xref: /netbsd-src/sys/kern/kern_condvar.c (revision afab4e300d3a9fb07dd8c80daf53d0feb3345706)
1 /*	$NetBSD: kern_condvar.c,v 1.54 2022/06/29 22:27:01 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel condition variable implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.54 2022/06/29 22:27:01 riastradh Exp $");
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/lwp.h>
42 #include <sys/condvar.h>
43 #include <sys/sleepq.h>
44 #include <sys/lockdebug.h>
45 #include <sys/cpu.h>
46 #include <sys/kernel.h>
47 
48 /*
49  * Accessors for the private contents of the kcondvar_t data type.
50  *
51  *	cv_opaque[0]	sleepq_t
52  *	cv_opaque[1]	description for ps(1)
53  *
54  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
55  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
56  * and dequeue).
57  *
58  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
59  * of the CV.
60  */
61 #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
62 #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
63 #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
64 
65 #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
66 #define	CV_RA		((uintptr_t)__builtin_return_address(0))
67 
68 static void		cv_unsleep(lwp_t *, bool);
69 static inline void	cv_wakeup_one(kcondvar_t *);
70 static inline void	cv_wakeup_all(kcondvar_t *);
71 
72 syncobj_t cv_syncobj = {
73 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
74 	.sobj_unsleep	= cv_unsleep,
75 	.sobj_changepri	= sleepq_changepri,
76 	.sobj_lendpri	= sleepq_lendpri,
77 	.sobj_owner	= syncobj_noowner,
78 };
79 
80 static const char deadcv[] = "deadcv";
81 
82 /*
83  * cv_init:
84  *
85  *	Initialize a condition variable for use.
86  */
87 void
88 cv_init(kcondvar_t *cv, const char *wmesg)
89 {
90 
91 	KASSERT(wmesg != NULL);
92 	CV_SET_WMESG(cv, wmesg);
93 	sleepq_init(CV_SLEEPQ(cv));
94 }
95 
96 /*
97  * cv_destroy:
98  *
99  *	Tear down a condition variable.
100  */
101 void
102 cv_destroy(kcondvar_t *cv)
103 {
104 
105 	sleepq_destroy(CV_SLEEPQ(cv));
106 #ifdef DIAGNOSTIC
107 	KASSERT(cv_is_valid(cv));
108 	KASSERT(!cv_has_waiters(cv));
109 	CV_SET_WMESG(cv, deadcv);
110 #endif
111 }
112 
113 /*
114  * cv_enter:
115  *
116  *	Look up and lock the sleep queue corresponding to the given
117  *	condition variable, and increment the number of waiters.
118  */
119 static inline void
120 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
121 {
122 	sleepq_t *sq;
123 	kmutex_t *mp;
124 
125 	KASSERT(cv_is_valid(cv));
126 	KASSERT(!cpu_intr_p());
127 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
128 
129 	l->l_kpriority = true;
130 	mp = sleepq_hashlock(cv);
131 	sq = CV_SLEEPQ(cv);
132 	sleepq_enter(sq, l, mp);
133 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
134 	mutex_exit(mtx);
135 	KASSERT(cv_has_waiters(cv));
136 }
137 
138 /*
139  * cv_unsleep:
140  *
141  *	Remove an LWP from the condition variable and sleep queue.  This
142  *	is called when the LWP has not been awoken normally but instead
143  *	interrupted: for example, when a signal is received.  Must be
144  *	called with the LWP locked.  Will unlock if "unlock" is true.
145  */
146 static void
147 cv_unsleep(lwp_t *l, bool unlock)
148 {
149 	kcondvar_t *cv __diagused;
150 
151 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
152 
153 	KASSERT(l->l_wchan == (wchan_t)cv);
154 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
155 	KASSERT(cv_is_valid(cv));
156 	KASSERT(cv_has_waiters(cv));
157 
158 	sleepq_unsleep(l, unlock);
159 }
160 
161 /*
162  * cv_wait:
163  *
164  *	Wait non-interruptably on a condition variable until awoken.
165  */
166 void
167 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
168 {
169 	lwp_t *l = curlwp;
170 
171 	KASSERT(mutex_owned(mtx));
172 
173 	cv_enter(cv, mtx, l, false);
174 	(void)sleepq_block(0, false, &cv_syncobj);
175 	mutex_enter(mtx);
176 }
177 
178 /*
179  * cv_wait_sig:
180  *
181  *	Wait on a condition variable until a awoken or a signal is received.
182  *	Will also return early if the process is exiting.  Returns zero if
183  *	awoken normally, ERESTART if a signal was received and the system
184  *	call is restartable, or EINTR otherwise.
185  */
186 int
187 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
188 {
189 	lwp_t *l = curlwp;
190 	int error;
191 
192 	KASSERT(mutex_owned(mtx));
193 
194 	cv_enter(cv, mtx, l, true);
195 	error = sleepq_block(0, true, &cv_syncobj);
196 	mutex_enter(mtx);
197 	return error;
198 }
199 
200 /*
201  * cv_timedwait:
202  *
203  *	Wait on a condition variable until awoken or the specified timeout
204  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
205  *	timeout expired.
206  *
207  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
208  */
209 int
210 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
211 {
212 	lwp_t *l = curlwp;
213 	int error;
214 
215 	KASSERT(mutex_owned(mtx));
216 
217 	cv_enter(cv, mtx, l, false);
218 	error = sleepq_block(timo, false, &cv_syncobj);
219 	mutex_enter(mtx);
220 	return error;
221 }
222 
223 /*
224  * cv_timedwait_sig:
225  *
226  *	Wait on a condition variable until a timeout expires, awoken or a
227  *	signal is received.  Will also return early if the process is
228  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
229  *	timeout expires, ERESTART if a signal was received and the system
230  *	call is restartable, or EINTR otherwise.
231  *
232  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
233  */
234 int
235 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
236 {
237 	lwp_t *l = curlwp;
238 	int error;
239 
240 	KASSERT(mutex_owned(mtx));
241 
242 	cv_enter(cv, mtx, l, true);
243 	error = sleepq_block(timo, true, &cv_syncobj);
244 	mutex_enter(mtx);
245 	return error;
246 }
247 
248 /*
249  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
250  * want a number of ticks for a timeout:
251  *
252  *	timo = hz*(sec + frac/2^64)
253  *	     = hz*sec + hz*frac/2^64
254  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
255  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
256  *
257  * where frachi is the high 32 bits of frac and fraclo is the
258  * low 32 bits.
259  *
260  * We assume hz < INT_MAX/2 < UINT32_MAX, so
261  *
262  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
263  *
264  * since fraclo < 2^32.
265  *
266  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
267  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
268  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
269  * because we compute end - start in ticks in order to compute the
270  * remaining timeout, and that difference cannot wrap around, so we use
271  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
272  * margin for paranoia and will exceed most waits in practice by far.
273  */
274 static unsigned
275 bintime2timo(const struct bintime *bt)
276 {
277 
278 	KASSERT(hz < INT_MAX/2);
279 	CTASSERT(INT_MAX/2 < UINT32_MAX);
280 	if (bt->sec > ((INT_MAX/2)/hz))
281 		return INT_MAX/2;
282 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
283 		return INT_MAX/2;
284 
285 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
286 }
287 
288 /*
289  * timo is in units of ticks.  We want units of seconds and 2^64ths of
290  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
291  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
292  * second)/tick.  So for the fractional part, we compute
293  *
294  *	frac = rem * 2^64 / hz
295  *	     = ((rem * 2^32) / hz) * 2^32
296  *
297  * Using truncating integer division instead of real division will
298  * leave us with only about 32 bits of precision, which means about
299  * 1/4-nanosecond resolution, which is good enough for our purposes.
300  */
301 static struct bintime
302 timo2bintime(unsigned timo)
303 {
304 
305 	return (struct bintime) {
306 		.sec = timo / hz,
307 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
308 	};
309 }
310 
311 /*
312  * cv_timedwaitbt:
313  *
314  *	Wait on a condition variable until awoken or the specified
315  *	timeout expires.  Returns zero if awoken normally or
316  *	EWOULDBLOCK if the timeout expires.
317  *
318  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
319  *	the time slept, so on exit, bt is the time remaining after
320  *	sleeping, possibly negative if the complete time has elapsed.
321  *	No infinite timeout; use cv_wait_sig instead.
322  *
323  *	epsilon is a requested maximum error in timeout (excluding
324  *	spurious wakeups).  Currently not used, will be used in the
325  *	future to choose between low- and high-resolution timers.
326  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
327  *	where r is the finest resolution of clock available and s is
328  *	scheduling delays for scheduler overhead and competing threads.
329  *	Time is measured by the interrupt source implementing the
330  *	timeout, not by another timecounter.
331  */
332 int
333 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
334     const struct bintime *epsilon __diagused)
335 {
336 	struct bintime slept;
337 	unsigned start, end;
338 	int timo;
339 	int error;
340 
341 	KASSERTMSG(bt->sec >= 0, "negative timeout");
342 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
343 
344 	/* If there's nothing left to wait, time out.  */
345 	if (bt->sec == 0 && bt->frac == 0)
346 		return EWOULDBLOCK;
347 
348 	/* Convert to ticks, but clamp to be >=1.  */
349 	timo = bintime2timo(bt);
350 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
351 	if (timo == 0)
352 		timo = 1;
353 
354 	/*
355 	 * getticks() is technically int, but nothing special
356 	 * happens instead of overflow, so we assume two's-complement
357 	 * wraparound and just treat it as unsigned.
358 	 */
359 	start = getticks();
360 	error = cv_timedwait(cv, mtx, timo);
361 	end = getticks();
362 
363 	/*
364 	 * Set it to the time left, or zero, whichever is larger.  We
365 	 * do not fail with EWOULDBLOCK here because this may have been
366 	 * an explicit wakeup, so the caller needs to check before they
367 	 * give up or else cv_signal would be lost.
368 	 */
369 	slept = timo2bintime(end - start);
370 	if (bintimecmp(bt, &slept, <=)) {
371 		bt->sec = 0;
372 		bt->frac = 0;
373 	} else {
374 		/* bt := bt - slept */
375 		bintime_sub(bt, &slept);
376 	}
377 
378 	return error;
379 }
380 
381 /*
382  * cv_timedwaitbt_sig:
383  *
384  *	Wait on a condition variable until awoken, the specified
385  *	timeout expires, or interrupted by a signal.  Returns zero if
386  *	awoken normally, EWOULDBLOCK if the timeout expires, or
387  *	EINTR/ERESTART if interrupted by a signal.
388  *
389  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
390  *	subtracts the time slept, so on exit, bt is the time remaining
391  *	after sleeping.  No infinite timeout; use cv_wait instead.
392  *
393  *	epsilon is a requested maximum error in timeout (excluding
394  *	spurious wakeups).  Currently not used, will be used in the
395  *	future to choose between low- and high-resolution timers.
396  */
397 int
398 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
399     const struct bintime *epsilon __diagused)
400 {
401 	struct bintime slept;
402 	unsigned start, end;
403 	int timo;
404 	int error;
405 
406 	KASSERTMSG(bt->sec >= 0, "negative timeout");
407 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
408 
409 	/* If there's nothing left to wait, time out.  */
410 	if (bt->sec == 0 && bt->frac == 0)
411 		return EWOULDBLOCK;
412 
413 	/* Convert to ticks, but clamp to be >=1.  */
414 	timo = bintime2timo(bt);
415 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
416 	if (timo == 0)
417 		timo = 1;
418 
419 	/*
420 	 * getticks() is technically int, but nothing special
421 	 * happens instead of overflow, so we assume two's-complement
422 	 * wraparound and just treat it as unsigned.
423 	 */
424 	start = getticks();
425 	error = cv_timedwait_sig(cv, mtx, timo);
426 	end = getticks();
427 
428 	/*
429 	 * Set it to the time left, or zero, whichever is larger.  We
430 	 * do not fail with EWOULDBLOCK here because this may have been
431 	 * an explicit wakeup, so the caller needs to check before they
432 	 * give up or else cv_signal would be lost.
433 	 */
434 	slept = timo2bintime(end - start);
435 	if (bintimecmp(bt, &slept, <=)) {
436 		bt->sec = 0;
437 		bt->frac = 0;
438 	} else {
439 		/* bt := bt - slept */
440 		bintime_sub(bt, &slept);
441 	}
442 
443 	return error;
444 }
445 
446 /*
447  * cv_signal:
448  *
449  *	Wake the highest priority LWP waiting on a condition variable.
450  *	Must be called with the interlocking mutex held.
451  */
452 void
453 cv_signal(kcondvar_t *cv)
454 {
455 
456 	KASSERT(cv_is_valid(cv));
457 
458 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
459 		cv_wakeup_one(cv);
460 }
461 
462 /*
463  * cv_wakeup_one:
464  *
465  *	Slow path for cv_signal().  Deliberately marked __noinline to
466  *	prevent the compiler pulling it in to cv_signal(), which adds
467  *	extra prologue and epilogue code.
468  */
469 static __noinline void
470 cv_wakeup_one(kcondvar_t *cv)
471 {
472 	sleepq_t *sq;
473 	kmutex_t *mp;
474 	lwp_t *l;
475 
476 	/*
477 	 * Keep waking LWPs until a non-interruptable waiter is found.  An
478 	 * interruptable waiter could fail to do something useful with the
479 	 * wakeup due to an error return from cv_[timed]wait_sig(), and the
480 	 * caller of cv_signal() may not expect such a scenario.
481 	 *
482 	 * This isn't a problem for non-interruptable waits (untimed and
483 	 * timed), because if such a waiter is woken here it will not return
484 	 * an error.
485 	 */
486 	mp = sleepq_hashlock(cv);
487 	sq = CV_SLEEPQ(cv);
488 	while ((l = LIST_FIRST(sq)) != NULL) {
489 		KASSERT(l->l_sleepq == sq);
490 		KASSERT(l->l_mutex == mp);
491 		KASSERT(l->l_wchan == cv);
492 		if ((l->l_flag & LW_SINTR) == 0) {
493 			sleepq_remove(sq, l);
494 			break;
495 		} else
496 			sleepq_remove(sq, l);
497 	}
498 	mutex_spin_exit(mp);
499 }
500 
501 /*
502  * cv_broadcast:
503  *
504  *	Wake all LWPs waiting on a condition variable.  Must be called
505  *	with the interlocking mutex held.
506  */
507 void
508 cv_broadcast(kcondvar_t *cv)
509 {
510 
511 	KASSERT(cv_is_valid(cv));
512 
513 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
514 		cv_wakeup_all(cv);
515 }
516 
517 /*
518  * cv_wakeup_all:
519  *
520  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
521  *	prevent the compiler pulling it in to cv_broadcast(), which adds
522  *	extra prologue and epilogue code.
523  */
524 static __noinline void
525 cv_wakeup_all(kcondvar_t *cv)
526 {
527 	sleepq_t *sq;
528 	kmutex_t *mp;
529 	lwp_t *l;
530 
531 	mp = sleepq_hashlock(cv);
532 	sq = CV_SLEEPQ(cv);
533 	while ((l = LIST_FIRST(sq)) != NULL) {
534 		KASSERT(l->l_sleepq == sq);
535 		KASSERT(l->l_mutex == mp);
536 		KASSERT(l->l_wchan == cv);
537 		sleepq_remove(sq, l);
538 	}
539 	mutex_spin_exit(mp);
540 }
541 
542 /*
543  * cv_has_waiters:
544  *
545  *	For diagnostic assertions: return non-zero if a condition
546  *	variable has waiters.
547  */
548 bool
549 cv_has_waiters(kcondvar_t *cv)
550 {
551 
552 	return !LIST_EMPTY(CV_SLEEPQ(cv));
553 }
554 
555 /*
556  * cv_is_valid:
557  *
558  *	For diagnostic assertions: return non-zero if a condition
559  *	variable appears to be valid.  No locks need be held.
560  */
561 bool
562 cv_is_valid(kcondvar_t *cv)
563 {
564 
565 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
566 }
567