xref: /netbsd-src/sys/kern/kern_clock.c (revision de1dfb1250df962f1ff3a011772cf58e605aed11)
1 /*	$NetBSD: kern_clock.c,v 1.91 2004/07/01 12:36:57 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*-
41  * Copyright (c) 1982, 1986, 1991, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. Neither the name of the University nor the names of its contributors
58  *    may be used to endorse or promote products derived from this software
59  *    without specific prior written permission.
60  *
61  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71  * SUCH DAMAGE.
72  *
73  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
74  */
75 
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.91 2004/07/01 12:36:57 yamt Exp $");
78 
79 #include "opt_ntp.h"
80 #include "opt_multiprocessor.h"
81 #include "opt_perfctrs.h"
82 
83 #include <sys/param.h>
84 #include <sys/systm.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <sys/sysctl.h>
91 #include <sys/timex.h>
92 #include <sys/sched.h>
93 #include <sys/time.h>
94 
95 #include <machine/cpu.h>
96 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
97 #include <machine/intr.h>
98 #endif
99 
100 #ifdef GPROF
101 #include <sys/gmon.h>
102 #endif
103 
104 /*
105  * Clock handling routines.
106  *
107  * This code is written to operate with two timers that run independently of
108  * each other.  The main clock, running hz times per second, is used to keep
109  * track of real time.  The second timer handles kernel and user profiling,
110  * and does resource use estimation.  If the second timer is programmable,
111  * it is randomized to avoid aliasing between the two clocks.  For example,
112  * the randomization prevents an adversary from always giving up the CPU
113  * just before its quantum expires.  Otherwise, it would never accumulate
114  * CPU ticks.  The mean frequency of the second timer is stathz.
115  *
116  * If no second timer exists, stathz will be zero; in this case we drive
117  * profiling and statistics off the main clock.  This WILL NOT be accurate;
118  * do not do it unless absolutely necessary.
119  *
120  * The statistics clock may (or may not) be run at a higher rate while
121  * profiling.  This profile clock runs at profhz.  We require that profhz
122  * be an integral multiple of stathz.
123  *
124  * If the statistics clock is running fast, it must be divided by the ratio
125  * profhz/stathz for statistics.  (For profiling, every tick counts.)
126  */
127 
128 #ifdef NTP	/* NTP phase-locked loop in kernel */
129 /*
130  * Phase/frequency-lock loop (PLL/FLL) definitions
131  *
132  * The following variables are read and set by the ntp_adjtime() system
133  * call.
134  *
135  * time_state shows the state of the system clock, with values defined
136  * in the timex.h header file.
137  *
138  * time_status shows the status of the system clock, with bits defined
139  * in the timex.h header file.
140  *
141  * time_offset is used by the PLL/FLL to adjust the system time in small
142  * increments.
143  *
144  * time_constant determines the bandwidth or "stiffness" of the PLL.
145  *
146  * time_tolerance determines maximum frequency error or tolerance of the
147  * CPU clock oscillator and is a property of the architecture; however,
148  * in principle it could change as result of the presence of external
149  * discipline signals, for instance.
150  *
151  * time_precision is usually equal to the kernel tick variable; however,
152  * in cases where a precision clock counter or external clock is
153  * available, the resolution can be much less than this and depend on
154  * whether the external clock is working or not.
155  *
156  * time_maxerror is initialized by a ntp_adjtime() call and increased by
157  * the kernel once each second to reflect the maximum error bound
158  * growth.
159  *
160  * time_esterror is set and read by the ntp_adjtime() call, but
161  * otherwise not used by the kernel.
162  */
163 int time_state = TIME_OK;	/* clock state */
164 int time_status = STA_UNSYNC;	/* clock status bits */
165 long time_offset = 0;		/* time offset (us) */
166 long time_constant = 0;		/* pll time constant */
167 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
168 long time_precision = 1;	/* clock precision (us) */
169 long time_maxerror = MAXPHASE;	/* maximum error (us) */
170 long time_esterror = MAXPHASE;	/* estimated error (us) */
171 
172 /*
173  * The following variables establish the state of the PLL/FLL and the
174  * residual time and frequency offset of the local clock. The scale
175  * factors are defined in the timex.h header file.
176  *
177  * time_phase and time_freq are the phase increment and the frequency
178  * increment, respectively, of the kernel time variable.
179  *
180  * time_freq is set via ntp_adjtime() from a value stored in a file when
181  * the synchronization daemon is first started. Its value is retrieved
182  * via ntp_adjtime() and written to the file about once per hour by the
183  * daemon.
184  *
185  * time_adj is the adjustment added to the value of tick at each timer
186  * interrupt and is recomputed from time_phase and time_freq at each
187  * seconds rollover.
188  *
189  * time_reftime is the second's portion of the system time at the last
190  * call to ntp_adjtime(). It is used to adjust the time_freq variable
191  * and to increase the time_maxerror as the time since last update
192  * increases.
193  */
194 long time_phase = 0;		/* phase offset (scaled us) */
195 long time_freq = 0;		/* frequency offset (scaled ppm) */
196 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
197 long time_reftime = 0;		/* time at last adjustment (s) */
198 
199 #ifdef PPS_SYNC
200 /*
201  * The following variables are used only if the kernel PPS discipline
202  * code is configured (PPS_SYNC). The scale factors are defined in the
203  * timex.h header file.
204  *
205  * pps_time contains the time at each calibration interval, as read by
206  * microtime(). pps_count counts the seconds of the calibration
207  * interval, the duration of which is nominally pps_shift in powers of
208  * two.
209  *
210  * pps_offset is the time offset produced by the time median filter
211  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
212  * this filter.
213  *
214  * pps_freq is the frequency offset produced by the frequency median
215  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
216  * by this filter.
217  *
218  * pps_usec is latched from a high resolution counter or external clock
219  * at pps_time. Here we want the hardware counter contents only, not the
220  * contents plus the time_tv.usec as usual.
221  *
222  * pps_valid counts the number of seconds since the last PPS update. It
223  * is used as a watchdog timer to disable the PPS discipline should the
224  * PPS signal be lost.
225  *
226  * pps_glitch counts the number of seconds since the beginning of an
227  * offset burst more than tick/2 from current nominal offset. It is used
228  * mainly to suppress error bursts due to priority conflicts between the
229  * PPS interrupt and timer interrupt.
230  *
231  * pps_intcnt counts the calibration intervals for use in the interval-
232  * adaptation algorithm. It's just too complicated for words.
233  *
234  * pps_kc_hardpps_source contains an arbitrary value that uniquely
235  * identifies the currently bound source of the PPS signal, or NULL
236  * if no source is bound.
237  *
238  * pps_kc_hardpps_mode indicates which transitions, if any, of the PPS
239  * signal should be reported.
240  */
241 struct timeval pps_time;	/* kernel time at last interval */
242 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
243 long pps_offset = 0;		/* pps time offset (us) */
244 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
245 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
246 long pps_freq = 0;		/* frequency offset (scaled ppm) */
247 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
248 long pps_usec = 0;		/* microsec counter at last interval */
249 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
250 int pps_glitch = 0;		/* pps signal glitch counter */
251 int pps_count = 0;		/* calibration interval counter (s) */
252 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
253 int pps_intcnt = 0;		/* intervals at current duration */
254 void *pps_kc_hardpps_source = NULL; /* current PPS supplier's identifier */
255 int pps_kc_hardpps_mode = 0;	/* interesting edges of PPS signal */
256 
257 /*
258  * PPS signal quality monitors
259  *
260  * pps_jitcnt counts the seconds that have been discarded because the
261  * jitter measured by the time median filter exceeds the limit MAXTIME
262  * (100 us).
263  *
264  * pps_calcnt counts the frequency calibration intervals, which are
265  * variable from 4 s to 256 s.
266  *
267  * pps_errcnt counts the calibration intervals which have been discarded
268  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
269  * calibration interval jitter exceeds two ticks.
270  *
271  * pps_stbcnt counts the calibration intervals that have been discarded
272  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
273  */
274 long pps_jitcnt = 0;		/* jitter limit exceeded */
275 long pps_calcnt = 0;		/* calibration intervals */
276 long pps_errcnt = 0;		/* calibration errors */
277 long pps_stbcnt = 0;		/* stability limit exceeded */
278 #endif /* PPS_SYNC */
279 
280 #ifdef EXT_CLOCK
281 /*
282  * External clock definitions
283  *
284  * The following definitions and declarations are used only if an
285  * external clock is configured on the system.
286  */
287 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
288 
289 /*
290  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
291  * interrupt and decremented once each second.
292  */
293 int clock_count = 0;		/* CPU clock counter */
294 
295 #ifdef HIGHBALL
296 /*
297  * The clock_offset and clock_cpu variables are used by the HIGHBALL
298  * interface. The clock_offset variable defines the offset between
299  * system time and the HIGBALL counters. The clock_cpu variable contains
300  * the offset between the system clock and the HIGHBALL clock for use in
301  * disciplining the kernel time variable.
302  */
303 extern struct timeval clock_offset; /* Highball clock offset */
304 long clock_cpu = 0;		/* CPU clock adjust */
305 #endif /* HIGHBALL */
306 #endif /* EXT_CLOCK */
307 #endif /* NTP */
308 
309 
310 /*
311  * Bump a timeval by a small number of usec's.
312  */
313 #define BUMPTIME(t, usec) { \
314 	volatile struct timeval *tp = (t); \
315 	long us; \
316  \
317 	tp->tv_usec = us = tp->tv_usec + (usec); \
318 	if (us >= 1000000) { \
319 		tp->tv_usec = us - 1000000; \
320 		tp->tv_sec++; \
321 	} \
322 }
323 
324 int	stathz;
325 int	profhz;
326 int	profsrc;
327 int	schedhz;
328 int	profprocs;
329 int	hardclock_ticks;
330 static int statscheddiv; /* stat => sched divider (used if schedhz == 0) */
331 static int psdiv;			/* prof => stat divider */
332 int	psratio;			/* ratio: prof / stat */
333 int	tickfix, tickfixinterval;	/* used if tick not really integral */
334 #ifndef NTP
335 static int tickfixcnt;			/* accumulated fractional error */
336 #else
337 int	fixtick;			/* used by NTP for same */
338 int	shifthz;
339 #endif
340 
341 /*
342  * We might want ldd to load the both words from time at once.
343  * To succeed we need to be quadword aligned.
344  * The sparc already does that, and that it has worked so far is a fluke.
345  */
346 volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
347 volatile struct	timeval mono_time;
348 
349 void	*softclock_si;
350 
351 /*
352  * Initialize clock frequencies and start both clocks running.
353  */
354 void
355 initclocks(void)
356 {
357 	int i;
358 
359 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
360 	softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL);
361 	if (softclock_si == NULL)
362 		panic("initclocks: unable to register softclock intr");
363 #endif
364 
365 	/*
366 	 * Set divisors to 1 (normal case) and let the machine-specific
367 	 * code do its bit.
368 	 */
369 	psdiv = 1;
370 	cpu_initclocks();
371 
372 	/*
373 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
374 	 */
375 	i = stathz ? stathz : hz;
376 	if (profhz == 0)
377 		profhz = i;
378 	psratio = profhz / i;
379 	rrticks = hz / 10;
380 	if (schedhz == 0) {
381 		/* 16Hz is best */
382 		statscheddiv = i / 16;
383 		if (statscheddiv <= 0)
384 			panic("statscheddiv");
385 	}
386 
387 #ifdef NTP
388 	switch (hz) {
389 	case 1:
390 		shifthz = SHIFT_SCALE - 0;
391 		break;
392 	case 2:
393 		shifthz = SHIFT_SCALE - 1;
394 		break;
395 	case 4:
396 		shifthz = SHIFT_SCALE - 2;
397 		break;
398 	case 8:
399 		shifthz = SHIFT_SCALE - 3;
400 		break;
401 	case 16:
402 		shifthz = SHIFT_SCALE - 4;
403 		break;
404 	case 32:
405 		shifthz = SHIFT_SCALE - 5;
406 		break;
407 	case 60:
408 	case 64:
409 		shifthz = SHIFT_SCALE - 6;
410 		break;
411 	case 96:
412 	case 100:
413 	case 128:
414 		shifthz = SHIFT_SCALE - 7;
415 		break;
416 	case 256:
417 		shifthz = SHIFT_SCALE - 8;
418 		break;
419 	case 512:
420 		shifthz = SHIFT_SCALE - 9;
421 		break;
422 	case 1000:
423 	case 1024:
424 		shifthz = SHIFT_SCALE - 10;
425 		break;
426 	case 1200:
427 	case 2048:
428 		shifthz = SHIFT_SCALE - 11;
429 		break;
430 	case 4096:
431 		shifthz = SHIFT_SCALE - 12;
432 		break;
433 	case 8192:
434 		shifthz = SHIFT_SCALE - 13;
435 		break;
436 	case 16384:
437 		shifthz = SHIFT_SCALE - 14;
438 		break;
439 	case 32768:
440 		shifthz = SHIFT_SCALE - 15;
441 		break;
442 	case 65536:
443 		shifthz = SHIFT_SCALE - 16;
444 		break;
445 	default:
446 		panic("weird hz");
447 	}
448 	if (fixtick == 0) {
449 		/*
450 		 * Give MD code a chance to set this to a better
451 		 * value; but, if it doesn't, we should.
452 		 */
453 		fixtick = (1000000 - (hz*tick));
454 	}
455 #endif
456 }
457 
458 /*
459  * The real-time timer, interrupting hz times per second.
460  */
461 void
462 hardclock(struct clockframe *frame)
463 {
464 	struct lwp *l;
465 	struct proc *p;
466 	int delta;
467 	extern int tickdelta;
468 	extern long timedelta;
469 	struct cpu_info *ci = curcpu();
470 	struct ptimer *pt;
471 #ifdef NTP
472 	int time_update;
473 	int ltemp;
474 #endif
475 
476 	l = curlwp;
477 	if (l) {
478 		p = l->l_proc;
479 		/*
480 		 * Run current process's virtual and profile time, as needed.
481 		 */
482 		if (CLKF_USERMODE(frame) && p->p_timers &&
483 		    (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL)
484 			if (itimerdecr(pt, tick) == 0)
485 				itimerfire(pt);
486 		if (p->p_timers &&
487 		    (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL)
488 			if (itimerdecr(pt, tick) == 0)
489 				itimerfire(pt);
490 	}
491 
492 	/*
493 	 * If no separate statistics clock is available, run it from here.
494 	 */
495 	if (stathz == 0)
496 		statclock(frame);
497 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
498 		roundrobin(ci);
499 
500 #if defined(MULTIPROCESSOR)
501 	/*
502 	 * If we are not the primary CPU, we're not allowed to do
503 	 * any more work.
504 	 */
505 	if (CPU_IS_PRIMARY(ci) == 0)
506 		return;
507 #endif
508 
509 	/*
510 	 * Increment the time-of-day.  The increment is normally just
511 	 * ``tick''.  If the machine is one which has a clock frequency
512 	 * such that ``hz'' would not divide the second evenly into
513 	 * milliseconds, a periodic adjustment must be applied.  Finally,
514 	 * if we are still adjusting the time (see adjtime()),
515 	 * ``tickdelta'' may also be added in.
516 	 */
517 	hardclock_ticks++;
518 	delta = tick;
519 
520 #ifndef NTP
521 	if (tickfix) {
522 		tickfixcnt += tickfix;
523 		if (tickfixcnt >= tickfixinterval) {
524 			delta++;
525 			tickfixcnt -= tickfixinterval;
526 		}
527 	}
528 #endif /* !NTP */
529 	/* Imprecise 4bsd adjtime() handling */
530 	if (timedelta != 0) {
531 		delta += tickdelta;
532 		timedelta -= tickdelta;
533 	}
534 
535 #ifdef notyet
536 	microset();
537 #endif
538 
539 #ifndef NTP
540 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
541 #endif
542 	BUMPTIME(&mono_time, delta);
543 
544 #ifdef NTP
545 	time_update = delta;
546 
547 	/*
548 	 * Compute the phase adjustment. If the low-order bits
549 	 * (time_phase) of the update overflow, bump the high-order bits
550 	 * (time_update).
551 	 */
552 	time_phase += time_adj;
553 	if (time_phase <= -FINEUSEC) {
554 		ltemp = -time_phase >> SHIFT_SCALE;
555 		time_phase += ltemp << SHIFT_SCALE;
556 		time_update -= ltemp;
557 	} else if (time_phase >= FINEUSEC) {
558 		ltemp = time_phase >> SHIFT_SCALE;
559 		time_phase -= ltemp << SHIFT_SCALE;
560 		time_update += ltemp;
561 	}
562 
563 #ifdef HIGHBALL
564 	/*
565 	 * If the HIGHBALL board is installed, we need to adjust the
566 	 * external clock offset in order to close the hardware feedback
567 	 * loop. This will adjust the external clock phase and frequency
568 	 * in small amounts. The additional phase noise and frequency
569 	 * wander this causes should be minimal. We also need to
570 	 * discipline the kernel time variable, since the PLL is used to
571 	 * discipline the external clock. If the Highball board is not
572 	 * present, we discipline kernel time with the PLL as usual. We
573 	 * assume that the external clock phase adjustment (time_update)
574 	 * and kernel phase adjustment (clock_cpu) are less than the
575 	 * value of tick.
576 	 */
577 	clock_offset.tv_usec += time_update;
578 	if (clock_offset.tv_usec >= 1000000) {
579 		clock_offset.tv_sec++;
580 		clock_offset.tv_usec -= 1000000;
581 	}
582 	if (clock_offset.tv_usec < 0) {
583 		clock_offset.tv_sec--;
584 		clock_offset.tv_usec += 1000000;
585 	}
586 	time.tv_usec += clock_cpu;
587 	clock_cpu = 0;
588 #else
589 	time.tv_usec += time_update;
590 #endif /* HIGHBALL */
591 
592 	/*
593 	 * On rollover of the second the phase adjustment to be used for
594 	 * the next second is calculated. Also, the maximum error is
595 	 * increased by the tolerance. If the PPS frequency discipline
596 	 * code is present, the phase is increased to compensate for the
597 	 * CPU clock oscillator frequency error.
598 	 *
599  	 * On a 32-bit machine and given parameters in the timex.h
600 	 * header file, the maximum phase adjustment is +-512 ms and
601 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
602 	 * 64-bit machine, you shouldn't need to ask.
603 	 */
604 	if (time.tv_usec >= 1000000) {
605 		time.tv_usec -= 1000000;
606 		time.tv_sec++;
607 		time_maxerror += time_tolerance >> SHIFT_USEC;
608 
609 		/*
610 		 * Leap second processing. If in leap-insert state at
611 		 * the end of the day, the system clock is set back one
612 		 * second; if in leap-delete state, the system clock is
613 		 * set ahead one second. The microtime() routine or
614 		 * external clock driver will insure that reported time
615 		 * is always monotonic. The ugly divides should be
616 		 * replaced.
617 		 */
618 		switch (time_state) {
619 		case TIME_OK:
620 			if (time_status & STA_INS)
621 				time_state = TIME_INS;
622 			else if (time_status & STA_DEL)
623 				time_state = TIME_DEL;
624 			break;
625 
626 		case TIME_INS:
627 			if (time.tv_sec % 86400 == 0) {
628 				time.tv_sec--;
629 				time_state = TIME_OOP;
630 			}
631 			break;
632 
633 		case TIME_DEL:
634 			if ((time.tv_sec + 1) % 86400 == 0) {
635 				time.tv_sec++;
636 				time_state = TIME_WAIT;
637 			}
638 			break;
639 
640 		case TIME_OOP:
641 			time_state = TIME_WAIT;
642 			break;
643 
644 		case TIME_WAIT:
645 			if (!(time_status & (STA_INS | STA_DEL)))
646 				time_state = TIME_OK;
647 			break;
648 		}
649 
650 		/*
651 		 * Compute the phase adjustment for the next second. In
652 		 * PLL mode, the offset is reduced by a fixed factor
653 		 * times the time constant. In FLL mode the offset is
654 		 * used directly. In either mode, the maximum phase
655 		 * adjustment for each second is clamped so as to spread
656 		 * the adjustment over not more than the number of
657 		 * seconds between updates.
658 		 */
659 		if (time_offset < 0) {
660 			ltemp = -time_offset;
661 			if (!(time_status & STA_FLL))
662 				ltemp >>= SHIFT_KG + time_constant;
663 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
664 				ltemp = (MAXPHASE / MINSEC) <<
665 				    SHIFT_UPDATE;
666 			time_offset += ltemp;
667 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
668 		} else if (time_offset > 0) {
669 			ltemp = time_offset;
670 			if (!(time_status & STA_FLL))
671 				ltemp >>= SHIFT_KG + time_constant;
672 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
673 				ltemp = (MAXPHASE / MINSEC) <<
674 				    SHIFT_UPDATE;
675 			time_offset -= ltemp;
676 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
677 		} else
678 			time_adj = 0;
679 
680 		/*
681 		 * Compute the frequency estimate and additional phase
682 		 * adjustment due to frequency error for the next
683 		 * second. When the PPS signal is engaged, gnaw on the
684 		 * watchdog counter and update the frequency computed by
685 		 * the pll and the PPS signal.
686 		 */
687 #ifdef PPS_SYNC
688 		pps_valid++;
689 		if (pps_valid == PPS_VALID) {
690 			pps_jitter = MAXTIME;
691 			pps_stabil = MAXFREQ;
692 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
693 			    STA_PPSWANDER | STA_PPSERROR);
694 		}
695 		ltemp = time_freq + pps_freq;
696 #else
697 		ltemp = time_freq;
698 #endif /* PPS_SYNC */
699 
700 		if (ltemp < 0)
701 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
702 		else
703 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
704 		time_adj += (long)fixtick << shifthz;
705 
706 		/*
707 		 * When the CPU clock oscillator frequency is not a
708 		 * power of 2 in Hz, shifthz is only an approximate
709 		 * scale factor.
710 		 *
711 		 * To determine the adjustment, you can do the following:
712 		 *   bc -q
713 		 *   scale=24
714 		 *   obase=2
715 		 *   idealhz/realhz
716 		 * where `idealhz' is the next higher power of 2, and `realhz'
717 		 * is the actual value.  You may need to factor this result
718 		 * into a sequence of 2 multipliers to get better precision.
719 		 *
720 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
721 		 *   bc -q
722 		 *   scale=24
723 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
724 		 * (and then multiply by 1000000 to get ppm).
725 		 */
726 		switch (hz) {
727 		case 60:
728 			/* A factor of 1.000100010001 gives about 15ppm
729 			   error. */
730 			if (time_adj < 0) {
731 				time_adj -= (-time_adj >> 4);
732 				time_adj -= (-time_adj >> 8);
733 			} else {
734 				time_adj += (time_adj >> 4);
735 				time_adj += (time_adj >> 8);
736 			}
737 			break;
738 
739 		case 96:
740 			/* A factor of 1.0101010101 gives about 244ppm error. */
741 			if (time_adj < 0) {
742 				time_adj -= (-time_adj >> 2);
743 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
744 			} else {
745 				time_adj += (time_adj >> 2);
746 				time_adj += (time_adj >> 4) + (time_adj >> 8);
747 			}
748 			break;
749 
750 		case 100:
751 			/* A factor of 1.010001111010111 gives about 1ppm
752 			   error. */
753 			if (time_adj < 0) {
754 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
755 				time_adj += (-time_adj >> 10);
756 			} else {
757 				time_adj += (time_adj >> 2) + (time_adj >> 5);
758 				time_adj -= (time_adj >> 10);
759 			}
760 			break;
761 
762 		case 1000:
763 			/* A factor of 1.000001100010100001 gives about 50ppm
764 			   error. */
765 			if (time_adj < 0) {
766 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
767 				time_adj -= (-time_adj >> 7);
768 			} else {
769 				time_adj += (time_adj >> 6) + (time_adj >> 11);
770 				time_adj += (time_adj >> 7);
771 			}
772 			break;
773 
774 		case 1200:
775 			/* A factor of 1.1011010011100001 gives about 64ppm
776 			   error. */
777 			if (time_adj < 0) {
778 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
779 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
780 			} else {
781 				time_adj += (time_adj >> 1) + (time_adj >> 6);
782 				time_adj += (time_adj >> 3) + (time_adj >> 10);
783 			}
784 			break;
785 		}
786 
787 #ifdef EXT_CLOCK
788 		/*
789 		 * If an external clock is present, it is necessary to
790 		 * discipline the kernel time variable anyway, since not
791 		 * all system components use the microtime() interface.
792 		 * Here, the time offset between the external clock and
793 		 * kernel time variable is computed every so often.
794 		 */
795 		clock_count++;
796 		if (clock_count > CLOCK_INTERVAL) {
797 			clock_count = 0;
798 			microtime(&clock_ext);
799 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
800 			delta.tv_usec = clock_ext.tv_usec -
801 			    time.tv_usec;
802 			if (delta.tv_usec < 0)
803 				delta.tv_sec--;
804 			if (delta.tv_usec >= 500000) {
805 				delta.tv_usec -= 1000000;
806 				delta.tv_sec++;
807 			}
808 			if (delta.tv_usec < -500000) {
809 				delta.tv_usec += 1000000;
810 				delta.tv_sec--;
811 			}
812 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
813 			    delta.tv_usec > MAXPHASE) ||
814 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
815 			    delta.tv_usec < -MAXPHASE)) {
816 				time = clock_ext;
817 				delta.tv_sec = 0;
818 				delta.tv_usec = 0;
819 			}
820 #ifdef HIGHBALL
821 			clock_cpu = delta.tv_usec;
822 #else /* HIGHBALL */
823 			hardupdate(delta.tv_usec);
824 #endif /* HIGHBALL */
825 		}
826 #endif /* EXT_CLOCK */
827 	}
828 
829 #endif /* NTP */
830 
831 	/*
832 	 * Update real-time timeout queue.
833 	 * Process callouts at a very low CPU priority, so we don't keep the
834 	 * relatively high clock interrupt priority any longer than necessary.
835 	 */
836 	if (callout_hardclock()) {
837 		if (CLKF_BASEPRI(frame)) {
838 			/*
839 			 * Save the overhead of a software interrupt;
840 			 * it will happen as soon as we return, so do
841 			 * it now.
842 			 */
843 			spllowersoftclock();
844 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
845 			softclock(NULL);
846 			KERNEL_UNLOCK();
847 		} else {
848 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
849 			softintr_schedule(softclock_si);
850 #else
851 			setsoftclock();
852 #endif
853 		}
854 	}
855 }
856 
857 /*
858  * Compute number of hz until specified time.  Used to compute second
859  * argument to callout_reset() from an absolute time.
860  */
861 int
862 hzto(struct timeval *tv)
863 {
864 	unsigned long ticks;
865 	long sec, usec;
866 	int s;
867 
868 	/*
869 	 * If the number of usecs in the whole seconds part of the time
870 	 * difference fits in a long, then the total number of usecs will
871 	 * fit in an unsigned long.  Compute the total and convert it to
872 	 * ticks, rounding up and adding 1 to allow for the current tick
873 	 * to expire.  Rounding also depends on unsigned long arithmetic
874 	 * to avoid overflow.
875 	 *
876 	 * Otherwise, if the number of ticks in the whole seconds part of
877 	 * the time difference fits in a long, then convert the parts to
878 	 * ticks separately and add, using similar rounding methods and
879 	 * overflow avoidance.  This method would work in the previous
880 	 * case, but it is slightly slower and assume that hz is integral.
881 	 *
882 	 * Otherwise, round the time difference down to the maximum
883 	 * representable value.
884 	 *
885 	 * If ints are 32-bit, then the maximum value for any timeout in
886 	 * 10ms ticks is 248 days.
887 	 */
888 	s = splclock();
889 	sec = tv->tv_sec - time.tv_sec;
890 	usec = tv->tv_usec - time.tv_usec;
891 	splx(s);
892 
893 	if (usec < 0) {
894 		sec--;
895 		usec += 1000000;
896 	}
897 
898 	if (sec < 0 || (sec == 0 && usec <= 0)) {
899 		/*
900 		 * Would expire now or in the past.  Return 0 ticks.
901 		 * This is different from the legacy hzto() interface,
902 		 * and callers need to check for it.
903 		 */
904 		ticks = 0;
905 	} else if (sec <= (LONG_MAX / 1000000))
906 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
907 		    / tick) + 1;
908 	else if (sec <= (LONG_MAX / hz))
909 		ticks = (sec * hz) +
910 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
911 	else
912 		ticks = LONG_MAX;
913 
914 	if (ticks > INT_MAX)
915 		ticks = INT_MAX;
916 
917 	return ((int)ticks);
918 }
919 
920 /*
921  * Start profiling on a process.
922  *
923  * Kernel profiling passes proc0 which never exits and hence
924  * keeps the profile clock running constantly.
925  */
926 void
927 startprofclock(struct proc *p)
928 {
929 
930 	if ((p->p_flag & P_PROFIL) == 0) {
931 		p->p_flag |= P_PROFIL;
932 		/*
933 		 * This is only necessary if using the clock as the
934 		 * profiling source.
935 		 */
936 		if (++profprocs == 1 && stathz != 0)
937 			psdiv = psratio;
938 	}
939 }
940 
941 /*
942  * Stop profiling on a process.
943  */
944 void
945 stopprofclock(struct proc *p)
946 {
947 
948 	if (p->p_flag & P_PROFIL) {
949 		p->p_flag &= ~P_PROFIL;
950 		/*
951 		 * This is only necessary if using the clock as the
952 		 * profiling source.
953 		 */
954 		if (--profprocs == 0 && stathz != 0)
955 			psdiv = 1;
956 	}
957 }
958 
959 #if defined(PERFCTRS)
960 /*
961  * Independent profiling "tick" in case we're using a separate
962  * clock or profiling event source.  Currently, that's just
963  * performance counters--hence the wrapper.
964  */
965 void
966 proftick(struct clockframe *frame)
967 {
968 #ifdef GPROF
969         struct gmonparam *g;
970         intptr_t i;
971 #endif
972 	struct proc *p;
973 
974 	p = curproc;
975 	if (CLKF_USERMODE(frame)) {
976 		if (p->p_flag & P_PROFIL)
977 			addupc_intr(p, CLKF_PC(frame));
978 	} else {
979 #ifdef GPROF
980 		g = &_gmonparam;
981 		if (g->state == GMON_PROF_ON) {
982 			i = CLKF_PC(frame) - g->lowpc;
983 			if (i < g->textsize) {
984 				i /= HISTFRACTION * sizeof(*g->kcount);
985 				g->kcount[i]++;
986 			}
987 		}
988 #endif
989 #ifdef PROC_PC
990                 if (p && p->p_flag & P_PROFIL)
991                         addupc_intr(p, PROC_PC(p));
992 #endif
993 	}
994 }
995 #endif
996 
997 /*
998  * Statistics clock.  Grab profile sample, and if divider reaches 0,
999  * do process and kernel statistics.
1000  */
1001 void
1002 statclock(struct clockframe *frame)
1003 {
1004 #ifdef GPROF
1005 	struct gmonparam *g;
1006 	intptr_t i;
1007 #endif
1008 	struct cpu_info *ci = curcpu();
1009 	struct schedstate_percpu *spc = &ci->ci_schedstate;
1010 	struct lwp *l;
1011 	struct proc *p;
1012 
1013 	/*
1014 	 * Notice changes in divisor frequency, and adjust clock
1015 	 * frequency accordingly.
1016 	 */
1017 	if (spc->spc_psdiv != psdiv) {
1018 		spc->spc_psdiv = psdiv;
1019 		spc->spc_pscnt = psdiv;
1020 		if (psdiv == 1) {
1021 			setstatclockrate(stathz);
1022 		} else {
1023 			setstatclockrate(profhz);
1024 		}
1025 	}
1026 	l = curlwp;
1027 	p = (l ? l->l_proc : 0);
1028 	if (CLKF_USERMODE(frame)) {
1029 		if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK)
1030 			addupc_intr(p, CLKF_PC(frame));
1031 		if (--spc->spc_pscnt > 0)
1032 			return;
1033 		/*
1034 		 * Came from user mode; CPU was in user state.
1035 		 * If this process is being profiled record the tick.
1036 		 */
1037 		p->p_uticks++;
1038 		if (p->p_nice > NZERO)
1039 			spc->spc_cp_time[CP_NICE]++;
1040 		else
1041 			spc->spc_cp_time[CP_USER]++;
1042 	} else {
1043 #ifdef GPROF
1044 		/*
1045 		 * Kernel statistics are just like addupc_intr, only easier.
1046 		 */
1047 		g = &_gmonparam;
1048 		if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) {
1049 			i = CLKF_PC(frame) - g->lowpc;
1050 			if (i < g->textsize) {
1051 				i /= HISTFRACTION * sizeof(*g->kcount);
1052 				g->kcount[i]++;
1053 			}
1054 		}
1055 #endif
1056 #ifdef LWP_PC
1057 		if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL)
1058 			addupc_intr(p, LWP_PC(l));
1059 #endif
1060 		if (--spc->spc_pscnt > 0)
1061 			return;
1062 		/*
1063 		 * Came from kernel mode, so we were:
1064 		 * - handling an interrupt,
1065 		 * - doing syscall or trap work on behalf of the current
1066 		 *   user process, or
1067 		 * - spinning in the idle loop.
1068 		 * Whichever it is, charge the time as appropriate.
1069 		 * Note that we charge interrupts to the current process,
1070 		 * regardless of whether they are ``for'' that process,
1071 		 * so that we know how much of its real time was spent
1072 		 * in ``non-process'' (i.e., interrupt) work.
1073 		 */
1074 		if (CLKF_INTR(frame)) {
1075 			if (p != NULL)
1076 				p->p_iticks++;
1077 			spc->spc_cp_time[CP_INTR]++;
1078 		} else if (p != NULL) {
1079 			p->p_sticks++;
1080 			spc->spc_cp_time[CP_SYS]++;
1081 		} else
1082 			spc->spc_cp_time[CP_IDLE]++;
1083 	}
1084 	spc->spc_pscnt = psdiv;
1085 
1086 	if (l != NULL) {
1087 		++p->p_cpticks;
1088 		/*
1089 		 * If no separate schedclock is provided, call it here
1090 		 * at about 16 Hz.
1091 		 */
1092 		if (schedhz == 0)
1093 			if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) {
1094 				schedclock(l);
1095 				ci->ci_schedstate.spc_schedticks = statscheddiv;
1096 			}
1097 	}
1098 }
1099 
1100 
1101 #ifdef NTP	/* NTP phase-locked loop in kernel */
1102 
1103 /*
1104  * hardupdate() - local clock update
1105  *
1106  * This routine is called by ntp_adjtime() to update the local clock
1107  * phase and frequency. The implementation is of an adaptive-parameter,
1108  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1109  * time and frequency offset estimates for each call. If the kernel PPS
1110  * discipline code is configured (PPS_SYNC), the PPS signal itself
1111  * determines the new time offset, instead of the calling argument.
1112  * Presumably, calls to ntp_adjtime() occur only when the caller
1113  * believes the local clock is valid within some bound (+-128 ms with
1114  * NTP). If the caller's time is far different than the PPS time, an
1115  * argument will ensue, and it's not clear who will lose.
1116  *
1117  * For uncompensated quartz crystal oscillatores and nominal update
1118  * intervals less than 1024 s, operation should be in phase-lock mode
1119  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1120  * intervals greater than thiss, operation should be in frequency-lock
1121  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1122  *
1123  * Note: splclock() is in effect.
1124  */
1125 void
1126 hardupdate(long offset)
1127 {
1128 	long ltemp, mtemp;
1129 
1130 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1131 		return;
1132 	ltemp = offset;
1133 #ifdef PPS_SYNC
1134 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1135 		ltemp = pps_offset;
1136 #endif /* PPS_SYNC */
1137 
1138 	/*
1139 	 * Scale the phase adjustment and clamp to the operating range.
1140 	 */
1141 	if (ltemp > MAXPHASE)
1142 		time_offset = MAXPHASE << SHIFT_UPDATE;
1143 	else if (ltemp < -MAXPHASE)
1144 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
1145 	else
1146 		time_offset = ltemp << SHIFT_UPDATE;
1147 
1148 	/*
1149 	 * Select whether the frequency is to be controlled and in which
1150 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1151 	 * multiply/divide should be replaced someday.
1152 	 */
1153 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1154 		time_reftime = time.tv_sec;
1155 	mtemp = time.tv_sec - time_reftime;
1156 	time_reftime = time.tv_sec;
1157 	if (time_status & STA_FLL) {
1158 		if (mtemp >= MINSEC) {
1159 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1160 			    SHIFT_UPDATE));
1161 			if (ltemp < 0)
1162 				time_freq -= -ltemp >> SHIFT_KH;
1163 			else
1164 				time_freq += ltemp >> SHIFT_KH;
1165 		}
1166 	} else {
1167 		if (mtemp < MAXSEC) {
1168 			ltemp *= mtemp;
1169 			if (ltemp < 0)
1170 				time_freq -= -ltemp >> (time_constant +
1171 				    time_constant + SHIFT_KF -
1172 				    SHIFT_USEC);
1173 			else
1174 				time_freq += ltemp >> (time_constant +
1175 				    time_constant + SHIFT_KF -
1176 				    SHIFT_USEC);
1177 		}
1178 	}
1179 	if (time_freq > time_tolerance)
1180 		time_freq = time_tolerance;
1181 	else if (time_freq < -time_tolerance)
1182 		time_freq = -time_tolerance;
1183 }
1184 
1185 #ifdef PPS_SYNC
1186 /*
1187  * hardpps() - discipline CPU clock oscillator to external PPS signal
1188  *
1189  * This routine is called at each PPS interrupt in order to discipline
1190  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1191  * and leaves it in a handy spot for the hardclock() routine. It
1192  * integrates successive PPS phase differences and calculates the
1193  * frequency offset. This is used in hardclock() to discipline the CPU
1194  * clock oscillator so that intrinsic frequency error is cancelled out.
1195  * The code requires the caller to capture the time and hardware counter
1196  * value at the on-time PPS signal transition.
1197  *
1198  * Note that, on some Unix systems, this routine runs at an interrupt
1199  * priority level higher than the timer interrupt routine hardclock().
1200  * Therefore, the variables used are distinct from the hardclock()
1201  * variables, except for certain exceptions: The PPS frequency pps_freq
1202  * and phase pps_offset variables are determined by this routine and
1203  * updated atomically. The time_tolerance variable can be considered a
1204  * constant, since it is infrequently changed, and then only when the
1205  * PPS signal is disabled. The watchdog counter pps_valid is updated
1206  * once per second by hardclock() and is atomically cleared in this
1207  * routine.
1208  */
1209 void
1210 hardpps(struct timeval *tvp,		/* time at PPS */
1211 	long usec			/* hardware counter at PPS */)
1212 {
1213 	long u_usec, v_usec, bigtick;
1214 	long cal_sec, cal_usec;
1215 
1216 	/*
1217 	 * An occasional glitch can be produced when the PPS interrupt
1218 	 * occurs in the hardclock() routine before the time variable is
1219 	 * updated. Here the offset is discarded when the difference
1220 	 * between it and the last one is greater than tick/2, but not
1221 	 * if the interval since the first discard exceeds 30 s.
1222 	 */
1223 	time_status |= STA_PPSSIGNAL;
1224 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1225 	pps_valid = 0;
1226 	u_usec = -tvp->tv_usec;
1227 	if (u_usec < -500000)
1228 		u_usec += 1000000;
1229 	v_usec = pps_offset - u_usec;
1230 	if (v_usec < 0)
1231 		v_usec = -v_usec;
1232 	if (v_usec > (tick >> 1)) {
1233 		if (pps_glitch > MAXGLITCH) {
1234 			pps_glitch = 0;
1235 			pps_tf[2] = u_usec;
1236 			pps_tf[1] = u_usec;
1237 		} else {
1238 			pps_glitch++;
1239 			u_usec = pps_offset;
1240 		}
1241 	} else
1242 		pps_glitch = 0;
1243 
1244 	/*
1245 	 * A three-stage median filter is used to help deglitch the pps
1246 	 * time. The median sample becomes the time offset estimate; the
1247 	 * difference between the other two samples becomes the time
1248 	 * dispersion (jitter) estimate.
1249 	 */
1250 	pps_tf[2] = pps_tf[1];
1251 	pps_tf[1] = pps_tf[0];
1252 	pps_tf[0] = u_usec;
1253 	if (pps_tf[0] > pps_tf[1]) {
1254 		if (pps_tf[1] > pps_tf[2]) {
1255 			pps_offset = pps_tf[1];		/* 0 1 2 */
1256 			v_usec = pps_tf[0] - pps_tf[2];
1257 		} else if (pps_tf[2] > pps_tf[0]) {
1258 			pps_offset = pps_tf[0];		/* 2 0 1 */
1259 			v_usec = pps_tf[2] - pps_tf[1];
1260 		} else {
1261 			pps_offset = pps_tf[2];		/* 0 2 1 */
1262 			v_usec = pps_tf[0] - pps_tf[1];
1263 		}
1264 	} else {
1265 		if (pps_tf[1] < pps_tf[2]) {
1266 			pps_offset = pps_tf[1];		/* 2 1 0 */
1267 			v_usec = pps_tf[2] - pps_tf[0];
1268 		} else  if (pps_tf[2] < pps_tf[0]) {
1269 			pps_offset = pps_tf[0];		/* 1 0 2 */
1270 			v_usec = pps_tf[1] - pps_tf[2];
1271 		} else {
1272 			pps_offset = pps_tf[2];		/* 1 2 0 */
1273 			v_usec = pps_tf[1] - pps_tf[0];
1274 		}
1275 	}
1276 	if (v_usec > MAXTIME)
1277 		pps_jitcnt++;
1278 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1279 	if (v_usec < 0)
1280 		pps_jitter -= -v_usec >> PPS_AVG;
1281 	else
1282 		pps_jitter += v_usec >> PPS_AVG;
1283 	if (pps_jitter > (MAXTIME >> 1))
1284 		time_status |= STA_PPSJITTER;
1285 
1286 	/*
1287 	 * During the calibration interval adjust the starting time when
1288 	 * the tick overflows. At the end of the interval compute the
1289 	 * duration of the interval and the difference of the hardware
1290 	 * counters at the beginning and end of the interval. This code
1291 	 * is deliciously complicated by the fact valid differences may
1292 	 * exceed the value of tick when using long calibration
1293 	 * intervals and small ticks. Note that the counter can be
1294 	 * greater than tick if caught at just the wrong instant, but
1295 	 * the values returned and used here are correct.
1296 	 */
1297 	bigtick = (long)tick << SHIFT_USEC;
1298 	pps_usec -= pps_freq;
1299 	if (pps_usec >= bigtick)
1300 		pps_usec -= bigtick;
1301 	if (pps_usec < 0)
1302 		pps_usec += bigtick;
1303 	pps_time.tv_sec++;
1304 	pps_count++;
1305 	if (pps_count < (1 << pps_shift))
1306 		return;
1307 	pps_count = 0;
1308 	pps_calcnt++;
1309 	u_usec = usec << SHIFT_USEC;
1310 	v_usec = pps_usec - u_usec;
1311 	if (v_usec >= bigtick >> 1)
1312 		v_usec -= bigtick;
1313 	if (v_usec < -(bigtick >> 1))
1314 		v_usec += bigtick;
1315 	if (v_usec < 0)
1316 		v_usec = -(-v_usec >> pps_shift);
1317 	else
1318 		v_usec = v_usec >> pps_shift;
1319 	pps_usec = u_usec;
1320 	cal_sec = tvp->tv_sec;
1321 	cal_usec = tvp->tv_usec;
1322 	cal_sec -= pps_time.tv_sec;
1323 	cal_usec -= pps_time.tv_usec;
1324 	if (cal_usec < 0) {
1325 		cal_usec += 1000000;
1326 		cal_sec--;
1327 	}
1328 	pps_time = *tvp;
1329 
1330 	/*
1331 	 * Check for lost interrupts, noise, excessive jitter and
1332 	 * excessive frequency error. The number of timer ticks during
1333 	 * the interval may vary +-1 tick. Add to this a margin of one
1334 	 * tick for the PPS signal jitter and maximum frequency
1335 	 * deviation. If the limits are exceeded, the calibration
1336 	 * interval is reset to the minimum and we start over.
1337 	 */
1338 	u_usec = (long)tick << 1;
1339 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1340 	    || (cal_sec == 0 && cal_usec < u_usec))
1341 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1342 		pps_errcnt++;
1343 		pps_shift = PPS_SHIFT;
1344 		pps_intcnt = 0;
1345 		time_status |= STA_PPSERROR;
1346 		return;
1347 	}
1348 
1349 	/*
1350 	 * A three-stage median filter is used to help deglitch the pps
1351 	 * frequency. The median sample becomes the frequency offset
1352 	 * estimate; the difference between the other two samples
1353 	 * becomes the frequency dispersion (stability) estimate.
1354 	 */
1355 	pps_ff[2] = pps_ff[1];
1356 	pps_ff[1] = pps_ff[0];
1357 	pps_ff[0] = v_usec;
1358 	if (pps_ff[0] > pps_ff[1]) {
1359 		if (pps_ff[1] > pps_ff[2]) {
1360 			u_usec = pps_ff[1];		/* 0 1 2 */
1361 			v_usec = pps_ff[0] - pps_ff[2];
1362 		} else if (pps_ff[2] > pps_ff[0]) {
1363 			u_usec = pps_ff[0];		/* 2 0 1 */
1364 			v_usec = pps_ff[2] - pps_ff[1];
1365 		} else {
1366 			u_usec = pps_ff[2];		/* 0 2 1 */
1367 			v_usec = pps_ff[0] - pps_ff[1];
1368 		}
1369 	} else {
1370 		if (pps_ff[1] < pps_ff[2]) {
1371 			u_usec = pps_ff[1];		/* 2 1 0 */
1372 			v_usec = pps_ff[2] - pps_ff[0];
1373 		} else  if (pps_ff[2] < pps_ff[0]) {
1374 			u_usec = pps_ff[0];		/* 1 0 2 */
1375 			v_usec = pps_ff[1] - pps_ff[2];
1376 		} else {
1377 			u_usec = pps_ff[2];		/* 1 2 0 */
1378 			v_usec = pps_ff[1] - pps_ff[0];
1379 		}
1380 	}
1381 
1382 	/*
1383 	 * Here the frequency dispersion (stability) is updated. If it
1384 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1385 	 * offset is updated as well, but clamped to the tolerance. It
1386 	 * will be processed later by the hardclock() routine.
1387 	 */
1388 	v_usec = (v_usec >> 1) - pps_stabil;
1389 	if (v_usec < 0)
1390 		pps_stabil -= -v_usec >> PPS_AVG;
1391 	else
1392 		pps_stabil += v_usec >> PPS_AVG;
1393 	if (pps_stabil > MAXFREQ >> 2) {
1394 		pps_stbcnt++;
1395 		time_status |= STA_PPSWANDER;
1396 		return;
1397 	}
1398 	if (time_status & STA_PPSFREQ) {
1399 		if (u_usec < 0) {
1400 			pps_freq -= -u_usec >> PPS_AVG;
1401 			if (pps_freq < -time_tolerance)
1402 				pps_freq = -time_tolerance;
1403 			u_usec = -u_usec;
1404 		} else {
1405 			pps_freq += u_usec >> PPS_AVG;
1406 			if (pps_freq > time_tolerance)
1407 				pps_freq = time_tolerance;
1408 		}
1409 	}
1410 
1411 	/*
1412 	 * Here the calibration interval is adjusted. If the maximum
1413 	 * time difference is greater than tick / 4, reduce the interval
1414 	 * by half. If this is not the case for four consecutive
1415 	 * intervals, double the interval.
1416 	 */
1417 	if (u_usec << pps_shift > bigtick >> 2) {
1418 		pps_intcnt = 0;
1419 		if (pps_shift > PPS_SHIFT)
1420 			pps_shift--;
1421 	} else if (pps_intcnt >= 4) {
1422 		pps_intcnt = 0;
1423 		if (pps_shift < PPS_SHIFTMAX)
1424 			pps_shift++;
1425 	} else
1426 		pps_intcnt++;
1427 }
1428 #endif /* PPS_SYNC */
1429 #endif /* NTP  */
1430