xref: /netbsd-src/sys/kern/kern_condvar.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: kern_condvar.c,v 1.52 2020/05/11 03:59:33 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Kernel condition variable implementation.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.52 2020/05/11 03:59:33 riastradh Exp $");
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/lwp.h>
42 #include <sys/condvar.h>
43 #include <sys/sleepq.h>
44 #include <sys/lockdebug.h>
45 #include <sys/cpu.h>
46 #include <sys/kernel.h>
47 
48 /*
49  * Accessors for the private contents of the kcondvar_t data type.
50  *
51  *	cv_opaque[0]	sleepq_t
52  *	cv_opaque[1]	description for ps(1)
53  *
54  * cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
55  * only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
56  * and dequeue).
57  *
58  * cv_opaque[1] (the wmesg) is static and does not change throughout the life
59  * of the CV.
60  */
61 #define	CV_SLEEPQ(cv)		((sleepq_t *)(cv)->cv_opaque)
62 #define	CV_WMESG(cv)		((const char *)(cv)->cv_opaque[1])
63 #define	CV_SET_WMESG(cv, v) 	(cv)->cv_opaque[1] = __UNCONST(v)
64 
65 #define	CV_DEBUG_P(cv)	(CV_WMESG(cv) != nodebug)
66 #define	CV_RA		((uintptr_t)__builtin_return_address(0))
67 
68 static void		cv_unsleep(lwp_t *, bool);
69 static inline void	cv_wakeup_one(kcondvar_t *);
70 static inline void	cv_wakeup_all(kcondvar_t *);
71 
72 syncobj_t cv_syncobj = {
73 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
74 	.sobj_unsleep	= cv_unsleep,
75 	.sobj_changepri	= sleepq_changepri,
76 	.sobj_lendpri	= sleepq_lendpri,
77 	.sobj_owner	= syncobj_noowner,
78 };
79 
80 static const char deadcv[] = "deadcv";
81 
82 /*
83  * cv_init:
84  *
85  *	Initialize a condition variable for use.
86  */
87 void
88 cv_init(kcondvar_t *cv, const char *wmesg)
89 {
90 
91 	KASSERT(wmesg != NULL);
92 	CV_SET_WMESG(cv, wmesg);
93 	sleepq_init(CV_SLEEPQ(cv));
94 }
95 
96 /*
97  * cv_destroy:
98  *
99  *	Tear down a condition variable.
100  */
101 void
102 cv_destroy(kcondvar_t *cv)
103 {
104 
105 #ifdef DIAGNOSTIC
106 	KASSERT(cv_is_valid(cv));
107 	KASSERT(!cv_has_waiters(cv));
108 	CV_SET_WMESG(cv, deadcv);
109 #endif
110 }
111 
112 /*
113  * cv_enter:
114  *
115  *	Look up and lock the sleep queue corresponding to the given
116  *	condition variable, and increment the number of waiters.
117  */
118 static inline void
119 cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
120 {
121 	sleepq_t *sq;
122 	kmutex_t *mp;
123 
124 	KASSERT(cv_is_valid(cv));
125 	KASSERT(!cpu_intr_p());
126 	KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
127 
128 	l->l_kpriority = true;
129 	mp = sleepq_hashlock(cv);
130 	sq = CV_SLEEPQ(cv);
131 	sleepq_enter(sq, l, mp);
132 	sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
133 	mutex_exit(mtx);
134 	KASSERT(cv_has_waiters(cv));
135 }
136 
137 /*
138  * cv_unsleep:
139  *
140  *	Remove an LWP from the condition variable and sleep queue.  This
141  *	is called when the LWP has not been awoken normally but instead
142  *	interrupted: for example, when a signal is received.  Must be
143  *	called with the LWP locked.  Will unlock if "unlock" is true.
144  */
145 static void
146 cv_unsleep(lwp_t *l, bool unlock)
147 {
148 	kcondvar_t *cv __diagused;
149 
150 	cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
151 
152 	KASSERT(l->l_wchan == (wchan_t)cv);
153 	KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
154 	KASSERT(cv_is_valid(cv));
155 	KASSERT(cv_has_waiters(cv));
156 
157 	sleepq_unsleep(l, unlock);
158 }
159 
160 /*
161  * cv_wait:
162  *
163  *	Wait non-interruptably on a condition variable until awoken.
164  */
165 void
166 cv_wait(kcondvar_t *cv, kmutex_t *mtx)
167 {
168 	lwp_t *l = curlwp;
169 
170 	KASSERT(mutex_owned(mtx));
171 
172 	cv_enter(cv, mtx, l, false);
173 	(void)sleepq_block(0, false);
174 	mutex_enter(mtx);
175 }
176 
177 /*
178  * cv_wait_sig:
179  *
180  *	Wait on a condition variable until a awoken or a signal is received.
181  *	Will also return early if the process is exiting.  Returns zero if
182  *	awoken normally, ERESTART if a signal was received and the system
183  *	call is restartable, or EINTR otherwise.
184  */
185 int
186 cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
187 {
188 	lwp_t *l = curlwp;
189 	int error;
190 
191 	KASSERT(mutex_owned(mtx));
192 
193 	cv_enter(cv, mtx, l, true);
194 	error = sleepq_block(0, true);
195 	mutex_enter(mtx);
196 	return error;
197 }
198 
199 /*
200  * cv_timedwait:
201  *
202  *	Wait on a condition variable until awoken or the specified timeout
203  *	expires.  Returns zero if awoken normally or EWOULDBLOCK if the
204  *	timeout expired.
205  *
206  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
207  */
208 int
209 cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
210 {
211 	lwp_t *l = curlwp;
212 	int error;
213 
214 	KASSERT(mutex_owned(mtx));
215 
216 	cv_enter(cv, mtx, l, false);
217 	error = sleepq_block(timo, false);
218 	mutex_enter(mtx);
219 	return error;
220 }
221 
222 /*
223  * cv_timedwait_sig:
224  *
225  *	Wait on a condition variable until a timeout expires, awoken or a
226  *	signal is received.  Will also return early if the process is
227  *	exiting.  Returns zero if awoken normally, EWOULDBLOCK if the
228  *	timeout expires, ERESTART if a signal was received and the system
229  *	call is restartable, or EINTR otherwise.
230  *
231  *	timo is a timeout in ticks.  timo = 0 specifies an infinite timeout.
232  */
233 int
234 cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
235 {
236 	lwp_t *l = curlwp;
237 	int error;
238 
239 	KASSERT(mutex_owned(mtx));
240 
241 	cv_enter(cv, mtx, l, true);
242 	error = sleepq_block(timo, true);
243 	mutex_enter(mtx);
244 	return error;
245 }
246 
247 /*
248  * Given a number of seconds, sec, and 2^64ths of a second, frac, we
249  * want a number of ticks for a timeout:
250  *
251  *	timo = hz*(sec + frac/2^64)
252  *	     = hz*sec + hz*frac/2^64
253  *	     = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
254  *	     = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
255  *
256  * where frachi is the high 32 bits of frac and fraclo is the
257  * low 32 bits.
258  *
259  * We assume hz < INT_MAX/2 < UINT32_MAX, so
260  *
261  *	hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
262  *
263  * since fraclo < 2^32.
264  *
265  * We clamp the result at INT_MAX/2 for a timeout in ticks, since we
266  * can't represent timeouts higher than INT_MAX in cv_timedwait, and
267  * spurious wakeup is OK.  Moreover, we don't want to wrap around,
268  * because we compute end - start in ticks in order to compute the
269  * remaining timeout, and that difference cannot wrap around, so we use
270  * a timeout less than INT_MAX.  Using INT_MAX/2 provides plenty of
271  * margin for paranoia and will exceed most waits in practice by far.
272  */
273 static unsigned
274 bintime2timo(const struct bintime *bt)
275 {
276 
277 	KASSERT(hz < INT_MAX/2);
278 	CTASSERT(INT_MAX/2 < UINT32_MAX);
279 	if (bt->sec > ((INT_MAX/2)/hz))
280 		return INT_MAX/2;
281 	if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
282 		return INT_MAX/2;
283 
284 	return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
285 }
286 
287 /*
288  * timo is in units of ticks.  We want units of seconds and 2^64ths of
289  * a second.  We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
290  * second), from which we can conclude 2^64 / hz = 1 (2^64th of a
291  * second)/tick.  So for the fractional part, we compute
292  *
293  *	frac = rem * 2^64 / hz
294  *	     = ((rem * 2^32) / hz) * 2^32
295  *
296  * Using truncating integer division instead of real division will
297  * leave us with only about 32 bits of precision, which means about
298  * 1/4-nanosecond resolution, which is good enough for our purposes.
299  */
300 static struct bintime
301 timo2bintime(unsigned timo)
302 {
303 
304 	return (struct bintime) {
305 		.sec = timo / hz,
306 		.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
307 	};
308 }
309 
310 /*
311  * cv_timedwaitbt:
312  *
313  *	Wait on a condition variable until awoken or the specified
314  *	timeout expires.  Returns zero if awoken normally or
315  *	EWOULDBLOCK if the timeout expires.
316  *
317  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt subtracts
318  *	the time slept, so on exit, bt is the time remaining after
319  *	sleeping, possibly negative if the complete time has elapsed.
320  *	No infinite timeout; use cv_wait_sig instead.
321  *
322  *	epsilon is a requested maximum error in timeout (excluding
323  *	spurious wakeups).  Currently not used, will be used in the
324  *	future to choose between low- and high-resolution timers.
325  *	Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
326  *	where r is the finest resolution of clock available and s is
327  *	scheduling delays for scheduler overhead and competing threads.
328  *	Time is measured by the interrupt source implementing the
329  *	timeout, not by another timecounter.
330  */
331 int
332 cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
333     const struct bintime *epsilon __diagused)
334 {
335 	struct bintime slept;
336 	unsigned start, end;
337 	int timo;
338 	int error;
339 
340 	KASSERTMSG(bt->sec >= 0, "negative timeout");
341 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
342 
343 	/* If there's nothing left to wait, time out.  */
344 	if (bt->sec == 0 && bt->frac == 0)
345 		return EWOULDBLOCK;
346 
347 	/* Convert to ticks, but clamp to be >=1.  */
348 	timo = bintime2timo(bt);
349 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
350 	if (timo == 0)
351 		timo = 1;
352 
353 	/*
354 	 * getticks() is technically int, but nothing special
355 	 * happens instead of overflow, so we assume two's-complement
356 	 * wraparound and just treat it as unsigned.
357 	 */
358 	start = getticks();
359 	error = cv_timedwait(cv, mtx, timo);
360 	end = getticks();
361 
362 	/*
363 	 * Set it to the time left, or zero, whichever is larger.  We
364 	 * do not fail with EWOULDBLOCK here because this may have been
365 	 * an explicit wakeup, so the caller needs to check before they
366 	 * give up or else cv_signal would be lost.
367 	 */
368 	slept = timo2bintime(end - start);
369 	if (bintimecmp(bt, &slept, <=)) {
370 		bt->sec = 0;
371 		bt->frac = 0;
372 	} else {
373 		/* bt := bt - slept */
374 		bintime_sub(bt, &slept);
375 	}
376 
377 	return error;
378 }
379 
380 /*
381  * cv_timedwaitbt_sig:
382  *
383  *	Wait on a condition variable until awoken, the specified
384  *	timeout expires, or interrupted by a signal.  Returns zero if
385  *	awoken normally, EWOULDBLOCK if the timeout expires, or
386  *	EINTR/ERESTART if interrupted by a signal.
387  *
388  *	On entry, bt is a timeout in bintime.  cv_timedwaitbt_sig
389  *	subtracts the time slept, so on exit, bt is the time remaining
390  *	after sleeping.  No infinite timeout; use cv_wait instead.
391  *
392  *	epsilon is a requested maximum error in timeout (excluding
393  *	spurious wakeups).  Currently not used, will be used in the
394  *	future to choose between low- and high-resolution timers.
395  */
396 int
397 cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
398     const struct bintime *epsilon __diagused)
399 {
400 	struct bintime slept;
401 	unsigned start, end;
402 	int timo;
403 	int error;
404 
405 	KASSERTMSG(bt->sec >= 0, "negative timeout");
406 	KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
407 
408 	/* If there's nothing left to wait, time out.  */
409 	if (bt->sec == 0 && bt->frac == 0)
410 		return EWOULDBLOCK;
411 
412 	/* Convert to ticks, but clamp to be >=1.  */
413 	timo = bintime2timo(bt);
414 	KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
415 	if (timo == 0)
416 		timo = 1;
417 
418 	/*
419 	 * getticks() is technically int, but nothing special
420 	 * happens instead of overflow, so we assume two's-complement
421 	 * wraparound and just treat it as unsigned.
422 	 */
423 	start = getticks();
424 	error = cv_timedwait_sig(cv, mtx, timo);
425 	end = getticks();
426 
427 	/*
428 	 * Set it to the time left, or zero, whichever is larger.  We
429 	 * do not fail with EWOULDBLOCK here because this may have been
430 	 * an explicit wakeup, so the caller needs to check before they
431 	 * give up or else cv_signal would be lost.
432 	 */
433 	slept = timo2bintime(end - start);
434 	if (bintimecmp(bt, &slept, <=)) {
435 		bt->sec = 0;
436 		bt->frac = 0;
437 	} else {
438 		/* bt := bt - slept */
439 		bintime_sub(bt, &slept);
440 	}
441 
442 	return error;
443 }
444 
445 /*
446  * cv_signal:
447  *
448  *	Wake the highest priority LWP waiting on a condition variable.
449  *	Must be called with the interlocking mutex held.
450  */
451 void
452 cv_signal(kcondvar_t *cv)
453 {
454 
455 	KASSERT(cv_is_valid(cv));
456 
457 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
458 		cv_wakeup_one(cv);
459 }
460 
461 /*
462  * cv_wakeup_one:
463  *
464  *	Slow path for cv_signal().  Deliberately marked __noinline to
465  *	prevent the compiler pulling it in to cv_signal(), which adds
466  *	extra prologue and epilogue code.
467  */
468 static __noinline void
469 cv_wakeup_one(kcondvar_t *cv)
470 {
471 	sleepq_t *sq;
472 	kmutex_t *mp;
473 	lwp_t *l;
474 
475 	/*
476 	 * Keep waking LWPs until a non-interruptable waiter is found.  An
477 	 * interruptable waiter could fail to do something useful with the
478 	 * wakeup due to an error return from cv_[timed]wait_sig(), and the
479 	 * caller of cv_signal() may not expect such a scenario.
480 	 *
481 	 * This isn't a problem for non-interruptable waits (untimed and
482 	 * timed), because if such a waiter is woken here it will not return
483 	 * an error.
484 	 */
485 	mp = sleepq_hashlock(cv);
486 	sq = CV_SLEEPQ(cv);
487 	while ((l = LIST_FIRST(sq)) != NULL) {
488 		KASSERT(l->l_sleepq == sq);
489 		KASSERT(l->l_mutex == mp);
490 		KASSERT(l->l_wchan == cv);
491 		if ((l->l_flag & LW_SINTR) == 0) {
492 			sleepq_remove(sq, l);
493 			break;
494 		} else
495 			sleepq_remove(sq, l);
496 	}
497 	mutex_spin_exit(mp);
498 }
499 
500 /*
501  * cv_broadcast:
502  *
503  *	Wake all LWPs waiting on a condition variable.  Must be called
504  *	with the interlocking mutex held.
505  */
506 void
507 cv_broadcast(kcondvar_t *cv)
508 {
509 
510 	KASSERT(cv_is_valid(cv));
511 
512 	if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv))))
513 		cv_wakeup_all(cv);
514 }
515 
516 /*
517  * cv_wakeup_all:
518  *
519  *	Slow path for cv_broadcast().  Deliberately marked __noinline to
520  *	prevent the compiler pulling it in to cv_broadcast(), which adds
521  *	extra prologue and epilogue code.
522  */
523 static __noinline void
524 cv_wakeup_all(kcondvar_t *cv)
525 {
526 	sleepq_t *sq;
527 	kmutex_t *mp;
528 	lwp_t *l;
529 
530 	mp = sleepq_hashlock(cv);
531 	sq = CV_SLEEPQ(cv);
532 	while ((l = LIST_FIRST(sq)) != NULL) {
533 		KASSERT(l->l_sleepq == sq);
534 		KASSERT(l->l_mutex == mp);
535 		KASSERT(l->l_wchan == cv);
536 		sleepq_remove(sq, l);
537 	}
538 	mutex_spin_exit(mp);
539 }
540 
541 /*
542  * cv_has_waiters:
543  *
544  *	For diagnostic assertions: return non-zero if a condition
545  *	variable has waiters.
546  */
547 bool
548 cv_has_waiters(kcondvar_t *cv)
549 {
550 
551 	return !LIST_EMPTY(CV_SLEEPQ(cv));
552 }
553 
554 /*
555  * cv_is_valid:
556  *
557  *	For diagnostic assertions: return non-zero if a condition
558  *	variable appears to be valid.  No locks need be held.
559  */
560 bool
561 cv_is_valid(kcondvar_t *cv)
562 {
563 
564 	return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
565 }
566