1 /* $NetBSD: kern_condvar.c,v 1.54 2022/06/29 22:27:01 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Kernel condition variable implementation. 34 */ 35 36 #include <sys/cdefs.h> 37 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.54 2022/06/29 22:27:01 riastradh Exp $"); 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/lwp.h> 42 #include <sys/condvar.h> 43 #include <sys/sleepq.h> 44 #include <sys/lockdebug.h> 45 #include <sys/cpu.h> 46 #include <sys/kernel.h> 47 48 /* 49 * Accessors for the private contents of the kcondvar_t data type. 50 * 51 * cv_opaque[0] sleepq_t 52 * cv_opaque[1] description for ps(1) 53 * 54 * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue 55 * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue 56 * and dequeue). 57 * 58 * cv_opaque[1] (the wmesg) is static and does not change throughout the life 59 * of the CV. 60 */ 61 #define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque) 62 #define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1]) 63 #define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v) 64 65 #define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug) 66 #define CV_RA ((uintptr_t)__builtin_return_address(0)) 67 68 static void cv_unsleep(lwp_t *, bool); 69 static inline void cv_wakeup_one(kcondvar_t *); 70 static inline void cv_wakeup_all(kcondvar_t *); 71 72 syncobj_t cv_syncobj = { 73 .sobj_flag = SOBJ_SLEEPQ_SORTED, 74 .sobj_unsleep = cv_unsleep, 75 .sobj_changepri = sleepq_changepri, 76 .sobj_lendpri = sleepq_lendpri, 77 .sobj_owner = syncobj_noowner, 78 }; 79 80 static const char deadcv[] = "deadcv"; 81 82 /* 83 * cv_init: 84 * 85 * Initialize a condition variable for use. 86 */ 87 void 88 cv_init(kcondvar_t *cv, const char *wmesg) 89 { 90 91 KASSERT(wmesg != NULL); 92 CV_SET_WMESG(cv, wmesg); 93 sleepq_init(CV_SLEEPQ(cv)); 94 } 95 96 /* 97 * cv_destroy: 98 * 99 * Tear down a condition variable. 100 */ 101 void 102 cv_destroy(kcondvar_t *cv) 103 { 104 105 sleepq_destroy(CV_SLEEPQ(cv)); 106 #ifdef DIAGNOSTIC 107 KASSERT(cv_is_valid(cv)); 108 KASSERT(!cv_has_waiters(cv)); 109 CV_SET_WMESG(cv, deadcv); 110 #endif 111 } 112 113 /* 114 * cv_enter: 115 * 116 * Look up and lock the sleep queue corresponding to the given 117 * condition variable, and increment the number of waiters. 118 */ 119 static inline void 120 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p) 121 { 122 sleepq_t *sq; 123 kmutex_t *mp; 124 125 KASSERT(cv_is_valid(cv)); 126 KASSERT(!cpu_intr_p()); 127 KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL); 128 129 l->l_kpriority = true; 130 mp = sleepq_hashlock(cv); 131 sq = CV_SLEEPQ(cv); 132 sleepq_enter(sq, l, mp); 133 sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p); 134 mutex_exit(mtx); 135 KASSERT(cv_has_waiters(cv)); 136 } 137 138 /* 139 * cv_unsleep: 140 * 141 * Remove an LWP from the condition variable and sleep queue. This 142 * is called when the LWP has not been awoken normally but instead 143 * interrupted: for example, when a signal is received. Must be 144 * called with the LWP locked. Will unlock if "unlock" is true. 145 */ 146 static void 147 cv_unsleep(lwp_t *l, bool unlock) 148 { 149 kcondvar_t *cv __diagused; 150 151 cv = (kcondvar_t *)(uintptr_t)l->l_wchan; 152 153 KASSERT(l->l_wchan == (wchan_t)cv); 154 KASSERT(l->l_sleepq == CV_SLEEPQ(cv)); 155 KASSERT(cv_is_valid(cv)); 156 KASSERT(cv_has_waiters(cv)); 157 158 sleepq_unsleep(l, unlock); 159 } 160 161 /* 162 * cv_wait: 163 * 164 * Wait non-interruptably on a condition variable until awoken. 165 */ 166 void 167 cv_wait(kcondvar_t *cv, kmutex_t *mtx) 168 { 169 lwp_t *l = curlwp; 170 171 KASSERT(mutex_owned(mtx)); 172 173 cv_enter(cv, mtx, l, false); 174 (void)sleepq_block(0, false, &cv_syncobj); 175 mutex_enter(mtx); 176 } 177 178 /* 179 * cv_wait_sig: 180 * 181 * Wait on a condition variable until a awoken or a signal is received. 182 * Will also return early if the process is exiting. Returns zero if 183 * awoken normally, ERESTART if a signal was received and the system 184 * call is restartable, or EINTR otherwise. 185 */ 186 int 187 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx) 188 { 189 lwp_t *l = curlwp; 190 int error; 191 192 KASSERT(mutex_owned(mtx)); 193 194 cv_enter(cv, mtx, l, true); 195 error = sleepq_block(0, true, &cv_syncobj); 196 mutex_enter(mtx); 197 return error; 198 } 199 200 /* 201 * cv_timedwait: 202 * 203 * Wait on a condition variable until awoken or the specified timeout 204 * expires. Returns zero if awoken normally or EWOULDBLOCK if the 205 * timeout expired. 206 * 207 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout. 208 */ 209 int 210 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo) 211 { 212 lwp_t *l = curlwp; 213 int error; 214 215 KASSERT(mutex_owned(mtx)); 216 217 cv_enter(cv, mtx, l, false); 218 error = sleepq_block(timo, false, &cv_syncobj); 219 mutex_enter(mtx); 220 return error; 221 } 222 223 /* 224 * cv_timedwait_sig: 225 * 226 * Wait on a condition variable until a timeout expires, awoken or a 227 * signal is received. Will also return early if the process is 228 * exiting. Returns zero if awoken normally, EWOULDBLOCK if the 229 * timeout expires, ERESTART if a signal was received and the system 230 * call is restartable, or EINTR otherwise. 231 * 232 * timo is a timeout in ticks. timo = 0 specifies an infinite timeout. 233 */ 234 int 235 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo) 236 { 237 lwp_t *l = curlwp; 238 int error; 239 240 KASSERT(mutex_owned(mtx)); 241 242 cv_enter(cv, mtx, l, true); 243 error = sleepq_block(timo, true, &cv_syncobj); 244 mutex_enter(mtx); 245 return error; 246 } 247 248 /* 249 * Given a number of seconds, sec, and 2^64ths of a second, frac, we 250 * want a number of ticks for a timeout: 251 * 252 * timo = hz*(sec + frac/2^64) 253 * = hz*sec + hz*frac/2^64 254 * = hz*sec + hz*(frachi*2^32 + fraclo)/2^64 255 * = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64, 256 * 257 * where frachi is the high 32 bits of frac and fraclo is the 258 * low 32 bits. 259 * 260 * We assume hz < INT_MAX/2 < UINT32_MAX, so 261 * 262 * hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1, 263 * 264 * since fraclo < 2^32. 265 * 266 * We clamp the result at INT_MAX/2 for a timeout in ticks, since we 267 * can't represent timeouts higher than INT_MAX in cv_timedwait, and 268 * spurious wakeup is OK. Moreover, we don't want to wrap around, 269 * because we compute end - start in ticks in order to compute the 270 * remaining timeout, and that difference cannot wrap around, so we use 271 * a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of 272 * margin for paranoia and will exceed most waits in practice by far. 273 */ 274 static unsigned 275 bintime2timo(const struct bintime *bt) 276 { 277 278 KASSERT(hz < INT_MAX/2); 279 CTASSERT(INT_MAX/2 < UINT32_MAX); 280 if (bt->sec > ((INT_MAX/2)/hz)) 281 return INT_MAX/2; 282 if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec)) 283 return INT_MAX/2; 284 285 return hz*bt->sec + (hz*(bt->frac >> 32) >> 32); 286 } 287 288 /* 289 * timo is in units of ticks. We want units of seconds and 2^64ths of 290 * a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a 291 * second), from which we can conclude 2^64 / hz = 1 (2^64th of a 292 * second)/tick. So for the fractional part, we compute 293 * 294 * frac = rem * 2^64 / hz 295 * = ((rem * 2^32) / hz) * 2^32 296 * 297 * Using truncating integer division instead of real division will 298 * leave us with only about 32 bits of precision, which means about 299 * 1/4-nanosecond resolution, which is good enough for our purposes. 300 */ 301 static struct bintime 302 timo2bintime(unsigned timo) 303 { 304 305 return (struct bintime) { 306 .sec = timo / hz, 307 .frac = (((uint64_t)(timo % hz) << 32)/hz << 32), 308 }; 309 } 310 311 /* 312 * cv_timedwaitbt: 313 * 314 * Wait on a condition variable until awoken or the specified 315 * timeout expires. Returns zero if awoken normally or 316 * EWOULDBLOCK if the timeout expires. 317 * 318 * On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts 319 * the time slept, so on exit, bt is the time remaining after 320 * sleeping, possibly negative if the complete time has elapsed. 321 * No infinite timeout; use cv_wait_sig instead. 322 * 323 * epsilon is a requested maximum error in timeout (excluding 324 * spurious wakeups). Currently not used, will be used in the 325 * future to choose between low- and high-resolution timers. 326 * Actual wakeup time will be somewhere in [t, t + max(e, r) + s) 327 * where r is the finest resolution of clock available and s is 328 * scheduling delays for scheduler overhead and competing threads. 329 * Time is measured by the interrupt source implementing the 330 * timeout, not by another timecounter. 331 */ 332 int 333 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt, 334 const struct bintime *epsilon __diagused) 335 { 336 struct bintime slept; 337 unsigned start, end; 338 int timo; 339 int error; 340 341 KASSERTMSG(bt->sec >= 0, "negative timeout"); 342 KASSERTMSG(epsilon != NULL, "specify maximum requested delay"); 343 344 /* If there's nothing left to wait, time out. */ 345 if (bt->sec == 0 && bt->frac == 0) 346 return EWOULDBLOCK; 347 348 /* Convert to ticks, but clamp to be >=1. */ 349 timo = bintime2timo(bt); 350 KASSERTMSG(timo >= 0, "negative ticks: %d", timo); 351 if (timo == 0) 352 timo = 1; 353 354 /* 355 * getticks() is technically int, but nothing special 356 * happens instead of overflow, so we assume two's-complement 357 * wraparound and just treat it as unsigned. 358 */ 359 start = getticks(); 360 error = cv_timedwait(cv, mtx, timo); 361 end = getticks(); 362 363 /* 364 * Set it to the time left, or zero, whichever is larger. We 365 * do not fail with EWOULDBLOCK here because this may have been 366 * an explicit wakeup, so the caller needs to check before they 367 * give up or else cv_signal would be lost. 368 */ 369 slept = timo2bintime(end - start); 370 if (bintimecmp(bt, &slept, <=)) { 371 bt->sec = 0; 372 bt->frac = 0; 373 } else { 374 /* bt := bt - slept */ 375 bintime_sub(bt, &slept); 376 } 377 378 return error; 379 } 380 381 /* 382 * cv_timedwaitbt_sig: 383 * 384 * Wait on a condition variable until awoken, the specified 385 * timeout expires, or interrupted by a signal. Returns zero if 386 * awoken normally, EWOULDBLOCK if the timeout expires, or 387 * EINTR/ERESTART if interrupted by a signal. 388 * 389 * On entry, bt is a timeout in bintime. cv_timedwaitbt_sig 390 * subtracts the time slept, so on exit, bt is the time remaining 391 * after sleeping. No infinite timeout; use cv_wait instead. 392 * 393 * epsilon is a requested maximum error in timeout (excluding 394 * spurious wakeups). Currently not used, will be used in the 395 * future to choose between low- and high-resolution timers. 396 */ 397 int 398 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt, 399 const struct bintime *epsilon __diagused) 400 { 401 struct bintime slept; 402 unsigned start, end; 403 int timo; 404 int error; 405 406 KASSERTMSG(bt->sec >= 0, "negative timeout"); 407 KASSERTMSG(epsilon != NULL, "specify maximum requested delay"); 408 409 /* If there's nothing left to wait, time out. */ 410 if (bt->sec == 0 && bt->frac == 0) 411 return EWOULDBLOCK; 412 413 /* Convert to ticks, but clamp to be >=1. */ 414 timo = bintime2timo(bt); 415 KASSERTMSG(timo >= 0, "negative ticks: %d", timo); 416 if (timo == 0) 417 timo = 1; 418 419 /* 420 * getticks() is technically int, but nothing special 421 * happens instead of overflow, so we assume two's-complement 422 * wraparound and just treat it as unsigned. 423 */ 424 start = getticks(); 425 error = cv_timedwait_sig(cv, mtx, timo); 426 end = getticks(); 427 428 /* 429 * Set it to the time left, or zero, whichever is larger. We 430 * do not fail with EWOULDBLOCK here because this may have been 431 * an explicit wakeup, so the caller needs to check before they 432 * give up or else cv_signal would be lost. 433 */ 434 slept = timo2bintime(end - start); 435 if (bintimecmp(bt, &slept, <=)) { 436 bt->sec = 0; 437 bt->frac = 0; 438 } else { 439 /* bt := bt - slept */ 440 bintime_sub(bt, &slept); 441 } 442 443 return error; 444 } 445 446 /* 447 * cv_signal: 448 * 449 * Wake the highest priority LWP waiting on a condition variable. 450 * Must be called with the interlocking mutex held. 451 */ 452 void 453 cv_signal(kcondvar_t *cv) 454 { 455 456 KASSERT(cv_is_valid(cv)); 457 458 if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) 459 cv_wakeup_one(cv); 460 } 461 462 /* 463 * cv_wakeup_one: 464 * 465 * Slow path for cv_signal(). Deliberately marked __noinline to 466 * prevent the compiler pulling it in to cv_signal(), which adds 467 * extra prologue and epilogue code. 468 */ 469 static __noinline void 470 cv_wakeup_one(kcondvar_t *cv) 471 { 472 sleepq_t *sq; 473 kmutex_t *mp; 474 lwp_t *l; 475 476 /* 477 * Keep waking LWPs until a non-interruptable waiter is found. An 478 * interruptable waiter could fail to do something useful with the 479 * wakeup due to an error return from cv_[timed]wait_sig(), and the 480 * caller of cv_signal() may not expect such a scenario. 481 * 482 * This isn't a problem for non-interruptable waits (untimed and 483 * timed), because if such a waiter is woken here it will not return 484 * an error. 485 */ 486 mp = sleepq_hashlock(cv); 487 sq = CV_SLEEPQ(cv); 488 while ((l = LIST_FIRST(sq)) != NULL) { 489 KASSERT(l->l_sleepq == sq); 490 KASSERT(l->l_mutex == mp); 491 KASSERT(l->l_wchan == cv); 492 if ((l->l_flag & LW_SINTR) == 0) { 493 sleepq_remove(sq, l); 494 break; 495 } else 496 sleepq_remove(sq, l); 497 } 498 mutex_spin_exit(mp); 499 } 500 501 /* 502 * cv_broadcast: 503 * 504 * Wake all LWPs waiting on a condition variable. Must be called 505 * with the interlocking mutex held. 506 */ 507 void 508 cv_broadcast(kcondvar_t *cv) 509 { 510 511 KASSERT(cv_is_valid(cv)); 512 513 if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) 514 cv_wakeup_all(cv); 515 } 516 517 /* 518 * cv_wakeup_all: 519 * 520 * Slow path for cv_broadcast(). Deliberately marked __noinline to 521 * prevent the compiler pulling it in to cv_broadcast(), which adds 522 * extra prologue and epilogue code. 523 */ 524 static __noinline void 525 cv_wakeup_all(kcondvar_t *cv) 526 { 527 sleepq_t *sq; 528 kmutex_t *mp; 529 lwp_t *l; 530 531 mp = sleepq_hashlock(cv); 532 sq = CV_SLEEPQ(cv); 533 while ((l = LIST_FIRST(sq)) != NULL) { 534 KASSERT(l->l_sleepq == sq); 535 KASSERT(l->l_mutex == mp); 536 KASSERT(l->l_wchan == cv); 537 sleepq_remove(sq, l); 538 } 539 mutex_spin_exit(mp); 540 } 541 542 /* 543 * cv_has_waiters: 544 * 545 * For diagnostic assertions: return non-zero if a condition 546 * variable has waiters. 547 */ 548 bool 549 cv_has_waiters(kcondvar_t *cv) 550 { 551 552 return !LIST_EMPTY(CV_SLEEPQ(cv)); 553 } 554 555 /* 556 * cv_is_valid: 557 * 558 * For diagnostic assertions: return non-zero if a condition 559 * variable appears to be valid. No locks need be held. 560 */ 561 bool 562 cv_is_valid(kcondvar_t *cv) 563 { 564 565 return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL; 566 } 567