xref: /netbsd-src/sys/kern/kern_entropy.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: kern_entropy.c,v 1.33 2021/09/26 15:10:51 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2019 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Taylor R. Campbell.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Entropy subsystem
34  *
35  *	* Each CPU maintains a per-CPU entropy pool so that gathering
36  *	  entropy requires no interprocessor synchronization, except
37  *	  early at boot when we may be scrambling to gather entropy as
38  *	  soon as possible.
39  *
40  *	  - entropy_enter gathers entropy and never drops it on the
41  *	    floor, at the cost of sometimes having to do cryptography.
42  *
43  *	  - entropy_enter_intr gathers entropy or drops it on the
44  *	    floor, with low latency.  Work to stir the pool or kick the
45  *	    housekeeping thread is scheduled in soft interrupts.
46  *
47  *	* entropy_enter immediately enters into the global pool if it
48  *	  can transition to full entropy in one swell foop.  Otherwise,
49  *	  it defers to a housekeeping thread that consolidates entropy,
50  *	  but only when the CPUs collectively have full entropy, in
51  *	  order to mitigate iterative-guessing attacks.
52  *
53  *	* The entropy housekeeping thread continues to consolidate
54  *	  entropy even after we think we have full entropy, in case we
55  *	  are wrong, but is limited to one discretionary consolidation
56  *	  per minute, and only when new entropy is actually coming in,
57  *	  to limit performance impact.
58  *
59  *	* The entropy epoch is the number that changes when we
60  *	  transition from partial entropy to full entropy, so that
61  *	  users can easily determine when to reseed.  This also
62  *	  facilitates an operator explicitly causing everything to
63  *	  reseed by sysctl -w kern.entropy.consolidate=1.
64  *
65  *	* No entropy estimation based on the sample values, which is a
66  *	  contradiction in terms and a potential source of side
67  *	  channels.  It is the responsibility of the driver author to
68  *	  study how predictable the physical source of input can ever
69  *	  be, and to furnish a lower bound on the amount of entropy it
70  *	  has.
71  *
72  *	* Entropy depletion is available for testing (or if you're into
73  *	  that sort of thing), with sysctl -w kern.entropy.depletion=1;
74  *	  the logic to support it is small, to minimize chance of bugs.
75  */
76 
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.33 2021/09/26 15:10:51 thorpej Exp $");
79 
80 #include <sys/param.h>
81 #include <sys/types.h>
82 #include <sys/atomic.h>
83 #include <sys/compat_stub.h>
84 #include <sys/condvar.h>
85 #include <sys/cpu.h>
86 #include <sys/entropy.h>
87 #include <sys/errno.h>
88 #include <sys/evcnt.h>
89 #include <sys/event.h>
90 #include <sys/file.h>
91 #include <sys/intr.h>
92 #include <sys/kauth.h>
93 #include <sys/kernel.h>
94 #include <sys/kmem.h>
95 #include <sys/kthread.h>
96 #include <sys/module_hook.h>
97 #include <sys/mutex.h>
98 #include <sys/percpu.h>
99 #include <sys/poll.h>
100 #include <sys/queue.h>
101 #include <sys/reboot.h>
102 #include <sys/rnd.h>		/* legacy kernel API */
103 #include <sys/rndio.h>		/* userland ioctl interface */
104 #include <sys/rndsource.h>	/* kernel rndsource driver API */
105 #include <sys/select.h>
106 #include <sys/selinfo.h>
107 #include <sys/sha1.h>		/* for boot seed checksum */
108 #include <sys/stdint.h>
109 #include <sys/sysctl.h>
110 #include <sys/syslog.h>
111 #include <sys/systm.h>
112 #include <sys/time.h>
113 #include <sys/xcall.h>
114 
115 #include <lib/libkern/entpool.h>
116 
117 #include <machine/limits.h>
118 
119 #ifdef __HAVE_CPU_COUNTER
120 #include <machine/cpu_counter.h>
121 #endif
122 
123 /*
124  * struct entropy_cpu
125  *
126  *	Per-CPU entropy state.  The pool is allocated separately
127  *	because percpu(9) sometimes moves per-CPU objects around
128  *	without zeroing them, which would lead to unwanted copies of
129  *	sensitive secrets.  The evcnt is allocated separately becuase
130  *	evcnt(9) assumes it stays put in memory.
131  */
132 struct entropy_cpu {
133 	struct evcnt		*ec_softint_evcnt;
134 	struct entpool		*ec_pool;
135 	unsigned		ec_pending;
136 	bool			ec_locked;
137 };
138 
139 /*
140  * struct rndsource_cpu
141  *
142  *	Per-CPU rndsource state.
143  */
144 struct rndsource_cpu {
145 	unsigned		rc_entropybits;
146 	unsigned		rc_timesamples;
147 	unsigned		rc_datasamples;
148 };
149 
150 /*
151  * entropy_global (a.k.a. E for short in this file)
152  *
153  *	Global entropy state.  Writes protected by the global lock.
154  *	Some fields, marked (A), can be read outside the lock, and are
155  *	maintained with atomic_load/store_relaxed.
156  */
157 struct {
158 	kmutex_t	lock;		/* covers all global state */
159 	struct entpool	pool;		/* global pool for extraction */
160 	unsigned	needed;		/* (A) needed globally */
161 	unsigned	pending;	/* (A) pending in per-CPU pools */
162 	unsigned	timestamp;	/* (A) time of last consolidation */
163 	unsigned	epoch;		/* (A) changes when needed -> 0 */
164 	kcondvar_t	cv;		/* notifies state changes */
165 	struct selinfo	selq;		/* notifies needed -> 0 */
166 	struct lwp	*sourcelock;	/* lock on list of sources */
167 	kcondvar_t	sourcelock_cv;	/* notifies sourcelock release */
168 	LIST_HEAD(,krndsource) sources;	/* list of entropy sources */
169 	enum entropy_stage {
170 		ENTROPY_COLD = 0, /* single-threaded */
171 		ENTROPY_WARM,	  /* multi-threaded at boot before CPUs */
172 		ENTROPY_HOT,	  /* multi-threaded multi-CPU */
173 	}		stage;
174 	bool		consolidate;	/* kick thread to consolidate */
175 	bool		seed_rndsource;	/* true if seed source is attached */
176 	bool		seeded;		/* true if seed file already loaded */
177 } entropy_global __cacheline_aligned = {
178 	/* Fields that must be initialized when the kernel is loaded.  */
179 	.needed = ENTROPY_CAPACITY*NBBY,
180 	.epoch = (unsigned)-1,	/* -1 means entropy never consolidated */
181 	.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
182 	.stage = ENTROPY_COLD,
183 };
184 
185 #define	E	(&entropy_global)	/* declutter */
186 
187 /* Read-mostly globals */
188 static struct percpu	*entropy_percpu __read_mostly; /* struct entropy_cpu */
189 static void		*entropy_sih __read_mostly; /* softint handler */
190 static struct lwp	*entropy_lwp __read_mostly; /* housekeeping thread */
191 
192 int rnd_initial_entropy __read_mostly; /* XXX legacy */
193 
194 static struct krndsource seed_rndsource __read_mostly;
195 
196 /*
197  * Event counters
198  *
199  *	Must be careful with adding these because they can serve as
200  *	side channels.
201  */
202 static struct evcnt entropy_discretionary_evcnt =
203     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
204 EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
205 static struct evcnt entropy_immediate_evcnt =
206     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
207 EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
208 static struct evcnt entropy_partial_evcnt =
209     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
210 EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
211 static struct evcnt entropy_consolidate_evcnt =
212     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
213 EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
214 static struct evcnt entropy_extract_intr_evcnt =
215     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
216 EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
217 static struct evcnt entropy_extract_fail_evcnt =
218     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
219 EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
220 static struct evcnt entropy_request_evcnt =
221     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
222 EVCNT_ATTACH_STATIC(entropy_request_evcnt);
223 static struct evcnt entropy_deplete_evcnt =
224     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
225 EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
226 static struct evcnt entropy_notify_evcnt =
227     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
228 EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
229 
230 /* Sysctl knobs */
231 static bool	entropy_collection = 1;
232 static bool	entropy_depletion = 0; /* Silly!  */
233 
234 static const struct sysctlnode	*entropy_sysctlroot;
235 static struct sysctllog		*entropy_sysctllog;
236 
237 /* Forward declarations */
238 static void	entropy_init_cpu(void *, void *, struct cpu_info *);
239 static void	entropy_fini_cpu(void *, void *, struct cpu_info *);
240 static void	entropy_account_cpu(struct entropy_cpu *);
241 static void	entropy_enter(const void *, size_t, unsigned);
242 static bool	entropy_enter_intr(const void *, size_t, unsigned);
243 static void	entropy_softintr(void *);
244 static void	entropy_thread(void *);
245 static uint32_t	entropy_pending(void);
246 static void	entropy_pending_cpu(void *, void *, struct cpu_info *);
247 static void	entropy_do_consolidate(void);
248 static void	entropy_consolidate_xc(void *, void *);
249 static void	entropy_notify(void);
250 static int	sysctl_entropy_consolidate(SYSCTLFN_ARGS);
251 static int	sysctl_entropy_gather(SYSCTLFN_ARGS);
252 static void	filt_entropy_read_detach(struct knote *);
253 static int	filt_entropy_read_event(struct knote *, long);
254 static void	entropy_request(size_t);
255 static void	rnd_add_data_1(struct krndsource *, const void *, uint32_t,
256 		    uint32_t, uint32_t);
257 static unsigned	rndsource_entropybits(struct krndsource *);
258 static void	rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
259 static void	rndsource_to_user(struct krndsource *, rndsource_t *);
260 static void	rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
261 static void	rndsource_to_user_est_cpu(void *, void *, struct cpu_info *);
262 
263 /*
264  * entropy_timer()
265  *
266  *	Cycle counter, time counter, or anything that changes a wee bit
267  *	unpredictably.
268  */
269 static inline uint32_t
270 entropy_timer(void)
271 {
272 	struct bintime bt;
273 	uint32_t v;
274 
275 	/* If we have a CPU cycle counter, use the low 32 bits.  */
276 #ifdef __HAVE_CPU_COUNTER
277 	if (__predict_true(cpu_hascounter()))
278 		return cpu_counter32();
279 #endif	/* __HAVE_CPU_COUNTER */
280 
281 	/* If we're cold, tough.  Can't binuptime while cold.  */
282 	if (__predict_false(cold))
283 		return 0;
284 
285 	/* Fold the 128 bits of binuptime into 32 bits.  */
286 	binuptime(&bt);
287 	v = bt.frac;
288 	v ^= bt.frac >> 32;
289 	v ^= bt.sec;
290 	v ^= bt.sec >> 32;
291 	return v;
292 }
293 
294 static void
295 attach_seed_rndsource(void)
296 {
297 
298 	/*
299 	 * First called no later than entropy_init, while we are still
300 	 * single-threaded, so no need for RUN_ONCE.
301 	 */
302 	if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
303 		return;
304 	rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
305 	    RND_FLAG_COLLECT_VALUE);
306 	E->seed_rndsource = true;
307 }
308 
309 /*
310  * entropy_init()
311  *
312  *	Initialize the entropy subsystem.  Panic on failure.
313  *
314  *	Requires percpu(9) and sysctl(9) to be initialized.
315  */
316 static void
317 entropy_init(void)
318 {
319 	uint32_t extra[2];
320 	struct krndsource *rs;
321 	unsigned i = 0;
322 
323 	KASSERT(E->stage == ENTROPY_COLD);
324 
325 	/* Grab some cycle counts early at boot.  */
326 	extra[i++] = entropy_timer();
327 
328 	/* Run the entropy pool cryptography self-test.  */
329 	if (entpool_selftest() == -1)
330 		panic("entropy pool crypto self-test failed");
331 
332 	/* Create the sysctl directory.  */
333 	sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
334 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
335 	    SYSCTL_DESCR("Entropy (random number sources) options"),
336 	    NULL, 0, NULL, 0,
337 	    CTL_KERN, CTL_CREATE, CTL_EOL);
338 
339 	/* Create the sysctl knobs.  */
340 	/* XXX These shouldn't be writable at securelevel>0.  */
341 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
342 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
343 	    SYSCTL_DESCR("Automatically collect entropy from hardware"),
344 	    NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
345 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
346 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
347 	    SYSCTL_DESCR("`Deplete' entropy pool when observed"),
348 	    NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
349 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
350 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
351 	    SYSCTL_DESCR("Trigger entropy consolidation now"),
352 	    sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
353 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
354 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
355 	    SYSCTL_DESCR("Trigger entropy gathering from sources now"),
356 	    sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
357 	/* XXX These should maybe not be readable at securelevel>0.  */
358 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
359 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
360 	    "needed", SYSCTL_DESCR("Systemwide entropy deficit"),
361 	    NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
362 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
363 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
364 	    "pending", SYSCTL_DESCR("Entropy pending on CPUs"),
365 	    NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
366 	sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
367 	    CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
368 	    "epoch", SYSCTL_DESCR("Entropy epoch"),
369 	    NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
370 
371 	/* Initialize the global state for multithreaded operation.  */
372 	mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
373 	cv_init(&E->cv, "entropy");
374 	selinit(&E->selq);
375 	cv_init(&E->sourcelock_cv, "entsrclock");
376 
377 	/* Make sure the seed source is attached.  */
378 	attach_seed_rndsource();
379 
380 	/* Note if the bootloader didn't provide a seed.  */
381 	if (!E->seeded)
382 		aprint_debug("entropy: no seed from bootloader\n");
383 
384 	/* Allocate the per-CPU records for all early entropy sources.  */
385 	LIST_FOREACH(rs, &E->sources, list)
386 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
387 
388 	/* Enter the boot cycle count to get started.  */
389 	extra[i++] = entropy_timer();
390 	KASSERT(i == __arraycount(extra));
391 	entropy_enter(extra, sizeof extra, 0);
392 	explicit_memset(extra, 0, sizeof extra);
393 
394 	/* We are now ready for multi-threaded operation.  */
395 	E->stage = ENTROPY_WARM;
396 }
397 
398 /*
399  * entropy_init_late()
400  *
401  *	Late initialization.  Panic on failure.
402  *
403  *	Requires CPUs to have been detected and LWPs to have started.
404  */
405 static void
406 entropy_init_late(void)
407 {
408 	int error;
409 
410 	KASSERT(E->stage == ENTROPY_WARM);
411 
412 	/* Allocate and initialize the per-CPU state.  */
413 	entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
414 	    entropy_init_cpu, entropy_fini_cpu, NULL);
415 
416 	/*
417 	 * Establish the softint at the highest softint priority level.
418 	 * Must happen after CPU detection.
419 	 */
420 	entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
421 	    &entropy_softintr, NULL);
422 	if (entropy_sih == NULL)
423 		panic("unable to establish entropy softint");
424 
425 	/*
426 	 * Create the entropy housekeeping thread.  Must happen after
427 	 * lwpinit.
428 	 */
429 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
430 	    entropy_thread, NULL, &entropy_lwp, "entbutler");
431 	if (error)
432 		panic("unable to create entropy housekeeping thread: %d",
433 		    error);
434 
435 	/*
436 	 * Wait until the per-CPU initialization has hit all CPUs
437 	 * before proceeding to mark the entropy system hot.
438 	 */
439 	xc_barrier(XC_HIGHPRI);
440 	E->stage = ENTROPY_HOT;
441 }
442 
443 /*
444  * entropy_init_cpu(ptr, cookie, ci)
445  *
446  *	percpu(9) constructor for per-CPU entropy pool.
447  */
448 static void
449 entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
450 {
451 	struct entropy_cpu *ec = ptr;
452 
453 	ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
454 	    KM_SLEEP);
455 	ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
456 	ec->ec_pending = 0;
457 	ec->ec_locked = false;
458 
459 	evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
460 	    ci->ci_cpuname, "entropy softint");
461 }
462 
463 /*
464  * entropy_fini_cpu(ptr, cookie, ci)
465  *
466  *	percpu(9) destructor for per-CPU entropy pool.
467  */
468 static void
469 entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
470 {
471 	struct entropy_cpu *ec = ptr;
472 
473 	/*
474 	 * Zero any lingering data.  Disclosure of the per-CPU pool
475 	 * shouldn't retroactively affect the security of any keys
476 	 * generated, because entpool(9) erases whatever we have just
477 	 * drawn out of any pool, but better safe than sorry.
478 	 */
479 	explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
480 
481 	evcnt_detach(ec->ec_softint_evcnt);
482 
483 	kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
484 	kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
485 }
486 
487 /*
488  * entropy_seed(seed)
489  *
490  *	Seed the entropy pool with seed.  Meant to be called as early
491  *	as possible by the bootloader; may be called before or after
492  *	entropy_init.  Must be called before system reaches userland.
493  *	Must be called in thread or soft interrupt context, not in hard
494  *	interrupt context.  Must be called at most once.
495  *
496  *	Overwrites the seed in place.  Caller may then free the memory.
497  */
498 static void
499 entropy_seed(rndsave_t *seed)
500 {
501 	SHA1_CTX ctx;
502 	uint8_t digest[SHA1_DIGEST_LENGTH];
503 	bool seeded;
504 
505 	/*
506 	 * Verify the checksum.  If the checksum fails, take the data
507 	 * but ignore the entropy estimate -- the file may have been
508 	 * incompletely written with garbage, which is harmless to add
509 	 * but may not be as unpredictable as alleged.
510 	 */
511 	SHA1Init(&ctx);
512 	SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
513 	SHA1Update(&ctx, seed->data, sizeof(seed->data));
514 	SHA1Final(digest, &ctx);
515 	CTASSERT(sizeof(seed->digest) == sizeof(digest));
516 	if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
517 		printf("entropy: invalid seed checksum\n");
518 		seed->entropy = 0;
519 	}
520 	explicit_memset(&ctx, 0, sizeof ctx);
521 	explicit_memset(digest, 0, sizeof digest);
522 
523 	/*
524 	 * If the entropy is insensibly large, try byte-swapping.
525 	 * Otherwise assume the file is corrupted and act as though it
526 	 * has zero entropy.
527 	 */
528 	if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
529 		seed->entropy = bswap32(seed->entropy);
530 		if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
531 			seed->entropy = 0;
532 	}
533 
534 	/* Make sure the seed source is attached.  */
535 	attach_seed_rndsource();
536 
537 	/* Test and set E->seeded.  */
538 	if (E->stage >= ENTROPY_WARM)
539 		mutex_enter(&E->lock);
540 	seeded = E->seeded;
541 	E->seeded = (seed->entropy > 0);
542 	if (E->stage >= ENTROPY_WARM)
543 		mutex_exit(&E->lock);
544 
545 	/*
546 	 * If we've been seeded, may be re-entering the same seed
547 	 * (e.g., bootloader vs module init, or something).  No harm in
548 	 * entering it twice, but it contributes no additional entropy.
549 	 */
550 	if (seeded) {
551 		printf("entropy: double-seeded by bootloader\n");
552 		seed->entropy = 0;
553 	} else {
554 		printf("entropy: entering seed from bootloader"
555 		    " with %u bits of entropy\n", (unsigned)seed->entropy);
556 	}
557 
558 	/* Enter it into the pool and promptly zero it.  */
559 	rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
560 	    seed->entropy);
561 	explicit_memset(seed, 0, sizeof(*seed));
562 }
563 
564 /*
565  * entropy_bootrequest()
566  *
567  *	Request entropy from all sources at boot, once config is
568  *	complete and interrupts are running.
569  */
570 void
571 entropy_bootrequest(void)
572 {
573 
574 	KASSERT(E->stage >= ENTROPY_WARM);
575 
576 	/*
577 	 * Request enough to satisfy the maximum entropy shortage.
578 	 * This is harmless overkill if the bootloader provided a seed.
579 	 */
580 	mutex_enter(&E->lock);
581 	entropy_request(ENTROPY_CAPACITY);
582 	mutex_exit(&E->lock);
583 }
584 
585 /*
586  * entropy_epoch()
587  *
588  *	Returns the current entropy epoch.  If this changes, you should
589  *	reseed.  If -1, means system entropy has not yet reached full
590  *	entropy or been explicitly consolidated; never reverts back to
591  *	-1.  Never zero, so you can always use zero as an uninitialized
592  *	sentinel value meaning `reseed ASAP'.
593  *
594  *	Usage model:
595  *
596  *		struct foo {
597  *			struct crypto_prng prng;
598  *			unsigned epoch;
599  *		} *foo;
600  *
601  *		unsigned epoch = entropy_epoch();
602  *		if (__predict_false(epoch != foo->epoch)) {
603  *			uint8_t seed[32];
604  *			if (entropy_extract(seed, sizeof seed, 0) != 0)
605  *				warn("no entropy");
606  *			crypto_prng_reseed(&foo->prng, seed, sizeof seed);
607  *			foo->epoch = epoch;
608  *		}
609  */
610 unsigned
611 entropy_epoch(void)
612 {
613 
614 	/*
615 	 * Unsigned int, so no need for seqlock for an atomic read, but
616 	 * make sure we read it afresh each time.
617 	 */
618 	return atomic_load_relaxed(&E->epoch);
619 }
620 
621 /*
622  * entropy_ready()
623  *
624  *	True if the entropy pool has full entropy.
625  */
626 bool
627 entropy_ready(void)
628 {
629 
630 	return atomic_load_relaxed(&E->needed) == 0;
631 }
632 
633 /*
634  * entropy_account_cpu(ec)
635  *
636  *	Consider whether to consolidate entropy into the global pool
637  *	after we just added some into the current CPU's pending pool.
638  *
639  *	- If this CPU can provide enough entropy now, do so.
640  *
641  *	- If this and whatever else is available on other CPUs can
642  *	  provide enough entropy, kick the consolidation thread.
643  *
644  *	- Otherwise, do as little as possible, except maybe consolidate
645  *	  entropy at most once a minute.
646  *
647  *	Caller must be bound to a CPU and therefore have exclusive
648  *	access to ec.  Will acquire and release the global lock.
649  */
650 static void
651 entropy_account_cpu(struct entropy_cpu *ec)
652 {
653 	unsigned diff;
654 
655 	KASSERT(E->stage == ENTROPY_HOT);
656 
657 	/*
658 	 * If there's no entropy needed, and entropy has been
659 	 * consolidated in the last minute, do nothing.
660 	 */
661 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
662 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
663 	    __predict_true((time_uptime - E->timestamp) <= 60))
664 		return;
665 
666 	/* If there's nothing pending, stop here.  */
667 	if (ec->ec_pending == 0)
668 		return;
669 
670 	/* Consider consolidation, under the lock.  */
671 	mutex_enter(&E->lock);
672 	if (E->needed != 0 && E->needed <= ec->ec_pending) {
673 		/*
674 		 * If we have not yet attained full entropy but we can
675 		 * now, do so.  This way we disseminate entropy
676 		 * promptly when it becomes available early at boot;
677 		 * otherwise we leave it to the entropy consolidation
678 		 * thread, which is rate-limited to mitigate side
679 		 * channels and abuse.
680 		 */
681 		uint8_t buf[ENTPOOL_CAPACITY];
682 
683 		/* Transfer from the local pool to the global pool.  */
684 		entpool_extract(ec->ec_pool, buf, sizeof buf);
685 		entpool_enter(&E->pool, buf, sizeof buf);
686 		atomic_store_relaxed(&ec->ec_pending, 0);
687 		atomic_store_relaxed(&E->needed, 0);
688 
689 		/* Notify waiters that we now have full entropy.  */
690 		entropy_notify();
691 		entropy_immediate_evcnt.ev_count++;
692 	} else {
693 		/* Record how much we can add to the global pool.  */
694 		diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
695 		E->pending += diff;
696 		atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
697 
698 		/*
699 		 * This should have made a difference unless we were
700 		 * already saturated.
701 		 */
702 		KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
703 		KASSERT(E->pending);
704 
705 		if (E->needed <= E->pending) {
706 			/*
707 			 * Enough entropy between all the per-CPU
708 			 * pools.  Wake up the housekeeping thread.
709 			 *
710 			 * If we don't need any entropy, this doesn't
711 			 * mean much, but it is the only time we ever
712 			 * gather additional entropy in case the
713 			 * accounting has been overly optimistic.  This
714 			 * happens at most once a minute, so there's
715 			 * negligible performance cost.
716 			 */
717 			E->consolidate = true;
718 			cv_broadcast(&E->cv);
719 			if (E->needed == 0)
720 				entropy_discretionary_evcnt.ev_count++;
721 		} else {
722 			/* Can't get full entropy.  Keep gathering.  */
723 			entropy_partial_evcnt.ev_count++;
724 		}
725 	}
726 	mutex_exit(&E->lock);
727 }
728 
729 /*
730  * entropy_enter_early(buf, len, nbits)
731  *
732  *	Do entropy bookkeeping globally, before we have established
733  *	per-CPU pools.  Enter directly into the global pool in the hope
734  *	that we enter enough before the first entropy_extract to thwart
735  *	iterative-guessing attacks; entropy_extract will warn if not.
736  */
737 static void
738 entropy_enter_early(const void *buf, size_t len, unsigned nbits)
739 {
740 	bool notify = false;
741 
742 	if (E->stage >= ENTROPY_WARM)
743 		mutex_enter(&E->lock);
744 
745 	/* Enter it into the pool.  */
746 	entpool_enter(&E->pool, buf, len);
747 
748 	/*
749 	 * Decide whether to notify reseed -- we will do so if either:
750 	 * (a) we transition from partial entropy to full entropy, or
751 	 * (b) we get a batch of full entropy all at once.
752 	 */
753 	notify |= (E->needed && E->needed <= nbits);
754 	notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
755 
756 	/* Subtract from the needed count and notify if appropriate.  */
757 	E->needed -= MIN(E->needed, nbits);
758 	if (notify) {
759 		entropy_notify();
760 		entropy_immediate_evcnt.ev_count++;
761 	}
762 
763 	if (E->stage >= ENTROPY_WARM)
764 		mutex_exit(&E->lock);
765 }
766 
767 /*
768  * entropy_enter(buf, len, nbits)
769  *
770  *	Enter len bytes of data from buf into the system's entropy
771  *	pool, stirring as necessary when the internal buffer fills up.
772  *	nbits is a lower bound on the number of bits of entropy in the
773  *	process that led to this sample.
774  */
775 static void
776 entropy_enter(const void *buf, size_t len, unsigned nbits)
777 {
778 	struct entropy_cpu *ec;
779 	uint32_t pending;
780 	int s;
781 
782 	KASSERTMSG(!cpu_intr_p(),
783 	    "use entropy_enter_intr from interrupt context");
784 	KASSERTMSG(howmany(nbits, NBBY) <= len,
785 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
786 
787 	/* If it's too early after boot, just use entropy_enter_early.  */
788 	if (__predict_false(E->stage < ENTROPY_HOT)) {
789 		entropy_enter_early(buf, len, nbits);
790 		return;
791 	}
792 
793 	/*
794 	 * Acquire the per-CPU state, blocking soft interrupts and
795 	 * causing hard interrupts to drop samples on the floor.
796 	 */
797 	ec = percpu_getref(entropy_percpu);
798 	s = splsoftserial();
799 	KASSERT(!ec->ec_locked);
800 	ec->ec_locked = true;
801 	__insn_barrier();
802 
803 	/* Enter into the per-CPU pool.  */
804 	entpool_enter(ec->ec_pool, buf, len);
805 
806 	/* Count up what we can add.  */
807 	pending = ec->ec_pending;
808 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
809 	atomic_store_relaxed(&ec->ec_pending, pending);
810 
811 	/* Consolidate globally if appropriate based on what we added.  */
812 	entropy_account_cpu(ec);
813 
814 	/* Release the per-CPU state.  */
815 	KASSERT(ec->ec_locked);
816 	__insn_barrier();
817 	ec->ec_locked = false;
818 	splx(s);
819 	percpu_putref(entropy_percpu);
820 }
821 
822 /*
823  * entropy_enter_intr(buf, len, nbits)
824  *
825  *	Enter up to len bytes of data from buf into the system's
826  *	entropy pool without stirring.  nbits is a lower bound on the
827  *	number of bits of entropy in the process that led to this
828  *	sample.  If the sample could be entered completely, assume
829  *	nbits of entropy pending; otherwise assume none, since we don't
830  *	know whether some parts of the sample are constant, for
831  *	instance.  Schedule a softint to stir the entropy pool if
832  *	needed.  Return true if used fully, false if truncated at all.
833  *
834  *	Using this in thread context will work, but you might as well
835  *	use entropy_enter in that case.
836  */
837 static bool
838 entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
839 {
840 	struct entropy_cpu *ec;
841 	bool fullyused = false;
842 	uint32_t pending;
843 
844 	KASSERTMSG(howmany(nbits, NBBY) <= len,
845 	    "impossible entropy rate: %u bits in %zu-byte string", nbits, len);
846 
847 	/* If it's too early after boot, just use entropy_enter_early.  */
848 	if (__predict_false(E->stage < ENTROPY_HOT)) {
849 		entropy_enter_early(buf, len, nbits);
850 		return true;
851 	}
852 
853 	/*
854 	 * Acquire the per-CPU state.  If someone is in the middle of
855 	 * using it, drop the sample.  Otherwise, take the lock so that
856 	 * higher-priority interrupts will drop their samples.
857 	 */
858 	ec = percpu_getref(entropy_percpu);
859 	if (ec->ec_locked)
860 		goto out0;
861 	ec->ec_locked = true;
862 	__insn_barrier();
863 
864 	/*
865 	 * Enter as much as we can into the per-CPU pool.  If it was
866 	 * truncated, schedule a softint to stir the pool and stop.
867 	 */
868 	if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
869 		softint_schedule(entropy_sih);
870 		goto out1;
871 	}
872 	fullyused = true;
873 
874 	/* Count up what we can contribute.  */
875 	pending = ec->ec_pending;
876 	pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
877 	atomic_store_relaxed(&ec->ec_pending, pending);
878 
879 	/* Schedule a softint if we added anything and it matters.  */
880 	if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
881 		atomic_load_relaxed(&entropy_depletion)) &&
882 	    nbits != 0)
883 		softint_schedule(entropy_sih);
884 
885 out1:	/* Release the per-CPU state.  */
886 	KASSERT(ec->ec_locked);
887 	__insn_barrier();
888 	ec->ec_locked = false;
889 out0:	percpu_putref(entropy_percpu);
890 
891 	return fullyused;
892 }
893 
894 /*
895  * entropy_softintr(cookie)
896  *
897  *	Soft interrupt handler for entering entropy.  Takes care of
898  *	stirring the local CPU's entropy pool if it filled up during
899  *	hard interrupts, and promptly crediting entropy from the local
900  *	CPU's entropy pool to the global entropy pool if needed.
901  */
902 static void
903 entropy_softintr(void *cookie)
904 {
905 	struct entropy_cpu *ec;
906 
907 	/*
908 	 * Acquire the per-CPU state.  Other users can lock this only
909 	 * while soft interrupts are blocked.  Cause hard interrupts to
910 	 * drop samples on the floor.
911 	 */
912 	ec = percpu_getref(entropy_percpu);
913 	KASSERT(!ec->ec_locked);
914 	ec->ec_locked = true;
915 	__insn_barrier();
916 
917 	/* Count statistics.  */
918 	ec->ec_softint_evcnt->ev_count++;
919 
920 	/* Stir the pool if necessary.  */
921 	entpool_stir(ec->ec_pool);
922 
923 	/* Consolidate globally if appropriate based on what we added.  */
924 	entropy_account_cpu(ec);
925 
926 	/* Release the per-CPU state.  */
927 	KASSERT(ec->ec_locked);
928 	__insn_barrier();
929 	ec->ec_locked = false;
930 	percpu_putref(entropy_percpu);
931 }
932 
933 /*
934  * entropy_thread(cookie)
935  *
936  *	Handle any asynchronous entropy housekeeping.
937  */
938 static void
939 entropy_thread(void *cookie)
940 {
941 	bool consolidate;
942 
943 	for (;;) {
944 		/*
945 		 * Wait until there's full entropy somewhere among the
946 		 * CPUs, as confirmed at most once per minute, or
947 		 * someone wants to consolidate.
948 		 */
949 		if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
950 			consolidate = true;
951 		} else {
952 			mutex_enter(&E->lock);
953 			if (!E->consolidate)
954 				cv_timedwait(&E->cv, &E->lock, 60*hz);
955 			consolidate = E->consolidate;
956 			E->consolidate = false;
957 			mutex_exit(&E->lock);
958 		}
959 
960 		if (consolidate) {
961 			/* Do it.  */
962 			entropy_do_consolidate();
963 
964 			/* Mitigate abuse.  */
965 			kpause("entropy", false, hz, NULL);
966 		}
967 	}
968 }
969 
970 /*
971  * entropy_pending()
972  *
973  *	Count up the amount of entropy pending on other CPUs.
974  */
975 static uint32_t
976 entropy_pending(void)
977 {
978 	uint32_t pending = 0;
979 
980 	percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
981 	return pending;
982 }
983 
984 static void
985 entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
986 {
987 	struct entropy_cpu *ec = ptr;
988 	uint32_t *pendingp = cookie;
989 	uint32_t cpu_pending;
990 
991 	cpu_pending = atomic_load_relaxed(&ec->ec_pending);
992 	*pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
993 }
994 
995 /*
996  * entropy_do_consolidate()
997  *
998  *	Issue a cross-call to gather entropy on all CPUs and advance
999  *	the entropy epoch.
1000  */
1001 static void
1002 entropy_do_consolidate(void)
1003 {
1004 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1005 	static struct timeval lasttime; /* serialized by E->lock */
1006 	struct entpool pool;
1007 	uint8_t buf[ENTPOOL_CAPACITY];
1008 	unsigned diff;
1009 	uint64_t ticket;
1010 
1011 	/* Gather entropy on all CPUs into a temporary pool.  */
1012 	memset(&pool, 0, sizeof pool);
1013 	ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
1014 	xc_wait(ticket);
1015 
1016 	/* Acquire the lock to notify waiters.  */
1017 	mutex_enter(&E->lock);
1018 
1019 	/* Count another consolidation.  */
1020 	entropy_consolidate_evcnt.ev_count++;
1021 
1022 	/* Note when we last consolidated, i.e. now.  */
1023 	E->timestamp = time_uptime;
1024 
1025 	/* Mix what we gathered into the global pool.  */
1026 	entpool_extract(&pool, buf, sizeof buf);
1027 	entpool_enter(&E->pool, buf, sizeof buf);
1028 	explicit_memset(&pool, 0, sizeof pool);
1029 
1030 	/* Count the entropy that was gathered.  */
1031 	diff = MIN(E->needed, E->pending);
1032 	atomic_store_relaxed(&E->needed, E->needed - diff);
1033 	E->pending -= diff;
1034 	if (__predict_false(E->needed > 0)) {
1035 		if (ratecheck(&lasttime, &interval) &&
1036 		    (boothowto & AB_DEBUG) != 0) {
1037 			printf("entropy: WARNING:"
1038 			    " consolidating less than full entropy\n");
1039 		}
1040 	}
1041 
1042 	/* Advance the epoch and notify waiters.  */
1043 	entropy_notify();
1044 
1045 	/* Release the lock.  */
1046 	mutex_exit(&E->lock);
1047 }
1048 
1049 /*
1050  * entropy_consolidate_xc(vpool, arg2)
1051  *
1052  *	Extract output from the local CPU's input pool and enter it
1053  *	into a temporary pool passed as vpool.
1054  */
1055 static void
1056 entropy_consolidate_xc(void *vpool, void *arg2 __unused)
1057 {
1058 	struct entpool *pool = vpool;
1059 	struct entropy_cpu *ec;
1060 	uint8_t buf[ENTPOOL_CAPACITY];
1061 	uint32_t extra[7];
1062 	unsigned i = 0;
1063 	int s;
1064 
1065 	/* Grab CPU number and cycle counter to mix extra into the pool.  */
1066 	extra[i++] = cpu_number();
1067 	extra[i++] = entropy_timer();
1068 
1069 	/*
1070 	 * Acquire the per-CPU state, blocking soft interrupts and
1071 	 * discarding entropy in hard interrupts, so that we can
1072 	 * extract from the per-CPU pool.
1073 	 */
1074 	ec = percpu_getref(entropy_percpu);
1075 	s = splsoftserial();
1076 	KASSERT(!ec->ec_locked);
1077 	ec->ec_locked = true;
1078 	__insn_barrier();
1079 	extra[i++] = entropy_timer();
1080 
1081 	/* Extract the data and count it no longer pending.  */
1082 	entpool_extract(ec->ec_pool, buf, sizeof buf);
1083 	atomic_store_relaxed(&ec->ec_pending, 0);
1084 	extra[i++] = entropy_timer();
1085 
1086 	/* Release the per-CPU state.  */
1087 	KASSERT(ec->ec_locked);
1088 	__insn_barrier();
1089 	ec->ec_locked = false;
1090 	splx(s);
1091 	percpu_putref(entropy_percpu);
1092 	extra[i++] = entropy_timer();
1093 
1094 	/*
1095 	 * Copy over statistics, and enter the per-CPU extract and the
1096 	 * extra timing into the temporary pool, under the global lock.
1097 	 */
1098 	mutex_enter(&E->lock);
1099 	extra[i++] = entropy_timer();
1100 	entpool_enter(pool, buf, sizeof buf);
1101 	explicit_memset(buf, 0, sizeof buf);
1102 	extra[i++] = entropy_timer();
1103 	KASSERT(i == __arraycount(extra));
1104 	entpool_enter(pool, extra, sizeof extra);
1105 	explicit_memset(extra, 0, sizeof extra);
1106 	mutex_exit(&E->lock);
1107 }
1108 
1109 /*
1110  * entropy_notify()
1111  *
1112  *	Caller just contributed entropy to the global pool.  Advance
1113  *	the entropy epoch and notify waiters.
1114  *
1115  *	Caller must hold the global entropy lock.  Except for the
1116  *	`sysctl -w kern.entropy.consolidate=1` trigger, the caller must
1117  *	have just have transitioned from partial entropy to full
1118  *	entropy -- E->needed should be zero now.
1119  */
1120 static void
1121 entropy_notify(void)
1122 {
1123 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1124 	static struct timeval lasttime; /* serialized by E->lock */
1125 	unsigned epoch;
1126 
1127 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1128 
1129 	/*
1130 	 * If this is the first time, print a message to the console
1131 	 * that we're ready so operators can compare it to the timing
1132 	 * of other events.
1133 	 */
1134 	if (__predict_false(!rnd_initial_entropy) && E->needed == 0) {
1135 		printf("entropy: ready\n");
1136 		rnd_initial_entropy = 1;
1137 	}
1138 
1139 	/* Set the epoch; roll over from UINTMAX-1 to 1.  */
1140 	if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
1141 	    ratecheck(&lasttime, &interval)) {
1142 		epoch = E->epoch + 1;
1143 		if (epoch == 0 || epoch == (unsigned)-1)
1144 			epoch = 1;
1145 		atomic_store_relaxed(&E->epoch, epoch);
1146 	}
1147 
1148 	/* Notify waiters.  */
1149 	if (E->stage >= ENTROPY_WARM) {
1150 		cv_broadcast(&E->cv);
1151 		selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
1152 	}
1153 
1154 	/* Count another notification.  */
1155 	entropy_notify_evcnt.ev_count++;
1156 }
1157 
1158 /*
1159  * entropy_consolidate()
1160  *
1161  *	Trigger entropy consolidation and wait for it to complete.
1162  *
1163  *	This should be used sparingly, not periodically -- requiring
1164  *	conscious intervention by the operator or a clear policy
1165  *	decision.  Otherwise, the kernel will automatically consolidate
1166  *	when enough entropy has been gathered into per-CPU pools to
1167  *	transition to full entropy.
1168  */
1169 void
1170 entropy_consolidate(void)
1171 {
1172 	uint64_t ticket;
1173 	int error;
1174 
1175 	KASSERT(E->stage == ENTROPY_HOT);
1176 
1177 	mutex_enter(&E->lock);
1178 	ticket = entropy_consolidate_evcnt.ev_count;
1179 	E->consolidate = true;
1180 	cv_broadcast(&E->cv);
1181 	while (ticket == entropy_consolidate_evcnt.ev_count) {
1182 		error = cv_wait_sig(&E->cv, &E->lock);
1183 		if (error)
1184 			break;
1185 	}
1186 	mutex_exit(&E->lock);
1187 }
1188 
1189 /*
1190  * sysctl -w kern.entropy.consolidate=1
1191  *
1192  *	Trigger entropy consolidation and wait for it to complete.
1193  *	Writable only by superuser.  This, writing to /dev/random, and
1194  *	ioctl(RNDADDDATA) are the only ways for the system to
1195  *	consolidate entropy if the operator knows something the kernel
1196  *	doesn't about how unpredictable the pending entropy pools are.
1197  */
1198 static int
1199 sysctl_entropy_consolidate(SYSCTLFN_ARGS)
1200 {
1201 	struct sysctlnode node = *rnode;
1202 	int arg;
1203 	int error;
1204 
1205 	KASSERT(E->stage == ENTROPY_HOT);
1206 
1207 	node.sysctl_data = &arg;
1208 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1209 	if (error || newp == NULL)
1210 		return error;
1211 	if (arg)
1212 		entropy_consolidate();
1213 
1214 	return error;
1215 }
1216 
1217 /*
1218  * sysctl -w kern.entropy.gather=1
1219  *
1220  *	Trigger gathering entropy from all on-demand sources, and wait
1221  *	for synchronous sources (but not asynchronous sources) to
1222  *	complete.  Writable only by superuser.
1223  */
1224 static int
1225 sysctl_entropy_gather(SYSCTLFN_ARGS)
1226 {
1227 	struct sysctlnode node = *rnode;
1228 	int arg;
1229 	int error;
1230 
1231 	KASSERT(E->stage == ENTROPY_HOT);
1232 
1233 	node.sysctl_data = &arg;
1234 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1235 	if (error || newp == NULL)
1236 		return error;
1237 	if (arg) {
1238 		mutex_enter(&E->lock);
1239 		entropy_request(ENTROPY_CAPACITY);
1240 		mutex_exit(&E->lock);
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 /*
1247  * entropy_extract(buf, len, flags)
1248  *
1249  *	Extract len bytes from the global entropy pool into buf.
1250  *
1251  *	Flags may have:
1252  *
1253  *		ENTROPY_WAIT	Wait for entropy if not available yet.
1254  *		ENTROPY_SIG	Allow interruption by a signal during wait.
1255  *		ENTROPY_HARDFAIL Either fill the buffer with full entropy,
1256  *				or fail without filling it at all.
1257  *
1258  *	Return zero on success, or error on failure:
1259  *
1260  *		EWOULDBLOCK	No entropy and ENTROPY_WAIT not set.
1261  *		EINTR/ERESTART	No entropy, ENTROPY_SIG set, and interrupted.
1262  *
1263  *	If ENTROPY_WAIT is set, allowed only in thread context.  If
1264  *	ENTROPY_WAIT is not set, allowed up to IPL_VM.  (XXX That's
1265  *	awfully high...  Do we really need it in hard interrupts?  This
1266  *	arises from use of cprng_strong(9).)
1267  */
1268 int
1269 entropy_extract(void *buf, size_t len, int flags)
1270 {
1271 	static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
1272 	static struct timeval lasttime; /* serialized by E->lock */
1273 	int error;
1274 
1275 	if (ISSET(flags, ENTROPY_WAIT)) {
1276 		ASSERT_SLEEPABLE();
1277 		KASSERTMSG(E->stage >= ENTROPY_WARM,
1278 		    "can't wait for entropy until warm");
1279 	}
1280 
1281 	/* Acquire the global lock to get at the global pool.  */
1282 	if (E->stage >= ENTROPY_WARM)
1283 		mutex_enter(&E->lock);
1284 
1285 	/* Count up request for entropy in interrupt context.  */
1286 	if (cpu_intr_p())
1287 		entropy_extract_intr_evcnt.ev_count++;
1288 
1289 	/* Wait until there is enough entropy in the system.  */
1290 	error = 0;
1291 	while (E->needed) {
1292 		/* Ask for more, synchronously if possible.  */
1293 		entropy_request(len);
1294 
1295 		/* If we got enough, we're done.  */
1296 		if (E->needed == 0) {
1297 			KASSERT(error == 0);
1298 			break;
1299 		}
1300 
1301 		/* If not waiting, stop here.  */
1302 		if (!ISSET(flags, ENTROPY_WAIT)) {
1303 			error = EWOULDBLOCK;
1304 			break;
1305 		}
1306 
1307 		/* Wait for some entropy to come in and try again.  */
1308 		KASSERT(E->stage >= ENTROPY_WARM);
1309 		printf("entropy: pid %d (%s) blocking due to lack of entropy\n",
1310 		       curproc->p_pid, curproc->p_comm);
1311 
1312 		if (ISSET(flags, ENTROPY_SIG)) {
1313 			error = cv_wait_sig(&E->cv, &E->lock);
1314 			if (error)
1315 				break;
1316 		} else {
1317 			cv_wait(&E->cv, &E->lock);
1318 		}
1319 	}
1320 
1321 	/*
1322 	 * Count failure -- but fill the buffer nevertheless, unless
1323 	 * the caller specified ENTROPY_HARDFAIL.
1324 	 */
1325 	if (error) {
1326 		if (ISSET(flags, ENTROPY_HARDFAIL))
1327 			goto out;
1328 		entropy_extract_fail_evcnt.ev_count++;
1329 	}
1330 
1331 	/*
1332 	 * Report a warning if we have never yet reached full entropy.
1333 	 * This is the only case where we consider entropy to be
1334 	 * `depleted' without kern.entropy.depletion enabled -- when we
1335 	 * only have partial entropy, an adversary may be able to
1336 	 * narrow the state of the pool down to a small number of
1337 	 * possibilities; the output then enables them to confirm a
1338 	 * guess, reducing its entropy from the adversary's perspective
1339 	 * to zero.
1340 	 */
1341 	if (__predict_false(E->epoch == (unsigned)-1)) {
1342 		if (ratecheck(&lasttime, &interval))
1343 			printf("entropy: WARNING:"
1344 			    " extracting entropy too early\n");
1345 		atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
1346 	}
1347 
1348 	/* Extract data from the pool, and `deplete' if we're doing that.  */
1349 	entpool_extract(&E->pool, buf, len);
1350 	if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
1351 	    error == 0) {
1352 		unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
1353 
1354 		atomic_store_relaxed(&E->needed,
1355 		    E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
1356 		entropy_deplete_evcnt.ev_count++;
1357 	}
1358 
1359 out:	/* Release the global lock and return the error.  */
1360 	if (E->stage >= ENTROPY_WARM)
1361 		mutex_exit(&E->lock);
1362 	return error;
1363 }
1364 
1365 /*
1366  * entropy_poll(events)
1367  *
1368  *	Return the subset of events ready, and if it is not all of
1369  *	events, record curlwp as waiting for entropy.
1370  */
1371 int
1372 entropy_poll(int events)
1373 {
1374 	int revents = 0;
1375 
1376 	KASSERT(E->stage >= ENTROPY_WARM);
1377 
1378 	/* Always ready for writing.  */
1379 	revents |= events & (POLLOUT|POLLWRNORM);
1380 
1381 	/* Narrow it down to reads.  */
1382 	events &= POLLIN|POLLRDNORM;
1383 	if (events == 0)
1384 		return revents;
1385 
1386 	/*
1387 	 * If we have reached full entropy and we're not depleting
1388 	 * entropy, we are forever ready.
1389 	 */
1390 	if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
1391 	    __predict_true(!atomic_load_relaxed(&entropy_depletion)))
1392 		return revents | events;
1393 
1394 	/*
1395 	 * Otherwise, check whether we need entropy under the lock.  If
1396 	 * we don't, we're ready; if we do, add ourselves to the queue.
1397 	 */
1398 	mutex_enter(&E->lock);
1399 	if (E->needed == 0)
1400 		revents |= events;
1401 	else
1402 		selrecord(curlwp, &E->selq);
1403 	mutex_exit(&E->lock);
1404 
1405 	return revents;
1406 }
1407 
1408 /*
1409  * filt_entropy_read_detach(kn)
1410  *
1411  *	struct filterops::f_detach callback for entropy read events:
1412  *	remove kn from the list of waiters.
1413  */
1414 static void
1415 filt_entropy_read_detach(struct knote *kn)
1416 {
1417 
1418 	KASSERT(E->stage >= ENTROPY_WARM);
1419 
1420 	mutex_enter(&E->lock);
1421 	selremove_knote(&E->selq, kn);
1422 	mutex_exit(&E->lock);
1423 }
1424 
1425 /*
1426  * filt_entropy_read_event(kn, hint)
1427  *
1428  *	struct filterops::f_event callback for entropy read events:
1429  *	poll for entropy.  Caller must hold the global entropy lock if
1430  *	hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
1431  */
1432 static int
1433 filt_entropy_read_event(struct knote *kn, long hint)
1434 {
1435 	int ret;
1436 
1437 	KASSERT(E->stage >= ENTROPY_WARM);
1438 
1439 	/* Acquire the lock, if caller is outside entropy subsystem.  */
1440 	if (hint == NOTE_SUBMIT)
1441 		KASSERT(mutex_owned(&E->lock));
1442 	else
1443 		mutex_enter(&E->lock);
1444 
1445 	/*
1446 	 * If we still need entropy, can't read anything; if not, can
1447 	 * read arbitrarily much.
1448 	 */
1449 	if (E->needed != 0) {
1450 		ret = 0;
1451 	} else {
1452 		if (atomic_load_relaxed(&entropy_depletion))
1453 			kn->kn_data = ENTROPY_CAPACITY*NBBY;
1454 		else
1455 			kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
1456 		ret = 1;
1457 	}
1458 
1459 	/* Release the lock, if caller is outside entropy subsystem.  */
1460 	if (hint == NOTE_SUBMIT)
1461 		KASSERT(mutex_owned(&E->lock));
1462 	else
1463 		mutex_exit(&E->lock);
1464 
1465 	return ret;
1466 }
1467 
1468 /* XXX Makes sense only for /dev/u?random.  */
1469 static const struct filterops entropy_read_filtops = {
1470 	.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
1471 	.f_attach = NULL,
1472 	.f_detach = filt_entropy_read_detach,
1473 	.f_event = filt_entropy_read_event,
1474 };
1475 
1476 /*
1477  * entropy_kqfilter(kn)
1478  *
1479  *	Register kn to receive entropy event notifications.  May be
1480  *	EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
1481  */
1482 int
1483 entropy_kqfilter(struct knote *kn)
1484 {
1485 
1486 	KASSERT(E->stage >= ENTROPY_WARM);
1487 
1488 	switch (kn->kn_filter) {
1489 	case EVFILT_READ:
1490 		/* Enter into the global select queue.  */
1491 		mutex_enter(&E->lock);
1492 		kn->kn_fop = &entropy_read_filtops;
1493 		selrecord_knote(&E->selq, kn);
1494 		mutex_exit(&E->lock);
1495 		return 0;
1496 	case EVFILT_WRITE:
1497 		/* Can always dump entropy into the system.  */
1498 		kn->kn_fop = &seltrue_filtops;
1499 		return 0;
1500 	default:
1501 		return EINVAL;
1502 	}
1503 }
1504 
1505 /*
1506  * rndsource_setcb(rs, get, getarg)
1507  *
1508  *	Set the request callback for the entropy source rs, if it can
1509  *	provide entropy on demand.  Must precede rnd_attach_source.
1510  */
1511 void
1512 rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
1513     void *getarg)
1514 {
1515 
1516 	rs->get = get;
1517 	rs->getarg = getarg;
1518 }
1519 
1520 /*
1521  * rnd_attach_source(rs, name, type, flags)
1522  *
1523  *	Attach the entropy source rs.  Must be done after
1524  *	rndsource_setcb, if any, and before any calls to rnd_add_data.
1525  */
1526 void
1527 rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
1528     uint32_t flags)
1529 {
1530 	uint32_t extra[4];
1531 	unsigned i = 0;
1532 
1533 	/* Grab cycle counter to mix extra into the pool.  */
1534 	extra[i++] = entropy_timer();
1535 
1536 	/*
1537 	 * Apply some standard flags:
1538 	 *
1539 	 * - We do not bother with network devices by default, for
1540 	 *   hysterical raisins (perhaps: because it is often the case
1541 	 *   that an adversary can influence network packet timings).
1542 	 */
1543 	switch (type) {
1544 	case RND_TYPE_NET:
1545 		flags |= RND_FLAG_NO_COLLECT;
1546 		break;
1547 	}
1548 
1549 	/* Sanity-check the callback if RND_FLAG_HASCB is set.  */
1550 	KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
1551 
1552 	/* Initialize the random source.  */
1553 	memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
1554 	strlcpy(rs->name, name, sizeof(rs->name));
1555 	memset(&rs->time_delta, 0, sizeof(rs->time_delta));
1556 	memset(&rs->value_delta, 0, sizeof(rs->value_delta));
1557 	rs->total = 0;
1558 	rs->type = type;
1559 	rs->flags = flags;
1560 	if (E->stage >= ENTROPY_WARM)
1561 		rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
1562 	extra[i++] = entropy_timer();
1563 
1564 	/* Wire it into the global list of random sources.  */
1565 	if (E->stage >= ENTROPY_WARM)
1566 		mutex_enter(&E->lock);
1567 	LIST_INSERT_HEAD(&E->sources, rs, list);
1568 	if (E->stage >= ENTROPY_WARM)
1569 		mutex_exit(&E->lock);
1570 	extra[i++] = entropy_timer();
1571 
1572 	/* Request that it provide entropy ASAP, if we can.  */
1573 	if (ISSET(flags, RND_FLAG_HASCB))
1574 		(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
1575 	extra[i++] = entropy_timer();
1576 
1577 	/* Mix the extra into the pool.  */
1578 	KASSERT(i == __arraycount(extra));
1579 	entropy_enter(extra, sizeof extra, 0);
1580 	explicit_memset(extra, 0, sizeof extra);
1581 }
1582 
1583 /*
1584  * rnd_detach_source(rs)
1585  *
1586  *	Detach the entropy source rs.  May sleep waiting for users to
1587  *	drain.  Further use is not allowed.
1588  */
1589 void
1590 rnd_detach_source(struct krndsource *rs)
1591 {
1592 
1593 	/*
1594 	 * If we're cold (shouldn't happen, but hey), just remove it
1595 	 * from the list -- there's nothing allocated.
1596 	 */
1597 	if (E->stage == ENTROPY_COLD) {
1598 		LIST_REMOVE(rs, list);
1599 		return;
1600 	}
1601 
1602 	/* We may have to wait for entropy_request.  */
1603 	ASSERT_SLEEPABLE();
1604 
1605 	/* Wait until the source list is not in use, and remove it.  */
1606 	mutex_enter(&E->lock);
1607 	while (E->sourcelock)
1608 		cv_wait(&E->sourcelock_cv, &E->lock);
1609 	LIST_REMOVE(rs, list);
1610 	mutex_exit(&E->lock);
1611 
1612 	/* Free the per-CPU data.  */
1613 	percpu_free(rs->state, sizeof(struct rndsource_cpu));
1614 }
1615 
1616 /*
1617  * rnd_lock_sources()
1618  *
1619  *	Prevent changes to the list of rndsources while we iterate it.
1620  *	Interruptible.  Caller must hold the global entropy lock.  If
1621  *	successful, no rndsource will go away until rnd_unlock_sources
1622  *	even while the caller releases the global entropy lock.
1623  */
1624 static int
1625 rnd_lock_sources(void)
1626 {
1627 	int error;
1628 
1629 	KASSERT(mutex_owned(&E->lock));
1630 
1631 	while (E->sourcelock) {
1632 		error = cv_wait_sig(&E->sourcelock_cv, &E->lock);
1633 		if (error)
1634 			return error;
1635 	}
1636 
1637 	E->sourcelock = curlwp;
1638 	return 0;
1639 }
1640 
1641 /*
1642  * rnd_trylock_sources()
1643  *
1644  *	Try to lock the list of sources, but if it's already locked,
1645  *	fail.  Caller must hold the global entropy lock.  If
1646  *	successful, no rndsource will go away until rnd_unlock_sources
1647  *	even while the caller releases the global entropy lock.
1648  */
1649 static bool
1650 rnd_trylock_sources(void)
1651 {
1652 
1653 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1654 
1655 	if (E->sourcelock)
1656 		return false;
1657 	E->sourcelock = curlwp;
1658 	return true;
1659 }
1660 
1661 /*
1662  * rnd_unlock_sources()
1663  *
1664  *	Unlock the list of sources after rnd_lock_sources or
1665  *	rnd_trylock_sources.  Caller must hold the global entropy lock.
1666  */
1667 static void
1668 rnd_unlock_sources(void)
1669 {
1670 
1671 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1672 
1673 	KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
1674 	    curlwp, E->sourcelock);
1675 	E->sourcelock = NULL;
1676 	if (E->stage >= ENTROPY_WARM)
1677 		cv_signal(&E->sourcelock_cv);
1678 }
1679 
1680 /*
1681  * rnd_sources_locked()
1682  *
1683  *	True if we hold the list of rndsources locked, for diagnostic
1684  *	assertions.
1685  */
1686 static bool __diagused
1687 rnd_sources_locked(void)
1688 {
1689 
1690 	return E->sourcelock == curlwp;
1691 }
1692 
1693 /*
1694  * entropy_request(nbytes)
1695  *
1696  *	Request nbytes bytes of entropy from all sources in the system.
1697  *	OK if we overdo it.  Caller must hold the global entropy lock;
1698  *	will release and re-acquire it.
1699  */
1700 static void
1701 entropy_request(size_t nbytes)
1702 {
1703 	struct krndsource *rs;
1704 
1705 	KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
1706 
1707 	/*
1708 	 * If there is a request in progress, let it proceed.
1709 	 * Otherwise, note that a request is in progress to avoid
1710 	 * reentry and to block rnd_detach_source until we're done.
1711 	 */
1712 	if (!rnd_trylock_sources())
1713 		return;
1714 	entropy_request_evcnt.ev_count++;
1715 
1716 	/* Clamp to the maximum reasonable request.  */
1717 	nbytes = MIN(nbytes, ENTROPY_CAPACITY);
1718 
1719 	/* Walk the list of sources.  */
1720 	LIST_FOREACH(rs, &E->sources, list) {
1721 		/* Skip sources without callbacks.  */
1722 		if (!ISSET(rs->flags, RND_FLAG_HASCB))
1723 			continue;
1724 
1725 		/*
1726 		 * Skip sources that are disabled altogether -- we
1727 		 * would just ignore their samples anyway.
1728 		 */
1729 		if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
1730 			continue;
1731 
1732 		/* Drop the lock while we call the callback.  */
1733 		if (E->stage >= ENTROPY_WARM)
1734 			mutex_exit(&E->lock);
1735 		(*rs->get)(nbytes, rs->getarg);
1736 		if (E->stage >= ENTROPY_WARM)
1737 			mutex_enter(&E->lock);
1738 	}
1739 
1740 	/* Notify rnd_detach_source that the request is done.  */
1741 	rnd_unlock_sources();
1742 }
1743 
1744 /*
1745  * rnd_add_uint32(rs, value)
1746  *
1747  *	Enter 32 bits of data from an entropy source into the pool.
1748  *
1749  *	If rs is NULL, may not be called from interrupt context.
1750  *
1751  *	If rs is non-NULL, may be called from any context.  May drop
1752  *	data if called from interrupt context.
1753  */
1754 void
1755 rnd_add_uint32(struct krndsource *rs, uint32_t value)
1756 {
1757 
1758 	rnd_add_data(rs, &value, sizeof value, 0);
1759 }
1760 
1761 void
1762 _rnd_add_uint32(struct krndsource *rs, uint32_t value)
1763 {
1764 
1765 	rnd_add_data(rs, &value, sizeof value, 0);
1766 }
1767 
1768 void
1769 _rnd_add_uint64(struct krndsource *rs, uint64_t value)
1770 {
1771 
1772 	rnd_add_data(rs, &value, sizeof value, 0);
1773 }
1774 
1775 /*
1776  * rnd_add_data(rs, buf, len, entropybits)
1777  *
1778  *	Enter data from an entropy source into the pool, with a
1779  *	driver's estimate of how much entropy the physical source of
1780  *	the data has.  If RND_FLAG_NO_ESTIMATE, we ignore the driver's
1781  *	estimate and treat it as zero.
1782  *
1783  *	If rs is NULL, may not be called from interrupt context.
1784  *
1785  *	If rs is non-NULL, may be called from any context.  May drop
1786  *	data if called from interrupt context.
1787  */
1788 void
1789 rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
1790     uint32_t entropybits)
1791 {
1792 	uint32_t extra;
1793 	uint32_t flags;
1794 
1795 	KASSERTMSG(howmany(entropybits, NBBY) <= len,
1796 	    "%s: impossible entropy rate:"
1797 	    " %"PRIu32" bits in %"PRIu32"-byte string",
1798 	    rs ? rs->name : "(anonymous)", entropybits, len);
1799 
1800 	/* If there's no rndsource, just enter the data and time now.  */
1801 	if (rs == NULL) {
1802 		entropy_enter(buf, len, entropybits);
1803 		extra = entropy_timer();
1804 		entropy_enter(&extra, sizeof extra, 0);
1805 		explicit_memset(&extra, 0, sizeof extra);
1806 		return;
1807 	}
1808 
1809 	/* Load a snapshot of the flags.  Ioctl may change them under us.  */
1810 	flags = atomic_load_relaxed(&rs->flags);
1811 
1812 	/*
1813 	 * Skip if:
1814 	 * - we're not collecting entropy, or
1815 	 * - the operator doesn't want to collect entropy from this, or
1816 	 * - neither data nor timings are being collected from this.
1817 	 */
1818 	if (!atomic_load_relaxed(&entropy_collection) ||
1819 	    ISSET(flags, RND_FLAG_NO_COLLECT) ||
1820 	    !ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
1821 		return;
1822 
1823 	/* If asked, ignore the estimate.  */
1824 	if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
1825 		entropybits = 0;
1826 
1827 	/* If we are collecting data, enter them.  */
1828 	if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
1829 		rnd_add_data_1(rs, buf, len, entropybits,
1830 		    RND_FLAG_COLLECT_VALUE);
1831 
1832 	/* If we are collecting timings, enter one.  */
1833 	if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
1834 		extra = entropy_timer();
1835 		rnd_add_data_1(rs, &extra, sizeof extra, 0,
1836 		    RND_FLAG_COLLECT_TIME);
1837 	}
1838 }
1839 
1840 static unsigned
1841 add_sat(unsigned a, unsigned b)
1842 {
1843 	unsigned c = a + b;
1844 
1845 	return (c < a ? UINT_MAX : c);
1846 }
1847 
1848 /*
1849  * rnd_add_data_1(rs, buf, len, entropybits, flag)
1850  *
1851  *	Internal subroutine to call either entropy_enter_intr, if we're
1852  *	in interrupt context, or entropy_enter if not, and to count the
1853  *	entropy in an rndsource.
1854  */
1855 static void
1856 rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
1857     uint32_t entropybits, uint32_t flag)
1858 {
1859 	bool fullyused;
1860 
1861 	/*
1862 	 * If we're in interrupt context, use entropy_enter_intr and
1863 	 * take note of whether it consumed the full sample; if not,
1864 	 * use entropy_enter, which always consumes the full sample.
1865 	 */
1866 	if (curlwp && cpu_intr_p()) {
1867 		fullyused = entropy_enter_intr(buf, len, entropybits);
1868 	} else {
1869 		entropy_enter(buf, len, entropybits);
1870 		fullyused = true;
1871 	}
1872 
1873 	/*
1874 	 * If we used the full sample, note how many bits were
1875 	 * contributed from this source.
1876 	 */
1877 	if (fullyused) {
1878 		if (E->stage < ENTROPY_HOT) {
1879 			if (E->stage >= ENTROPY_WARM)
1880 				mutex_enter(&E->lock);
1881 			rs->total = add_sat(rs->total, entropybits);
1882 			switch (flag) {
1883 			case RND_FLAG_COLLECT_TIME:
1884 				rs->time_delta.insamples =
1885 				    add_sat(rs->time_delta.insamples, 1);
1886 				break;
1887 			case RND_FLAG_COLLECT_VALUE:
1888 				rs->value_delta.insamples =
1889 				    add_sat(rs->value_delta.insamples, 1);
1890 				break;
1891 			}
1892 			if (E->stage >= ENTROPY_WARM)
1893 				mutex_exit(&E->lock);
1894 		} else {
1895 			struct rndsource_cpu *rc = percpu_getref(rs->state);
1896 
1897 			atomic_store_relaxed(&rc->rc_entropybits,
1898 			    add_sat(rc->rc_entropybits, entropybits));
1899 			switch (flag) {
1900 			case RND_FLAG_COLLECT_TIME:
1901 				atomic_store_relaxed(&rc->rc_timesamples,
1902 				    add_sat(rc->rc_timesamples, 1));
1903 				break;
1904 			case RND_FLAG_COLLECT_VALUE:
1905 				atomic_store_relaxed(&rc->rc_datasamples,
1906 				    add_sat(rc->rc_datasamples, 1));
1907 				break;
1908 			}
1909 			percpu_putref(rs->state);
1910 		}
1911 	}
1912 }
1913 
1914 /*
1915  * rnd_add_data_sync(rs, buf, len, entropybits)
1916  *
1917  *	Same as rnd_add_data.  Originally used in rndsource callbacks,
1918  *	to break an unnecessary cycle; no longer really needed.
1919  */
1920 void
1921 rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
1922     uint32_t entropybits)
1923 {
1924 
1925 	rnd_add_data(rs, buf, len, entropybits);
1926 }
1927 
1928 /*
1929  * rndsource_entropybits(rs)
1930  *
1931  *	Return approximately the number of bits of entropy that have
1932  *	been contributed via rs so far.  Approximate if other CPUs may
1933  *	be calling rnd_add_data concurrently.
1934  */
1935 static unsigned
1936 rndsource_entropybits(struct krndsource *rs)
1937 {
1938 	unsigned nbits = rs->total;
1939 
1940 	KASSERT(E->stage >= ENTROPY_WARM);
1941 	KASSERT(rnd_sources_locked());
1942 	percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
1943 	return nbits;
1944 }
1945 
1946 static void
1947 rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
1948 {
1949 	struct rndsource_cpu *rc = ptr;
1950 	unsigned *nbitsp = cookie;
1951 	unsigned cpu_nbits;
1952 
1953 	cpu_nbits = atomic_load_relaxed(&rc->rc_entropybits);
1954 	*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
1955 }
1956 
1957 /*
1958  * rndsource_to_user(rs, urs)
1959  *
1960  *	Copy a description of rs out to urs for userland.
1961  */
1962 static void
1963 rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
1964 {
1965 
1966 	KASSERT(E->stage >= ENTROPY_WARM);
1967 	KASSERT(rnd_sources_locked());
1968 
1969 	/* Avoid kernel memory disclosure.  */
1970 	memset(urs, 0, sizeof(*urs));
1971 
1972 	CTASSERT(sizeof(urs->name) == sizeof(rs->name));
1973 	strlcpy(urs->name, rs->name, sizeof(urs->name));
1974 	urs->total = rndsource_entropybits(rs);
1975 	urs->type = rs->type;
1976 	urs->flags = atomic_load_relaxed(&rs->flags);
1977 }
1978 
1979 /*
1980  * rndsource_to_user_est(rs, urse)
1981  *
1982  *	Copy a description of rs and estimation statistics out to urse
1983  *	for userland.
1984  */
1985 static void
1986 rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
1987 {
1988 
1989 	KASSERT(E->stage >= ENTROPY_WARM);
1990 	KASSERT(rnd_sources_locked());
1991 
1992 	/* Avoid kernel memory disclosure.  */
1993 	memset(urse, 0, sizeof(*urse));
1994 
1995 	/* Copy out the rndsource description.  */
1996 	rndsource_to_user(rs, &urse->rt);
1997 
1998 	/* Gather the statistics.  */
1999 	urse->dt_samples = rs->time_delta.insamples;
2000 	urse->dt_total = 0;
2001 	urse->dv_samples = rs->value_delta.insamples;
2002 	urse->dv_total = urse->rt.total;
2003 	percpu_foreach(rs->state, rndsource_to_user_est_cpu, urse);
2004 }
2005 
2006 static void
2007 rndsource_to_user_est_cpu(void *ptr, void *cookie, struct cpu_info *ci)
2008 {
2009 	struct rndsource_cpu *rc = ptr;
2010 	rndsource_est_t *urse = cookie;
2011 
2012 	urse->dt_samples = add_sat(urse->dt_samples,
2013 	    atomic_load_relaxed(&rc->rc_timesamples));
2014 	urse->dv_samples = add_sat(urse->dv_samples,
2015 	    atomic_load_relaxed(&rc->rc_datasamples));
2016 }
2017 
2018 /*
2019  * entropy_reset_xc(arg1, arg2)
2020  *
2021  *	Reset the current CPU's pending entropy to zero.
2022  */
2023 static void
2024 entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
2025 {
2026 	uint32_t extra = entropy_timer();
2027 	struct entropy_cpu *ec;
2028 	int s;
2029 
2030 	/*
2031 	 * Acquire the per-CPU state, blocking soft interrupts and
2032 	 * causing hard interrupts to drop samples on the floor.
2033 	 */
2034 	ec = percpu_getref(entropy_percpu);
2035 	s = splsoftserial();
2036 	KASSERT(!ec->ec_locked);
2037 	ec->ec_locked = true;
2038 	__insn_barrier();
2039 
2040 	/* Zero the pending count and enter a cycle count for fun.  */
2041 	ec->ec_pending = 0;
2042 	entpool_enter(ec->ec_pool, &extra, sizeof extra);
2043 
2044 	/* Release the per-CPU state.  */
2045 	KASSERT(ec->ec_locked);
2046 	__insn_barrier();
2047 	ec->ec_locked = false;
2048 	splx(s);
2049 	percpu_putref(entropy_percpu);
2050 }
2051 
2052 /*
2053  * entropy_ioctl(cmd, data)
2054  *
2055  *	Handle various /dev/random ioctl queries.
2056  */
2057 int
2058 entropy_ioctl(unsigned long cmd, void *data)
2059 {
2060 	struct krndsource *rs;
2061 	bool privileged;
2062 	int error;
2063 
2064 	KASSERT(E->stage >= ENTROPY_WARM);
2065 
2066 	/* Verify user's authorization to perform the ioctl.  */
2067 	switch (cmd) {
2068 	case RNDGETENTCNT:
2069 	case RNDGETPOOLSTAT:
2070 	case RNDGETSRCNUM:
2071 	case RNDGETSRCNAME:
2072 	case RNDGETESTNUM:
2073 	case RNDGETESTNAME:
2074 		error = kauth_authorize_device(kauth_cred_get(),
2075 		    KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
2076 		break;
2077 	case RNDCTL:
2078 		error = kauth_authorize_device(kauth_cred_get(),
2079 		    KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
2080 		break;
2081 	case RNDADDDATA:
2082 		error = kauth_authorize_device(kauth_cred_get(),
2083 		    KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
2084 		/* Ascertain whether the user's inputs should be counted.  */
2085 		if (kauth_authorize_device(kauth_cred_get(),
2086 			KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
2087 			NULL, NULL, NULL, NULL) == 0)
2088 			privileged = true;
2089 		break;
2090 	default: {
2091 		/*
2092 		 * XXX Hack to avoid changing module ABI so this can be
2093 		 * pulled up.  Later, we can just remove the argument.
2094 		 */
2095 		static const struct fileops fops = {
2096 			.fo_ioctl = rnd_system_ioctl,
2097 		};
2098 		struct file f = {
2099 			.f_ops = &fops,
2100 		};
2101 		MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
2102 		    enosys(), error);
2103 #if defined(_LP64)
2104 		if (error == ENOSYS)
2105 			MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
2106 			    enosys(), error);
2107 #endif
2108 		if (error == ENOSYS)
2109 			error = ENOTTY;
2110 		break;
2111 	}
2112 	}
2113 
2114 	/* If anything went wrong with authorization, stop here.  */
2115 	if (error)
2116 		return error;
2117 
2118 	/* Dispatch on the command.  */
2119 	switch (cmd) {
2120 	case RNDGETENTCNT: {	/* Get current entropy count in bits.  */
2121 		uint32_t *countp = data;
2122 
2123 		mutex_enter(&E->lock);
2124 		*countp = ENTROPY_CAPACITY*NBBY - E->needed;
2125 		mutex_exit(&E->lock);
2126 
2127 		break;
2128 	}
2129 	case RNDGETPOOLSTAT: {	/* Get entropy pool statistics.  */
2130 		rndpoolstat_t *pstat = data;
2131 
2132 		mutex_enter(&E->lock);
2133 
2134 		/* parameters */
2135 		pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
2136 		pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
2137 		pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
2138 
2139 		/* state */
2140 		pstat->added = 0; /* XXX total entropy_enter count */
2141 		pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
2142 		pstat->removed = 0; /* XXX total entropy_extract count */
2143 		pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
2144 		pstat->generated = 0; /* XXX bits of data...fabricated? */
2145 
2146 		mutex_exit(&E->lock);
2147 		break;
2148 	}
2149 	case RNDGETSRCNUM: {	/* Get entropy sources by number.  */
2150 		rndstat_t *stat = data;
2151 		uint32_t start = 0, i = 0;
2152 
2153 		/* Skip if none requested; fail if too many requested.  */
2154 		if (stat->count == 0)
2155 			break;
2156 		if (stat->count > RND_MAXSTATCOUNT)
2157 			return EINVAL;
2158 
2159 		/*
2160 		 * Under the lock, find the first one, copy out as many
2161 		 * as requested, and report how many we copied out.
2162 		 */
2163 		mutex_enter(&E->lock);
2164 		error = rnd_lock_sources();
2165 		if (error) {
2166 			mutex_exit(&E->lock);
2167 			return error;
2168 		}
2169 		LIST_FOREACH(rs, &E->sources, list) {
2170 			if (start++ == stat->start)
2171 				break;
2172 		}
2173 		while (i < stat->count && rs != NULL) {
2174 			mutex_exit(&E->lock);
2175 			rndsource_to_user(rs, &stat->source[i++]);
2176 			mutex_enter(&E->lock);
2177 			rs = LIST_NEXT(rs, list);
2178 		}
2179 		KASSERT(i <= stat->count);
2180 		stat->count = i;
2181 		rnd_unlock_sources();
2182 		mutex_exit(&E->lock);
2183 		break;
2184 	}
2185 	case RNDGETESTNUM: {	/* Get sources and estimates by number.  */
2186 		rndstat_est_t *estat = data;
2187 		uint32_t start = 0, i = 0;
2188 
2189 		/* Skip if none requested; fail if too many requested.  */
2190 		if (estat->count == 0)
2191 			break;
2192 		if (estat->count > RND_MAXSTATCOUNT)
2193 			return EINVAL;
2194 
2195 		/*
2196 		 * Under the lock, find the first one, copy out as many
2197 		 * as requested, and report how many we copied out.
2198 		 */
2199 		mutex_enter(&E->lock);
2200 		error = rnd_lock_sources();
2201 		if (error) {
2202 			mutex_exit(&E->lock);
2203 			return error;
2204 		}
2205 		LIST_FOREACH(rs, &E->sources, list) {
2206 			if (start++ == estat->start)
2207 				break;
2208 		}
2209 		while (i < estat->count && rs != NULL) {
2210 			mutex_exit(&E->lock);
2211 			rndsource_to_user_est(rs, &estat->source[i++]);
2212 			mutex_enter(&E->lock);
2213 			rs = LIST_NEXT(rs, list);
2214 		}
2215 		KASSERT(i <= estat->count);
2216 		estat->count = i;
2217 		rnd_unlock_sources();
2218 		mutex_exit(&E->lock);
2219 		break;
2220 	}
2221 	case RNDGETSRCNAME: {	/* Get entropy sources by name.  */
2222 		rndstat_name_t *nstat = data;
2223 		const size_t n = sizeof(rs->name);
2224 
2225 		CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
2226 
2227 		/*
2228 		 * Under the lock, search by name.  If found, copy it
2229 		 * out; if not found, fail with ENOENT.
2230 		 */
2231 		mutex_enter(&E->lock);
2232 		error = rnd_lock_sources();
2233 		if (error) {
2234 			mutex_exit(&E->lock);
2235 			return error;
2236 		}
2237 		LIST_FOREACH(rs, &E->sources, list) {
2238 			if (strncmp(rs->name, nstat->name, n) == 0)
2239 				break;
2240 		}
2241 		if (rs != NULL) {
2242 			mutex_exit(&E->lock);
2243 			rndsource_to_user(rs, &nstat->source);
2244 			mutex_enter(&E->lock);
2245 		} else {
2246 			error = ENOENT;
2247 		}
2248 		rnd_unlock_sources();
2249 		mutex_exit(&E->lock);
2250 		break;
2251 	}
2252 	case RNDGETESTNAME: {	/* Get sources and estimates by name.  */
2253 		rndstat_est_name_t *enstat = data;
2254 		const size_t n = sizeof(rs->name);
2255 
2256 		CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
2257 
2258 		/*
2259 		 * Under the lock, search by name.  If found, copy it
2260 		 * out; if not found, fail with ENOENT.
2261 		 */
2262 		mutex_enter(&E->lock);
2263 		error = rnd_lock_sources();
2264 		if (error) {
2265 			mutex_exit(&E->lock);
2266 			return error;
2267 		}
2268 		LIST_FOREACH(rs, &E->sources, list) {
2269 			if (strncmp(rs->name, enstat->name, n) == 0)
2270 				break;
2271 		}
2272 		if (rs != NULL) {
2273 			mutex_exit(&E->lock);
2274 			rndsource_to_user_est(rs, &enstat->source);
2275 			mutex_enter(&E->lock);
2276 		} else {
2277 			error = ENOENT;
2278 		}
2279 		rnd_unlock_sources();
2280 		mutex_exit(&E->lock);
2281 		break;
2282 	}
2283 	case RNDCTL: {		/* Modify entropy source flags.  */
2284 		rndctl_t *rndctl = data;
2285 		const size_t n = sizeof(rs->name);
2286 		uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2287 		uint32_t flags;
2288 		bool reset = false, request = false;
2289 
2290 		CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
2291 
2292 		/* Whitelist the flags that user can change.  */
2293 		rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
2294 
2295 		/*
2296 		 * For each matching rndsource, either by type if
2297 		 * specified or by name if not, set the masked flags.
2298 		 */
2299 		mutex_enter(&E->lock);
2300 		LIST_FOREACH(rs, &E->sources, list) {
2301 			if (rndctl->type != 0xff) {
2302 				if (rs->type != rndctl->type)
2303 					continue;
2304 			} else {
2305 				if (strncmp(rs->name, rndctl->name, n) != 0)
2306 					continue;
2307 			}
2308 			flags = rs->flags & ~rndctl->mask;
2309 			flags |= rndctl->flags & rndctl->mask;
2310 			if ((rs->flags & resetflags) == 0 &&
2311 			    (flags & resetflags) != 0)
2312 				reset = true;
2313 			if ((rs->flags ^ flags) & resetflags)
2314 				request = true;
2315 			atomic_store_relaxed(&rs->flags, flags);
2316 		}
2317 		mutex_exit(&E->lock);
2318 
2319 		/*
2320 		 * If we disabled estimation or collection, nix all the
2321 		 * pending entropy and set needed to the maximum.
2322 		 */
2323 		if (reset) {
2324 			xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
2325 			mutex_enter(&E->lock);
2326 			E->pending = 0;
2327 			atomic_store_relaxed(&E->needed,
2328 			    ENTROPY_CAPACITY*NBBY);
2329 			mutex_exit(&E->lock);
2330 		}
2331 
2332 		/*
2333 		 * If we changed any of the estimation or collection
2334 		 * flags, request new samples from everyone -- either
2335 		 * to make up for what we just lost, or to get new
2336 		 * samples from what we just added.
2337 		 */
2338 		if (request) {
2339 			mutex_enter(&E->lock);
2340 			entropy_request(ENTROPY_CAPACITY);
2341 			mutex_exit(&E->lock);
2342 		}
2343 		break;
2344 	}
2345 	case RNDADDDATA: {	/* Enter seed into entropy pool.  */
2346 		rnddata_t *rdata = data;
2347 		unsigned entropybits = 0;
2348 
2349 		if (!atomic_load_relaxed(&entropy_collection))
2350 			break;	/* thanks but no thanks */
2351 		if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
2352 			return EINVAL;
2353 
2354 		/*
2355 		 * This ioctl serves as the userland alternative a
2356 		 * bootloader-provided seed -- typically furnished by
2357 		 * /etc/rc.d/random_seed.  We accept the user's entropy
2358 		 * claim only if
2359 		 *
2360 		 * (a) the user is privileged, and
2361 		 * (b) we have not entered a bootloader seed.
2362 		 *
2363 		 * under the assumption that the user may use this to
2364 		 * load a seed from disk that we have already loaded
2365 		 * from the bootloader, so we don't double-count it.
2366 		 */
2367 		if (privileged && rdata->entropy && rdata->len) {
2368 			mutex_enter(&E->lock);
2369 			if (!E->seeded) {
2370 				entropybits = MIN(rdata->entropy,
2371 				    MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
2372 				E->seeded = true;
2373 			}
2374 			mutex_exit(&E->lock);
2375 		}
2376 
2377 		/* Enter the data and consolidate entropy.  */
2378 		rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
2379 		    entropybits);
2380 		entropy_consolidate();
2381 		break;
2382 	}
2383 	default:
2384 		error = ENOTTY;
2385 	}
2386 
2387 	/* Return any error that may have come up.  */
2388 	return error;
2389 }
2390 
2391 /* Legacy entry points */
2392 
2393 void
2394 rnd_seed(void *seed, size_t len)
2395 {
2396 
2397 	if (len != sizeof(rndsave_t)) {
2398 		printf("entropy: invalid seed length: %zu,"
2399 		    " expected sizeof(rndsave_t) = %zu\n",
2400 		    len, sizeof(rndsave_t));
2401 		return;
2402 	}
2403 	entropy_seed(seed);
2404 }
2405 
2406 void
2407 rnd_init(void)
2408 {
2409 
2410 	entropy_init();
2411 }
2412 
2413 void
2414 rnd_init_softint(void)
2415 {
2416 
2417 	entropy_init_late();
2418 }
2419 
2420 int
2421 rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
2422 {
2423 
2424 	return entropy_ioctl(cmd, data);
2425 }
2426