); 654 if (fp == NULL) 655 return (EBADF); 656 657 if (fp->f_type != DTYPE_KQUEUE) { 658 simple_unlock(&fp->f_slock); 659 return (EBADF); 660 } 661 662 FILE_USE(fp); 663 664 if (SCARG(uap, timeout) != NULL) { 665 error = copyin(SCARG(uap, timeout), &ts, sizeof(ts)); 666 if (error) 667 goto done; 668 SCARG(uap, timeout) = &ts; 669 } 670 671 kq = (struct kqueue *)fp->f_data; 672 nerrors = 0; 673 674 /* traverse list of events to register */ 675 while (SCARG(uap, nchanges) > 0) { 676 /* copyin a maximum of KQ_EVENTS at each pass */ 677 n = MIN(SCARG(uap, nchanges), KQ_NEVENTS); 678 error = copyin(SCARG(uap, changelist), kq->kq_kev, 679 n * sizeof(struct kevent)); 680 if (error) 681 goto done; 682 for (i = 0; i < n; i++) { 683 kevp = &kq->kq_kev[i]; 684 kevp->flags &= ~EV_SYSFLAGS; 685 /* register each knote */ 686 error = kqueue_register(kq, kevp, p); 687 if (error) { 688 if (SCARG(uap, nevents) != 0) { 689 kevp->flags = EV_ERROR; 690 kevp->data = error; 691 error = copyout((caddr_t)kevp, 692 (caddr_t)SCARG(uap, eventlist), 693 sizeof(*kevp)); 694 if (error) 695 goto done; 696 SCARG(uap, eventlist)++; 697 SCARG(uap, nevents)--; 698 nerrors++; 699 } else { 700 goto done; 701 } 702 } 703 } 704 SCARG(uap, nchanges) -= n; /* update the results */ 705 SCARG(uap, changelist) += n; 706 } 707 if (nerrors) { 708 *retval = nerrors; 709 error = 0; 710 goto done; 711 } 712 713 /* actually scan through the events */ 714 error = kqueue_scan(fp, SCARG(uap, nevents), SCARG(uap, eventlist), 715 SCARG(uap, timeout), p, retval); 716 done: 717 FILE_UNUSE(fp, p); 718 return (error); 719 } 720 721 /* 722 * Register a given kevent kev onto the kqueue 723 */ 724 int 725 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p) 726 { 727 const struct kfilter *kfilter; 728 struct filedesc *fdp; 729 struct file *fp; 730 struct knote *kn; 731 int s, error; 732 733 fdp = kq->kq_fdp; 734 fp = NULL; 735 kn = NULL; 736 error = 0; 737 kfilter = kfilter_byfilter(kev->filter); 738 if (kfilter == NULL || kfilter->filtops == NULL) { 739 /* filter not found nor implemented */ 740 return (EINVAL); 741 } 742 743 /* search if knote already exists */ 744 if (kfilter->filtops->f_isfd) { 745 /* monitoring a file descriptor */ 746 if ((fp = fd_getfile(fdp, kev->ident)) == NULL) 747 return (EBADF); /* validate descriptor */ 748 FILE_USE(fp); 749 750 if (kev->ident < fdp->fd_knlistsize) { 751 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link) 752 if (kq == kn->kn_kq && 753 kev->filter == kn->kn_filter) 754 break; 755 } 756 } else { 757 /* 758 * not monitoring a file descriptor, so 759 * lookup knotes in internal hash table 760 */ 761 if (fdp->fd_knhashmask != 0) { 762 struct klist *list; 763 764 list = &fdp->fd_knhash[ 765 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)]; 766 SLIST_FOREACH(kn, list, kn_link) 767 if (kev->ident == kn->kn_id && 768 kq == kn->kn_kq && 769 kev->filter == kn->kn_filter) 770 break; 771 } 772 } 773 774 if (kn == NULL && ((kev->flags & EV_ADD) == 0)) { 775 error = ENOENT; /* filter not found */ 776 goto done; 777 } 778 779 /* 780 * kn now contains the matching knote, or NULL if no match 781 */ 782 if (kev->flags & EV_ADD) { 783 /* add knote */ 784 785 if (kn == NULL) { 786 /* create new knote */ 787 kn = pool_get(&knote_pool, PR_WAITOK); 788 if (kn == NULL) { 789 error = ENOMEM; 790 goto done; 791 } 792 kn->kn_fp = fp; 793 kn->kn_kq = kq; 794 kn->kn_fop = kfilter->filtops; 795 796 /* 797 * apply reference count to knote structure, and 798 * do not release it at the end of this routine. 799 */ 800 fp = NULL; 801 802 kn->kn_sfflags = kev->fflags; 803 kn->kn_sdata = kev->data; 804 kev->fflags = 0; 805 kev->data = 0; 806 kn->kn_kevent = *kev; 807 808 knote_attach(kn, fdp); 809 if ((error = kfilter->filtops->f_attach(kn)) != 0) { 810 knote_drop(kn, p, fdp); 811 goto done; 812 } 813 } else { 814 /* modify existing knote */ 815 816 /* 817 * The user may change some filter values after the 818 * initial EV_ADD, but doing so will not reset any 819 * filter which have already been triggered. 820 */ 821 kn->kn_sfflags = kev->fflags; 822 kn->kn_sdata = kev->data; 823 kn->kn_kevent.udata = kev->udata; 824 } 825 826 s = splsched(); 827 if (kn->kn_fop->f_event(kn, 0)) 828 KNOTE_ACTIVATE(kn); 829 splx(s); 830 831 } else if (kev->flags & EV_DELETE) { /* delete knote */ 832 kn->kn_fop->f_detach(kn); 833 knote_drop(kn, p, fdp); 834 goto done; 835 } 836 837 /* disable knote */ 838 if ((kev->flags & EV_DISABLE) && 839 ((kn->kn_status & KN_DISABLED) == 0)) { 840 s = splsched(); 841 kn->kn_status |= KN_DISABLED; 842 splx(s); 843 } 844 845 /* enable knote */ 846 if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) { 847 s = splsched(); 848 kn->kn_status &= ~KN_DISABLED; 849 if ((kn->kn_status & KN_ACTIVE) && 850 ((kn->kn_status & KN_QUEUED) == 0)) 851 knote_enqueue(kn); 852 splx(s); 853 } 854 855 done: 856 if (fp != NULL) 857 FILE_UNUSE(fp, p); 858 return (error); 859 } 860 861 /* 862 * Scan through the list of events on fp (for a maximum of maxevents), 863 * returning the results in to ulistp. Timeout is determined by tsp; if 864 * NULL, wait indefinitely, if 0 valued, perform a poll, otherwise wait 865 * as appropriate. 866 */ 867 static int 868 kqueue_scan(struct file *fp, size_t maxevents, struct kevent *ulistp, 869 const struct timespec *tsp, struct proc *p, register_t *retval) 870 { 871 struct kqueue *kq; 872 struct kevent *kevp; 873 struct timeval atv; 874 struct knote *kn, *marker=NULL; 875 size_t count, nkev; 876 int s, timeout, error; 877 878 kq = (struct kqueue *)fp->f_data; 879 count = maxevents; 880 nkev = error = 0; 881 if (count == 0) 882 goto done; 883 884 if (tsp) { /* timeout supplied */ 885 TIMESPEC_TO_TIMEVAL(&atv, tsp); 886 if (itimerfix(&atv)) { 887 error = EINVAL; 888 goto done; 889 } 890 s = splclock(); 891 timeradd(&atv, &time, &atv); /* calc. time to wait until */ 892 splx(s); 893 timeout = hzto(&atv); 894 if (timeout <= 0) 895 timeout = -1; /* do poll */ 896 } else { 897 /* no timeout, wait forever */ 898 timeout = 0; 899 } 900 901 MALLOC(marker, struct knote *, sizeof(*marker), M_KEVENT, M_WAITOK); 902 memset(marker, 0, sizeof(*marker)); 903 904 goto start; 905 906 retry: 907 if (tsp) { 908 /* 909 * We have to recalculate the timeout on every retry. 910 */ 911 timeout = hzto(&atv); 912 if (timeout <= 0) 913 goto done; 914 } 915 916 start: 917 kevp = kq->kq_kev; 918 s = splsched(); 919 simple_lock(&kq->kq_lock); 920 if (kq->kq_count == 0) { 921 if (timeout < 0) { 922 error = EWOULDBLOCK; 923 simple_unlock(&kq->kq_lock); 924 } else { 925 kq->kq_state |= KQ_SLEEP; 926 error = ltsleep(kq, PSOCK | PCATCH | PNORELOCK, 927 "kqread", timeout, &kq->kq_lock); 928 } 929 splx(s); 930 if (error == 0) 931 goto retry; 932 /* don't restart after signals... */ 933 if (error == ERESTART) 934 error = EINTR; 935 else if (error == EWOULDBLOCK) 936 error = 0; 937 goto done; 938 } 939 940 /* mark end of knote list */ 941 TAILQ_INSERT_TAIL(&kq->kq_head, marker, kn_tqe); 942 simple_unlock(&kq->kq_lock); 943 944 while (count) { /* while user wants data ... */ 945 simple_lock(&kq->kq_lock); 946 kn = TAILQ_FIRST(&kq->kq_head); /* get next knote */ 947 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 948 if (kn == marker) { /* if it's our marker, stop */ 949 /* What if it's some else's marker? */ 950 simple_unlock(&kq->kq_lock); 951 splx(s); 952 if (count == maxevents) 953 goto retry; 954 goto done; 955 } 956 kq->kq_count--; 957 simple_unlock(&kq->kq_lock); 958 959 if (kn->kn_status & KN_DISABLED) { 960 /* don't want disabled events */ 961 kn->kn_status &= ~KN_QUEUED; 962 continue; 963 } 964 if ((kn->kn_flags & EV_ONESHOT) == 0 && 965 kn->kn_fop->f_event(kn, 0) == 0) { 966 /* 967 * non-ONESHOT event that hasn't 968 * triggered again, so de-queue. 969 */ 970 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 971 continue; 972 } 973 *kevp = kn->kn_kevent; 974 kevp++; 975 nkev++; 976 if (kn->kn_flags & EV_ONESHOT) { 977 /* delete ONESHOT events after retrieval */ 978 kn->kn_status &= ~KN_QUEUED; 979 splx(s); 980 kn->kn_fop->f_detach(kn); 981 knote_drop(kn, p, p->p_fd); 982 s = splsched(); 983 } else if (kn->kn_flags & EV_CLEAR) { 984 /* clear state after retrieval */ 985 kn->kn_data = 0; 986 kn->kn_fflags = 0; 987 kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE); 988 } else { 989 /* add event back on list */ 990 simple_lock(&kq->kq_lock); 991 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 992 kq->kq_count++; 993 simple_unlock(&kq->kq_lock); 994 } 995 count--; 996 if (nkev == KQ_NEVENTS) { 997 /* do copyouts in KQ_NEVENTS chunks */ 998 splx(s); 999 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp, 1000 sizeof(struct kevent) * nkev); 1001 ulistp += nkev; 1002 nkev = 0; 1003 kevp = kq->kq_kev; 1004 s = splsched(); 1005 if (error) 1006 break; 1007 } 1008 } 1009 1010 /* remove marker */ 1011 simple_lock(&kq->kq_lock); 1012 TAILQ_REMOVE(&kq->kq_head, marker, kn_tqe); 1013 simple_unlock(&kq->kq_lock); 1014 splx(s); 1015 done: 1016 if (marker) 1017 FREE(marker, M_KEVENT); 1018 1019 if (nkev != 0) { 1020 /* copyout remaining events */ 1021 error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp, 1022 sizeof(struct kevent) * nkev); 1023 } 1024 *retval = maxevents - count; 1025 1026 return (error); 1027 } 1028 1029 /* 1030 * struct fileops read method for a kqueue descriptor. 1031 * Not implemented. 1032 * XXX: This could be expanded to call kqueue_scan, if desired. 1033 */ 1034 /*ARGSUSED*/ 1035 static int 1036 kqueue_read(struct file *fp, off_t *offset, struct uio *uio, 1037 struct ucred *cred, int flags) 1038 { 1039 1040 return (ENXIO); 1041 } 1042 1043 /* 1044 * struct fileops write method for a kqueue descriptor. 1045 * Not implemented. 1046 */ 1047 /*ARGSUSED*/ 1048 static int 1049 kqueue_write(struct file *fp, off_t *offset, struct uio *uio, 1050 struct ucred *cred, int flags) 1051 { 1052 1053 return (ENXIO); 1054 } 1055 1056 /* 1057 * struct fileops ioctl method for a kqueue descriptor. 1058 * 1059 * Two ioctls are currently supported. They both use struct kfilter_mapping: 1060 * KFILTER_BYNAME find name for filter, and return result in 1061 * name, which is of size len. 1062 * KFILTER_BYFILTER find filter for name. len is ignored. 1063 */ 1064 /*ARGSUSED*/ 1065 static int 1066 kqueue_ioctl(struct file *fp, u_long com, void *data, struct proc *p) 1067 { 1068 struct kfilter_mapping *km; 1069 const struct kfilter *kfilter; 1070 char *name; 1071 int error; 1072 1073 km = (struct kfilter_mapping *)data; 1074 error = 0; 1075 1076 switch (com) { 1077 case KFILTER_BYFILTER: /* convert filter -> name */ 1078 kfilter = kfilter_byfilter(km->filter); 1079 if (kfilter != NULL) 1080 error = copyoutstr(kfilter->name, km->name, km->len, 1081 NULL); 1082 else 1083 error = ENOENT; 1084 break; 1085 1086 case KFILTER_BYNAME: /* convert name -> filter */ 1087 MALLOC(name, char *, KFILTER_MAXNAME, M_KEVENT, M_WAITOK); 1088 error = copyinstr(km->name, name, KFILTER_MAXNAME, NULL); 1089 if (error) { 1090 FREE(name, M_KEVENT); 1091 break; 1092 } 1093 kfilter = kfilter_byname(name); 1094 if (kfilter != NULL) 1095 km->filter = kfilter->filter; 1096 else 1097 error = ENOENT; 1098 FREE(name, M_KEVENT); 1099 break; 1100 1101 default: 1102 error = ENOTTY; 1103 1104 } 1105 return (error); 1106 } 1107 1108 /* 1109 * struct fileops fcntl method for a kqueue descriptor. 1110 * Not implemented. 1111 */ 1112 /*ARGSUSED*/ 1113 static int 1114 kqueue_fcntl(struct file *fp, u_int com, void *data, struct proc *p) 1115 { 1116 1117 return (ENOTTY); 1118 } 1119 1120 /* 1121 * struct fileops poll method for a kqueue descriptor. 1122 * Determine if kqueue has events pending. 1123 */ 1124 static int 1125 kqueue_poll(struct file *fp, int events, struct proc *p) 1126 { 1127 struct kqueue *kq; 1128 int revents; 1129 1130 kq = (struct kqueue *)fp->f_data; 1131 revents = 0; 1132 if (events & (POLLIN | POLLRDNORM)) { 1133 if (kq->kq_count) { 1134 revents |= events & (POLLIN | POLLRDNORM); 1135 } else { 1136 selrecord(p, &kq->kq_sel); 1137 } 1138 } 1139 return (revents); 1140 } 1141 1142 /* 1143 * struct fileops stat method for a kqueue descriptor. 1144 * Returns dummy info, with st_size being number of events pending. 1145 */ 1146 static int 1147 kqueue_stat(struct file *fp, struct stat *st, struct proc *p) 1148 { 1149 struct kqueue *kq; 1150 1151 kq = (struct kqueue *)fp->f_data; 1152 memset((void *)st, 0, sizeof(*st)); 1153 st->st_size = kq->kq_count; 1154 st->st_blksize = sizeof(struct kevent); 1155 st->st_mode = S_IFIFO; 1156 return (0); 1157 } 1158 1159 /* 1160 * struct fileops close method for a kqueue descriptor. 1161 * Cleans up kqueue. 1162 */ 1163 static int 1164 kqueue_close(struct file *fp, struct proc *p) 1165 { 1166 struct kqueue *kq; 1167 struct filedesc *fdp; 1168 struct knote **knp, *kn, *kn0; 1169 int i; 1170 1171 kq = (struct kqueue *)fp->f_data; 1172 fdp = p->p_fd; 1173 for (i = 0; i < fdp->fd_knlistsize; i++) { 1174 knp = &SLIST_FIRST(&fdp->fd_knlist[i]); 1175 kn = *knp; 1176 while (kn != NULL) { 1177 kn0 = SLIST_NEXT(kn, kn_link); 1178 if (kq == kn->kn_kq) { 1179 kn->kn_fop->f_detach(kn); 1180 FILE_UNUSE(kn->kn_fp, p); 1181 pool_put(&knote_pool, kn); 1182 *knp = kn0; 1183 } else { 1184 knp = &SLIST_NEXT(kn, kn_link); 1185 } 1186 kn = kn0; 1187 } 1188 } 1189 if (fdp->fd_knhashmask != 0) { 1190 for (i = 0; i < fdp->fd_knhashmask + 1; i++) { 1191 knp = &SLIST_FIRST(&fdp->fd_knhash[i]); 1192 kn = *knp; 1193 while (kn != NULL) { 1194 kn0 = SLIST_NEXT(kn, kn_link); 1195 if (kq == kn->kn_kq) { 1196 kn->kn_fop->f_detach(kn); 1197 /* XXX non-fd release of kn->kn_ptr */ 1198 pool_put(&knote_pool, kn); 1199 *knp = kn0; 1200 } else { 1201 knp = &SLIST_NEXT(kn, kn_link); 1202 } 1203 kn = kn0; 1204 } 1205 } 1206 } 1207 pool_put(&kqueue_pool, kq); 1208 fp->f_data = NULL; 1209 1210 return (0); 1211 } 1212 1213 /* 1214 * wakeup a kqueue 1215 */ 1216 static void 1217 kqueue_wakeup(struct kqueue *kq) 1218 { 1219 int s; 1220 1221 s = splsched(); 1222 simple_lock(&kq->kq_lock); 1223 if (kq->kq_state & KQ_SLEEP) { /* if currently sleeping ... */ 1224 kq->kq_state &= ~KQ_SLEEP; 1225 wakeup(kq); /* ... wakeup */ 1226 } 1227 1228 /* Notify select/poll and kevent. */ 1229 selnotify(&kq->kq_sel, 0); 1230 simple_unlock(&kq->kq_lock); 1231 splx(s); 1232 } 1233 1234 /* 1235 * struct fileops kqfilter method for a kqueue descriptor. 1236 * Event triggered when monitored kqueue changes. 1237 */ 1238 /*ARGSUSED*/ 1239 static int 1240 kqueue_kqfilter(struct file *fp, struct knote *kn) 1241 { 1242 struct kqueue *kq; 1243 1244 KASSERT(fp == kn->kn_fp); 1245 kq = (struct kqueue *)kn->kn_fp->f_data; 1246 if (kn->kn_filter != EVFILT_READ) 1247 return (1); 1248 kn->kn_fop = &kqread_filtops; 1249 SLIST_INSERT_HEAD(&kq->kq_sel.sel_klist, kn, kn_selnext); 1250 return (0); 1251 } 1252 1253 1254 /* 1255 * Walk down a list of knotes, activating them if their event has triggered. 1256 */ 1257 void 1258 knote(struct klist *list, long hint) 1259 { 1260 struct knote *kn; 1261 1262 SLIST_FOREACH(kn, list, kn_selnext) 1263 if (kn->kn_fop->f_event(kn, hint)) 1264 KNOTE_ACTIVATE(kn); 1265 } 1266 1267 /* 1268 * Remove all knotes from a specified klist 1269 */ 1270 void 1271 knote_remove(struct proc *p, struct klist *list) 1272 { 1273 struct knote *kn; 1274 1275 while ((kn = SLIST_FIRST(list)) != NULL) { 1276 kn->kn_fop->f_detach(kn); 1277 knote_drop(kn, p, p->p_fd); 1278 } 1279 } 1280 1281 /* 1282 * Remove all knotes referencing a specified fd 1283 */ 1284 void 1285 knote_fdclose(struct proc *p, int fd) 1286 { 1287 struct filedesc *fdp; 1288 struct klist *list; 1289 1290 fdp = p->p_fd; 1291 list = &fdp->fd_knlist[fd]; 1292 knote_remove(p, list); 1293 } 1294 1295 /* 1296 * Attach a new knote to a file descriptor 1297 */ 1298 static void 1299 knote_attach(struct knote *kn, struct filedesc *fdp) 1300 { 1301 struct klist *list; 1302 int size; 1303 1304 if (! kn->kn_fop->f_isfd) { 1305 /* if knote is not on an fd, store on internal hash table */ 1306 if (fdp->fd_knhashmask == 0) 1307 fdp->fd_knhash = hashinit(KN_HASHSIZE, HASH_LIST, 1308 M_KEVENT, M_WAITOK, &fdp->fd_knhashmask); 1309 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; 1310 goto done; 1311 } 1312 1313 /* 1314 * otherwise, knote is on an fd. 1315 * knotes are stored in fd_knlist indexed by kn->kn_id. 1316 */ 1317 if (fdp->fd_knlistsize <= kn->kn_id) { 1318 /* expand list, it's too small */ 1319 size = fdp->fd_knlistsize; 1320 while (size <= kn->kn_id) { 1321 /* grow in KQ_EXTENT chunks */ 1322 size += KQ_EXTENT; 1323 } 1324 list = malloc(size * sizeof(struct klist *), M_KEVENT,M_WAITOK); 1325 if (fdp->fd_knlist) { 1326 /* copy existing knlist */ 1327 memcpy((caddr_t)list, (caddr_t)fdp->fd_knlist, 1328 fdp->fd_knlistsize * sizeof(struct klist *)); 1329 } 1330 /* 1331 * Zero new memory. Stylistically, SLIST_INIT() should be 1332 * used here, but that does same thing as the memset() anyway. 1333 */ 1334 memset(&list[fdp->fd_knlistsize], 0, 1335 (size - fdp->fd_knlistsize) * sizeof(struct klist *)); 1336 1337 /* switch to new knlist */ 1338 if (fdp->fd_knlist != NULL) 1339 free(fdp->fd_knlist, M_KEVENT); 1340 fdp->fd_knlistsize = size; 1341 fdp->fd_knlist = list; 1342 } 1343 1344 /* get list head for this fd */ 1345 list = &fdp->fd_knlist[kn->kn_id]; 1346 done: 1347 /* add new knote */ 1348 SLIST_INSERT_HEAD(list, kn, kn_link); 1349 kn->kn_status = 0; 1350 } 1351 1352 /* 1353 * Drop knote. 1354 * Should be called at spl == 0, since we don't want to hold spl 1355 * while calling FILE_UNUSE and free. 1356 */ 1357 static void 1358 knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp) 1359 { 1360 struct klist *list; 1361 1362 if (kn->kn_fop->f_isfd) 1363 list = &fdp->fd_knlist[kn->kn_id]; 1364 else 1365 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)]; 1366 1367 SLIST_REMOVE(list, kn, knote, kn_link); 1368 if (kn->kn_status & KN_QUEUED) 1369 knote_dequeue(kn); 1370 if (kn->kn_fop->f_isfd) 1371 FILE_UNUSE(kn->kn_fp, p); 1372 pool_put(&knote_pool, kn); 1373 } 1374 1375 1376 /* 1377 * Queue new event for knote. 1378 */ 1379 static void 1380 knote_enqueue(struct knote *kn) 1381 { 1382 struct kqueue *kq; 1383 int s; 1384 1385 kq = kn->kn_kq; 1386 KASSERT((kn->kn_status & KN_QUEUED) == 0); 1387 1388 s = splsched(); 1389 simple_lock(&kq->kq_lock); 1390 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe); 1391 kn->kn_status |= KN_QUEUED; 1392 kq->kq_count++; 1393 simple_unlock(&kq->kq_lock); 1394 splx(s); 1395 kqueue_wakeup(kq); 1396 } 1397 1398 /* 1399 * Dequeue event for knote. 1400 */ 1401 static void 1402 knote_dequeue(struct knote *kn) 1403 { 1404 struct kqueue *kq; 1405 int s; 1406 1407 KASSERT(kn->kn_status & KN_QUEUED); 1408 kq = kn->kn_kq; 1409 1410 s = splsched(); 1411 simple_lock(&kq->kq_lock); 1412 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe); 1413 kn->kn_status &= ~KN_QUEUED; 1414 kq->kq_count--; 1415 simple_unlock(&kq->kq_lock); 1416 splx(s); 1417 } 1418