1 /* $NetBSD: kern_clock.c,v 1.44 1998/04/22 07:08:11 jonathan Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 41 */ 42 43 #include "opt_ntp.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/dkstat.h> 48 #include <sys/callout.h> 49 #include <sys/kernel.h> 50 #include <sys/proc.h> 51 #include <sys/resourcevar.h> 52 #include <sys/signalvar.h> 53 #include <vm/vm.h> 54 #include <sys/sysctl.h> 55 #include <sys/timex.h> 56 57 #include <machine/cpu.h> 58 59 #ifdef GPROF 60 #include <sys/gmon.h> 61 #endif 62 63 /* 64 * Clock handling routines. 65 * 66 * This code is written to operate with two timers that run independently of 67 * each other. The main clock, running hz times per second, is used to keep 68 * track of real time. The second timer handles kernel and user profiling, 69 * and does resource use estimation. If the second timer is programmable, 70 * it is randomized to avoid aliasing between the two clocks. For example, 71 * the randomization prevents an adversary from always giving up the cpu 72 * just before its quantum expires. Otherwise, it would never accumulate 73 * cpu ticks. The mean frequency of the second timer is stathz. 74 * 75 * If no second timer exists, stathz will be zero; in this case we drive 76 * profiling and statistics off the main clock. This WILL NOT be accurate; 77 * do not do it unless absolutely necessary. 78 * 79 * The statistics clock may (or may not) be run at a higher rate while 80 * profiling. This profile clock runs at profhz. We require that profhz 81 * be an integral multiple of stathz. 82 * 83 * If the statistics clock is running fast, it must be divided by the ratio 84 * profhz/stathz for statistics. (For profiling, every tick counts.) 85 */ 86 87 /* 88 * TODO: 89 * allocate more timeout table slots when table overflows. 90 */ 91 92 93 #ifdef NTP /* NTP phase-locked loop in kernel */ 94 /* 95 * Phase/frequency-lock loop (PLL/FLL) definitions 96 * 97 * The following variables are read and set by the ntp_adjtime() system 98 * call. 99 * 100 * time_state shows the state of the system clock, with values defined 101 * in the timex.h header file. 102 * 103 * time_status shows the status of the system clock, with bits defined 104 * in the timex.h header file. 105 * 106 * time_offset is used by the PLL/FLL to adjust the system time in small 107 * increments. 108 * 109 * time_constant determines the bandwidth or "stiffness" of the PLL. 110 * 111 * time_tolerance determines maximum frequency error or tolerance of the 112 * CPU clock oscillator and is a property of the architecture; however, 113 * in principle it could change as result of the presence of external 114 * discipline signals, for instance. 115 * 116 * time_precision is usually equal to the kernel tick variable; however, 117 * in cases where a precision clock counter or external clock is 118 * available, the resolution can be much less than this and depend on 119 * whether the external clock is working or not. 120 * 121 * time_maxerror is initialized by a ntp_adjtime() call and increased by 122 * the kernel once each second to reflect the maximum error bound 123 * growth. 124 * 125 * time_esterror is set and read by the ntp_adjtime() call, but 126 * otherwise not used by the kernel. 127 */ 128 int time_state = TIME_OK; /* clock state */ 129 int time_status = STA_UNSYNC; /* clock status bits */ 130 long time_offset = 0; /* time offset (us) */ 131 long time_constant = 0; /* pll time constant */ 132 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 133 long time_precision = 1; /* clock precision (us) */ 134 long time_maxerror = MAXPHASE; /* maximum error (us) */ 135 long time_esterror = MAXPHASE; /* estimated error (us) */ 136 137 /* 138 * The following variables establish the state of the PLL/FLL and the 139 * residual time and frequency offset of the local clock. The scale 140 * factors are defined in the timex.h header file. 141 * 142 * time_phase and time_freq are the phase increment and the frequency 143 * increment, respectively, of the kernel time variable. 144 * 145 * time_freq is set via ntp_adjtime() from a value stored in a file when 146 * the synchronization daemon is first started. Its value is retrieved 147 * via ntp_adjtime() and written to the file about once per hour by the 148 * daemon. 149 * 150 * time_adj is the adjustment added to the value of tick at each timer 151 * interrupt and is recomputed from time_phase and time_freq at each 152 * seconds rollover. 153 * 154 * time_reftime is the second's portion of the system time at the last 155 * call to ntp_adjtime(). It is used to adjust the time_freq variable 156 * and to increase the time_maxerror as the time since last update 157 * increases. 158 */ 159 long time_phase = 0; /* phase offset (scaled us) */ 160 long time_freq = 0; /* frequency offset (scaled ppm) */ 161 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 162 long time_reftime = 0; /* time at last adjustment (s) */ 163 164 #ifdef PPS_SYNC 165 /* 166 * The following variables are used only if the kernel PPS discipline 167 * code is configured (PPS_SYNC). The scale factors are defined in the 168 * timex.h header file. 169 * 170 * pps_time contains the time at each calibration interval, as read by 171 * microtime(). pps_count counts the seconds of the calibration 172 * interval, the duration of which is nominally pps_shift in powers of 173 * two. 174 * 175 * pps_offset is the time offset produced by the time median filter 176 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 177 * this filter. 178 * 179 * pps_freq is the frequency offset produced by the frequency median 180 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 181 * by this filter. 182 * 183 * pps_usec is latched from a high resolution counter or external clock 184 * at pps_time. Here we want the hardware counter contents only, not the 185 * contents plus the time_tv.usec as usual. 186 * 187 * pps_valid counts the number of seconds since the last PPS update. It 188 * is used as a watchdog timer to disable the PPS discipline should the 189 * PPS signal be lost. 190 * 191 * pps_glitch counts the number of seconds since the beginning of an 192 * offset burst more than tick/2 from current nominal offset. It is used 193 * mainly to suppress error bursts due to priority conflicts between the 194 * PPS interrupt and timer interrupt. 195 * 196 * pps_intcnt counts the calibration intervals for use in the interval- 197 * adaptation algorithm. It's just too complicated for words. 198 */ 199 struct timeval pps_time; /* kernel time at last interval */ 200 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 201 long pps_offset = 0; /* pps time offset (us) */ 202 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 203 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 204 long pps_freq = 0; /* frequency offset (scaled ppm) */ 205 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 206 long pps_usec = 0; /* microsec counter at last interval */ 207 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 208 int pps_glitch = 0; /* pps signal glitch counter */ 209 int pps_count = 0; /* calibration interval counter (s) */ 210 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 211 int pps_intcnt = 0; /* intervals at current duration */ 212 213 /* 214 * PPS signal quality monitors 215 * 216 * pps_jitcnt counts the seconds that have been discarded because the 217 * jitter measured by the time median filter exceeds the limit MAXTIME 218 * (100 us). 219 * 220 * pps_calcnt counts the frequency calibration intervals, which are 221 * variable from 4 s to 256 s. 222 * 223 * pps_errcnt counts the calibration intervals which have been discarded 224 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 225 * calibration interval jitter exceeds two ticks. 226 * 227 * pps_stbcnt counts the calibration intervals that have been discarded 228 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 229 */ 230 long pps_jitcnt = 0; /* jitter limit exceeded */ 231 long pps_calcnt = 0; /* calibration intervals */ 232 long pps_errcnt = 0; /* calibration errors */ 233 long pps_stbcnt = 0; /* stability limit exceeded */ 234 #endif /* PPS_SYNC */ 235 236 #ifdef EXT_CLOCK 237 /* 238 * External clock definitions 239 * 240 * The following definitions and declarations are used only if an 241 * external clock is configured on the system. 242 */ 243 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 244 245 /* 246 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 247 * interrupt and decremented once each second. 248 */ 249 int clock_count = 0; /* CPU clock counter */ 250 251 #ifdef HIGHBALL 252 /* 253 * The clock_offset and clock_cpu variables are used by the HIGHBALL 254 * interface. The clock_offset variable defines the offset between 255 * system time and the HIGBALL counters. The clock_cpu variable contains 256 * the offset between the system clock and the HIGHBALL clock for use in 257 * disciplining the kernel time variable. 258 */ 259 extern struct timeval clock_offset; /* Highball clock offset */ 260 long clock_cpu = 0; /* CPU clock adjust */ 261 #endif /* HIGHBALL */ 262 #endif /* EXT_CLOCK */ 263 #endif /* NTP */ 264 265 266 /* 267 * Bump a timeval by a small number of usec's. 268 */ 269 #define BUMPTIME(t, usec) { \ 270 register volatile struct timeval *tp = (t); \ 271 register long us; \ 272 \ 273 tp->tv_usec = us = tp->tv_usec + (usec); \ 274 if (us >= 1000000) { \ 275 tp->tv_usec = us - 1000000; \ 276 tp->tv_sec++; \ 277 } \ 278 } 279 280 int stathz; 281 int profhz; 282 int profprocs; 283 int ticks; 284 static int psdiv, pscnt; /* prof => stat divider */ 285 int psratio; /* ratio: prof / stat */ 286 int tickfix, tickfixinterval; /* used if tick not really integral */ 287 #ifndef NTP 288 static int tickfixcnt; /* accumulated fractional error */ 289 #else 290 int fixtick; /* used by NTP for same */ 291 int shifthz; 292 #endif 293 294 volatile struct timeval time; 295 volatile struct timeval mono_time; 296 297 /* 298 * Initialize clock frequencies and start both clocks running. 299 */ 300 void 301 initclocks() 302 { 303 register int i; 304 305 /* 306 * Set divisors to 1 (normal case) and let the machine-specific 307 * code do its bit. 308 */ 309 psdiv = pscnt = 1; 310 cpu_initclocks(); 311 312 /* 313 * Compute profhz/stathz, and fix profhz if needed. 314 */ 315 i = stathz ? stathz : hz; 316 if (profhz == 0) 317 profhz = i; 318 psratio = profhz / i; 319 320 #ifdef NTP 321 switch (hz) { 322 case 60: 323 case 64: 324 shifthz = SHIFT_SCALE - 6; 325 break; 326 case 96: 327 case 100: 328 case 128: 329 shifthz = SHIFT_SCALE - 7; 330 break; 331 case 256: 332 shifthz = SHIFT_SCALE - 8; 333 break; 334 case 512: 335 shifthz = SHIFT_SCALE - 9; 336 break; 337 case 1000: 338 case 1024: 339 shifthz = SHIFT_SCALE - 10; 340 break; 341 default: 342 panic("weird hz"); 343 } 344 #endif 345 } 346 347 /* 348 * The real-time timer, interrupting hz times per second. 349 */ 350 void 351 hardclock(frame) 352 register struct clockframe *frame; 353 { 354 register struct callout *p1; 355 register struct proc *p; 356 register int delta, needsoft; 357 extern int tickdelta; 358 extern long timedelta; 359 #ifdef NTP 360 register int time_update; 361 register int ltemp; 362 #endif 363 364 /* 365 * Update real-time timeout queue. 366 * At front of queue are some number of events which are ``due''. 367 * The time to these is <= 0 and if negative represents the 368 * number of ticks which have passed since it was supposed to happen. 369 * The rest of the q elements (times > 0) are events yet to happen, 370 * where the time for each is given as a delta from the previous. 371 * Decrementing just the first of these serves to decrement the time 372 * to all events. 373 */ 374 needsoft = 0; 375 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 376 if (--p1->c_time > 0) 377 break; 378 needsoft = 1; 379 if (p1->c_time == 0) 380 break; 381 } 382 383 p = curproc; 384 if (p) { 385 register struct pstats *pstats; 386 387 /* 388 * Run current process's virtual and profile time, as needed. 389 */ 390 pstats = p->p_stats; 391 if (CLKF_USERMODE(frame) && 392 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 393 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 394 psignal(p, SIGVTALRM); 395 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 396 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 397 psignal(p, SIGPROF); 398 } 399 400 /* 401 * If no separate statistics clock is available, run it from here. 402 */ 403 if (stathz == 0) 404 statclock(frame); 405 406 /* 407 * Increment the time-of-day. The increment is normally just 408 * ``tick''. If the machine is one which has a clock frequency 409 * such that ``hz'' would not divide the second evenly into 410 * milliseconds, a periodic adjustment must be applied. Finally, 411 * if we are still adjusting the time (see adjtime()), 412 * ``tickdelta'' may also be added in. 413 */ 414 ticks++; 415 delta = tick; 416 417 #ifndef NTP 418 if (tickfix) { 419 tickfixcnt += tickfix; 420 if (tickfixcnt >= tickfixinterval) { 421 delta++; 422 tickfixcnt -= tickfixinterval; 423 } 424 } 425 #endif /* !NTP */ 426 /* Imprecise 4bsd adjtime() handling */ 427 if (timedelta != 0) { 428 delta += tickdelta; 429 timedelta -= tickdelta; 430 } 431 432 #ifdef notyet 433 microset(); 434 #endif 435 436 #ifndef NTP 437 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 438 #endif 439 BUMPTIME(&mono_time, delta); 440 441 #ifdef NTP 442 time_update = delta; 443 444 /* 445 * Compute the phase adjustment. If the low-order bits 446 * (time_phase) of the update overflow, bump the high-order bits 447 * (time_update). 448 */ 449 time_phase += time_adj; 450 if (time_phase <= -FINEUSEC) { 451 ltemp = -time_phase >> SHIFT_SCALE; 452 time_phase += ltemp << SHIFT_SCALE; 453 time_update -= ltemp; 454 } else if (time_phase >= FINEUSEC) { 455 ltemp = time_phase >> SHIFT_SCALE; 456 time_phase -= ltemp << SHIFT_SCALE; 457 time_update += ltemp; 458 } 459 460 #ifdef HIGHBALL 461 /* 462 * If the HIGHBALL board is installed, we need to adjust the 463 * external clock offset in order to close the hardware feedback 464 * loop. This will adjust the external clock phase and frequency 465 * in small amounts. The additional phase noise and frequency 466 * wander this causes should be minimal. We also need to 467 * discipline the kernel time variable, since the PLL is used to 468 * discipline the external clock. If the Highball board is not 469 * present, we discipline kernel time with the PLL as usual. We 470 * assume that the external clock phase adjustment (time_update) 471 * and kernel phase adjustment (clock_cpu) are less than the 472 * value of tick. 473 */ 474 clock_offset.tv_usec += time_update; 475 if (clock_offset.tv_usec >= 1000000) { 476 clock_offset.tv_sec++; 477 clock_offset.tv_usec -= 1000000; 478 } 479 if (clock_offset.tv_usec < 0) { 480 clock_offset.tv_sec--; 481 clock_offset.tv_usec += 1000000; 482 } 483 time.tv_usec += clock_cpu; 484 clock_cpu = 0; 485 #else 486 time.tv_usec += time_update; 487 #endif /* HIGHBALL */ 488 489 /* 490 * On rollover of the second the phase adjustment to be used for 491 * the next second is calculated. Also, the maximum error is 492 * increased by the tolerance. If the PPS frequency discipline 493 * code is present, the phase is increased to compensate for the 494 * CPU clock oscillator frequency error. 495 * 496 * On a 32-bit machine and given parameters in the timex.h 497 * header file, the maximum phase adjustment is +-512 ms and 498 * maximum frequency offset is a tad less than) +-512 ppm. On a 499 * 64-bit machine, you shouldn't need to ask. 500 */ 501 if (time.tv_usec >= 1000000) { 502 time.tv_usec -= 1000000; 503 time.tv_sec++; 504 time_maxerror += time_tolerance >> SHIFT_USEC; 505 506 /* 507 * Leap second processing. If in leap-insert state at 508 * the end of the day, the system clock is set back one 509 * second; if in leap-delete state, the system clock is 510 * set ahead one second. The microtime() routine or 511 * external clock driver will insure that reported time 512 * is always monotonic. The ugly divides should be 513 * replaced. 514 */ 515 switch (time_state) { 516 case TIME_OK: 517 if (time_status & STA_INS) 518 time_state = TIME_INS; 519 else if (time_status & STA_DEL) 520 time_state = TIME_DEL; 521 break; 522 523 case TIME_INS: 524 if (time.tv_sec % 86400 == 0) { 525 time.tv_sec--; 526 time_state = TIME_OOP; 527 } 528 break; 529 530 case TIME_DEL: 531 if ((time.tv_sec + 1) % 86400 == 0) { 532 time.tv_sec++; 533 time_state = TIME_WAIT; 534 } 535 break; 536 537 case TIME_OOP: 538 time_state = TIME_WAIT; 539 break; 540 541 case TIME_WAIT: 542 if (!(time_status & (STA_INS | STA_DEL))) 543 time_state = TIME_OK; 544 break; 545 } 546 547 /* 548 * Compute the phase adjustment for the next second. In 549 * PLL mode, the offset is reduced by a fixed factor 550 * times the time constant. In FLL mode the offset is 551 * used directly. In either mode, the maximum phase 552 * adjustment for each second is clamped so as to spread 553 * the adjustment over not more than the number of 554 * seconds between updates. 555 */ 556 if (time_offset < 0) { 557 ltemp = -time_offset; 558 if (!(time_status & STA_FLL)) 559 ltemp >>= SHIFT_KG + time_constant; 560 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 561 ltemp = (MAXPHASE / MINSEC) << 562 SHIFT_UPDATE; 563 time_offset += ltemp; 564 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 565 } else if (time_offset > 0) { 566 ltemp = time_offset; 567 if (!(time_status & STA_FLL)) 568 ltemp >>= SHIFT_KG + time_constant; 569 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 570 ltemp = (MAXPHASE / MINSEC) << 571 SHIFT_UPDATE; 572 time_offset -= ltemp; 573 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 574 } else 575 time_adj = 0; 576 577 /* 578 * Compute the frequency estimate and additional phase 579 * adjustment due to frequency error for the next 580 * second. When the PPS signal is engaged, gnaw on the 581 * watchdog counter and update the frequency computed by 582 * the pll and the PPS signal. 583 */ 584 #ifdef PPS_SYNC 585 pps_valid++; 586 if (pps_valid == PPS_VALID) { 587 pps_jitter = MAXTIME; 588 pps_stabil = MAXFREQ; 589 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 590 STA_PPSWANDER | STA_PPSERROR); 591 } 592 ltemp = time_freq + pps_freq; 593 #else 594 ltemp = time_freq; 595 #endif /* PPS_SYNC */ 596 597 if (ltemp < 0) 598 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 599 else 600 time_adj += ltemp >> (SHIFT_USEC - shifthz); 601 time_adj += (long)fixtick << shifthz; 602 603 /* 604 * When the CPU clock oscillator frequency is not a 605 * power of 2 in Hz, shifthz is only an approximate 606 * scale factor. 607 */ 608 switch (hz) { 609 case 96: 610 case 100: 611 /* 612 * In the following code the overall gain is increased 613 * by a factor of 1.25, which results in a residual 614 * error less than 3 percent. 615 */ 616 if (time_adj < 0) 617 time_adj -= -time_adj >> 2; 618 else 619 time_adj += time_adj >> 2; 620 break; 621 case 60: 622 /* 623 * 60 Hz m68k and vaxes have a PLL gain factor of of 624 * 60/64 (15/16) of what it should be. In the following code 625 * the overall gain is increased by a factor of 1.0625, 626 * (17/16) which results in a residual error of just less 627 * than 0.4 percent. 628 */ 629 if (time_adj < 0) 630 time_adj -= -time_adj >> 4; 631 else 632 time_adj += time_adj >> 4; 633 break; 634 case 1000: 635 /* 636 * Do this the simple way; we're on an alpha, are 637 * the shift police going to come and get us? We 638 * would get a residual error of only .82% with 639 * a 5 bit right shift, but we also have 64 bits 640 * in time_adj to work with for fixed point scaling. 641 */ 642 time_adj = (time_adj * 1024) / 1000; 643 break; 644 } 645 646 #ifdef EXT_CLOCK 647 /* 648 * If an external clock is present, it is necessary to 649 * discipline the kernel time variable anyway, since not 650 * all system components use the microtime() interface. 651 * Here, the time offset between the external clock and 652 * kernel time variable is computed every so often. 653 */ 654 clock_count++; 655 if (clock_count > CLOCK_INTERVAL) { 656 clock_count = 0; 657 microtime(&clock_ext); 658 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 659 delta.tv_usec = clock_ext.tv_usec - 660 time.tv_usec; 661 if (delta.tv_usec < 0) 662 delta.tv_sec--; 663 if (delta.tv_usec >= 500000) { 664 delta.tv_usec -= 1000000; 665 delta.tv_sec++; 666 } 667 if (delta.tv_usec < -500000) { 668 delta.tv_usec += 1000000; 669 delta.tv_sec--; 670 } 671 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 672 delta.tv_usec > MAXPHASE) || 673 delta.tv_sec < -1 || (delta.tv_sec == -1 && 674 delta.tv_usec < -MAXPHASE)) { 675 time = clock_ext; 676 delta.tv_sec = 0; 677 delta.tv_usec = 0; 678 } 679 #ifdef HIGHBALL 680 clock_cpu = delta.tv_usec; 681 #else /* HIGHBALL */ 682 hardupdate(delta.tv_usec); 683 #endif /* HIGHBALL */ 684 } 685 #endif /* EXT_CLOCK */ 686 } 687 688 #endif /* NTP */ 689 690 /* 691 * Process callouts at a very low cpu priority, so we don't keep the 692 * relatively high clock interrupt priority any longer than necessary. 693 */ 694 if (needsoft) { 695 if (CLKF_BASEPRI(frame)) { 696 /* 697 * Save the overhead of a software interrupt; 698 * it will happen as soon as we return, so do it now. 699 */ 700 (void)splsoftclock(); 701 softclock(); 702 } else 703 setsoftclock(); 704 } 705 } 706 707 /* 708 * Software (low priority) clock interrupt. 709 * Run periodic events from timeout queue. 710 */ 711 /*ARGSUSED*/ 712 void 713 softclock() 714 { 715 register struct callout *c; 716 register void *arg; 717 register void (*func) __P((void *)); 718 register int s; 719 720 s = splhigh(); 721 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 722 func = c->c_func; 723 arg = c->c_arg; 724 calltodo.c_next = c->c_next; 725 c->c_next = callfree; 726 callfree = c; 727 splx(s); 728 (*func)(arg); 729 (void) splhigh(); 730 } 731 splx(s); 732 } 733 734 /* 735 * timeout -- 736 * Execute a function after a specified length of time. 737 * 738 * untimeout -- 739 * Cancel previous timeout function call. 740 * 741 * See AT&T BCI Driver Reference Manual for specification. This 742 * implementation differs from that one in that no identification 743 * value is returned from timeout, rather, the original arguments 744 * to timeout are used to identify entries for untimeout. 745 */ 746 void 747 timeout(ftn, arg, ticks) 748 void (*ftn) __P((void *)); 749 void *arg; 750 register int ticks; 751 { 752 register struct callout *new, *p, *t; 753 register int s; 754 755 if (ticks <= 0) 756 ticks = 1; 757 758 /* Lock out the clock. */ 759 s = splhigh(); 760 761 /* Fill in the next free callout structure. */ 762 if (callfree == NULL) 763 panic("timeout table full"); 764 new = callfree; 765 callfree = new->c_next; 766 new->c_arg = arg; 767 new->c_func = ftn; 768 769 /* 770 * The time for each event is stored as a difference from the time 771 * of the previous event on the queue. Walk the queue, correcting 772 * the ticks argument for queue entries passed. Correct the ticks 773 * value for the queue entry immediately after the insertion point 774 * as well. Watch out for negative c_time values; these represent 775 * overdue events. 776 */ 777 for (p = &calltodo; 778 (t = p->c_next) != NULL && ticks > t->c_time; p = t) 779 if (t->c_time > 0) 780 ticks -= t->c_time; 781 new->c_time = ticks; 782 if (t != NULL) 783 t->c_time -= ticks; 784 785 /* Insert the new entry into the queue. */ 786 p->c_next = new; 787 new->c_next = t; 788 splx(s); 789 } 790 791 void 792 untimeout(ftn, arg) 793 void (*ftn) __P((void *)); 794 void *arg; 795 { 796 register struct callout *p, *t; 797 register int s; 798 799 s = splhigh(); 800 for (p = &calltodo; (t = p->c_next) != NULL; p = t) 801 if (t->c_func == ftn && t->c_arg == arg) { 802 /* Increment next entry's tick count. */ 803 if (t->c_next && t->c_time > 0) 804 t->c_next->c_time += t->c_time; 805 806 /* Move entry from callout queue to callfree queue. */ 807 p->c_next = t->c_next; 808 t->c_next = callfree; 809 callfree = t; 810 break; 811 } 812 splx(s); 813 } 814 815 /* 816 * Compute number of hz until specified time. Used to 817 * compute third argument to timeout() from an absolute time. 818 */ 819 int 820 hzto(tv) 821 struct timeval *tv; 822 { 823 register long ticks, sec; 824 int s; 825 826 /* 827 * If number of microseconds will fit in 32 bit arithmetic, 828 * then compute number of microseconds to time and scale to 829 * ticks. Otherwise just compute number of hz in time, rounding 830 * times greater than representible to maximum value. (We must 831 * compute in microseconds, because hz can be greater than 1000, 832 * and thus tick can be less than one millisecond). 833 * 834 * Delta times less than 14 hours can be computed ``exactly''. 835 * (Note that if hz would yeild a non-integral number of us per 836 * tick, i.e. tickfix is nonzero, timouts can be a tick longer 837 * than they should be.) Maximum value for any timeout in 10ms 838 * ticks is 250 days. 839 */ 840 s = splclock(); 841 sec = tv->tv_sec - time.tv_sec; 842 if (sec <= 0x7fffffff / 1000000 - 1) 843 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 + 844 (tv->tv_usec - time.tv_usec)) / tick; 845 else if (sec <= 0x7fffffff / hz) 846 ticks = sec * hz; 847 else 848 ticks = 0x7fffffff; 849 splx(s); 850 return (ticks); 851 } 852 853 /* 854 * Start profiling on a process. 855 * 856 * Kernel profiling passes proc0 which never exits and hence 857 * keeps the profile clock running constantly. 858 */ 859 void 860 startprofclock(p) 861 register struct proc *p; 862 { 863 int s; 864 865 if ((p->p_flag & P_PROFIL) == 0) { 866 p->p_flag |= P_PROFIL; 867 if (++profprocs == 1 && stathz != 0) { 868 s = splstatclock(); 869 psdiv = pscnt = psratio; 870 setstatclockrate(profhz); 871 splx(s); 872 } 873 } 874 } 875 876 /* 877 * Stop profiling on a process. 878 */ 879 void 880 stopprofclock(p) 881 register struct proc *p; 882 { 883 int s; 884 885 if (p->p_flag & P_PROFIL) { 886 p->p_flag &= ~P_PROFIL; 887 if (--profprocs == 0 && stathz != 0) { 888 s = splstatclock(); 889 psdiv = pscnt = 1; 890 setstatclockrate(stathz); 891 splx(s); 892 } 893 } 894 } 895 896 /* 897 * Statistics clock. Grab profile sample, and if divider reaches 0, 898 * do process and kernel statistics. 899 */ 900 void 901 statclock(frame) 902 register struct clockframe *frame; 903 { 904 #ifdef GPROF 905 register struct gmonparam *g; 906 register int i; 907 #endif 908 register struct proc *p; 909 910 if (CLKF_USERMODE(frame)) { 911 p = curproc; 912 if (p->p_flag & P_PROFIL) 913 addupc_intr(p, CLKF_PC(frame), 1); 914 if (--pscnt > 0) 915 return; 916 /* 917 * Came from user mode; CPU was in user state. 918 * If this process is being profiled record the tick. 919 */ 920 p->p_uticks++; 921 if (p->p_nice > NZERO) 922 cp_time[CP_NICE]++; 923 else 924 cp_time[CP_USER]++; 925 } else { 926 #ifdef GPROF 927 /* 928 * Kernel statistics are just like addupc_intr, only easier. 929 */ 930 g = &_gmonparam; 931 if (g->state == GMON_PROF_ON) { 932 i = CLKF_PC(frame) - g->lowpc; 933 if (i < g->textsize) { 934 i /= HISTFRACTION * sizeof(*g->kcount); 935 g->kcount[i]++; 936 } 937 } 938 #endif 939 if (--pscnt > 0) 940 return; 941 /* 942 * Came from kernel mode, so we were: 943 * - handling an interrupt, 944 * - doing syscall or trap work on behalf of the current 945 * user process, or 946 * - spinning in the idle loop. 947 * Whichever it is, charge the time as appropriate. 948 * Note that we charge interrupts to the current process, 949 * regardless of whether they are ``for'' that process, 950 * so that we know how much of its real time was spent 951 * in ``non-process'' (i.e., interrupt) work. 952 */ 953 p = curproc; 954 if (CLKF_INTR(frame)) { 955 if (p != NULL) 956 p->p_iticks++; 957 cp_time[CP_INTR]++; 958 } else if (p != NULL) { 959 p->p_sticks++; 960 cp_time[CP_SYS]++; 961 } else 962 cp_time[CP_IDLE]++; 963 } 964 pscnt = psdiv; 965 966 /* 967 * We adjust the priority of the current process. The priority of 968 * a process gets worse as it accumulates CPU time. The cpu usage 969 * estimator (p_estcpu) is increased here. The formula for computing 970 * priorities (in kern_synch.c) will compute a different value each 971 * time p_estcpu increases by 4. The cpu usage estimator ramps up 972 * quite quickly when the process is running (linearly), and decays 973 * away exponentially, at a rate which is proportionally slower when 974 * the system is busy. The basic principal is that the system will 975 * 90% forget that the process used a lot of CPU time in 5 * loadav 976 * seconds. This causes the system to favor processes which haven't 977 * run much recently, and to round-robin among other processes. 978 */ 979 if (p != NULL) { 980 p->p_cpticks++; 981 if (++p->p_estcpu == 0) 982 p->p_estcpu--; 983 if ((p->p_estcpu & 3) == 0) { 984 resetpriority(p); 985 if (p->p_priority >= PUSER) 986 p->p_priority = p->p_usrpri; 987 } 988 } 989 } 990 991 992 #ifdef NTP /* NTP phase-locked loop in kernel */ 993 994 /* 995 * hardupdate() - local clock update 996 * 997 * This routine is called by ntp_adjtime() to update the local clock 998 * phase and frequency. The implementation is of an adaptive-parameter, 999 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1000 * time and frequency offset estimates for each call. If the kernel PPS 1001 * discipline code is configured (PPS_SYNC), the PPS signal itself 1002 * determines the new time offset, instead of the calling argument. 1003 * Presumably, calls to ntp_adjtime() occur only when the caller 1004 * believes the local clock is valid within some bound (+-128 ms with 1005 * NTP). If the caller's time is far different than the PPS time, an 1006 * argument will ensue, and it's not clear who will lose. 1007 * 1008 * For uncompensated quartz crystal oscillatores and nominal update 1009 * intervals less than 1024 s, operation should be in phase-lock mode 1010 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1011 * intervals greater than thiss, operation should be in frequency-lock 1012 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1013 * 1014 * Note: splclock() is in effect. 1015 */ 1016 void 1017 hardupdate(offset) 1018 long offset; 1019 { 1020 long ltemp, mtemp; 1021 1022 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1023 return; 1024 ltemp = offset; 1025 #ifdef PPS_SYNC 1026 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1027 ltemp = pps_offset; 1028 #endif /* PPS_SYNC */ 1029 1030 /* 1031 * Scale the phase adjustment and clamp to the operating range. 1032 */ 1033 if (ltemp > MAXPHASE) 1034 time_offset = MAXPHASE << SHIFT_UPDATE; 1035 else if (ltemp < -MAXPHASE) 1036 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1037 else 1038 time_offset = ltemp << SHIFT_UPDATE; 1039 1040 /* 1041 * Select whether the frequency is to be controlled and in which 1042 * mode (PLL or FLL). Clamp to the operating range. Ugly 1043 * multiply/divide should be replaced someday. 1044 */ 1045 if (time_status & STA_FREQHOLD || time_reftime == 0) 1046 time_reftime = time.tv_sec; 1047 mtemp = time.tv_sec - time_reftime; 1048 time_reftime = time.tv_sec; 1049 if (time_status & STA_FLL) { 1050 if (mtemp >= MINSEC) { 1051 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1052 SHIFT_UPDATE)); 1053 if (ltemp < 0) 1054 time_freq -= -ltemp >> SHIFT_KH; 1055 else 1056 time_freq += ltemp >> SHIFT_KH; 1057 } 1058 } else { 1059 if (mtemp < MAXSEC) { 1060 ltemp *= mtemp; 1061 if (ltemp < 0) 1062 time_freq -= -ltemp >> (time_constant + 1063 time_constant + SHIFT_KF - 1064 SHIFT_USEC); 1065 else 1066 time_freq += ltemp >> (time_constant + 1067 time_constant + SHIFT_KF - 1068 SHIFT_USEC); 1069 } 1070 } 1071 if (time_freq > time_tolerance) 1072 time_freq = time_tolerance; 1073 else if (time_freq < -time_tolerance) 1074 time_freq = -time_tolerance; 1075 } 1076 1077 #ifdef PPS_SYNC 1078 /* 1079 * hardpps() - discipline CPU clock oscillator to external PPS signal 1080 * 1081 * This routine is called at each PPS interrupt in order to discipline 1082 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1083 * and leaves it in a handy spot for the hardclock() routine. It 1084 * integrates successive PPS phase differences and calculates the 1085 * frequency offset. This is used in hardclock() to discipline the CPU 1086 * clock oscillator so that intrinsic frequency error is cancelled out. 1087 * The code requires the caller to capture the time and hardware counter 1088 * value at the on-time PPS signal transition. 1089 * 1090 * Note that, on some Unix systems, this routine runs at an interrupt 1091 * priority level higher than the timer interrupt routine hardclock(). 1092 * Therefore, the variables used are distinct from the hardclock() 1093 * variables, except for certain exceptions: The PPS frequency pps_freq 1094 * and phase pps_offset variables are determined by this routine and 1095 * updated atomically. The time_tolerance variable can be considered a 1096 * constant, since it is infrequently changed, and then only when the 1097 * PPS signal is disabled. The watchdog counter pps_valid is updated 1098 * once per second by hardclock() and is atomically cleared in this 1099 * routine. 1100 */ 1101 void 1102 hardpps(tvp, usec) 1103 struct timeval *tvp; /* time at PPS */ 1104 long usec; /* hardware counter at PPS */ 1105 { 1106 long u_usec, v_usec, bigtick; 1107 long cal_sec, cal_usec; 1108 1109 /* 1110 * An occasional glitch can be produced when the PPS interrupt 1111 * occurs in the hardclock() routine before the time variable is 1112 * updated. Here the offset is discarded when the difference 1113 * between it and the last one is greater than tick/2, but not 1114 * if the interval since the first discard exceeds 30 s. 1115 */ 1116 time_status |= STA_PPSSIGNAL; 1117 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1118 pps_valid = 0; 1119 u_usec = -tvp->tv_usec; 1120 if (u_usec < -500000) 1121 u_usec += 1000000; 1122 v_usec = pps_offset - u_usec; 1123 if (v_usec < 0) 1124 v_usec = -v_usec; 1125 if (v_usec > (tick >> 1)) { 1126 if (pps_glitch > MAXGLITCH) { 1127 pps_glitch = 0; 1128 pps_tf[2] = u_usec; 1129 pps_tf[1] = u_usec; 1130 } else { 1131 pps_glitch++; 1132 u_usec = pps_offset; 1133 } 1134 } else 1135 pps_glitch = 0; 1136 1137 /* 1138 * A three-stage median filter is used to help deglitch the pps 1139 * time. The median sample becomes the time offset estimate; the 1140 * difference between the other two samples becomes the time 1141 * dispersion (jitter) estimate. 1142 */ 1143 pps_tf[2] = pps_tf[1]; 1144 pps_tf[1] = pps_tf[0]; 1145 pps_tf[0] = u_usec; 1146 if (pps_tf[0] > pps_tf[1]) { 1147 if (pps_tf[1] > pps_tf[2]) { 1148 pps_offset = pps_tf[1]; /* 0 1 2 */ 1149 v_usec = pps_tf[0] - pps_tf[2]; 1150 } else if (pps_tf[2] > pps_tf[0]) { 1151 pps_offset = pps_tf[0]; /* 2 0 1 */ 1152 v_usec = pps_tf[2] - pps_tf[1]; 1153 } else { 1154 pps_offset = pps_tf[2]; /* 0 2 1 */ 1155 v_usec = pps_tf[0] - pps_tf[1]; 1156 } 1157 } else { 1158 if (pps_tf[1] < pps_tf[2]) { 1159 pps_offset = pps_tf[1]; /* 2 1 0 */ 1160 v_usec = pps_tf[2] - pps_tf[0]; 1161 } else if (pps_tf[2] < pps_tf[0]) { 1162 pps_offset = pps_tf[0]; /* 1 0 2 */ 1163 v_usec = pps_tf[1] - pps_tf[2]; 1164 } else { 1165 pps_offset = pps_tf[2]; /* 1 2 0 */ 1166 v_usec = pps_tf[1] - pps_tf[0]; 1167 } 1168 } 1169 if (v_usec > MAXTIME) 1170 pps_jitcnt++; 1171 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1172 if (v_usec < 0) 1173 pps_jitter -= -v_usec >> PPS_AVG; 1174 else 1175 pps_jitter += v_usec >> PPS_AVG; 1176 if (pps_jitter > (MAXTIME >> 1)) 1177 time_status |= STA_PPSJITTER; 1178 1179 /* 1180 * During the calibration interval adjust the starting time when 1181 * the tick overflows. At the end of the interval compute the 1182 * duration of the interval and the difference of the hardware 1183 * counters at the beginning and end of the interval. This code 1184 * is deliciously complicated by the fact valid differences may 1185 * exceed the value of tick when using long calibration 1186 * intervals and small ticks. Note that the counter can be 1187 * greater than tick if caught at just the wrong instant, but 1188 * the values returned and used here are correct. 1189 */ 1190 bigtick = (long)tick << SHIFT_USEC; 1191 pps_usec -= pps_freq; 1192 if (pps_usec >= bigtick) 1193 pps_usec -= bigtick; 1194 if (pps_usec < 0) 1195 pps_usec += bigtick; 1196 pps_time.tv_sec++; 1197 pps_count++; 1198 if (pps_count < (1 << pps_shift)) 1199 return; 1200 pps_count = 0; 1201 pps_calcnt++; 1202 u_usec = usec << SHIFT_USEC; 1203 v_usec = pps_usec - u_usec; 1204 if (v_usec >= bigtick >> 1) 1205 v_usec -= bigtick; 1206 if (v_usec < -(bigtick >> 1)) 1207 v_usec += bigtick; 1208 if (v_usec < 0) 1209 v_usec = -(-v_usec >> pps_shift); 1210 else 1211 v_usec = v_usec >> pps_shift; 1212 pps_usec = u_usec; 1213 cal_sec = tvp->tv_sec; 1214 cal_usec = tvp->tv_usec; 1215 cal_sec -= pps_time.tv_sec; 1216 cal_usec -= pps_time.tv_usec; 1217 if (cal_usec < 0) { 1218 cal_usec += 1000000; 1219 cal_sec--; 1220 } 1221 pps_time = *tvp; 1222 1223 /* 1224 * Check for lost interrupts, noise, excessive jitter and 1225 * excessive frequency error. The number of timer ticks during 1226 * the interval may vary +-1 tick. Add to this a margin of one 1227 * tick for the PPS signal jitter and maximum frequency 1228 * deviation. If the limits are exceeded, the calibration 1229 * interval is reset to the minimum and we start over. 1230 */ 1231 u_usec = (long)tick << 1; 1232 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1233 || (cal_sec == 0 && cal_usec < u_usec)) 1234 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1235 pps_errcnt++; 1236 pps_shift = PPS_SHIFT; 1237 pps_intcnt = 0; 1238 time_status |= STA_PPSERROR; 1239 return; 1240 } 1241 1242 /* 1243 * A three-stage median filter is used to help deglitch the pps 1244 * frequency. The median sample becomes the frequency offset 1245 * estimate; the difference between the other two samples 1246 * becomes the frequency dispersion (stability) estimate. 1247 */ 1248 pps_ff[2] = pps_ff[1]; 1249 pps_ff[1] = pps_ff[0]; 1250 pps_ff[0] = v_usec; 1251 if (pps_ff[0] > pps_ff[1]) { 1252 if (pps_ff[1] > pps_ff[2]) { 1253 u_usec = pps_ff[1]; /* 0 1 2 */ 1254 v_usec = pps_ff[0] - pps_ff[2]; 1255 } else if (pps_ff[2] > pps_ff[0]) { 1256 u_usec = pps_ff[0]; /* 2 0 1 */ 1257 v_usec = pps_ff[2] - pps_ff[1]; 1258 } else { 1259 u_usec = pps_ff[2]; /* 0 2 1 */ 1260 v_usec = pps_ff[0] - pps_ff[1]; 1261 } 1262 } else { 1263 if (pps_ff[1] < pps_ff[2]) { 1264 u_usec = pps_ff[1]; /* 2 1 0 */ 1265 v_usec = pps_ff[2] - pps_ff[0]; 1266 } else if (pps_ff[2] < pps_ff[0]) { 1267 u_usec = pps_ff[0]; /* 1 0 2 */ 1268 v_usec = pps_ff[1] - pps_ff[2]; 1269 } else { 1270 u_usec = pps_ff[2]; /* 1 2 0 */ 1271 v_usec = pps_ff[1] - pps_ff[0]; 1272 } 1273 } 1274 1275 /* 1276 * Here the frequency dispersion (stability) is updated. If it 1277 * is less than one-fourth the maximum (MAXFREQ), the frequency 1278 * offset is updated as well, but clamped to the tolerance. It 1279 * will be processed later by the hardclock() routine. 1280 */ 1281 v_usec = (v_usec >> 1) - pps_stabil; 1282 if (v_usec < 0) 1283 pps_stabil -= -v_usec >> PPS_AVG; 1284 else 1285 pps_stabil += v_usec >> PPS_AVG; 1286 if (pps_stabil > MAXFREQ >> 2) { 1287 pps_stbcnt++; 1288 time_status |= STA_PPSWANDER; 1289 return; 1290 } 1291 if (time_status & STA_PPSFREQ) { 1292 if (u_usec < 0) { 1293 pps_freq -= -u_usec >> PPS_AVG; 1294 if (pps_freq < -time_tolerance) 1295 pps_freq = -time_tolerance; 1296 u_usec = -u_usec; 1297 } else { 1298 pps_freq += u_usec >> PPS_AVG; 1299 if (pps_freq > time_tolerance) 1300 pps_freq = time_tolerance; 1301 } 1302 } 1303 1304 /* 1305 * Here the calibration interval is adjusted. If the maximum 1306 * time difference is greater than tick / 4, reduce the interval 1307 * by half. If this is not the case for four consecutive 1308 * intervals, double the interval. 1309 */ 1310 if (u_usec << pps_shift > bigtick >> 2) { 1311 pps_intcnt = 0; 1312 if (pps_shift > PPS_SHIFT) 1313 pps_shift--; 1314 } else if (pps_intcnt >= 4) { 1315 pps_intcnt = 0; 1316 if (pps_shift < PPS_SHIFTMAX) 1317 pps_shift++; 1318 } else 1319 pps_intcnt++; 1320 } 1321 #endif /* PPS_SYNC */ 1322 #endif /* NTP */ 1323 1324 1325 /* 1326 * Return information about system clocks. 1327 */ 1328 int 1329 sysctl_clockrate(where, sizep) 1330 register char *where; 1331 size_t *sizep; 1332 { 1333 struct clockinfo clkinfo; 1334 1335 /* 1336 * Construct clockinfo structure. 1337 */ 1338 clkinfo.tick = tick; 1339 clkinfo.tickadj = tickadj; 1340 clkinfo.hz = hz; 1341 clkinfo.profhz = profhz; 1342 clkinfo.stathz = stathz ? stathz : hz; 1343 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1344 } 1345 1346