xref: /netbsd-src/sys/kern/kern_condvar.c (revision e6c7e151de239c49d2e38720a061ed9d1fa99309)
1 /*	$NetBSD: kern_condvar.c,v 1.44 2020/03/26 19:46:42 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel condition variable implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.44 2020/03/26 19:46:42 ad Exp $");
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/lwp.h>
42 #include <sys/condvar.h>
43 #include <sys/sleepq.h>
44 #include <sys/lockdebug.h>
45 #include <sys/cpu.h>
46 #include <sys/kernel.h>
47 
48 /*
49  * Accessors for the private contents of the kcondvar_t data type.
50  *
51  *	cv_opaque[0]	sleepq_t
52  *	cv_opaque[1]	description for ps(1)
53  *
54  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
55  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
56  * and dequeue).
57  *
58  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
59  * of the CV.
60  */
61 #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
62 #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
63 #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
64 
65 #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
66 #define	CV_RA		((uintptr_t)__builtin_return_address(0))
67 
68 static void		cv_unsleep(lwp_t *, bool);
69 static inline void	cv_wakeup_one(kcondvar_t *);
70 static inline void	cv_wakeup_all(kcondvar_t *);
71 
72 syncobj_t cv_syncobj = {
73 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
74 	.sobj_unsleep	= cv_unsleep,
75 	.sobj_changepri	= sleepq_changepri,
76 	.sobj_lendpri	= sleepq_lendpri,
77 	.sobj_owner	= syncobj_noowner,
78 };
79 
80 lockops_t cv_lockops = {
81 	.lo_name = "Condition variable",
82 	.lo_type = LOCKOPS_CV,
83 	.lo_dump = NULL,
84 };
85 
86 static const char deadcv[] = "deadcv";
87 #ifdef LOCKDEBUG
88 static const char nodebug[] = "nodebug";
89 
90 #define CV_LOCKDEBUG_HANDOFF(l, cv) cv_lockdebug_handoff(l, cv)
91 #define CV_LOCKDEBUG_PROCESS(l, cv) cv_lockdebug_process(l, cv)
92 
93 static inline void
94 cv_lockdebug_handoff(lwp_t *l, kcondvar_t *cv)
95 {
96 
97 	if (CV_DEBUG_P(cv))
98 		l->l_flag |= LW_CVLOCKDEBUG;
99 }
100 
101 static inline void
102 cv_lockdebug_process(lwp_t *l, kcondvar_t *cv)
103 {
104 
105 	if ((l->l_flag & LW_CVLOCKDEBUG) == 0)
106 		return;
107 
108 	l->l_flag &= ~LW_CVLOCKDEBUG;
109 	LOCKDEBUG_UNLOCKED(true, cv, CV_RA, 0);
110 }
111 #else
112 #define CV_LOCKDEBUG_HANDOFF(l, cv) __nothing
113 #define CV_LOCKDEBUG_PROCESS(l, cv) __nothing
114 #endif
115 
116 /*
117  * cv_init:
118  *
119  *	Initialize a condition variable for use.
120  */
121 void
122 cv_init(kcondvar_t *cv, const char *wmesg)
123 {
124 #ifdef LOCKDEBUG
125 	bool dodebug;
126 
127 	dodebug = LOCKDEBUG_ALLOC(cv, &cv_lockops,
128 	    (uintptr_t)__builtin_return_address(0));
129 	if (!dodebug) {
130 		/* XXX This will break vfs_lockf. */
131 		wmesg = nodebug;
132 	}
133 #endif
134 	KASSERT(wmesg != NULL);
135 	CV_SET_WMESG(cv, wmesg);
136 	sleepq_init(CV_SLEEPQ(cv));
137 }
138 
139 /*
140  * cv_destroy:
141  *
142  *	Tear down a condition variable.
143  */
144 void
145 cv_destroy(kcondvar_t *cv)
146 {
147 
148 	LOCKDEBUG_FREE(CV_DEBUG_P(cv), cv);
149 #ifdef DIAGNOSTIC
150 	KASSERT(cv_is_valid(cv));
151 	CV_SET_WMESG(cv, deadcv);
152 #endif
153 }
154 
155 /*
156  * cv_enter:
157  *
158  *	Look up and lock the sleep queue corresponding to the given
159  *	condition variable, and increment the number of waiters.
160  */
161 static inline void
162 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l)
163 {
164 	sleepq_t *sq;
165 	kmutex_t *mp;
166 
167 	KASSERT(cv_is_valid(cv));
168 	KASSERT(!cpu_intr_p());
169 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
170 
171 	LOCKDEBUG_LOCKED(CV_DEBUG_P(cv), cv, mtx, CV_RA, 0);
172 
173 	l->l_kpriority = true;
174 	mp = sleepq_hashlock(cv);
175 	sq = CV_SLEEPQ(cv);
176 	sleepq_enter(sq, l, mp);
177 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj);
178 	mutex_exit(mtx);
179 	KASSERT(cv_has_waiters(cv));
180 }
181 
182 /*
183  * cv_exit:
184  *
185  *	After resuming execution, check to see if we have been restarted
186  *	as a result of cv_signal().  If we have, but cannot take the
187  *	wakeup (because of eg a pending Unix signal or timeout) then try
188  *	to ensure that another LWP sees it.  This is necessary because
189  *	there may be multiple waiters, and at least one should take the
190  *	wakeup if possible.
191  */
192 static inline int
193 cv_exit(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, const int error)
194 {
195 
196 	mutex_enter(mtx);
197 	if (__predict_false(error != 0))
198 		cv_signal(cv);
199 
200 	LOCKDEBUG_UNLOCKED(CV_DEBUG_P(cv), cv, CV_RA, 0);
201 	KASSERT(cv_is_valid(cv));
202 
203 	return error;
204 }
205 
206 /*
207  * cv_unsleep:
208  *
209  *	Remove an LWP from the condition variable and sleep queue.  This
210  *	is called when the LWP has not been awoken normally but instead
211  *	interrupted: for example, when a signal is received.  Must be
212  *	called with the LWP locked.  Will unlock if "unlock" is true.
213  */
214 static void
215 cv_unsleep(lwp_t *l, bool unlock)
216 {
217 	kcondvar_t *cv __diagused;
218 
219 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
220 
221 	KASSERT(l->l_wchan == (wchan_t)cv);
222 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
223 	KASSERT(cv_is_valid(cv));
224 	KASSERT(cv_has_waiters(cv));
225 
226 	sleepq_unsleep(l, unlock);
227 }
228 
229 /*
230  * cv_wait:
231  *
232  *	Wait non-interruptably on a condition variable until awoken.
233  */
234 void
235 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
236 {
237 	lwp_t *l = curlwp;
238 
239 	KASSERT(mutex_owned(mtx));
240 
241 	cv_enter(cv, mtx, l);
242 
243 	/*
244 	 * We can't use cv_exit() here since the cv might be destroyed before
245 	 * this thread gets a chance to run.  Instead, hand off the lockdebug
246 	 * responsibility to the thread that wakes us up.
247 	 */
248 
249 	CV_LOCKDEBUG_HANDOFF(l, cv);
250 	(void)sleepq_block(0, false);
251 	mutex_enter(mtx);
252 }
253 
254 /*
255  * cv_wait_sig:
256  *
257  *	Wait on a condition variable until a awoken or a signal is received.
258  *	Will also return early if the process is exiting.  Returns zero if
259  *	awoken normally, ERESTART if a signal was received and the system
260  *	call is restartable, or EINTR otherwise.
261  */
262 int
263 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
264 {
265 	lwp_t *l = curlwp;
266 	int error;
267 
268 	KASSERT(mutex_owned(mtx));
269 
270 	cv_enter(cv, mtx, l);
271 	error = sleepq_block(0, true);
272 	return cv_exit(cv, mtx, l, error);
273 }
274 
275 /*
276  * cv_timedwait:
277  *
278  *	Wait on a condition variable until awoken or the specified timeout
279  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
280  *	timeout expired.
281  *
282  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
283  */
284 int
285 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
286 {
287 	lwp_t *l = curlwp;
288 	int error;
289 
290 	KASSERT(mutex_owned(mtx));
291 
292 	cv_enter(cv, mtx, l);
293 	error = sleepq_block(timo, false);
294 	return cv_exit(cv, mtx, l, error);
295 }
296 
297 /*
298  * cv_timedwait_sig:
299  *
300  *	Wait on a condition variable until a timeout expires, awoken or a
301  *	signal is received.  Will also return early if the process is
302  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
303  *	timeout expires, ERESTART if a signal was received and the system
304  *	call is restartable, or EINTR otherwise.
305  *
306  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
307  */
308 int
309 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
310 {
311 	lwp_t *l = curlwp;
312 	int error;
313 
314 	KASSERT(mutex_owned(mtx));
315 
316 	cv_enter(cv, mtx, l);
317 	error = sleepq_block(timo, true);
318 	return cv_exit(cv, mtx, l, error);
319 }
320 
321 /*
322  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
323  * want a number of ticks for a timeout:
324  *
325  *	timo = hz*(sec + frac/2^64)
326  *	     = hz*sec + hz*frac/2^64
327  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
328  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
329  *
330  * where frachi is the high 32 bits of frac and fraclo is the
331  * low 32 bits.
332  *
333  * We assume hz < INT_MAX/2 < UINT32_MAX, so
334  *
335  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
336  *
337  * since fraclo < 2^32.
338  *
339  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
340  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
341  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
342  * because we compute end - start in ticks in order to compute the
343  * remaining timeout, and that difference cannot wrap around, so we use
344  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
345  * margin for paranoia and will exceed most waits in practice by far.
346  */
347 static unsigned
348 bintime2timo(const struct bintime *bt)
349 {
350 
351 	KASSERT(hz < INT_MAX/2);
352 	CTASSERT(INT_MAX/2 < UINT32_MAX);
353 	if (bt->sec > ((INT_MAX/2)/hz))
354 		return INT_MAX/2;
355 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
356 		return INT_MAX/2;
357 
358 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
359 }
360 
361 /*
362  * timo is in units of ticks.  We want units of seconds and 2^64ths of
363  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
364  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
365  * second)/tick.  So for the fractional part, we compute
366  *
367  *	frac = rem * 2^64 / hz
368  *	     = ((rem * 2^32) / hz) * 2^32
369  *
370  * Using truncating integer division instead of real division will
371  * leave us with only about 32 bits of precision, which means about
372  * 1/4-nanosecond resolution, which is good enough for our purposes.
373  */
374 static struct bintime
375 timo2bintime(unsigned timo)
376 {
377 
378 	return (struct bintime) {
379 		.sec = timo / hz,
380 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
381 	};
382 }
383 
384 /*
385  * cv_timedwaitbt:
386  *
387  *	Wait on a condition variable until awoken or the specified
388  *	timeout expires.  Returns zero if awoken normally or
389  *	EWOULDBLOCK if the timeout expires.
390  *
391  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
392  *	the time slept, so on exit, bt is the time remaining after
393  *	sleeping, possibly negative if the complete time has elapsed.
394  *	No infinite timeout; use cv_wait_sig instead.
395  *
396  *	epsilon is a requested maximum error in timeout (excluding
397  *	spurious wakeups).  Currently not used, will be used in the
398  *	future to choose between low- and high-resolution timers.
399  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
400  *	where r is the finest resolution of clock available and s is
401  *	scheduling delays for scheduler overhead and competing threads.
402  *	Time is measured by the interrupt source implementing the
403  *	timeout, not by another timecounter.
404  */
405 int
406 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
407     const struct bintime *epsilon __diagused)
408 {
409 	struct bintime slept;
410 	unsigned start, end;
411 	int error;
412 
413 	KASSERTMSG(bt->sec >= 0, "negative timeout");
414 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
415 
416 	/*
417 	 * hardclock_ticks is technically int, but nothing special
418 	 * happens instead of overflow, so we assume two's-complement
419 	 * wraparound and just treat it as unsigned.
420 	 */
421 	start = hardclock_ticks;
422 	error = cv_timedwait(cv, mtx, bintime2timo(bt));
423 	end = hardclock_ticks;
424 
425 	slept = timo2bintime(end - start);
426 	/* bt := bt - slept */
427 	bintime_sub(bt, &slept);
428 
429 	return error;
430 }
431 
432 /*
433  * cv_timedwaitbt_sig:
434  *
435  *	Wait on a condition variable until awoken, the specified
436  *	timeout expires, or interrupted by a signal.  Returns zero if
437  *	awoken normally, EWOULDBLOCK if the timeout expires, or
438  *	EINTR/ERESTART if interrupted by a signal.
439  *
440  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
441  *	subtracts the time slept, so on exit, bt is the time remaining
442  *	after sleeping.  No infinite timeout; use cv_wait instead.
443  *
444  *	epsilon is a requested maximum error in timeout (excluding
445  *	spurious wakeups).  Currently not used, will be used in the
446  *	future to choose between low- and high-resolution timers.
447  */
448 int
449 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
450     const struct bintime *epsilon __diagused)
451 {
452 	struct bintime slept;
453 	unsigned start, end;
454 	int error;
455 
456 	KASSERTMSG(bt->sec >= 0, "negative timeout");
457 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
458 
459 	/*
460 	 * hardclock_ticks is technically int, but nothing special
461 	 * happens instead of overflow, so we assume two's-complement
462 	 * wraparound and just treat it as unsigned.
463 	 */
464 	start = hardclock_ticks;
465 	error = cv_timedwait_sig(cv, mtx, bintime2timo(bt));
466 	end = hardclock_ticks;
467 
468 	slept = timo2bintime(end - start);
469 	/* bt := bt - slept */
470 	bintime_sub(bt, &slept);
471 
472 	return error;
473 }
474 
475 /*
476  * cv_signal:
477  *
478  *	Wake the highest priority LWP waiting on a condition variable.
479  *	Must be called with the interlocking mutex held.
480  */
481 void
482 cv_signal(kcondvar_t *cv)
483 {
484 
485 	/* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
486 	KASSERT(cv_is_valid(cv));
487 
488 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
489 		cv_wakeup_one(cv);
490 }
491 
492 /*
493  * cv_wakeup_one:
494  *
495  *	Slow path for cv_signal().  Deliberately marked __noinline to
496  *	prevent the compiler pulling it in to cv_signal(), which adds
497  *	extra prologue and epilogue code.
498  */
499 static __noinline void
500 cv_wakeup_one(kcondvar_t *cv)
501 {
502 	sleepq_t *sq;
503 	kmutex_t *mp;
504 	lwp_t *l;
505 
506 	KASSERT(cv_is_valid(cv));
507 
508 	mp = sleepq_hashlock(cv);
509 	sq = CV_SLEEPQ(cv);
510 	l = LIST_FIRST(sq);
511 	if (__predict_false(l == NULL)) {
512 		mutex_spin_exit(mp);
513 		return;
514 	}
515 	KASSERT(l->l_sleepq == sq);
516 	KASSERT(l->l_mutex == mp);
517 	KASSERT(l->l_wchan == cv);
518 	CV_LOCKDEBUG_PROCESS(l, cv);
519 	sleepq_remove(sq, l);
520 	mutex_spin_exit(mp);
521 
522 	KASSERT(cv_is_valid(cv));
523 }
524 
525 /*
526  * cv_broadcast:
527  *
528  *	Wake all LWPs waiting on a condition variable.  Must be called
529  *	with the interlocking mutex held.
530  */
531 void
532 cv_broadcast(kcondvar_t *cv)
533 {
534 
535 	/* LOCKDEBUG_WAKEUP(CV_DEBUG_P(cv), cv, CV_RA); */
536 	KASSERT(cv_is_valid(cv));
537 
538 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
539 		cv_wakeup_all(cv);
540 }
541 
542 /*
543  * cv_wakeup_all:
544  *
545  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
546  *	prevent the compiler pulling it in to cv_broadcast(), which adds
547  *	extra prologue and epilogue code.
548  */
549 static __noinline void
550 cv_wakeup_all(kcondvar_t *cv)
551 {
552 	sleepq_t *sq;
553 	kmutex_t *mp;
554 	lwp_t *l, *next;
555 
556 	KASSERT(cv_is_valid(cv));
557 
558 	mp = sleepq_hashlock(cv);
559 	sq = CV_SLEEPQ(cv);
560 	for (l = LIST_FIRST(sq); l != NULL; l = next) {
561 		KASSERT(l->l_sleepq == sq);
562 		KASSERT(l->l_mutex == mp);
563 		KASSERT(l->l_wchan == cv);
564 		next = LIST_NEXT(l, l_sleepchain);
565 		CV_LOCKDEBUG_PROCESS(l, cv);
566 		sleepq_remove(sq, l);
567 	}
568 	mutex_spin_exit(mp);
569 
570 	KASSERT(cv_is_valid(cv));
571 }
572 
573 /*
574  * cv_has_waiters:
575  *
576  *	For diagnostic assertions: return non-zero if a condition
577  *	variable has waiters.
578  */
579 bool
580 cv_has_waiters(kcondvar_t *cv)
581 {
582 
583 	return !LIST_EMPTY(CV_SLEEPQ(cv));
584 }
585 
586 /*
587  * cv_is_valid:
588  *
589  *	For diagnostic assertions: return non-zero if a condition
590  *	variable appears to be valid.  No locks need be held.
591  */
592 bool
593 cv_is_valid(kcondvar_t *cv)
594 {
595 
596 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
597 }
598