xref: /netbsd-src/sys/kern/kern_clock.c (revision dc306354b0b29af51801a7632f1e95265a68cd81)
1 /*	$NetBSD: kern_clock.c,v 1.44 1998/04/22 07:08:11 jonathan Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
41  */
42 
43 #include "opt_ntp.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/dkstat.h>
48 #include <sys/callout.h>
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <vm/vm.h>
54 #include <sys/sysctl.h>
55 #include <sys/timex.h>
56 
57 #include <machine/cpu.h>
58 
59 #ifdef GPROF
60 #include <sys/gmon.h>
61 #endif
62 
63 /*
64  * Clock handling routines.
65  *
66  * This code is written to operate with two timers that run independently of
67  * each other.  The main clock, running hz times per second, is used to keep
68  * track of real time.  The second timer handles kernel and user profiling,
69  * and does resource use estimation.  If the second timer is programmable,
70  * it is randomized to avoid aliasing between the two clocks.  For example,
71  * the randomization prevents an adversary from always giving up the cpu
72  * just before its quantum expires.  Otherwise, it would never accumulate
73  * cpu ticks.  The mean frequency of the second timer is stathz.
74  *
75  * If no second timer exists, stathz will be zero; in this case we drive
76  * profiling and statistics off the main clock.  This WILL NOT be accurate;
77  * do not do it unless absolutely necessary.
78  *
79  * The statistics clock may (or may not) be run at a higher rate while
80  * profiling.  This profile clock runs at profhz.  We require that profhz
81  * be an integral multiple of stathz.
82  *
83  * If the statistics clock is running fast, it must be divided by the ratio
84  * profhz/stathz for statistics.  (For profiling, every tick counts.)
85  */
86 
87 /*
88  * TODO:
89  *	allocate more timeout table slots when table overflows.
90  */
91 
92 
93 #ifdef NTP	/* NTP phase-locked loop in kernel */
94 /*
95  * Phase/frequency-lock loop (PLL/FLL) definitions
96  *
97  * The following variables are read and set by the ntp_adjtime() system
98  * call.
99  *
100  * time_state shows the state of the system clock, with values defined
101  * in the timex.h header file.
102  *
103  * time_status shows the status of the system clock, with bits defined
104  * in the timex.h header file.
105  *
106  * time_offset is used by the PLL/FLL to adjust the system time in small
107  * increments.
108  *
109  * time_constant determines the bandwidth or "stiffness" of the PLL.
110  *
111  * time_tolerance determines maximum frequency error or tolerance of the
112  * CPU clock oscillator and is a property of the architecture; however,
113  * in principle it could change as result of the presence of external
114  * discipline signals, for instance.
115  *
116  * time_precision is usually equal to the kernel tick variable; however,
117  * in cases where a precision clock counter or external clock is
118  * available, the resolution can be much less than this and depend on
119  * whether the external clock is working or not.
120  *
121  * time_maxerror is initialized by a ntp_adjtime() call and increased by
122  * the kernel once each second to reflect the maximum error bound
123  * growth.
124  *
125  * time_esterror is set and read by the ntp_adjtime() call, but
126  * otherwise not used by the kernel.
127  */
128 int time_state = TIME_OK;	/* clock state */
129 int time_status = STA_UNSYNC;	/* clock status bits */
130 long time_offset = 0;		/* time offset (us) */
131 long time_constant = 0;		/* pll time constant */
132 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
133 long time_precision = 1;	/* clock precision (us) */
134 long time_maxerror = MAXPHASE;	/* maximum error (us) */
135 long time_esterror = MAXPHASE;	/* estimated error (us) */
136 
137 /*
138  * The following variables establish the state of the PLL/FLL and the
139  * residual time and frequency offset of the local clock. The scale
140  * factors are defined in the timex.h header file.
141  *
142  * time_phase and time_freq are the phase increment and the frequency
143  * increment, respectively, of the kernel time variable.
144  *
145  * time_freq is set via ntp_adjtime() from a value stored in a file when
146  * the synchronization daemon is first started. Its value is retrieved
147  * via ntp_adjtime() and written to the file about once per hour by the
148  * daemon.
149  *
150  * time_adj is the adjustment added to the value of tick at each timer
151  * interrupt and is recomputed from time_phase and time_freq at each
152  * seconds rollover.
153  *
154  * time_reftime is the second's portion of the system time at the last
155  * call to ntp_adjtime(). It is used to adjust the time_freq variable
156  * and to increase the time_maxerror as the time since last update
157  * increases.
158  */
159 long time_phase = 0;		/* phase offset (scaled us) */
160 long time_freq = 0;		/* frequency offset (scaled ppm) */
161 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
162 long time_reftime = 0;		/* time at last adjustment (s) */
163 
164 #ifdef PPS_SYNC
165 /*
166  * The following variables are used only if the kernel PPS discipline
167  * code is configured (PPS_SYNC). The scale factors are defined in the
168  * timex.h header file.
169  *
170  * pps_time contains the time at each calibration interval, as read by
171  * microtime(). pps_count counts the seconds of the calibration
172  * interval, the duration of which is nominally pps_shift in powers of
173  * two.
174  *
175  * pps_offset is the time offset produced by the time median filter
176  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
177  * this filter.
178  *
179  * pps_freq is the frequency offset produced by the frequency median
180  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
181  * by this filter.
182  *
183  * pps_usec is latched from a high resolution counter or external clock
184  * at pps_time. Here we want the hardware counter contents only, not the
185  * contents plus the time_tv.usec as usual.
186  *
187  * pps_valid counts the number of seconds since the last PPS update. It
188  * is used as a watchdog timer to disable the PPS discipline should the
189  * PPS signal be lost.
190  *
191  * pps_glitch counts the number of seconds since the beginning of an
192  * offset burst more than tick/2 from current nominal offset. It is used
193  * mainly to suppress error bursts due to priority conflicts between the
194  * PPS interrupt and timer interrupt.
195  *
196  * pps_intcnt counts the calibration intervals for use in the interval-
197  * adaptation algorithm. It's just too complicated for words.
198  */
199 struct timeval pps_time;	/* kernel time at last interval */
200 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
201 long pps_offset = 0;		/* pps time offset (us) */
202 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
203 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
204 long pps_freq = 0;		/* frequency offset (scaled ppm) */
205 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
206 long pps_usec = 0;		/* microsec counter at last interval */
207 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
208 int pps_glitch = 0;		/* pps signal glitch counter */
209 int pps_count = 0;		/* calibration interval counter (s) */
210 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
211 int pps_intcnt = 0;		/* intervals at current duration */
212 
213 /*
214  * PPS signal quality monitors
215  *
216  * pps_jitcnt counts the seconds that have been discarded because the
217  * jitter measured by the time median filter exceeds the limit MAXTIME
218  * (100 us).
219  *
220  * pps_calcnt counts the frequency calibration intervals, which are
221  * variable from 4 s to 256 s.
222  *
223  * pps_errcnt counts the calibration intervals which have been discarded
224  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
225  * calibration interval jitter exceeds two ticks.
226  *
227  * pps_stbcnt counts the calibration intervals that have been discarded
228  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
229  */
230 long pps_jitcnt = 0;		/* jitter limit exceeded */
231 long pps_calcnt = 0;		/* calibration intervals */
232 long pps_errcnt = 0;		/* calibration errors */
233 long pps_stbcnt = 0;		/* stability limit exceeded */
234 #endif /* PPS_SYNC */
235 
236 #ifdef EXT_CLOCK
237 /*
238  * External clock definitions
239  *
240  * The following definitions and declarations are used only if an
241  * external clock is configured on the system.
242  */
243 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
244 
245 /*
246  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
247  * interrupt and decremented once each second.
248  */
249 int clock_count = 0;		/* CPU clock counter */
250 
251 #ifdef HIGHBALL
252 /*
253  * The clock_offset and clock_cpu variables are used by the HIGHBALL
254  * interface. The clock_offset variable defines the offset between
255  * system time and the HIGBALL counters. The clock_cpu variable contains
256  * the offset between the system clock and the HIGHBALL clock for use in
257  * disciplining the kernel time variable.
258  */
259 extern struct timeval clock_offset; /* Highball clock offset */
260 long clock_cpu = 0;		/* CPU clock adjust */
261 #endif /* HIGHBALL */
262 #endif /* EXT_CLOCK */
263 #endif /* NTP */
264 
265 
266 /*
267  * Bump a timeval by a small number of usec's.
268  */
269 #define BUMPTIME(t, usec) { \
270 	register volatile struct timeval *tp = (t); \
271 	register long us; \
272  \
273 	tp->tv_usec = us = tp->tv_usec + (usec); \
274 	if (us >= 1000000) { \
275 		tp->tv_usec = us - 1000000; \
276 		tp->tv_sec++; \
277 	} \
278 }
279 
280 int	stathz;
281 int	profhz;
282 int	profprocs;
283 int	ticks;
284 static int psdiv, pscnt;		/* prof => stat divider */
285 int	psratio;			/* ratio: prof / stat */
286 int	tickfix, tickfixinterval;	/* used if tick not really integral */
287 #ifndef NTP
288 static int tickfixcnt;			/* accumulated fractional error */
289 #else
290 int	fixtick;			/* used by NTP for same */
291 int	shifthz;
292 #endif
293 
294 volatile struct	timeval time;
295 volatile struct	timeval mono_time;
296 
297 /*
298  * Initialize clock frequencies and start both clocks running.
299  */
300 void
301 initclocks()
302 {
303 	register int i;
304 
305 	/*
306 	 * Set divisors to 1 (normal case) and let the machine-specific
307 	 * code do its bit.
308 	 */
309 	psdiv = pscnt = 1;
310 	cpu_initclocks();
311 
312 	/*
313 	 * Compute profhz/stathz, and fix profhz if needed.
314 	 */
315 	i = stathz ? stathz : hz;
316 	if (profhz == 0)
317 		profhz = i;
318 	psratio = profhz / i;
319 
320 #ifdef NTP
321 	switch (hz) {
322 	case 60:
323 	case 64:
324 		shifthz = SHIFT_SCALE - 6;
325 		break;
326 	case 96:
327 	case 100:
328 	case 128:
329 		shifthz = SHIFT_SCALE - 7;
330 		break;
331 	case 256:
332 		shifthz = SHIFT_SCALE - 8;
333 		break;
334 	case 512:
335 		shifthz = SHIFT_SCALE - 9;
336 		break;
337 	case 1000:
338 	case 1024:
339 		shifthz = SHIFT_SCALE - 10;
340 		break;
341 	default:
342 		panic("weird hz");
343 	}
344 #endif
345 }
346 
347 /*
348  * The real-time timer, interrupting hz times per second.
349  */
350 void
351 hardclock(frame)
352 	register struct clockframe *frame;
353 {
354 	register struct callout *p1;
355 	register struct proc *p;
356 	register int delta, needsoft;
357 	extern int tickdelta;
358 	extern long timedelta;
359 #ifdef NTP
360 	register int time_update;
361 	register int ltemp;
362 #endif
363 
364 	/*
365 	 * Update real-time timeout queue.
366 	 * At front of queue are some number of events which are ``due''.
367 	 * The time to these is <= 0 and if negative represents the
368 	 * number of ticks which have passed since it was supposed to happen.
369 	 * The rest of the q elements (times > 0) are events yet to happen,
370 	 * where the time for each is given as a delta from the previous.
371 	 * Decrementing just the first of these serves to decrement the time
372 	 * to all events.
373 	 */
374 	needsoft = 0;
375 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
376 		if (--p1->c_time > 0)
377 			break;
378 		needsoft = 1;
379 		if (p1->c_time == 0)
380 			break;
381 	}
382 
383 	p = curproc;
384 	if (p) {
385 		register struct pstats *pstats;
386 
387 		/*
388 		 * Run current process's virtual and profile time, as needed.
389 		 */
390 		pstats = p->p_stats;
391 		if (CLKF_USERMODE(frame) &&
392 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
393 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
394 			psignal(p, SIGVTALRM);
395 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
396 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
397 			psignal(p, SIGPROF);
398 	}
399 
400 	/*
401 	 * If no separate statistics clock is available, run it from here.
402 	 */
403 	if (stathz == 0)
404 		statclock(frame);
405 
406 	/*
407 	 * Increment the time-of-day.  The increment is normally just
408 	 * ``tick''.  If the machine is one which has a clock frequency
409 	 * such that ``hz'' would not divide the second evenly into
410 	 * milliseconds, a periodic adjustment must be applied.  Finally,
411 	 * if we are still adjusting the time (see adjtime()),
412 	 * ``tickdelta'' may also be added in.
413 	 */
414 	ticks++;
415 	delta = tick;
416 
417 #ifndef NTP
418 	if (tickfix) {
419 		tickfixcnt += tickfix;
420 		if (tickfixcnt >= tickfixinterval) {
421 			delta++;
422 			tickfixcnt -= tickfixinterval;
423 		}
424 	}
425 #endif /* !NTP */
426 	/* Imprecise 4bsd adjtime() handling */
427 	if (timedelta != 0) {
428 		delta += tickdelta;
429 		timedelta -= tickdelta;
430 	}
431 
432 #ifdef notyet
433 	microset();
434 #endif
435 
436 #ifndef NTP
437 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
438 #endif
439 	BUMPTIME(&mono_time, delta);
440 
441 #ifdef NTP
442 	time_update = delta;
443 
444 	/*
445 	 * Compute the phase adjustment. If the low-order bits
446 	 * (time_phase) of the update overflow, bump the high-order bits
447 	 * (time_update).
448 	 */
449 	time_phase += time_adj;
450 	if (time_phase <= -FINEUSEC) {
451 		ltemp = -time_phase >> SHIFT_SCALE;
452 		time_phase += ltemp << SHIFT_SCALE;
453 		time_update -= ltemp;
454 	} else if (time_phase >= FINEUSEC) {
455 		ltemp = time_phase >> SHIFT_SCALE;
456 		time_phase -= ltemp << SHIFT_SCALE;
457 		time_update += ltemp;
458 	}
459 
460 #ifdef HIGHBALL
461 	/*
462 	 * If the HIGHBALL board is installed, we need to adjust the
463 	 * external clock offset in order to close the hardware feedback
464 	 * loop. This will adjust the external clock phase and frequency
465 	 * in small amounts. The additional phase noise and frequency
466 	 * wander this causes should be minimal. We also need to
467 	 * discipline the kernel time variable, since the PLL is used to
468 	 * discipline the external clock. If the Highball board is not
469 	 * present, we discipline kernel time with the PLL as usual. We
470 	 * assume that the external clock phase adjustment (time_update)
471 	 * and kernel phase adjustment (clock_cpu) are less than the
472 	 * value of tick.
473 	 */
474 	clock_offset.tv_usec += time_update;
475 	if (clock_offset.tv_usec >= 1000000) {
476 		clock_offset.tv_sec++;
477 		clock_offset.tv_usec -= 1000000;
478 	}
479 	if (clock_offset.tv_usec < 0) {
480 		clock_offset.tv_sec--;
481 		clock_offset.tv_usec += 1000000;
482 	}
483 	time.tv_usec += clock_cpu;
484 	clock_cpu = 0;
485 #else
486 	time.tv_usec += time_update;
487 #endif /* HIGHBALL */
488 
489 	/*
490 	 * On rollover of the second the phase adjustment to be used for
491 	 * the next second is calculated. Also, the maximum error is
492 	 * increased by the tolerance. If the PPS frequency discipline
493 	 * code is present, the phase is increased to compensate for the
494 	 * CPU clock oscillator frequency error.
495 	 *
496  	 * On a 32-bit machine and given parameters in the timex.h
497 	 * header file, the maximum phase adjustment is +-512 ms and
498 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
499 	 * 64-bit machine, you shouldn't need to ask.
500 	 */
501 	if (time.tv_usec >= 1000000) {
502 		time.tv_usec -= 1000000;
503 		time.tv_sec++;
504 		time_maxerror += time_tolerance >> SHIFT_USEC;
505 
506 		/*
507 		 * Leap second processing. If in leap-insert state at
508 		 * the end of the day, the system clock is set back one
509 		 * second; if in leap-delete state, the system clock is
510 		 * set ahead one second. The microtime() routine or
511 		 * external clock driver will insure that reported time
512 		 * is always monotonic. The ugly divides should be
513 		 * replaced.
514 		 */
515 		switch (time_state) {
516 		case TIME_OK:
517 			if (time_status & STA_INS)
518 				time_state = TIME_INS;
519 			else if (time_status & STA_DEL)
520 				time_state = TIME_DEL;
521 			break;
522 
523 		case TIME_INS:
524 			if (time.tv_sec % 86400 == 0) {
525 				time.tv_sec--;
526 				time_state = TIME_OOP;
527 			}
528 			break;
529 
530 		case TIME_DEL:
531 			if ((time.tv_sec + 1) % 86400 == 0) {
532 				time.tv_sec++;
533 				time_state = TIME_WAIT;
534 			}
535 			break;
536 
537 		case TIME_OOP:
538 			time_state = TIME_WAIT;
539 			break;
540 
541 		case TIME_WAIT:
542 			if (!(time_status & (STA_INS | STA_DEL)))
543 				time_state = TIME_OK;
544 			break;
545 		}
546 
547 		/*
548 		 * Compute the phase adjustment for the next second. In
549 		 * PLL mode, the offset is reduced by a fixed factor
550 		 * times the time constant. In FLL mode the offset is
551 		 * used directly. In either mode, the maximum phase
552 		 * adjustment for each second is clamped so as to spread
553 		 * the adjustment over not more than the number of
554 		 * seconds between updates.
555 		 */
556 		if (time_offset < 0) {
557 			ltemp = -time_offset;
558 			if (!(time_status & STA_FLL))
559 				ltemp >>= SHIFT_KG + time_constant;
560 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
561 				ltemp = (MAXPHASE / MINSEC) <<
562 				    SHIFT_UPDATE;
563 			time_offset += ltemp;
564 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
565 		} else if (time_offset > 0) {
566 			ltemp = time_offset;
567 			if (!(time_status & STA_FLL))
568 				ltemp >>= SHIFT_KG + time_constant;
569 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
570 				ltemp = (MAXPHASE / MINSEC) <<
571 				    SHIFT_UPDATE;
572 			time_offset -= ltemp;
573 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
574 		} else
575 			time_adj = 0;
576 
577 		/*
578 		 * Compute the frequency estimate and additional phase
579 		 * adjustment due to frequency error for the next
580 		 * second. When the PPS signal is engaged, gnaw on the
581 		 * watchdog counter and update the frequency computed by
582 		 * the pll and the PPS signal.
583 		 */
584 #ifdef PPS_SYNC
585 		pps_valid++;
586 		if (pps_valid == PPS_VALID) {
587 			pps_jitter = MAXTIME;
588 			pps_stabil = MAXFREQ;
589 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
590 			    STA_PPSWANDER | STA_PPSERROR);
591 		}
592 		ltemp = time_freq + pps_freq;
593 #else
594 		ltemp = time_freq;
595 #endif /* PPS_SYNC */
596 
597 		if (ltemp < 0)
598 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
599 		else
600 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
601 		time_adj += (long)fixtick << shifthz;
602 
603 		/*
604 		 * When the CPU clock oscillator frequency is not a
605 		 * power of 2 in Hz, shifthz is only an approximate
606 		 * scale factor.
607 		 */
608 		switch (hz) {
609 		case 96:
610 		case 100:
611 			/*
612 			 * In the following code the overall gain is increased
613 			 * by a factor of 1.25, which results in a residual
614 			 * error less than 3 percent.
615 			 */
616 			if (time_adj < 0)
617 				time_adj -= -time_adj >> 2;
618 			else
619 				time_adj += time_adj >> 2;
620 			break;
621 		case 60:
622 			/*
623 			 * 60 Hz m68k and vaxes have a PLL gain factor of of
624 			 * 60/64 (15/16) of what it should be.  In the following code
625 			 * the overall gain is increased by a factor of 1.0625,
626 			 * (17/16) which results in a residual error of just less
627 			 * than 0.4 percent.
628 			 */
629 			if (time_adj < 0)
630 				time_adj -= -time_adj >> 4;
631 			else
632 				time_adj += time_adj >> 4;
633 			break;
634 		case 1000:
635 			 /*
636 			  * Do this the simple way; we're on an alpha, are
637 			  * the shift police going to come and get us? We
638 			  * would get a residual error of only .82% with
639 			  * a 5 bit right shift, but we also have 64 bits
640 			  * in time_adj to work with for fixed point scaling.
641 			  */
642 			time_adj = (time_adj * 1024) / 1000;
643 			break;
644 		}
645 
646 #ifdef EXT_CLOCK
647 		/*
648 		 * If an external clock is present, it is necessary to
649 		 * discipline the kernel time variable anyway, since not
650 		 * all system components use the microtime() interface.
651 		 * Here, the time offset between the external clock and
652 		 * kernel time variable is computed every so often.
653 		 */
654 		clock_count++;
655 		if (clock_count > CLOCK_INTERVAL) {
656 			clock_count = 0;
657 			microtime(&clock_ext);
658 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
659 			delta.tv_usec = clock_ext.tv_usec -
660 			    time.tv_usec;
661 			if (delta.tv_usec < 0)
662 				delta.tv_sec--;
663 			if (delta.tv_usec >= 500000) {
664 				delta.tv_usec -= 1000000;
665 				delta.tv_sec++;
666 			}
667 			if (delta.tv_usec < -500000) {
668 				delta.tv_usec += 1000000;
669 				delta.tv_sec--;
670 			}
671 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
672 			    delta.tv_usec > MAXPHASE) ||
673 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
674 			    delta.tv_usec < -MAXPHASE)) {
675 				time = clock_ext;
676 				delta.tv_sec = 0;
677 				delta.tv_usec = 0;
678 			}
679 #ifdef HIGHBALL
680 			clock_cpu = delta.tv_usec;
681 #else /* HIGHBALL */
682 			hardupdate(delta.tv_usec);
683 #endif /* HIGHBALL */
684 		}
685 #endif /* EXT_CLOCK */
686 	}
687 
688 #endif /* NTP */
689 
690 	/*
691 	 * Process callouts at a very low cpu priority, so we don't keep the
692 	 * relatively high clock interrupt priority any longer than necessary.
693 	 */
694 	if (needsoft) {
695 		if (CLKF_BASEPRI(frame)) {
696 			/*
697 			 * Save the overhead of a software interrupt;
698 			 * it will happen as soon as we return, so do it now.
699 			 */
700 			(void)splsoftclock();
701 			softclock();
702 		} else
703 			setsoftclock();
704 	}
705 }
706 
707 /*
708  * Software (low priority) clock interrupt.
709  * Run periodic events from timeout queue.
710  */
711 /*ARGSUSED*/
712 void
713 softclock()
714 {
715 	register struct callout *c;
716 	register void *arg;
717 	register void (*func) __P((void *));
718 	register int s;
719 
720 	s = splhigh();
721 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
722 		func = c->c_func;
723 		arg = c->c_arg;
724 		calltodo.c_next = c->c_next;
725 		c->c_next = callfree;
726 		callfree = c;
727 		splx(s);
728 		(*func)(arg);
729 		(void) splhigh();
730 	}
731 	splx(s);
732 }
733 
734 /*
735  * timeout --
736  *	Execute a function after a specified length of time.
737  *
738  * untimeout --
739  *	Cancel previous timeout function call.
740  *
741  *	See AT&T BCI Driver Reference Manual for specification.  This
742  *	implementation differs from that one in that no identification
743  *	value is returned from timeout, rather, the original arguments
744  *	to timeout are used to identify entries for untimeout.
745  */
746 void
747 timeout(ftn, arg, ticks)
748 	void (*ftn) __P((void *));
749 	void *arg;
750 	register int ticks;
751 {
752 	register struct callout *new, *p, *t;
753 	register int s;
754 
755 	if (ticks <= 0)
756 		ticks = 1;
757 
758 	/* Lock out the clock. */
759 	s = splhigh();
760 
761 	/* Fill in the next free callout structure. */
762 	if (callfree == NULL)
763 		panic("timeout table full");
764 	new = callfree;
765 	callfree = new->c_next;
766 	new->c_arg = arg;
767 	new->c_func = ftn;
768 
769 	/*
770 	 * The time for each event is stored as a difference from the time
771 	 * of the previous event on the queue.  Walk the queue, correcting
772 	 * the ticks argument for queue entries passed.  Correct the ticks
773 	 * value for the queue entry immediately after the insertion point
774 	 * as well.  Watch out for negative c_time values; these represent
775 	 * overdue events.
776 	 */
777 	for (p = &calltodo;
778 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
779 		if (t->c_time > 0)
780 			ticks -= t->c_time;
781 	new->c_time = ticks;
782 	if (t != NULL)
783 		t->c_time -= ticks;
784 
785 	/* Insert the new entry into the queue. */
786 	p->c_next = new;
787 	new->c_next = t;
788 	splx(s);
789 }
790 
791 void
792 untimeout(ftn, arg)
793 	void (*ftn) __P((void *));
794 	void *arg;
795 {
796 	register struct callout *p, *t;
797 	register int s;
798 
799 	s = splhigh();
800 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
801 		if (t->c_func == ftn && t->c_arg == arg) {
802 			/* Increment next entry's tick count. */
803 			if (t->c_next && t->c_time > 0)
804 				t->c_next->c_time += t->c_time;
805 
806 			/* Move entry from callout queue to callfree queue. */
807 			p->c_next = t->c_next;
808 			t->c_next = callfree;
809 			callfree = t;
810 			break;
811 		}
812 	splx(s);
813 }
814 
815 /*
816  * Compute number of hz until specified time.  Used to
817  * compute third argument to timeout() from an absolute time.
818  */
819 int
820 hzto(tv)
821 	struct timeval *tv;
822 {
823 	register long ticks, sec;
824 	int s;
825 
826 	/*
827 	 * If number of microseconds will fit in 32 bit arithmetic,
828 	 * then compute number of microseconds to time and scale to
829 	 * ticks.  Otherwise just compute number of hz in time, rounding
830 	 * times greater than representible to maximum value.  (We must
831 	 * compute in microseconds, because hz can be greater than 1000,
832 	 * and thus tick can be less than one millisecond).
833 	 *
834 	 * Delta times less than 14 hours can be computed ``exactly''.
835 	 * (Note that if hz would yeild a non-integral number of us per
836 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
837 	 * than they should be.)  Maximum value for any timeout in 10ms
838 	 * ticks is 250 days.
839 	 */
840 	s = splclock();
841 	sec = tv->tv_sec - time.tv_sec;
842 	if (sec <= 0x7fffffff / 1000000 - 1)
843 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
844 			(tv->tv_usec - time.tv_usec)) / tick;
845 	else if (sec <= 0x7fffffff / hz)
846 		ticks = sec * hz;
847 	else
848 		ticks = 0x7fffffff;
849 	splx(s);
850 	return (ticks);
851 }
852 
853 /*
854  * Start profiling on a process.
855  *
856  * Kernel profiling passes proc0 which never exits and hence
857  * keeps the profile clock running constantly.
858  */
859 void
860 startprofclock(p)
861 	register struct proc *p;
862 {
863 	int s;
864 
865 	if ((p->p_flag & P_PROFIL) == 0) {
866 		p->p_flag |= P_PROFIL;
867 		if (++profprocs == 1 && stathz != 0) {
868 			s = splstatclock();
869 			psdiv = pscnt = psratio;
870 			setstatclockrate(profhz);
871 			splx(s);
872 		}
873 	}
874 }
875 
876 /*
877  * Stop profiling on a process.
878  */
879 void
880 stopprofclock(p)
881 	register struct proc *p;
882 {
883 	int s;
884 
885 	if (p->p_flag & P_PROFIL) {
886 		p->p_flag &= ~P_PROFIL;
887 		if (--profprocs == 0 && stathz != 0) {
888 			s = splstatclock();
889 			psdiv = pscnt = 1;
890 			setstatclockrate(stathz);
891 			splx(s);
892 		}
893 	}
894 }
895 
896 /*
897  * Statistics clock.  Grab profile sample, and if divider reaches 0,
898  * do process and kernel statistics.
899  */
900 void
901 statclock(frame)
902 	register struct clockframe *frame;
903 {
904 #ifdef GPROF
905 	register struct gmonparam *g;
906 	register int i;
907 #endif
908 	register struct proc *p;
909 
910 	if (CLKF_USERMODE(frame)) {
911 		p = curproc;
912 		if (p->p_flag & P_PROFIL)
913 			addupc_intr(p, CLKF_PC(frame), 1);
914 		if (--pscnt > 0)
915 			return;
916 		/*
917 		 * Came from user mode; CPU was in user state.
918 		 * If this process is being profiled record the tick.
919 		 */
920 		p->p_uticks++;
921 		if (p->p_nice > NZERO)
922 			cp_time[CP_NICE]++;
923 		else
924 			cp_time[CP_USER]++;
925 	} else {
926 #ifdef GPROF
927 		/*
928 		 * Kernel statistics are just like addupc_intr, only easier.
929 		 */
930 		g = &_gmonparam;
931 		if (g->state == GMON_PROF_ON) {
932 			i = CLKF_PC(frame) - g->lowpc;
933 			if (i < g->textsize) {
934 				i /= HISTFRACTION * sizeof(*g->kcount);
935 				g->kcount[i]++;
936 			}
937 		}
938 #endif
939 		if (--pscnt > 0)
940 			return;
941 		/*
942 		 * Came from kernel mode, so we were:
943 		 * - handling an interrupt,
944 		 * - doing syscall or trap work on behalf of the current
945 		 *   user process, or
946 		 * - spinning in the idle loop.
947 		 * Whichever it is, charge the time as appropriate.
948 		 * Note that we charge interrupts to the current process,
949 		 * regardless of whether they are ``for'' that process,
950 		 * so that we know how much of its real time was spent
951 		 * in ``non-process'' (i.e., interrupt) work.
952 		 */
953 		p = curproc;
954 		if (CLKF_INTR(frame)) {
955 			if (p != NULL)
956 				p->p_iticks++;
957 			cp_time[CP_INTR]++;
958 		} else if (p != NULL) {
959 			p->p_sticks++;
960 			cp_time[CP_SYS]++;
961 		} else
962 			cp_time[CP_IDLE]++;
963 	}
964 	pscnt = psdiv;
965 
966 	/*
967 	 * We adjust the priority of the current process.  The priority of
968 	 * a process gets worse as it accumulates CPU time.  The cpu usage
969 	 * estimator (p_estcpu) is increased here.  The formula for computing
970 	 * priorities (in kern_synch.c) will compute a different value each
971 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
972 	 * quite quickly when the process is running (linearly), and decays
973 	 * away exponentially, at a rate which is proportionally slower when
974 	 * the system is busy.  The basic principal is that the system will
975 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
976 	 * seconds.  This causes the system to favor processes which haven't
977 	 * run much recently, and to round-robin among other processes.
978 	 */
979 	if (p != NULL) {
980 		p->p_cpticks++;
981 		if (++p->p_estcpu == 0)
982 			p->p_estcpu--;
983 		if ((p->p_estcpu & 3) == 0) {
984 			resetpriority(p);
985 			if (p->p_priority >= PUSER)
986 				p->p_priority = p->p_usrpri;
987 		}
988 	}
989 }
990 
991 
992 #ifdef NTP	/* NTP phase-locked loop in kernel */
993 
994 /*
995  * hardupdate() - local clock update
996  *
997  * This routine is called by ntp_adjtime() to update the local clock
998  * phase and frequency. The implementation is of an adaptive-parameter,
999  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1000  * time and frequency offset estimates for each call. If the kernel PPS
1001  * discipline code is configured (PPS_SYNC), the PPS signal itself
1002  * determines the new time offset, instead of the calling argument.
1003  * Presumably, calls to ntp_adjtime() occur only when the caller
1004  * believes the local clock is valid within some bound (+-128 ms with
1005  * NTP). If the caller's time is far different than the PPS time, an
1006  * argument will ensue, and it's not clear who will lose.
1007  *
1008  * For uncompensated quartz crystal oscillatores and nominal update
1009  * intervals less than 1024 s, operation should be in phase-lock mode
1010  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1011  * intervals greater than thiss, operation should be in frequency-lock
1012  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1013  *
1014  * Note: splclock() is in effect.
1015  */
1016 void
1017 hardupdate(offset)
1018 	long offset;
1019 {
1020 	long ltemp, mtemp;
1021 
1022 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1023 		return;
1024 	ltemp = offset;
1025 #ifdef PPS_SYNC
1026 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1027 		ltemp = pps_offset;
1028 #endif /* PPS_SYNC */
1029 
1030 	/*
1031 	 * Scale the phase adjustment and clamp to the operating range.
1032 	 */
1033 	if (ltemp > MAXPHASE)
1034 		time_offset = MAXPHASE << SHIFT_UPDATE;
1035 	else if (ltemp < -MAXPHASE)
1036 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
1037 	else
1038 		time_offset = ltemp << SHIFT_UPDATE;
1039 
1040 	/*
1041 	 * Select whether the frequency is to be controlled and in which
1042 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1043 	 * multiply/divide should be replaced someday.
1044 	 */
1045 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1046 		time_reftime = time.tv_sec;
1047 	mtemp = time.tv_sec - time_reftime;
1048 	time_reftime = time.tv_sec;
1049 	if (time_status & STA_FLL) {
1050 		if (mtemp >= MINSEC) {
1051 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1052 			    SHIFT_UPDATE));
1053 			if (ltemp < 0)
1054 				time_freq -= -ltemp >> SHIFT_KH;
1055 			else
1056 				time_freq += ltemp >> SHIFT_KH;
1057 		}
1058 	} else {
1059 		if (mtemp < MAXSEC) {
1060 			ltemp *= mtemp;
1061 			if (ltemp < 0)
1062 				time_freq -= -ltemp >> (time_constant +
1063 				    time_constant + SHIFT_KF -
1064 				    SHIFT_USEC);
1065 			else
1066 				time_freq += ltemp >> (time_constant +
1067 				    time_constant + SHIFT_KF -
1068 				    SHIFT_USEC);
1069 		}
1070 	}
1071 	if (time_freq > time_tolerance)
1072 		time_freq = time_tolerance;
1073 	else if (time_freq < -time_tolerance)
1074 		time_freq = -time_tolerance;
1075 }
1076 
1077 #ifdef PPS_SYNC
1078 /*
1079  * hardpps() - discipline CPU clock oscillator to external PPS signal
1080  *
1081  * This routine is called at each PPS interrupt in order to discipline
1082  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1083  * and leaves it in a handy spot for the hardclock() routine. It
1084  * integrates successive PPS phase differences and calculates the
1085  * frequency offset. This is used in hardclock() to discipline the CPU
1086  * clock oscillator so that intrinsic frequency error is cancelled out.
1087  * The code requires the caller to capture the time and hardware counter
1088  * value at the on-time PPS signal transition.
1089  *
1090  * Note that, on some Unix systems, this routine runs at an interrupt
1091  * priority level higher than the timer interrupt routine hardclock().
1092  * Therefore, the variables used are distinct from the hardclock()
1093  * variables, except for certain exceptions: The PPS frequency pps_freq
1094  * and phase pps_offset variables are determined by this routine and
1095  * updated atomically. The time_tolerance variable can be considered a
1096  * constant, since it is infrequently changed, and then only when the
1097  * PPS signal is disabled. The watchdog counter pps_valid is updated
1098  * once per second by hardclock() and is atomically cleared in this
1099  * routine.
1100  */
1101 void
1102 hardpps(tvp, usec)
1103 	struct timeval *tvp;		/* time at PPS */
1104 	long usec;			/* hardware counter at PPS */
1105 {
1106 	long u_usec, v_usec, bigtick;
1107 	long cal_sec, cal_usec;
1108 
1109 	/*
1110 	 * An occasional glitch can be produced when the PPS interrupt
1111 	 * occurs in the hardclock() routine before the time variable is
1112 	 * updated. Here the offset is discarded when the difference
1113 	 * between it and the last one is greater than tick/2, but not
1114 	 * if the interval since the first discard exceeds 30 s.
1115 	 */
1116 	time_status |= STA_PPSSIGNAL;
1117 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1118 	pps_valid = 0;
1119 	u_usec = -tvp->tv_usec;
1120 	if (u_usec < -500000)
1121 		u_usec += 1000000;
1122 	v_usec = pps_offset - u_usec;
1123 	if (v_usec < 0)
1124 		v_usec = -v_usec;
1125 	if (v_usec > (tick >> 1)) {
1126 		if (pps_glitch > MAXGLITCH) {
1127 			pps_glitch = 0;
1128 			pps_tf[2] = u_usec;
1129 			pps_tf[1] = u_usec;
1130 		} else {
1131 			pps_glitch++;
1132 			u_usec = pps_offset;
1133 		}
1134 	} else
1135 		pps_glitch = 0;
1136 
1137 	/*
1138 	 * A three-stage median filter is used to help deglitch the pps
1139 	 * time. The median sample becomes the time offset estimate; the
1140 	 * difference between the other two samples becomes the time
1141 	 * dispersion (jitter) estimate.
1142 	 */
1143 	pps_tf[2] = pps_tf[1];
1144 	pps_tf[1] = pps_tf[0];
1145 	pps_tf[0] = u_usec;
1146 	if (pps_tf[0] > pps_tf[1]) {
1147 		if (pps_tf[1] > pps_tf[2]) {
1148 			pps_offset = pps_tf[1];		/* 0 1 2 */
1149 			v_usec = pps_tf[0] - pps_tf[2];
1150 		} else if (pps_tf[2] > pps_tf[0]) {
1151 			pps_offset = pps_tf[0];		/* 2 0 1 */
1152 			v_usec = pps_tf[2] - pps_tf[1];
1153 		} else {
1154 			pps_offset = pps_tf[2];		/* 0 2 1 */
1155 			v_usec = pps_tf[0] - pps_tf[1];
1156 		}
1157 	} else {
1158 		if (pps_tf[1] < pps_tf[2]) {
1159 			pps_offset = pps_tf[1];		/* 2 1 0 */
1160 			v_usec = pps_tf[2] - pps_tf[0];
1161 		} else  if (pps_tf[2] < pps_tf[0]) {
1162 			pps_offset = pps_tf[0];		/* 1 0 2 */
1163 			v_usec = pps_tf[1] - pps_tf[2];
1164 		} else {
1165 			pps_offset = pps_tf[2];		/* 1 2 0 */
1166 			v_usec = pps_tf[1] - pps_tf[0];
1167 		}
1168 	}
1169 	if (v_usec > MAXTIME)
1170 		pps_jitcnt++;
1171 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1172 	if (v_usec < 0)
1173 		pps_jitter -= -v_usec >> PPS_AVG;
1174 	else
1175 		pps_jitter += v_usec >> PPS_AVG;
1176 	if (pps_jitter > (MAXTIME >> 1))
1177 		time_status |= STA_PPSJITTER;
1178 
1179 	/*
1180 	 * During the calibration interval adjust the starting time when
1181 	 * the tick overflows. At the end of the interval compute the
1182 	 * duration of the interval and the difference of the hardware
1183 	 * counters at the beginning and end of the interval. This code
1184 	 * is deliciously complicated by the fact valid differences may
1185 	 * exceed the value of tick when using long calibration
1186 	 * intervals and small ticks. Note that the counter can be
1187 	 * greater than tick if caught at just the wrong instant, but
1188 	 * the values returned and used here are correct.
1189 	 */
1190 	bigtick = (long)tick << SHIFT_USEC;
1191 	pps_usec -= pps_freq;
1192 	if (pps_usec >= bigtick)
1193 		pps_usec -= bigtick;
1194 	if (pps_usec < 0)
1195 		pps_usec += bigtick;
1196 	pps_time.tv_sec++;
1197 	pps_count++;
1198 	if (pps_count < (1 << pps_shift))
1199 		return;
1200 	pps_count = 0;
1201 	pps_calcnt++;
1202 	u_usec = usec << SHIFT_USEC;
1203 	v_usec = pps_usec - u_usec;
1204 	if (v_usec >= bigtick >> 1)
1205 		v_usec -= bigtick;
1206 	if (v_usec < -(bigtick >> 1))
1207 		v_usec += bigtick;
1208 	if (v_usec < 0)
1209 		v_usec = -(-v_usec >> pps_shift);
1210 	else
1211 		v_usec = v_usec >> pps_shift;
1212 	pps_usec = u_usec;
1213 	cal_sec = tvp->tv_sec;
1214 	cal_usec = tvp->tv_usec;
1215 	cal_sec -= pps_time.tv_sec;
1216 	cal_usec -= pps_time.tv_usec;
1217 	if (cal_usec < 0) {
1218 		cal_usec += 1000000;
1219 		cal_sec--;
1220 	}
1221 	pps_time = *tvp;
1222 
1223 	/*
1224 	 * Check for lost interrupts, noise, excessive jitter and
1225 	 * excessive frequency error. The number of timer ticks during
1226 	 * the interval may vary +-1 tick. Add to this a margin of one
1227 	 * tick for the PPS signal jitter and maximum frequency
1228 	 * deviation. If the limits are exceeded, the calibration
1229 	 * interval is reset to the minimum and we start over.
1230 	 */
1231 	u_usec = (long)tick << 1;
1232 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1233 	    || (cal_sec == 0 && cal_usec < u_usec))
1234 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1235 		pps_errcnt++;
1236 		pps_shift = PPS_SHIFT;
1237 		pps_intcnt = 0;
1238 		time_status |= STA_PPSERROR;
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * A three-stage median filter is used to help deglitch the pps
1244 	 * frequency. The median sample becomes the frequency offset
1245 	 * estimate; the difference between the other two samples
1246 	 * becomes the frequency dispersion (stability) estimate.
1247 	 */
1248 	pps_ff[2] = pps_ff[1];
1249 	pps_ff[1] = pps_ff[0];
1250 	pps_ff[0] = v_usec;
1251 	if (pps_ff[0] > pps_ff[1]) {
1252 		if (pps_ff[1] > pps_ff[2]) {
1253 			u_usec = pps_ff[1];		/* 0 1 2 */
1254 			v_usec = pps_ff[0] - pps_ff[2];
1255 		} else if (pps_ff[2] > pps_ff[0]) {
1256 			u_usec = pps_ff[0];		/* 2 0 1 */
1257 			v_usec = pps_ff[2] - pps_ff[1];
1258 		} else {
1259 			u_usec = pps_ff[2];		/* 0 2 1 */
1260 			v_usec = pps_ff[0] - pps_ff[1];
1261 		}
1262 	} else {
1263 		if (pps_ff[1] < pps_ff[2]) {
1264 			u_usec = pps_ff[1];		/* 2 1 0 */
1265 			v_usec = pps_ff[2] - pps_ff[0];
1266 		} else  if (pps_ff[2] < pps_ff[0]) {
1267 			u_usec = pps_ff[0];		/* 1 0 2 */
1268 			v_usec = pps_ff[1] - pps_ff[2];
1269 		} else {
1270 			u_usec = pps_ff[2];		/* 1 2 0 */
1271 			v_usec = pps_ff[1] - pps_ff[0];
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * Here the frequency dispersion (stability) is updated. If it
1277 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1278 	 * offset is updated as well, but clamped to the tolerance. It
1279 	 * will be processed later by the hardclock() routine.
1280 	 */
1281 	v_usec = (v_usec >> 1) - pps_stabil;
1282 	if (v_usec < 0)
1283 		pps_stabil -= -v_usec >> PPS_AVG;
1284 	else
1285 		pps_stabil += v_usec >> PPS_AVG;
1286 	if (pps_stabil > MAXFREQ >> 2) {
1287 		pps_stbcnt++;
1288 		time_status |= STA_PPSWANDER;
1289 		return;
1290 	}
1291 	if (time_status & STA_PPSFREQ) {
1292 		if (u_usec < 0) {
1293 			pps_freq -= -u_usec >> PPS_AVG;
1294 			if (pps_freq < -time_tolerance)
1295 				pps_freq = -time_tolerance;
1296 			u_usec = -u_usec;
1297 		} else {
1298 			pps_freq += u_usec >> PPS_AVG;
1299 			if (pps_freq > time_tolerance)
1300 				pps_freq = time_tolerance;
1301 		}
1302 	}
1303 
1304 	/*
1305 	 * Here the calibration interval is adjusted. If the maximum
1306 	 * time difference is greater than tick / 4, reduce the interval
1307 	 * by half. If this is not the case for four consecutive
1308 	 * intervals, double the interval.
1309 	 */
1310 	if (u_usec << pps_shift > bigtick >> 2) {
1311 		pps_intcnt = 0;
1312 		if (pps_shift > PPS_SHIFT)
1313 			pps_shift--;
1314 	} else if (pps_intcnt >= 4) {
1315 		pps_intcnt = 0;
1316 		if (pps_shift < PPS_SHIFTMAX)
1317 			pps_shift++;
1318 	} else
1319 		pps_intcnt++;
1320 }
1321 #endif /* PPS_SYNC */
1322 #endif /* NTP  */
1323 
1324 
1325 /*
1326  * Return information about system clocks.
1327  */
1328 int
1329 sysctl_clockrate(where, sizep)
1330 	register char *where;
1331 	size_t *sizep;
1332 {
1333 	struct clockinfo clkinfo;
1334 
1335 	/*
1336 	 * Construct clockinfo structure.
1337 	 */
1338 	clkinfo.tick = tick;
1339 	clkinfo.tickadj = tickadj;
1340 	clkinfo.hz = hz;
1341 	clkinfo.profhz = profhz;
1342 	clkinfo.stathz = stathz ? stathz : hz;
1343 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1344 }
1345 
1346