1 /* $NetBSD: kern_clock.c,v 1.51 2000/01/19 20:05:51 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 41 */ 42 43 #include "opt_ntp.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/dkstat.h> 48 #include <sys/callout.h> 49 #include <sys/kernel.h> 50 #include <sys/proc.h> 51 #include <sys/resourcevar.h> 52 #include <sys/signalvar.h> 53 #include <vm/vm.h> 54 #include <sys/sysctl.h> 55 #include <sys/timex.h> 56 #include <sys/sched.h> 57 58 #include <machine/cpu.h> 59 60 #ifdef GPROF 61 #include <sys/gmon.h> 62 #endif 63 64 /* 65 * Clock handling routines. 66 * 67 * This code is written to operate with two timers that run independently of 68 * each other. The main clock, running hz times per second, is used to keep 69 * track of real time. The second timer handles kernel and user profiling, 70 * and does resource use estimation. If the second timer is programmable, 71 * it is randomized to avoid aliasing between the two clocks. For example, 72 * the randomization prevents an adversary from always giving up the cpu 73 * just before its quantum expires. Otherwise, it would never accumulate 74 * cpu ticks. The mean frequency of the second timer is stathz. 75 * 76 * If no second timer exists, stathz will be zero; in this case we drive 77 * profiling and statistics off the main clock. This WILL NOT be accurate; 78 * do not do it unless absolutely necessary. 79 * 80 * The statistics clock may (or may not) be run at a higher rate while 81 * profiling. This profile clock runs at profhz. We require that profhz 82 * be an integral multiple of stathz. 83 * 84 * If the statistics clock is running fast, it must be divided by the ratio 85 * profhz/stathz for statistics. (For profiling, every tick counts.) 86 */ 87 88 /* 89 * TODO: 90 * allocate more timeout table slots when table overflows. 91 */ 92 93 94 #ifdef NTP /* NTP phase-locked loop in kernel */ 95 /* 96 * Phase/frequency-lock loop (PLL/FLL) definitions 97 * 98 * The following variables are read and set by the ntp_adjtime() system 99 * call. 100 * 101 * time_state shows the state of the system clock, with values defined 102 * in the timex.h header file. 103 * 104 * time_status shows the status of the system clock, with bits defined 105 * in the timex.h header file. 106 * 107 * time_offset is used by the PLL/FLL to adjust the system time in small 108 * increments. 109 * 110 * time_constant determines the bandwidth or "stiffness" of the PLL. 111 * 112 * time_tolerance determines maximum frequency error or tolerance of the 113 * CPU clock oscillator and is a property of the architecture; however, 114 * in principle it could change as result of the presence of external 115 * discipline signals, for instance. 116 * 117 * time_precision is usually equal to the kernel tick variable; however, 118 * in cases where a precision clock counter or external clock is 119 * available, the resolution can be much less than this and depend on 120 * whether the external clock is working or not. 121 * 122 * time_maxerror is initialized by a ntp_adjtime() call and increased by 123 * the kernel once each second to reflect the maximum error bound 124 * growth. 125 * 126 * time_esterror is set and read by the ntp_adjtime() call, but 127 * otherwise not used by the kernel. 128 */ 129 int time_state = TIME_OK; /* clock state */ 130 int time_status = STA_UNSYNC; /* clock status bits */ 131 long time_offset = 0; /* time offset (us) */ 132 long time_constant = 0; /* pll time constant */ 133 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 134 long time_precision = 1; /* clock precision (us) */ 135 long time_maxerror = MAXPHASE; /* maximum error (us) */ 136 long time_esterror = MAXPHASE; /* estimated error (us) */ 137 138 /* 139 * The following variables establish the state of the PLL/FLL and the 140 * residual time and frequency offset of the local clock. The scale 141 * factors are defined in the timex.h header file. 142 * 143 * time_phase and time_freq are the phase increment and the frequency 144 * increment, respectively, of the kernel time variable. 145 * 146 * time_freq is set via ntp_adjtime() from a value stored in a file when 147 * the synchronization daemon is first started. Its value is retrieved 148 * via ntp_adjtime() and written to the file about once per hour by the 149 * daemon. 150 * 151 * time_adj is the adjustment added to the value of tick at each timer 152 * interrupt and is recomputed from time_phase and time_freq at each 153 * seconds rollover. 154 * 155 * time_reftime is the second's portion of the system time at the last 156 * call to ntp_adjtime(). It is used to adjust the time_freq variable 157 * and to increase the time_maxerror as the time since last update 158 * increases. 159 */ 160 long time_phase = 0; /* phase offset (scaled us) */ 161 long time_freq = 0; /* frequency offset (scaled ppm) */ 162 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 163 long time_reftime = 0; /* time at last adjustment (s) */ 164 165 #ifdef PPS_SYNC 166 /* 167 * The following variables are used only if the kernel PPS discipline 168 * code is configured (PPS_SYNC). The scale factors are defined in the 169 * timex.h header file. 170 * 171 * pps_time contains the time at each calibration interval, as read by 172 * microtime(). pps_count counts the seconds of the calibration 173 * interval, the duration of which is nominally pps_shift in powers of 174 * two. 175 * 176 * pps_offset is the time offset produced by the time median filter 177 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 178 * this filter. 179 * 180 * pps_freq is the frequency offset produced by the frequency median 181 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 182 * by this filter. 183 * 184 * pps_usec is latched from a high resolution counter or external clock 185 * at pps_time. Here we want the hardware counter contents only, not the 186 * contents plus the time_tv.usec as usual. 187 * 188 * pps_valid counts the number of seconds since the last PPS update. It 189 * is used as a watchdog timer to disable the PPS discipline should the 190 * PPS signal be lost. 191 * 192 * pps_glitch counts the number of seconds since the beginning of an 193 * offset burst more than tick/2 from current nominal offset. It is used 194 * mainly to suppress error bursts due to priority conflicts between the 195 * PPS interrupt and timer interrupt. 196 * 197 * pps_intcnt counts the calibration intervals for use in the interval- 198 * adaptation algorithm. It's just too complicated for words. 199 */ 200 struct timeval pps_time; /* kernel time at last interval */ 201 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 202 long pps_offset = 0; /* pps time offset (us) */ 203 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 204 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 205 long pps_freq = 0; /* frequency offset (scaled ppm) */ 206 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 207 long pps_usec = 0; /* microsec counter at last interval */ 208 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 209 int pps_glitch = 0; /* pps signal glitch counter */ 210 int pps_count = 0; /* calibration interval counter (s) */ 211 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 212 int pps_intcnt = 0; /* intervals at current duration */ 213 214 /* 215 * PPS signal quality monitors 216 * 217 * pps_jitcnt counts the seconds that have been discarded because the 218 * jitter measured by the time median filter exceeds the limit MAXTIME 219 * (100 us). 220 * 221 * pps_calcnt counts the frequency calibration intervals, which are 222 * variable from 4 s to 256 s. 223 * 224 * pps_errcnt counts the calibration intervals which have been discarded 225 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 226 * calibration interval jitter exceeds two ticks. 227 * 228 * pps_stbcnt counts the calibration intervals that have been discarded 229 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 230 */ 231 long pps_jitcnt = 0; /* jitter limit exceeded */ 232 long pps_calcnt = 0; /* calibration intervals */ 233 long pps_errcnt = 0; /* calibration errors */ 234 long pps_stbcnt = 0; /* stability limit exceeded */ 235 #endif /* PPS_SYNC */ 236 237 #ifdef EXT_CLOCK 238 /* 239 * External clock definitions 240 * 241 * The following definitions and declarations are used only if an 242 * external clock is configured on the system. 243 */ 244 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 245 246 /* 247 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 248 * interrupt and decremented once each second. 249 */ 250 int clock_count = 0; /* CPU clock counter */ 251 252 #ifdef HIGHBALL 253 /* 254 * The clock_offset and clock_cpu variables are used by the HIGHBALL 255 * interface. The clock_offset variable defines the offset between 256 * system time and the HIGBALL counters. The clock_cpu variable contains 257 * the offset between the system clock and the HIGHBALL clock for use in 258 * disciplining the kernel time variable. 259 */ 260 extern struct timeval clock_offset; /* Highball clock offset */ 261 long clock_cpu = 0; /* CPU clock adjust */ 262 #endif /* HIGHBALL */ 263 #endif /* EXT_CLOCK */ 264 #endif /* NTP */ 265 266 267 /* 268 * Bump a timeval by a small number of usec's. 269 */ 270 #define BUMPTIME(t, usec) { \ 271 register volatile struct timeval *tp = (t); \ 272 register long us; \ 273 \ 274 tp->tv_usec = us = tp->tv_usec + (usec); \ 275 if (us >= 1000000) { \ 276 tp->tv_usec = us - 1000000; \ 277 tp->tv_sec++; \ 278 } \ 279 } 280 281 int stathz; 282 int profhz; 283 int profprocs; 284 int ticks; 285 static int psdiv, pscnt; /* prof => stat divider */ 286 int psratio; /* ratio: prof / stat */ 287 int tickfix, tickfixinterval; /* used if tick not really integral */ 288 #ifndef NTP 289 static int tickfixcnt; /* accumulated fractional error */ 290 #else 291 int fixtick; /* used by NTP for same */ 292 int shifthz; 293 #endif 294 295 /* 296 * We might want ldd to load the both words from time at once. 297 * To succeed we need to be quadword aligned. 298 * The sparc already does that, and that it has worked so far is a fluke. 299 */ 300 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t)))); 301 volatile struct timeval mono_time; 302 303 /* 304 * Initialize clock frequencies and start both clocks running. 305 */ 306 void 307 initclocks() 308 { 309 register int i; 310 311 /* 312 * Set divisors to 1 (normal case) and let the machine-specific 313 * code do its bit. 314 */ 315 psdiv = pscnt = 1; 316 cpu_initclocks(); 317 318 /* 319 * Compute profhz/stathz, and fix profhz if needed. 320 */ 321 i = stathz ? stathz : hz; 322 if (profhz == 0) 323 profhz = i; 324 psratio = profhz / i; 325 326 #ifdef NTP 327 switch (hz) { 328 case 60: 329 case 64: 330 shifthz = SHIFT_SCALE - 6; 331 break; 332 case 96: 333 case 100: 334 case 128: 335 shifthz = SHIFT_SCALE - 7; 336 break; 337 case 256: 338 shifthz = SHIFT_SCALE - 8; 339 break; 340 case 512: 341 shifthz = SHIFT_SCALE - 9; 342 break; 343 case 1000: 344 case 1024: 345 shifthz = SHIFT_SCALE - 10; 346 break; 347 default: 348 panic("weird hz"); 349 } 350 if (fixtick == 0) { 351 /* give MD code a chance to set this to a better value; but, if it doesn't, we should.. */ 352 fixtick = (1000000 - (hz*tick)); 353 } 354 #endif 355 } 356 357 /* 358 * The real-time timer, interrupting hz times per second. 359 */ 360 void 361 hardclock(frame) 362 register struct clockframe *frame; 363 { 364 register struct callout *p1; 365 register struct proc *p; 366 register int delta, needsoft; 367 extern int tickdelta; 368 extern long timedelta; 369 #ifdef NTP 370 register int time_update; 371 register int ltemp; 372 #endif 373 374 /* 375 * Update real-time timeout queue. 376 * At front of queue are some number of events which are ``due''. 377 * The time to these is <= 0 and if negative represents the 378 * number of ticks which have passed since it was supposed to happen. 379 * The rest of the q elements (times > 0) are events yet to happen, 380 * where the time for each is given as a delta from the previous. 381 * Decrementing just the first of these serves to decrement the time 382 * to all events. 383 */ 384 needsoft = 0; 385 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 386 if (--p1->c_time > 0) 387 break; 388 needsoft = 1; 389 if (p1->c_time == 0) 390 break; 391 } 392 393 p = curproc; 394 if (p) { 395 register struct pstats *pstats; 396 397 /* 398 * Run current process's virtual and profile time, as needed. 399 */ 400 pstats = p->p_stats; 401 if (CLKF_USERMODE(frame) && 402 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 403 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 404 psignal(p, SIGVTALRM); 405 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 406 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 407 psignal(p, SIGPROF); 408 } 409 410 /* 411 * If no separate statistics clock is available, run it from here. 412 */ 413 if (stathz == 0) 414 statclock(frame); 415 416 /* 417 * Increment the time-of-day. The increment is normally just 418 * ``tick''. If the machine is one which has a clock frequency 419 * such that ``hz'' would not divide the second evenly into 420 * milliseconds, a periodic adjustment must be applied. Finally, 421 * if we are still adjusting the time (see adjtime()), 422 * ``tickdelta'' may also be added in. 423 */ 424 ticks++; 425 delta = tick; 426 427 #ifndef NTP 428 if (tickfix) { 429 tickfixcnt += tickfix; 430 if (tickfixcnt >= tickfixinterval) { 431 delta++; 432 tickfixcnt -= tickfixinterval; 433 } 434 } 435 #endif /* !NTP */ 436 /* Imprecise 4bsd adjtime() handling */ 437 if (timedelta != 0) { 438 delta += tickdelta; 439 timedelta -= tickdelta; 440 } 441 442 #ifdef notyet 443 microset(); 444 #endif 445 446 #ifndef NTP 447 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 448 #endif 449 BUMPTIME(&mono_time, delta); 450 451 #ifdef NTP 452 time_update = delta; 453 454 /* 455 * Compute the phase adjustment. If the low-order bits 456 * (time_phase) of the update overflow, bump the high-order bits 457 * (time_update). 458 */ 459 time_phase += time_adj; 460 if (time_phase <= -FINEUSEC) { 461 ltemp = -time_phase >> SHIFT_SCALE; 462 time_phase += ltemp << SHIFT_SCALE; 463 time_update -= ltemp; 464 } else if (time_phase >= FINEUSEC) { 465 ltemp = time_phase >> SHIFT_SCALE; 466 time_phase -= ltemp << SHIFT_SCALE; 467 time_update += ltemp; 468 } 469 470 #ifdef HIGHBALL 471 /* 472 * If the HIGHBALL board is installed, we need to adjust the 473 * external clock offset in order to close the hardware feedback 474 * loop. This will adjust the external clock phase and frequency 475 * in small amounts. The additional phase noise and frequency 476 * wander this causes should be minimal. We also need to 477 * discipline the kernel time variable, since the PLL is used to 478 * discipline the external clock. If the Highball board is not 479 * present, we discipline kernel time with the PLL as usual. We 480 * assume that the external clock phase adjustment (time_update) 481 * and kernel phase adjustment (clock_cpu) are less than the 482 * value of tick. 483 */ 484 clock_offset.tv_usec += time_update; 485 if (clock_offset.tv_usec >= 1000000) { 486 clock_offset.tv_sec++; 487 clock_offset.tv_usec -= 1000000; 488 } 489 if (clock_offset.tv_usec < 0) { 490 clock_offset.tv_sec--; 491 clock_offset.tv_usec += 1000000; 492 } 493 time.tv_usec += clock_cpu; 494 clock_cpu = 0; 495 #else 496 time.tv_usec += time_update; 497 #endif /* HIGHBALL */ 498 499 /* 500 * On rollover of the second the phase adjustment to be used for 501 * the next second is calculated. Also, the maximum error is 502 * increased by the tolerance. If the PPS frequency discipline 503 * code is present, the phase is increased to compensate for the 504 * CPU clock oscillator frequency error. 505 * 506 * On a 32-bit machine and given parameters in the timex.h 507 * header file, the maximum phase adjustment is +-512 ms and 508 * maximum frequency offset is a tad less than) +-512 ppm. On a 509 * 64-bit machine, you shouldn't need to ask. 510 */ 511 if (time.tv_usec >= 1000000) { 512 time.tv_usec -= 1000000; 513 time.tv_sec++; 514 time_maxerror += time_tolerance >> SHIFT_USEC; 515 516 /* 517 * Leap second processing. If in leap-insert state at 518 * the end of the day, the system clock is set back one 519 * second; if in leap-delete state, the system clock is 520 * set ahead one second. The microtime() routine or 521 * external clock driver will insure that reported time 522 * is always monotonic. The ugly divides should be 523 * replaced. 524 */ 525 switch (time_state) { 526 case TIME_OK: 527 if (time_status & STA_INS) 528 time_state = TIME_INS; 529 else if (time_status & STA_DEL) 530 time_state = TIME_DEL; 531 break; 532 533 case TIME_INS: 534 if (time.tv_sec % 86400 == 0) { 535 time.tv_sec--; 536 time_state = TIME_OOP; 537 } 538 break; 539 540 case TIME_DEL: 541 if ((time.tv_sec + 1) % 86400 == 0) { 542 time.tv_sec++; 543 time_state = TIME_WAIT; 544 } 545 break; 546 547 case TIME_OOP: 548 time_state = TIME_WAIT; 549 break; 550 551 case TIME_WAIT: 552 if (!(time_status & (STA_INS | STA_DEL))) 553 time_state = TIME_OK; 554 break; 555 } 556 557 /* 558 * Compute the phase adjustment for the next second. In 559 * PLL mode, the offset is reduced by a fixed factor 560 * times the time constant. In FLL mode the offset is 561 * used directly. In either mode, the maximum phase 562 * adjustment for each second is clamped so as to spread 563 * the adjustment over not more than the number of 564 * seconds between updates. 565 */ 566 if (time_offset < 0) { 567 ltemp = -time_offset; 568 if (!(time_status & STA_FLL)) 569 ltemp >>= SHIFT_KG + time_constant; 570 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 571 ltemp = (MAXPHASE / MINSEC) << 572 SHIFT_UPDATE; 573 time_offset += ltemp; 574 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 575 } else if (time_offset > 0) { 576 ltemp = time_offset; 577 if (!(time_status & STA_FLL)) 578 ltemp >>= SHIFT_KG + time_constant; 579 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 580 ltemp = (MAXPHASE / MINSEC) << 581 SHIFT_UPDATE; 582 time_offset -= ltemp; 583 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 584 } else 585 time_adj = 0; 586 587 /* 588 * Compute the frequency estimate and additional phase 589 * adjustment due to frequency error for the next 590 * second. When the PPS signal is engaged, gnaw on the 591 * watchdog counter and update the frequency computed by 592 * the pll and the PPS signal. 593 */ 594 #ifdef PPS_SYNC 595 pps_valid++; 596 if (pps_valid == PPS_VALID) { 597 pps_jitter = MAXTIME; 598 pps_stabil = MAXFREQ; 599 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 600 STA_PPSWANDER | STA_PPSERROR); 601 } 602 ltemp = time_freq + pps_freq; 603 #else 604 ltemp = time_freq; 605 #endif /* PPS_SYNC */ 606 607 if (ltemp < 0) 608 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 609 else 610 time_adj += ltemp >> (SHIFT_USEC - shifthz); 611 time_adj += (long)fixtick << shifthz; 612 613 /* 614 * When the CPU clock oscillator frequency is not a 615 * power of 2 in Hz, shifthz is only an approximate 616 * scale factor. 617 * 618 * To determine the adjustment, you can do the following: 619 * bc -q 620 * scale=24 621 * obase=2 622 * idealhz/realhz 623 * where `idealhz' is the next higher power of 2, and `realhz' 624 * is the actual value. 625 * 626 * Likewise, the error can be calculated with (e.g. for 100Hz): 627 * bc -q 628 * scale=24 629 * ((1+2^-2+2^-5)*realhz-idealhz)/idealhz 630 * (and then multiply by 100 to get %). 631 */ 632 switch (hz) { 633 case 96: 634 /* A factor of 1.0101010101 gives about .025% error. */ 635 if (time_adj < 0) { 636 time_adj -= (-time_adj >> 2); 637 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 638 } else { 639 time_adj += (time_adj >> 2); 640 time_adj += (time_adj >> 4) + (time_adj >> 8); 641 } 642 break; 643 644 case 100: 645 /* A factor of 1.01001 gives about .1% error. */ 646 if (time_adj < 0) 647 time_adj -= (-time_adj >> 2) + (-time_adj >> 5); 648 else 649 time_adj += (time_adj >> 2) + (time_adj >> 5); 650 break; 651 652 case 60: 653 /* A factor of 1.00010001 gives about .025% error. */ 654 if (time_adj < 0) 655 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 656 else 657 time_adj += (time_adj >> 4) + (time_adj >> 8); 658 break; 659 660 case 1000: 661 /* A factor of 1.0000011 gives about .055% error. */ 662 if (time_adj < 0) 663 time_adj -= (-time_adj >> 6) + (-time_adj >> 7); 664 else 665 time_adj += (time_adj >> 6) + (time_adj >> 7); 666 break; 667 } 668 669 #ifdef EXT_CLOCK 670 /* 671 * If an external clock is present, it is necessary to 672 * discipline the kernel time variable anyway, since not 673 * all system components use the microtime() interface. 674 * Here, the time offset between the external clock and 675 * kernel time variable is computed every so often. 676 */ 677 clock_count++; 678 if (clock_count > CLOCK_INTERVAL) { 679 clock_count = 0; 680 microtime(&clock_ext); 681 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 682 delta.tv_usec = clock_ext.tv_usec - 683 time.tv_usec; 684 if (delta.tv_usec < 0) 685 delta.tv_sec--; 686 if (delta.tv_usec >= 500000) { 687 delta.tv_usec -= 1000000; 688 delta.tv_sec++; 689 } 690 if (delta.tv_usec < -500000) { 691 delta.tv_usec += 1000000; 692 delta.tv_sec--; 693 } 694 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 695 delta.tv_usec > MAXPHASE) || 696 delta.tv_sec < -1 || (delta.tv_sec == -1 && 697 delta.tv_usec < -MAXPHASE)) { 698 time = clock_ext; 699 delta.tv_sec = 0; 700 delta.tv_usec = 0; 701 } 702 #ifdef HIGHBALL 703 clock_cpu = delta.tv_usec; 704 #else /* HIGHBALL */ 705 hardupdate(delta.tv_usec); 706 #endif /* HIGHBALL */ 707 } 708 #endif /* EXT_CLOCK */ 709 } 710 711 #endif /* NTP */ 712 713 /* 714 * Process callouts at a very low cpu priority, so we don't keep the 715 * relatively high clock interrupt priority any longer than necessary. 716 */ 717 if (needsoft) { 718 if (CLKF_BASEPRI(frame)) { 719 /* 720 * Save the overhead of a software interrupt; 721 * it will happen as soon as we return, so do it now. 722 */ 723 (void)spllowersoftclock(); 724 softclock(); 725 } else 726 setsoftclock(); 727 } 728 } 729 730 /* 731 * Software (low priority) clock interrupt. 732 * Run periodic events from timeout queue. 733 */ 734 /*ARGSUSED*/ 735 void 736 softclock() 737 { 738 register struct callout *c; 739 register void *arg; 740 register void (*func) __P((void *)); 741 register int s; 742 743 s = splhigh(); 744 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 745 func = c->c_func; 746 arg = c->c_arg; 747 calltodo.c_next = c->c_next; 748 c->c_next = callfree; 749 callfree = c; 750 splx(s); 751 (*func)(arg); 752 (void) splhigh(); 753 } 754 splx(s); 755 } 756 757 /* 758 * callout_startup: 759 * 760 * Initialize the callout freelist. 761 */ 762 void 763 callout_startup() 764 { 765 int i; 766 767 callfree = callout; 768 for (i = 1; i < ncallout; i++) 769 callout[i-1].c_next = &callout[i]; 770 callout[i-1].c_next = NULL; 771 } 772 773 /* 774 * timeout -- 775 * Execute a function after a specified length of time. 776 * 777 * untimeout -- 778 * Cancel previous timeout function call. 779 * 780 * See AT&T BCI Driver Reference Manual for specification. This 781 * implementation differs from that one in that no identification 782 * value is returned from timeout, rather, the original arguments 783 * to timeout are used to identify entries for untimeout. 784 */ 785 void 786 timeout(ftn, arg, ticks) 787 void (*ftn) __P((void *)); 788 void *arg; 789 register int ticks; 790 { 791 register struct callout *new, *p, *t; 792 register int s; 793 794 if (ticks <= 0) 795 ticks = 1; 796 797 /* Lock out the clock. */ 798 s = splhigh(); 799 800 /* Fill in the next free callout structure. */ 801 if (callfree == NULL) 802 panic("timeout table full"); 803 new = callfree; 804 callfree = new->c_next; 805 new->c_arg = arg; 806 new->c_func = ftn; 807 808 /* 809 * The time for each event is stored as a difference from the time 810 * of the previous event on the queue. Walk the queue, correcting 811 * the ticks argument for queue entries passed. Correct the ticks 812 * value for the queue entry immediately after the insertion point 813 * as well. Watch out for negative c_time values; these represent 814 * overdue events. 815 */ 816 for (p = &calltodo; 817 (t = p->c_next) != NULL && ticks > t->c_time; p = t) 818 if (t->c_time > 0) 819 ticks -= t->c_time; 820 new->c_time = ticks; 821 if (t != NULL) 822 t->c_time -= ticks; 823 824 /* Insert the new entry into the queue. */ 825 p->c_next = new; 826 new->c_next = t; 827 splx(s); 828 } 829 830 void 831 untimeout(ftn, arg) 832 void (*ftn) __P((void *)); 833 void *arg; 834 { 835 register struct callout *p, *t; 836 register int s; 837 838 s = splhigh(); 839 for (p = &calltodo; (t = p->c_next) != NULL; p = t) 840 if (t->c_func == ftn && t->c_arg == arg) { 841 /* Increment next entry's tick count. */ 842 if (t->c_next && t->c_time > 0) 843 t->c_next->c_time += t->c_time; 844 845 /* Move entry from callout queue to callfree queue. */ 846 p->c_next = t->c_next; 847 t->c_next = callfree; 848 callfree = t; 849 break; 850 } 851 splx(s); 852 } 853 854 /* 855 * Compute number of hz until specified time. Used to 856 * compute third argument to timeout() from an absolute time. 857 */ 858 int 859 hzto(tv) 860 struct timeval *tv; 861 { 862 register long ticks, sec; 863 int s; 864 865 /* 866 * If number of microseconds will fit in 32 bit arithmetic, 867 * then compute number of microseconds to time and scale to 868 * ticks. Otherwise just compute number of hz in time, rounding 869 * times greater than representible to maximum value. (We must 870 * compute in microseconds, because hz can be greater than 1000, 871 * and thus tick can be less than one millisecond). 872 * 873 * Delta times less than 14 hours can be computed ``exactly''. 874 * (Note that if hz would yeild a non-integral number of us per 875 * tick, i.e. tickfix is nonzero, timouts can be a tick longer 876 * than they should be.) Maximum value for any timeout in 10ms 877 * ticks is 250 days. 878 */ 879 s = splclock(); 880 sec = tv->tv_sec - time.tv_sec; 881 if (sec <= 0x7fffffff / 1000000 - 1) 882 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 + 883 (tv->tv_usec - time.tv_usec)) / tick; 884 else if (sec <= 0x7fffffff / hz) 885 ticks = sec * hz; 886 else 887 ticks = 0x7fffffff; 888 splx(s); 889 return (ticks); 890 } 891 892 /* 893 * Start profiling on a process. 894 * 895 * Kernel profiling passes proc0 which never exits and hence 896 * keeps the profile clock running constantly. 897 */ 898 void 899 startprofclock(p) 900 register struct proc *p; 901 { 902 int s; 903 904 if ((p->p_flag & P_PROFIL) == 0) { 905 p->p_flag |= P_PROFIL; 906 if (++profprocs == 1 && stathz != 0) { 907 s = splstatclock(); 908 psdiv = pscnt = psratio; 909 setstatclockrate(profhz); 910 splx(s); 911 } 912 } 913 } 914 915 /* 916 * Stop profiling on a process. 917 */ 918 void 919 stopprofclock(p) 920 register struct proc *p; 921 { 922 int s; 923 924 if (p->p_flag & P_PROFIL) { 925 p->p_flag &= ~P_PROFIL; 926 if (--profprocs == 0 && stathz != 0) { 927 s = splstatclock(); 928 psdiv = pscnt = 1; 929 setstatclockrate(stathz); 930 splx(s); 931 } 932 } 933 } 934 935 /* 936 * Statistics clock. Grab profile sample, and if divider reaches 0, 937 * do process and kernel statistics. 938 */ 939 void 940 statclock(frame) 941 register struct clockframe *frame; 942 { 943 #ifdef GPROF 944 register struct gmonparam *g; 945 register int i; 946 #endif 947 static int schedclk; 948 register struct proc *p; 949 950 if (CLKF_USERMODE(frame)) { 951 p = curproc; 952 if (p->p_flag & P_PROFIL) 953 addupc_intr(p, CLKF_PC(frame), 1); 954 if (--pscnt > 0) 955 return; 956 /* 957 * Came from user mode; CPU was in user state. 958 * If this process is being profiled record the tick. 959 */ 960 p->p_uticks++; 961 if (p->p_nice > NZERO) 962 cp_time[CP_NICE]++; 963 else 964 cp_time[CP_USER]++; 965 } else { 966 #ifdef GPROF 967 /* 968 * Kernel statistics are just like addupc_intr, only easier. 969 */ 970 g = &_gmonparam; 971 if (g->state == GMON_PROF_ON) { 972 i = CLKF_PC(frame) - g->lowpc; 973 if (i < g->textsize) { 974 i /= HISTFRACTION * sizeof(*g->kcount); 975 g->kcount[i]++; 976 } 977 } 978 #endif 979 if (--pscnt > 0) 980 return; 981 /* 982 * Came from kernel mode, so we were: 983 * - handling an interrupt, 984 * - doing syscall or trap work on behalf of the current 985 * user process, or 986 * - spinning in the idle loop. 987 * Whichever it is, charge the time as appropriate. 988 * Note that we charge interrupts to the current process, 989 * regardless of whether they are ``for'' that process, 990 * so that we know how much of its real time was spent 991 * in ``non-process'' (i.e., interrupt) work. 992 */ 993 p = curproc; 994 if (CLKF_INTR(frame)) { 995 if (p != NULL) 996 p->p_iticks++; 997 cp_time[CP_INTR]++; 998 } else if (p != NULL) { 999 p->p_sticks++; 1000 cp_time[CP_SYS]++; 1001 } else 1002 cp_time[CP_IDLE]++; 1003 } 1004 pscnt = psdiv; 1005 1006 if (p != NULL) { 1007 ++p->p_cpticks; 1008 /* 1009 * If no schedclock is provided, call it here at ~~12-25 Hz, 1010 * ~~16 Hz is best 1011 */ 1012 if(schedhz == 0) 1013 if ((++schedclk & 3) == 0) 1014 schedclock(p); 1015 } 1016 } 1017 1018 1019 #ifdef NTP /* NTP phase-locked loop in kernel */ 1020 1021 /* 1022 * hardupdate() - local clock update 1023 * 1024 * This routine is called by ntp_adjtime() to update the local clock 1025 * phase and frequency. The implementation is of an adaptive-parameter, 1026 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1027 * time and frequency offset estimates for each call. If the kernel PPS 1028 * discipline code is configured (PPS_SYNC), the PPS signal itself 1029 * determines the new time offset, instead of the calling argument. 1030 * Presumably, calls to ntp_adjtime() occur only when the caller 1031 * believes the local clock is valid within some bound (+-128 ms with 1032 * NTP). If the caller's time is far different than the PPS time, an 1033 * argument will ensue, and it's not clear who will lose. 1034 * 1035 * For uncompensated quartz crystal oscillatores and nominal update 1036 * intervals less than 1024 s, operation should be in phase-lock mode 1037 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1038 * intervals greater than thiss, operation should be in frequency-lock 1039 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1040 * 1041 * Note: splclock() is in effect. 1042 */ 1043 void 1044 hardupdate(offset) 1045 long offset; 1046 { 1047 long ltemp, mtemp; 1048 1049 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1050 return; 1051 ltemp = offset; 1052 #ifdef PPS_SYNC 1053 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1054 ltemp = pps_offset; 1055 #endif /* PPS_SYNC */ 1056 1057 /* 1058 * Scale the phase adjustment and clamp to the operating range. 1059 */ 1060 if (ltemp > MAXPHASE) 1061 time_offset = MAXPHASE << SHIFT_UPDATE; 1062 else if (ltemp < -MAXPHASE) 1063 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1064 else 1065 time_offset = ltemp << SHIFT_UPDATE; 1066 1067 /* 1068 * Select whether the frequency is to be controlled and in which 1069 * mode (PLL or FLL). Clamp to the operating range. Ugly 1070 * multiply/divide should be replaced someday. 1071 */ 1072 if (time_status & STA_FREQHOLD || time_reftime == 0) 1073 time_reftime = time.tv_sec; 1074 mtemp = time.tv_sec - time_reftime; 1075 time_reftime = time.tv_sec; 1076 if (time_status & STA_FLL) { 1077 if (mtemp >= MINSEC) { 1078 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1079 SHIFT_UPDATE)); 1080 if (ltemp < 0) 1081 time_freq -= -ltemp >> SHIFT_KH; 1082 else 1083 time_freq += ltemp >> SHIFT_KH; 1084 } 1085 } else { 1086 if (mtemp < MAXSEC) { 1087 ltemp *= mtemp; 1088 if (ltemp < 0) 1089 time_freq -= -ltemp >> (time_constant + 1090 time_constant + SHIFT_KF - 1091 SHIFT_USEC); 1092 else 1093 time_freq += ltemp >> (time_constant + 1094 time_constant + SHIFT_KF - 1095 SHIFT_USEC); 1096 } 1097 } 1098 if (time_freq > time_tolerance) 1099 time_freq = time_tolerance; 1100 else if (time_freq < -time_tolerance) 1101 time_freq = -time_tolerance; 1102 } 1103 1104 #ifdef PPS_SYNC 1105 /* 1106 * hardpps() - discipline CPU clock oscillator to external PPS signal 1107 * 1108 * This routine is called at each PPS interrupt in order to discipline 1109 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1110 * and leaves it in a handy spot for the hardclock() routine. It 1111 * integrates successive PPS phase differences and calculates the 1112 * frequency offset. This is used in hardclock() to discipline the CPU 1113 * clock oscillator so that intrinsic frequency error is cancelled out. 1114 * The code requires the caller to capture the time and hardware counter 1115 * value at the on-time PPS signal transition. 1116 * 1117 * Note that, on some Unix systems, this routine runs at an interrupt 1118 * priority level higher than the timer interrupt routine hardclock(). 1119 * Therefore, the variables used are distinct from the hardclock() 1120 * variables, except for certain exceptions: The PPS frequency pps_freq 1121 * and phase pps_offset variables are determined by this routine and 1122 * updated atomically. The time_tolerance variable can be considered a 1123 * constant, since it is infrequently changed, and then only when the 1124 * PPS signal is disabled. The watchdog counter pps_valid is updated 1125 * once per second by hardclock() and is atomically cleared in this 1126 * routine. 1127 */ 1128 void 1129 hardpps(tvp, usec) 1130 struct timeval *tvp; /* time at PPS */ 1131 long usec; /* hardware counter at PPS */ 1132 { 1133 long u_usec, v_usec, bigtick; 1134 long cal_sec, cal_usec; 1135 1136 /* 1137 * An occasional glitch can be produced when the PPS interrupt 1138 * occurs in the hardclock() routine before the time variable is 1139 * updated. Here the offset is discarded when the difference 1140 * between it and the last one is greater than tick/2, but not 1141 * if the interval since the first discard exceeds 30 s. 1142 */ 1143 time_status |= STA_PPSSIGNAL; 1144 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1145 pps_valid = 0; 1146 u_usec = -tvp->tv_usec; 1147 if (u_usec < -500000) 1148 u_usec += 1000000; 1149 v_usec = pps_offset - u_usec; 1150 if (v_usec < 0) 1151 v_usec = -v_usec; 1152 if (v_usec > (tick >> 1)) { 1153 if (pps_glitch > MAXGLITCH) { 1154 pps_glitch = 0; 1155 pps_tf[2] = u_usec; 1156 pps_tf[1] = u_usec; 1157 } else { 1158 pps_glitch++; 1159 u_usec = pps_offset; 1160 } 1161 } else 1162 pps_glitch = 0; 1163 1164 /* 1165 * A three-stage median filter is used to help deglitch the pps 1166 * time. The median sample becomes the time offset estimate; the 1167 * difference between the other two samples becomes the time 1168 * dispersion (jitter) estimate. 1169 */ 1170 pps_tf[2] = pps_tf[1]; 1171 pps_tf[1] = pps_tf[0]; 1172 pps_tf[0] = u_usec; 1173 if (pps_tf[0] > pps_tf[1]) { 1174 if (pps_tf[1] > pps_tf[2]) { 1175 pps_offset = pps_tf[1]; /* 0 1 2 */ 1176 v_usec = pps_tf[0] - pps_tf[2]; 1177 } else if (pps_tf[2] > pps_tf[0]) { 1178 pps_offset = pps_tf[0]; /* 2 0 1 */ 1179 v_usec = pps_tf[2] - pps_tf[1]; 1180 } else { 1181 pps_offset = pps_tf[2]; /* 0 2 1 */ 1182 v_usec = pps_tf[0] - pps_tf[1]; 1183 } 1184 } else { 1185 if (pps_tf[1] < pps_tf[2]) { 1186 pps_offset = pps_tf[1]; /* 2 1 0 */ 1187 v_usec = pps_tf[2] - pps_tf[0]; 1188 } else if (pps_tf[2] < pps_tf[0]) { 1189 pps_offset = pps_tf[0]; /* 1 0 2 */ 1190 v_usec = pps_tf[1] - pps_tf[2]; 1191 } else { 1192 pps_offset = pps_tf[2]; /* 1 2 0 */ 1193 v_usec = pps_tf[1] - pps_tf[0]; 1194 } 1195 } 1196 if (v_usec > MAXTIME) 1197 pps_jitcnt++; 1198 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1199 if (v_usec < 0) 1200 pps_jitter -= -v_usec >> PPS_AVG; 1201 else 1202 pps_jitter += v_usec >> PPS_AVG; 1203 if (pps_jitter > (MAXTIME >> 1)) 1204 time_status |= STA_PPSJITTER; 1205 1206 /* 1207 * During the calibration interval adjust the starting time when 1208 * the tick overflows. At the end of the interval compute the 1209 * duration of the interval and the difference of the hardware 1210 * counters at the beginning and end of the interval. This code 1211 * is deliciously complicated by the fact valid differences may 1212 * exceed the value of tick when using long calibration 1213 * intervals and small ticks. Note that the counter can be 1214 * greater than tick if caught at just the wrong instant, but 1215 * the values returned and used here are correct. 1216 */ 1217 bigtick = (long)tick << SHIFT_USEC; 1218 pps_usec -= pps_freq; 1219 if (pps_usec >= bigtick) 1220 pps_usec -= bigtick; 1221 if (pps_usec < 0) 1222 pps_usec += bigtick; 1223 pps_time.tv_sec++; 1224 pps_count++; 1225 if (pps_count < (1 << pps_shift)) 1226 return; 1227 pps_count = 0; 1228 pps_calcnt++; 1229 u_usec = usec << SHIFT_USEC; 1230 v_usec = pps_usec - u_usec; 1231 if (v_usec >= bigtick >> 1) 1232 v_usec -= bigtick; 1233 if (v_usec < -(bigtick >> 1)) 1234 v_usec += bigtick; 1235 if (v_usec < 0) 1236 v_usec = -(-v_usec >> pps_shift); 1237 else 1238 v_usec = v_usec >> pps_shift; 1239 pps_usec = u_usec; 1240 cal_sec = tvp->tv_sec; 1241 cal_usec = tvp->tv_usec; 1242 cal_sec -= pps_time.tv_sec; 1243 cal_usec -= pps_time.tv_usec; 1244 if (cal_usec < 0) { 1245 cal_usec += 1000000; 1246 cal_sec--; 1247 } 1248 pps_time = *tvp; 1249 1250 /* 1251 * Check for lost interrupts, noise, excessive jitter and 1252 * excessive frequency error. The number of timer ticks during 1253 * the interval may vary +-1 tick. Add to this a margin of one 1254 * tick for the PPS signal jitter and maximum frequency 1255 * deviation. If the limits are exceeded, the calibration 1256 * interval is reset to the minimum and we start over. 1257 */ 1258 u_usec = (long)tick << 1; 1259 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1260 || (cal_sec == 0 && cal_usec < u_usec)) 1261 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1262 pps_errcnt++; 1263 pps_shift = PPS_SHIFT; 1264 pps_intcnt = 0; 1265 time_status |= STA_PPSERROR; 1266 return; 1267 } 1268 1269 /* 1270 * A three-stage median filter is used to help deglitch the pps 1271 * frequency. The median sample becomes the frequency offset 1272 * estimate; the difference between the other two samples 1273 * becomes the frequency dispersion (stability) estimate. 1274 */ 1275 pps_ff[2] = pps_ff[1]; 1276 pps_ff[1] = pps_ff[0]; 1277 pps_ff[0] = v_usec; 1278 if (pps_ff[0] > pps_ff[1]) { 1279 if (pps_ff[1] > pps_ff[2]) { 1280 u_usec = pps_ff[1]; /* 0 1 2 */ 1281 v_usec = pps_ff[0] - pps_ff[2]; 1282 } else if (pps_ff[2] > pps_ff[0]) { 1283 u_usec = pps_ff[0]; /* 2 0 1 */ 1284 v_usec = pps_ff[2] - pps_ff[1]; 1285 } else { 1286 u_usec = pps_ff[2]; /* 0 2 1 */ 1287 v_usec = pps_ff[0] - pps_ff[1]; 1288 } 1289 } else { 1290 if (pps_ff[1] < pps_ff[2]) { 1291 u_usec = pps_ff[1]; /* 2 1 0 */ 1292 v_usec = pps_ff[2] - pps_ff[0]; 1293 } else if (pps_ff[2] < pps_ff[0]) { 1294 u_usec = pps_ff[0]; /* 1 0 2 */ 1295 v_usec = pps_ff[1] - pps_ff[2]; 1296 } else { 1297 u_usec = pps_ff[2]; /* 1 2 0 */ 1298 v_usec = pps_ff[1] - pps_ff[0]; 1299 } 1300 } 1301 1302 /* 1303 * Here the frequency dispersion (stability) is updated. If it 1304 * is less than one-fourth the maximum (MAXFREQ), the frequency 1305 * offset is updated as well, but clamped to the tolerance. It 1306 * will be processed later by the hardclock() routine. 1307 */ 1308 v_usec = (v_usec >> 1) - pps_stabil; 1309 if (v_usec < 0) 1310 pps_stabil -= -v_usec >> PPS_AVG; 1311 else 1312 pps_stabil += v_usec >> PPS_AVG; 1313 if (pps_stabil > MAXFREQ >> 2) { 1314 pps_stbcnt++; 1315 time_status |= STA_PPSWANDER; 1316 return; 1317 } 1318 if (time_status & STA_PPSFREQ) { 1319 if (u_usec < 0) { 1320 pps_freq -= -u_usec >> PPS_AVG; 1321 if (pps_freq < -time_tolerance) 1322 pps_freq = -time_tolerance; 1323 u_usec = -u_usec; 1324 } else { 1325 pps_freq += u_usec >> PPS_AVG; 1326 if (pps_freq > time_tolerance) 1327 pps_freq = time_tolerance; 1328 } 1329 } 1330 1331 /* 1332 * Here the calibration interval is adjusted. If the maximum 1333 * time difference is greater than tick / 4, reduce the interval 1334 * by half. If this is not the case for four consecutive 1335 * intervals, double the interval. 1336 */ 1337 if (u_usec << pps_shift > bigtick >> 2) { 1338 pps_intcnt = 0; 1339 if (pps_shift > PPS_SHIFT) 1340 pps_shift--; 1341 } else if (pps_intcnt >= 4) { 1342 pps_intcnt = 0; 1343 if (pps_shift < PPS_SHIFTMAX) 1344 pps_shift++; 1345 } else 1346 pps_intcnt++; 1347 } 1348 #endif /* PPS_SYNC */ 1349 #endif /* NTP */ 1350 1351 1352 /* 1353 * Return information about system clocks. 1354 */ 1355 int 1356 sysctl_clockrate(where, sizep) 1357 register char *where; 1358 size_t *sizep; 1359 { 1360 struct clockinfo clkinfo; 1361 1362 /* 1363 * Construct clockinfo structure. 1364 */ 1365 clkinfo.tick = tick; 1366 clkinfo.tickadj = tickadj; 1367 clkinfo.hz = hz; 1368 clkinfo.profhz = profhz; 1369 clkinfo.stathz = stathz ? stathz : hz; 1370 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1371 } 1372 1373