1 /* $NetBSD: kern_clock.c,v 1.87 2003/08/07 16:31:42 agc Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /*- 41 * Copyright (c) 1982, 1986, 1991, 1993 42 * The Regents of the University of California. All rights reserved. 43 * (c) UNIX System Laboratories, Inc. 44 * All or some portions of this file are derived from material licensed 45 * to the University of California by American Telephone and Telegraph 46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 47 * the permission of UNIX System Laboratories, Inc. 48 * 49 * Redistribution and use in source and binary forms, with or without 50 * modification, are permitted provided that the following conditions 51 * are met: 52 * 1. Redistributions of source code must retain the above copyright 53 * notice, this list of conditions and the following disclaimer. 54 * 2. Redistributions in binary form must reproduce the above copyright 55 * notice, this list of conditions and the following disclaimer in the 56 * documentation and/or other materials provided with the distribution. 57 * 3. Neither the name of the University nor the names of its contributors 58 * may be used to endorse or promote products derived from this software 59 * without specific prior written permission. 60 * 61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 71 * SUCH DAMAGE. 72 * 73 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 74 */ 75 76 #include <sys/cdefs.h> 77 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.87 2003/08/07 16:31:42 agc Exp $"); 78 79 #include "opt_ntp.h" 80 #include "opt_multiprocessor.h" 81 #include "opt_perfctrs.h" 82 83 #include <sys/param.h> 84 #include <sys/systm.h> 85 #include <sys/callout.h> 86 #include <sys/kernel.h> 87 #include <sys/proc.h> 88 #include <sys/resourcevar.h> 89 #include <sys/signalvar.h> 90 #include <sys/sysctl.h> 91 #include <sys/timex.h> 92 #include <sys/sched.h> 93 #include <sys/time.h> 94 95 #include <machine/cpu.h> 96 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 97 #include <machine/intr.h> 98 #endif 99 100 #ifdef GPROF 101 #include <sys/gmon.h> 102 #endif 103 104 /* 105 * Clock handling routines. 106 * 107 * This code is written to operate with two timers that run independently of 108 * each other. The main clock, running hz times per second, is used to keep 109 * track of real time. The second timer handles kernel and user profiling, 110 * and does resource use estimation. If the second timer is programmable, 111 * it is randomized to avoid aliasing between the two clocks. For example, 112 * the randomization prevents an adversary from always giving up the cpu 113 * just before its quantum expires. Otherwise, it would never accumulate 114 * cpu ticks. The mean frequency of the second timer is stathz. 115 * 116 * If no second timer exists, stathz will be zero; in this case we drive 117 * profiling and statistics off the main clock. This WILL NOT be accurate; 118 * do not do it unless absolutely necessary. 119 * 120 * The statistics clock may (or may not) be run at a higher rate while 121 * profiling. This profile clock runs at profhz. We require that profhz 122 * be an integral multiple of stathz. 123 * 124 * If the statistics clock is running fast, it must be divided by the ratio 125 * profhz/stathz for statistics. (For profiling, every tick counts.) 126 */ 127 128 #ifdef NTP /* NTP phase-locked loop in kernel */ 129 /* 130 * Phase/frequency-lock loop (PLL/FLL) definitions 131 * 132 * The following variables are read and set by the ntp_adjtime() system 133 * call. 134 * 135 * time_state shows the state of the system clock, with values defined 136 * in the timex.h header file. 137 * 138 * time_status shows the status of the system clock, with bits defined 139 * in the timex.h header file. 140 * 141 * time_offset is used by the PLL/FLL to adjust the system time in small 142 * increments. 143 * 144 * time_constant determines the bandwidth or "stiffness" of the PLL. 145 * 146 * time_tolerance determines maximum frequency error or tolerance of the 147 * CPU clock oscillator and is a property of the architecture; however, 148 * in principle it could change as result of the presence of external 149 * discipline signals, for instance. 150 * 151 * time_precision is usually equal to the kernel tick variable; however, 152 * in cases where a precision clock counter or external clock is 153 * available, the resolution can be much less than this and depend on 154 * whether the external clock is working or not. 155 * 156 * time_maxerror is initialized by a ntp_adjtime() call and increased by 157 * the kernel once each second to reflect the maximum error bound 158 * growth. 159 * 160 * time_esterror is set and read by the ntp_adjtime() call, but 161 * otherwise not used by the kernel. 162 */ 163 int time_state = TIME_OK; /* clock state */ 164 int time_status = STA_UNSYNC; /* clock status bits */ 165 long time_offset = 0; /* time offset (us) */ 166 long time_constant = 0; /* pll time constant */ 167 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 168 long time_precision = 1; /* clock precision (us) */ 169 long time_maxerror = MAXPHASE; /* maximum error (us) */ 170 long time_esterror = MAXPHASE; /* estimated error (us) */ 171 172 /* 173 * The following variables establish the state of the PLL/FLL and the 174 * residual time and frequency offset of the local clock. The scale 175 * factors are defined in the timex.h header file. 176 * 177 * time_phase and time_freq are the phase increment and the frequency 178 * increment, respectively, of the kernel time variable. 179 * 180 * time_freq is set via ntp_adjtime() from a value stored in a file when 181 * the synchronization daemon is first started. Its value is retrieved 182 * via ntp_adjtime() and written to the file about once per hour by the 183 * daemon. 184 * 185 * time_adj is the adjustment added to the value of tick at each timer 186 * interrupt and is recomputed from time_phase and time_freq at each 187 * seconds rollover. 188 * 189 * time_reftime is the second's portion of the system time at the last 190 * call to ntp_adjtime(). It is used to adjust the time_freq variable 191 * and to increase the time_maxerror as the time since last update 192 * increases. 193 */ 194 long time_phase = 0; /* phase offset (scaled us) */ 195 long time_freq = 0; /* frequency offset (scaled ppm) */ 196 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 197 long time_reftime = 0; /* time at last adjustment (s) */ 198 199 #ifdef PPS_SYNC 200 /* 201 * The following variables are used only if the kernel PPS discipline 202 * code is configured (PPS_SYNC). The scale factors are defined in the 203 * timex.h header file. 204 * 205 * pps_time contains the time at each calibration interval, as read by 206 * microtime(). pps_count counts the seconds of the calibration 207 * interval, the duration of which is nominally pps_shift in powers of 208 * two. 209 * 210 * pps_offset is the time offset produced by the time median filter 211 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 212 * this filter. 213 * 214 * pps_freq is the frequency offset produced by the frequency median 215 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 216 * by this filter. 217 * 218 * pps_usec is latched from a high resolution counter or external clock 219 * at pps_time. Here we want the hardware counter contents only, not the 220 * contents plus the time_tv.usec as usual. 221 * 222 * pps_valid counts the number of seconds since the last PPS update. It 223 * is used as a watchdog timer to disable the PPS discipline should the 224 * PPS signal be lost. 225 * 226 * pps_glitch counts the number of seconds since the beginning of an 227 * offset burst more than tick/2 from current nominal offset. It is used 228 * mainly to suppress error bursts due to priority conflicts between the 229 * PPS interrupt and timer interrupt. 230 * 231 * pps_intcnt counts the calibration intervals for use in the interval- 232 * adaptation algorithm. It's just too complicated for words. 233 */ 234 struct timeval pps_time; /* kernel time at last interval */ 235 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 236 long pps_offset = 0; /* pps time offset (us) */ 237 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 238 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 239 long pps_freq = 0; /* frequency offset (scaled ppm) */ 240 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 241 long pps_usec = 0; /* microsec counter at last interval */ 242 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 243 int pps_glitch = 0; /* pps signal glitch counter */ 244 int pps_count = 0; /* calibration interval counter (s) */ 245 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 246 int pps_intcnt = 0; /* intervals at current duration */ 247 248 /* 249 * PPS signal quality monitors 250 * 251 * pps_jitcnt counts the seconds that have been discarded because the 252 * jitter measured by the time median filter exceeds the limit MAXTIME 253 * (100 us). 254 * 255 * pps_calcnt counts the frequency calibration intervals, which are 256 * variable from 4 s to 256 s. 257 * 258 * pps_errcnt counts the calibration intervals which have been discarded 259 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 260 * calibration interval jitter exceeds two ticks. 261 * 262 * pps_stbcnt counts the calibration intervals that have been discarded 263 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 264 */ 265 long pps_jitcnt = 0; /* jitter limit exceeded */ 266 long pps_calcnt = 0; /* calibration intervals */ 267 long pps_errcnt = 0; /* calibration errors */ 268 long pps_stbcnt = 0; /* stability limit exceeded */ 269 #endif /* PPS_SYNC */ 270 271 #ifdef EXT_CLOCK 272 /* 273 * External clock definitions 274 * 275 * The following definitions and declarations are used only if an 276 * external clock is configured on the system. 277 */ 278 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 279 280 /* 281 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 282 * interrupt and decremented once each second. 283 */ 284 int clock_count = 0; /* CPU clock counter */ 285 286 #ifdef HIGHBALL 287 /* 288 * The clock_offset and clock_cpu variables are used by the HIGHBALL 289 * interface. The clock_offset variable defines the offset between 290 * system time and the HIGBALL counters. The clock_cpu variable contains 291 * the offset between the system clock and the HIGHBALL clock for use in 292 * disciplining the kernel time variable. 293 */ 294 extern struct timeval clock_offset; /* Highball clock offset */ 295 long clock_cpu = 0; /* CPU clock adjust */ 296 #endif /* HIGHBALL */ 297 #endif /* EXT_CLOCK */ 298 #endif /* NTP */ 299 300 301 /* 302 * Bump a timeval by a small number of usec's. 303 */ 304 #define BUMPTIME(t, usec) { \ 305 volatile struct timeval *tp = (t); \ 306 long us; \ 307 \ 308 tp->tv_usec = us = tp->tv_usec + (usec); \ 309 if (us >= 1000000) { \ 310 tp->tv_usec = us - 1000000; \ 311 tp->tv_sec++; \ 312 } \ 313 } 314 315 int stathz; 316 int profhz; 317 int profsrc; 318 int schedhz; 319 int profprocs; 320 int hardclock_ticks; 321 static int psdiv; /* prof => stat divider */ 322 int psratio; /* ratio: prof / stat */ 323 int tickfix, tickfixinterval; /* used if tick not really integral */ 324 #ifndef NTP 325 static int tickfixcnt; /* accumulated fractional error */ 326 #else 327 int fixtick; /* used by NTP for same */ 328 int shifthz; 329 #endif 330 331 /* 332 * We might want ldd to load the both words from time at once. 333 * To succeed we need to be quadword aligned. 334 * The sparc already does that, and that it has worked so far is a fluke. 335 */ 336 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t)))); 337 volatile struct timeval mono_time; 338 339 void *softclock_si; 340 341 /* 342 * Initialize clock frequencies and start both clocks running. 343 */ 344 void 345 initclocks(void) 346 { 347 int i; 348 349 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 350 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL); 351 if (softclock_si == NULL) 352 panic("initclocks: unable to register softclock intr"); 353 #endif 354 355 /* 356 * Set divisors to 1 (normal case) and let the machine-specific 357 * code do its bit. 358 */ 359 psdiv = 1; 360 cpu_initclocks(); 361 362 /* 363 * Compute profhz/stathz/rrticks, and fix profhz if needed. 364 */ 365 i = stathz ? stathz : hz; 366 if (profhz == 0) 367 profhz = i; 368 psratio = profhz / i; 369 rrticks = hz / 10; 370 371 #ifdef NTP 372 switch (hz) { 373 case 1: 374 shifthz = SHIFT_SCALE - 0; 375 break; 376 case 2: 377 shifthz = SHIFT_SCALE - 1; 378 break; 379 case 4: 380 shifthz = SHIFT_SCALE - 2; 381 break; 382 case 8: 383 shifthz = SHIFT_SCALE - 3; 384 break; 385 case 16: 386 shifthz = SHIFT_SCALE - 4; 387 break; 388 case 32: 389 shifthz = SHIFT_SCALE - 5; 390 break; 391 case 60: 392 case 64: 393 shifthz = SHIFT_SCALE - 6; 394 break; 395 case 96: 396 case 100: 397 case 128: 398 shifthz = SHIFT_SCALE - 7; 399 break; 400 case 256: 401 shifthz = SHIFT_SCALE - 8; 402 break; 403 case 512: 404 shifthz = SHIFT_SCALE - 9; 405 break; 406 case 1000: 407 case 1024: 408 shifthz = SHIFT_SCALE - 10; 409 break; 410 case 1200: 411 case 2048: 412 shifthz = SHIFT_SCALE - 11; 413 break; 414 case 4096: 415 shifthz = SHIFT_SCALE - 12; 416 break; 417 case 8192: 418 shifthz = SHIFT_SCALE - 13; 419 break; 420 case 16384: 421 shifthz = SHIFT_SCALE - 14; 422 break; 423 case 32768: 424 shifthz = SHIFT_SCALE - 15; 425 break; 426 case 65536: 427 shifthz = SHIFT_SCALE - 16; 428 break; 429 default: 430 panic("weird hz"); 431 } 432 if (fixtick == 0) { 433 /* 434 * Give MD code a chance to set this to a better 435 * value; but, if it doesn't, we should. 436 */ 437 fixtick = (1000000 - (hz*tick)); 438 } 439 #endif 440 } 441 442 /* 443 * The real-time timer, interrupting hz times per second. 444 */ 445 void 446 hardclock(struct clockframe *frame) 447 { 448 struct lwp *l; 449 struct proc *p; 450 int delta; 451 extern int tickdelta; 452 extern long timedelta; 453 struct cpu_info *ci = curcpu(); 454 struct ptimer *pt; 455 #ifdef NTP 456 int time_update; 457 int ltemp; 458 #endif 459 460 l = curlwp; 461 if (l) { 462 p = l->l_proc; 463 /* 464 * Run current process's virtual and profile time, as needed. 465 */ 466 if (CLKF_USERMODE(frame) && p->p_timers && 467 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL) 468 if (itimerdecr(pt, tick) == 0) 469 itimerfire(pt); 470 if (p->p_timers && 471 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL) 472 if (itimerdecr(pt, tick) == 0) 473 itimerfire(pt); 474 } 475 476 /* 477 * If no separate statistics clock is available, run it from here. 478 */ 479 if (stathz == 0) 480 statclock(frame); 481 if ((--ci->ci_schedstate.spc_rrticks) <= 0) 482 roundrobin(ci); 483 484 #if defined(MULTIPROCESSOR) 485 /* 486 * If we are not the primary CPU, we're not allowed to do 487 * any more work. 488 */ 489 if (CPU_IS_PRIMARY(ci) == 0) 490 return; 491 #endif 492 493 /* 494 * Increment the time-of-day. The increment is normally just 495 * ``tick''. If the machine is one which has a clock frequency 496 * such that ``hz'' would not divide the second evenly into 497 * milliseconds, a periodic adjustment must be applied. Finally, 498 * if we are still adjusting the time (see adjtime()), 499 * ``tickdelta'' may also be added in. 500 */ 501 hardclock_ticks++; 502 delta = tick; 503 504 #ifndef NTP 505 if (tickfix) { 506 tickfixcnt += tickfix; 507 if (tickfixcnt >= tickfixinterval) { 508 delta++; 509 tickfixcnt -= tickfixinterval; 510 } 511 } 512 #endif /* !NTP */ 513 /* Imprecise 4bsd adjtime() handling */ 514 if (timedelta != 0) { 515 delta += tickdelta; 516 timedelta -= tickdelta; 517 } 518 519 #ifdef notyet 520 microset(); 521 #endif 522 523 #ifndef NTP 524 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 525 #endif 526 BUMPTIME(&mono_time, delta); 527 528 #ifdef NTP 529 time_update = delta; 530 531 /* 532 * Compute the phase adjustment. If the low-order bits 533 * (time_phase) of the update overflow, bump the high-order bits 534 * (time_update). 535 */ 536 time_phase += time_adj; 537 if (time_phase <= -FINEUSEC) { 538 ltemp = -time_phase >> SHIFT_SCALE; 539 time_phase += ltemp << SHIFT_SCALE; 540 time_update -= ltemp; 541 } else if (time_phase >= FINEUSEC) { 542 ltemp = time_phase >> SHIFT_SCALE; 543 time_phase -= ltemp << SHIFT_SCALE; 544 time_update += ltemp; 545 } 546 547 #ifdef HIGHBALL 548 /* 549 * If the HIGHBALL board is installed, we need to adjust the 550 * external clock offset in order to close the hardware feedback 551 * loop. This will adjust the external clock phase and frequency 552 * in small amounts. The additional phase noise and frequency 553 * wander this causes should be minimal. We also need to 554 * discipline the kernel time variable, since the PLL is used to 555 * discipline the external clock. If the Highball board is not 556 * present, we discipline kernel time with the PLL as usual. We 557 * assume that the external clock phase adjustment (time_update) 558 * and kernel phase adjustment (clock_cpu) are less than the 559 * value of tick. 560 */ 561 clock_offset.tv_usec += time_update; 562 if (clock_offset.tv_usec >= 1000000) { 563 clock_offset.tv_sec++; 564 clock_offset.tv_usec -= 1000000; 565 } 566 if (clock_offset.tv_usec < 0) { 567 clock_offset.tv_sec--; 568 clock_offset.tv_usec += 1000000; 569 } 570 time.tv_usec += clock_cpu; 571 clock_cpu = 0; 572 #else 573 time.tv_usec += time_update; 574 #endif /* HIGHBALL */ 575 576 /* 577 * On rollover of the second the phase adjustment to be used for 578 * the next second is calculated. Also, the maximum error is 579 * increased by the tolerance. If the PPS frequency discipline 580 * code is present, the phase is increased to compensate for the 581 * CPU clock oscillator frequency error. 582 * 583 * On a 32-bit machine and given parameters in the timex.h 584 * header file, the maximum phase adjustment is +-512 ms and 585 * maximum frequency offset is a tad less than) +-512 ppm. On a 586 * 64-bit machine, you shouldn't need to ask. 587 */ 588 if (time.tv_usec >= 1000000) { 589 time.tv_usec -= 1000000; 590 time.tv_sec++; 591 time_maxerror += time_tolerance >> SHIFT_USEC; 592 593 /* 594 * Leap second processing. If in leap-insert state at 595 * the end of the day, the system clock is set back one 596 * second; if in leap-delete state, the system clock is 597 * set ahead one second. The microtime() routine or 598 * external clock driver will insure that reported time 599 * is always monotonic. The ugly divides should be 600 * replaced. 601 */ 602 switch (time_state) { 603 case TIME_OK: 604 if (time_status & STA_INS) 605 time_state = TIME_INS; 606 else if (time_status & STA_DEL) 607 time_state = TIME_DEL; 608 break; 609 610 case TIME_INS: 611 if (time.tv_sec % 86400 == 0) { 612 time.tv_sec--; 613 time_state = TIME_OOP; 614 } 615 break; 616 617 case TIME_DEL: 618 if ((time.tv_sec + 1) % 86400 == 0) { 619 time.tv_sec++; 620 time_state = TIME_WAIT; 621 } 622 break; 623 624 case TIME_OOP: 625 time_state = TIME_WAIT; 626 break; 627 628 case TIME_WAIT: 629 if (!(time_status & (STA_INS | STA_DEL))) 630 time_state = TIME_OK; 631 break; 632 } 633 634 /* 635 * Compute the phase adjustment for the next second. In 636 * PLL mode, the offset is reduced by a fixed factor 637 * times the time constant. In FLL mode the offset is 638 * used directly. In either mode, the maximum phase 639 * adjustment for each second is clamped so as to spread 640 * the adjustment over not more than the number of 641 * seconds between updates. 642 */ 643 if (time_offset < 0) { 644 ltemp = -time_offset; 645 if (!(time_status & STA_FLL)) 646 ltemp >>= SHIFT_KG + time_constant; 647 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 648 ltemp = (MAXPHASE / MINSEC) << 649 SHIFT_UPDATE; 650 time_offset += ltemp; 651 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 652 } else if (time_offset > 0) { 653 ltemp = time_offset; 654 if (!(time_status & STA_FLL)) 655 ltemp >>= SHIFT_KG + time_constant; 656 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 657 ltemp = (MAXPHASE / MINSEC) << 658 SHIFT_UPDATE; 659 time_offset -= ltemp; 660 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 661 } else 662 time_adj = 0; 663 664 /* 665 * Compute the frequency estimate and additional phase 666 * adjustment due to frequency error for the next 667 * second. When the PPS signal is engaged, gnaw on the 668 * watchdog counter and update the frequency computed by 669 * the pll and the PPS signal. 670 */ 671 #ifdef PPS_SYNC 672 pps_valid++; 673 if (pps_valid == PPS_VALID) { 674 pps_jitter = MAXTIME; 675 pps_stabil = MAXFREQ; 676 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 677 STA_PPSWANDER | STA_PPSERROR); 678 } 679 ltemp = time_freq + pps_freq; 680 #else 681 ltemp = time_freq; 682 #endif /* PPS_SYNC */ 683 684 if (ltemp < 0) 685 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 686 else 687 time_adj += ltemp >> (SHIFT_USEC - shifthz); 688 time_adj += (long)fixtick << shifthz; 689 690 /* 691 * When the CPU clock oscillator frequency is not a 692 * power of 2 in Hz, shifthz is only an approximate 693 * scale factor. 694 * 695 * To determine the adjustment, you can do the following: 696 * bc -q 697 * scale=24 698 * obase=2 699 * idealhz/realhz 700 * where `idealhz' is the next higher power of 2, and `realhz' 701 * is the actual value. You may need to factor this result 702 * into a sequence of 2 multipliers to get better precision. 703 * 704 * Likewise, the error can be calculated with (e.g. for 100Hz): 705 * bc -q 706 * scale=24 707 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz 708 * (and then multiply by 1000000 to get ppm). 709 */ 710 switch (hz) { 711 case 60: 712 /* A factor of 1.000100010001 gives about 15ppm 713 error. */ 714 if (time_adj < 0) { 715 time_adj -= (-time_adj >> 4); 716 time_adj -= (-time_adj >> 8); 717 } else { 718 time_adj += (time_adj >> 4); 719 time_adj += (time_adj >> 8); 720 } 721 break; 722 723 case 96: 724 /* A factor of 1.0101010101 gives about 244ppm error. */ 725 if (time_adj < 0) { 726 time_adj -= (-time_adj >> 2); 727 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 728 } else { 729 time_adj += (time_adj >> 2); 730 time_adj += (time_adj >> 4) + (time_adj >> 8); 731 } 732 break; 733 734 case 100: 735 /* A factor of 1.010001111010111 gives about 1ppm 736 error. */ 737 if (time_adj < 0) { 738 time_adj -= (-time_adj >> 2) + (-time_adj >> 5); 739 time_adj += (-time_adj >> 10); 740 } else { 741 time_adj += (time_adj >> 2) + (time_adj >> 5); 742 time_adj -= (time_adj >> 10); 743 } 744 break; 745 746 case 1000: 747 /* A factor of 1.000001100010100001 gives about 50ppm 748 error. */ 749 if (time_adj < 0) { 750 time_adj -= (-time_adj >> 6) + (-time_adj >> 11); 751 time_adj -= (-time_adj >> 7); 752 } else { 753 time_adj += (time_adj >> 6) + (time_adj >> 11); 754 time_adj += (time_adj >> 7); 755 } 756 break; 757 758 case 1200: 759 /* A factor of 1.1011010011100001 gives about 64ppm 760 error. */ 761 if (time_adj < 0) { 762 time_adj -= (-time_adj >> 1) + (-time_adj >> 6); 763 time_adj -= (-time_adj >> 3) + (-time_adj >> 10); 764 } else { 765 time_adj += (time_adj >> 1) + (time_adj >> 6); 766 time_adj += (time_adj >> 3) + (time_adj >> 10); 767 } 768 break; 769 } 770 771 #ifdef EXT_CLOCK 772 /* 773 * If an external clock is present, it is necessary to 774 * discipline the kernel time variable anyway, since not 775 * all system components use the microtime() interface. 776 * Here, the time offset between the external clock and 777 * kernel time variable is computed every so often. 778 */ 779 clock_count++; 780 if (clock_count > CLOCK_INTERVAL) { 781 clock_count = 0; 782 microtime(&clock_ext); 783 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 784 delta.tv_usec = clock_ext.tv_usec - 785 time.tv_usec; 786 if (delta.tv_usec < 0) 787 delta.tv_sec--; 788 if (delta.tv_usec >= 500000) { 789 delta.tv_usec -= 1000000; 790 delta.tv_sec++; 791 } 792 if (delta.tv_usec < -500000) { 793 delta.tv_usec += 1000000; 794 delta.tv_sec--; 795 } 796 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 797 delta.tv_usec > MAXPHASE) || 798 delta.tv_sec < -1 || (delta.tv_sec == -1 && 799 delta.tv_usec < -MAXPHASE)) { 800 time = clock_ext; 801 delta.tv_sec = 0; 802 delta.tv_usec = 0; 803 } 804 #ifdef HIGHBALL 805 clock_cpu = delta.tv_usec; 806 #else /* HIGHBALL */ 807 hardupdate(delta.tv_usec); 808 #endif /* HIGHBALL */ 809 } 810 #endif /* EXT_CLOCK */ 811 } 812 813 #endif /* NTP */ 814 815 /* 816 * Update real-time timeout queue. 817 * Process callouts at a very low cpu priority, so we don't keep the 818 * relatively high clock interrupt priority any longer than necessary. 819 */ 820 if (callout_hardclock()) { 821 if (CLKF_BASEPRI(frame)) { 822 /* 823 * Save the overhead of a software interrupt; 824 * it will happen as soon as we return, so do 825 * it now. 826 */ 827 spllowersoftclock(); 828 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE); 829 softclock(NULL); 830 KERNEL_UNLOCK(); 831 } else { 832 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 833 softintr_schedule(softclock_si); 834 #else 835 setsoftclock(); 836 #endif 837 } 838 } 839 } 840 841 /* 842 * Compute number of hz until specified time. Used to compute second 843 * argument to callout_reset() from an absolute time. 844 */ 845 int 846 hzto(struct timeval *tv) 847 { 848 unsigned long ticks; 849 long sec, usec; 850 int s; 851 852 /* 853 * If the number of usecs in the whole seconds part of the time 854 * difference fits in a long, then the total number of usecs will 855 * fit in an unsigned long. Compute the total and convert it to 856 * ticks, rounding up and adding 1 to allow for the current tick 857 * to expire. Rounding also depends on unsigned long arithmetic 858 * to avoid overflow. 859 * 860 * Otherwise, if the number of ticks in the whole seconds part of 861 * the time difference fits in a long, then convert the parts to 862 * ticks separately and add, using similar rounding methods and 863 * overflow avoidance. This method would work in the previous 864 * case, but it is slightly slower and assume that hz is integral. 865 * 866 * Otherwise, round the time difference down to the maximum 867 * representable value. 868 * 869 * If ints are 32-bit, then the maximum value for any timeout in 870 * 10ms ticks is 248 days. 871 */ 872 s = splclock(); 873 sec = tv->tv_sec - time.tv_sec; 874 usec = tv->tv_usec - time.tv_usec; 875 splx(s); 876 877 if (usec < 0) { 878 sec--; 879 usec += 1000000; 880 } 881 882 if (sec < 0 || (sec == 0 && usec <= 0)) { 883 /* 884 * Would expire now or in the past. Return 0 ticks. 885 * This is different from the legacy hzto() interface, 886 * and callers need to check for it. 887 */ 888 ticks = 0; 889 } else if (sec <= (LONG_MAX / 1000000)) 890 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1)) 891 / tick) + 1; 892 else if (sec <= (LONG_MAX / hz)) 893 ticks = (sec * hz) + 894 (((unsigned long)usec + (tick - 1)) / tick) + 1; 895 else 896 ticks = LONG_MAX; 897 898 if (ticks > INT_MAX) 899 ticks = INT_MAX; 900 901 return ((int)ticks); 902 } 903 904 /* 905 * Start profiling on a process. 906 * 907 * Kernel profiling passes proc0 which never exits and hence 908 * keeps the profile clock running constantly. 909 */ 910 void 911 startprofclock(struct proc *p) 912 { 913 914 if ((p->p_flag & P_PROFIL) == 0) { 915 p->p_flag |= P_PROFIL; 916 /* 917 * This is only necessary if using the clock as the 918 * profiling source. 919 */ 920 if (++profprocs == 1 && stathz != 0) 921 psdiv = psratio; 922 } 923 } 924 925 /* 926 * Stop profiling on a process. 927 */ 928 void 929 stopprofclock(struct proc *p) 930 { 931 932 if (p->p_flag & P_PROFIL) { 933 p->p_flag &= ~P_PROFIL; 934 /* 935 * This is only necessary if using the clock as the 936 * profiling source. 937 */ 938 if (--profprocs == 0 && stathz != 0) 939 psdiv = 1; 940 } 941 } 942 943 #if defined(PERFCTRS) 944 /* 945 * Independent profiling "tick" in case we're using a separate 946 * clock or profiling event source. Currently, that's just 947 * performance counters--hence the wrapper. 948 */ 949 void 950 proftick(struct clockframe *frame) 951 { 952 #ifdef GPROF 953 struct gmonparam *g; 954 intptr_t i; 955 #endif 956 struct proc *p; 957 958 p = curproc; 959 if (CLKF_USERMODE(frame)) { 960 if (p->p_flag & P_PROFIL) 961 addupc_intr(p, CLKF_PC(frame)); 962 } else { 963 #ifdef GPROF 964 g = &_gmonparam; 965 if (g->state == GMON_PROF_ON) { 966 i = CLKF_PC(frame) - g->lowpc; 967 if (i < g->textsize) { 968 i /= HISTFRACTION * sizeof(*g->kcount); 969 g->kcount[i]++; 970 } 971 } 972 #endif 973 #ifdef PROC_PC 974 if (p && p->p_flag & P_PROFIL) 975 addupc_intr(p, PROC_PC(p)); 976 #endif 977 } 978 } 979 #endif 980 981 /* 982 * Statistics clock. Grab profile sample, and if divider reaches 0, 983 * do process and kernel statistics. 984 */ 985 void 986 statclock(struct clockframe *frame) 987 { 988 #ifdef GPROF 989 struct gmonparam *g; 990 intptr_t i; 991 #endif 992 struct cpu_info *ci = curcpu(); 993 struct schedstate_percpu *spc = &ci->ci_schedstate; 994 struct lwp *l; 995 struct proc *p; 996 997 /* 998 * Notice changes in divisor frequency, and adjust clock 999 * frequency accordingly. 1000 */ 1001 if (spc->spc_psdiv != psdiv) { 1002 spc->spc_psdiv = psdiv; 1003 spc->spc_pscnt = psdiv; 1004 if (psdiv == 1) { 1005 setstatclockrate(stathz); 1006 } else { 1007 setstatclockrate(profhz); 1008 } 1009 } 1010 l = curlwp; 1011 p = (l ? l->l_proc : 0); 1012 if (CLKF_USERMODE(frame)) { 1013 if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK) 1014 addupc_intr(p, CLKF_PC(frame)); 1015 if (--spc->spc_pscnt > 0) 1016 return; 1017 /* 1018 * Came from user mode; CPU was in user state. 1019 * If this process is being profiled record the tick. 1020 */ 1021 p->p_uticks++; 1022 if (p->p_nice > NZERO) 1023 spc->spc_cp_time[CP_NICE]++; 1024 else 1025 spc->spc_cp_time[CP_USER]++; 1026 } else { 1027 #ifdef GPROF 1028 /* 1029 * Kernel statistics are just like addupc_intr, only easier. 1030 */ 1031 g = &_gmonparam; 1032 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) { 1033 i = CLKF_PC(frame) - g->lowpc; 1034 if (i < g->textsize) { 1035 i /= HISTFRACTION * sizeof(*g->kcount); 1036 g->kcount[i]++; 1037 } 1038 } 1039 #endif 1040 #ifdef LWP_PC 1041 if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL) 1042 addupc_intr(p, LWP_PC(l)); 1043 #endif 1044 if (--spc->spc_pscnt > 0) 1045 return; 1046 /* 1047 * Came from kernel mode, so we were: 1048 * - handling an interrupt, 1049 * - doing syscall or trap work on behalf of the current 1050 * user process, or 1051 * - spinning in the idle loop. 1052 * Whichever it is, charge the time as appropriate. 1053 * Note that we charge interrupts to the current process, 1054 * regardless of whether they are ``for'' that process, 1055 * so that we know how much of its real time was spent 1056 * in ``non-process'' (i.e., interrupt) work. 1057 */ 1058 if (CLKF_INTR(frame)) { 1059 if (p != NULL) 1060 p->p_iticks++; 1061 spc->spc_cp_time[CP_INTR]++; 1062 } else if (p != NULL) { 1063 p->p_sticks++; 1064 spc->spc_cp_time[CP_SYS]++; 1065 } else 1066 spc->spc_cp_time[CP_IDLE]++; 1067 } 1068 spc->spc_pscnt = psdiv; 1069 1070 if (l != NULL) { 1071 ++p->p_cpticks; 1072 /* 1073 * If no separate schedclock is provided, call it here 1074 * at ~~12-25 Hz, ~~16 Hz is best 1075 */ 1076 if (schedhz == 0) 1077 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0) 1078 schedclock(l); 1079 } 1080 } 1081 1082 1083 #ifdef NTP /* NTP phase-locked loop in kernel */ 1084 1085 /* 1086 * hardupdate() - local clock update 1087 * 1088 * This routine is called by ntp_adjtime() to update the local clock 1089 * phase and frequency. The implementation is of an adaptive-parameter, 1090 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1091 * time and frequency offset estimates for each call. If the kernel PPS 1092 * discipline code is configured (PPS_SYNC), the PPS signal itself 1093 * determines the new time offset, instead of the calling argument. 1094 * Presumably, calls to ntp_adjtime() occur only when the caller 1095 * believes the local clock is valid within some bound (+-128 ms with 1096 * NTP). If the caller's time is far different than the PPS time, an 1097 * argument will ensue, and it's not clear who will lose. 1098 * 1099 * For uncompensated quartz crystal oscillatores and nominal update 1100 * intervals less than 1024 s, operation should be in phase-lock mode 1101 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1102 * intervals greater than thiss, operation should be in frequency-lock 1103 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1104 * 1105 * Note: splclock() is in effect. 1106 */ 1107 void 1108 hardupdate(long offset) 1109 { 1110 long ltemp, mtemp; 1111 1112 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1113 return; 1114 ltemp = offset; 1115 #ifdef PPS_SYNC 1116 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1117 ltemp = pps_offset; 1118 #endif /* PPS_SYNC */ 1119 1120 /* 1121 * Scale the phase adjustment and clamp to the operating range. 1122 */ 1123 if (ltemp > MAXPHASE) 1124 time_offset = MAXPHASE << SHIFT_UPDATE; 1125 else if (ltemp < -MAXPHASE) 1126 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1127 else 1128 time_offset = ltemp << SHIFT_UPDATE; 1129 1130 /* 1131 * Select whether the frequency is to be controlled and in which 1132 * mode (PLL or FLL). Clamp to the operating range. Ugly 1133 * multiply/divide should be replaced someday. 1134 */ 1135 if (time_status & STA_FREQHOLD || time_reftime == 0) 1136 time_reftime = time.tv_sec; 1137 mtemp = time.tv_sec - time_reftime; 1138 time_reftime = time.tv_sec; 1139 if (time_status & STA_FLL) { 1140 if (mtemp >= MINSEC) { 1141 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1142 SHIFT_UPDATE)); 1143 if (ltemp < 0) 1144 time_freq -= -ltemp >> SHIFT_KH; 1145 else 1146 time_freq += ltemp >> SHIFT_KH; 1147 } 1148 } else { 1149 if (mtemp < MAXSEC) { 1150 ltemp *= mtemp; 1151 if (ltemp < 0) 1152 time_freq -= -ltemp >> (time_constant + 1153 time_constant + SHIFT_KF - 1154 SHIFT_USEC); 1155 else 1156 time_freq += ltemp >> (time_constant + 1157 time_constant + SHIFT_KF - 1158 SHIFT_USEC); 1159 } 1160 } 1161 if (time_freq > time_tolerance) 1162 time_freq = time_tolerance; 1163 else if (time_freq < -time_tolerance) 1164 time_freq = -time_tolerance; 1165 } 1166 1167 #ifdef PPS_SYNC 1168 /* 1169 * hardpps() - discipline CPU clock oscillator to external PPS signal 1170 * 1171 * This routine is called at each PPS interrupt in order to discipline 1172 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1173 * and leaves it in a handy spot for the hardclock() routine. It 1174 * integrates successive PPS phase differences and calculates the 1175 * frequency offset. This is used in hardclock() to discipline the CPU 1176 * clock oscillator so that intrinsic frequency error is cancelled out. 1177 * The code requires the caller to capture the time and hardware counter 1178 * value at the on-time PPS signal transition. 1179 * 1180 * Note that, on some Unix systems, this routine runs at an interrupt 1181 * priority level higher than the timer interrupt routine hardclock(). 1182 * Therefore, the variables used are distinct from the hardclock() 1183 * variables, except for certain exceptions: The PPS frequency pps_freq 1184 * and phase pps_offset variables are determined by this routine and 1185 * updated atomically. The time_tolerance variable can be considered a 1186 * constant, since it is infrequently changed, and then only when the 1187 * PPS signal is disabled. The watchdog counter pps_valid is updated 1188 * once per second by hardclock() and is atomically cleared in this 1189 * routine. 1190 */ 1191 void 1192 hardpps(struct timeval *tvp, /* time at PPS */ 1193 long usec /* hardware counter at PPS */) 1194 { 1195 long u_usec, v_usec, bigtick; 1196 long cal_sec, cal_usec; 1197 1198 /* 1199 * An occasional glitch can be produced when the PPS interrupt 1200 * occurs in the hardclock() routine before the time variable is 1201 * updated. Here the offset is discarded when the difference 1202 * between it and the last one is greater than tick/2, but not 1203 * if the interval since the first discard exceeds 30 s. 1204 */ 1205 time_status |= STA_PPSSIGNAL; 1206 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1207 pps_valid = 0; 1208 u_usec = -tvp->tv_usec; 1209 if (u_usec < -500000) 1210 u_usec += 1000000; 1211 v_usec = pps_offset - u_usec; 1212 if (v_usec < 0) 1213 v_usec = -v_usec; 1214 if (v_usec > (tick >> 1)) { 1215 if (pps_glitch > MAXGLITCH) { 1216 pps_glitch = 0; 1217 pps_tf[2] = u_usec; 1218 pps_tf[1] = u_usec; 1219 } else { 1220 pps_glitch++; 1221 u_usec = pps_offset; 1222 } 1223 } else 1224 pps_glitch = 0; 1225 1226 /* 1227 * A three-stage median filter is used to help deglitch the pps 1228 * time. The median sample becomes the time offset estimate; the 1229 * difference between the other two samples becomes the time 1230 * dispersion (jitter) estimate. 1231 */ 1232 pps_tf[2] = pps_tf[1]; 1233 pps_tf[1] = pps_tf[0]; 1234 pps_tf[0] = u_usec; 1235 if (pps_tf[0] > pps_tf[1]) { 1236 if (pps_tf[1] > pps_tf[2]) { 1237 pps_offset = pps_tf[1]; /* 0 1 2 */ 1238 v_usec = pps_tf[0] - pps_tf[2]; 1239 } else if (pps_tf[2] > pps_tf[0]) { 1240 pps_offset = pps_tf[0]; /* 2 0 1 */ 1241 v_usec = pps_tf[2] - pps_tf[1]; 1242 } else { 1243 pps_offset = pps_tf[2]; /* 0 2 1 */ 1244 v_usec = pps_tf[0] - pps_tf[1]; 1245 } 1246 } else { 1247 if (pps_tf[1] < pps_tf[2]) { 1248 pps_offset = pps_tf[1]; /* 2 1 0 */ 1249 v_usec = pps_tf[2] - pps_tf[0]; 1250 } else if (pps_tf[2] < pps_tf[0]) { 1251 pps_offset = pps_tf[0]; /* 1 0 2 */ 1252 v_usec = pps_tf[1] - pps_tf[2]; 1253 } else { 1254 pps_offset = pps_tf[2]; /* 1 2 0 */ 1255 v_usec = pps_tf[1] - pps_tf[0]; 1256 } 1257 } 1258 if (v_usec > MAXTIME) 1259 pps_jitcnt++; 1260 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1261 if (v_usec < 0) 1262 pps_jitter -= -v_usec >> PPS_AVG; 1263 else 1264 pps_jitter += v_usec >> PPS_AVG; 1265 if (pps_jitter > (MAXTIME >> 1)) 1266 time_status |= STA_PPSJITTER; 1267 1268 /* 1269 * During the calibration interval adjust the starting time when 1270 * the tick overflows. At the end of the interval compute the 1271 * duration of the interval and the difference of the hardware 1272 * counters at the beginning and end of the interval. This code 1273 * is deliciously complicated by the fact valid differences may 1274 * exceed the value of tick when using long calibration 1275 * intervals and small ticks. Note that the counter can be 1276 * greater than tick if caught at just the wrong instant, but 1277 * the values returned and used here are correct. 1278 */ 1279 bigtick = (long)tick << SHIFT_USEC; 1280 pps_usec -= pps_freq; 1281 if (pps_usec >= bigtick) 1282 pps_usec -= bigtick; 1283 if (pps_usec < 0) 1284 pps_usec += bigtick; 1285 pps_time.tv_sec++; 1286 pps_count++; 1287 if (pps_count < (1 << pps_shift)) 1288 return; 1289 pps_count = 0; 1290 pps_calcnt++; 1291 u_usec = usec << SHIFT_USEC; 1292 v_usec = pps_usec - u_usec; 1293 if (v_usec >= bigtick >> 1) 1294 v_usec -= bigtick; 1295 if (v_usec < -(bigtick >> 1)) 1296 v_usec += bigtick; 1297 if (v_usec < 0) 1298 v_usec = -(-v_usec >> pps_shift); 1299 else 1300 v_usec = v_usec >> pps_shift; 1301 pps_usec = u_usec; 1302 cal_sec = tvp->tv_sec; 1303 cal_usec = tvp->tv_usec; 1304 cal_sec -= pps_time.tv_sec; 1305 cal_usec -= pps_time.tv_usec; 1306 if (cal_usec < 0) { 1307 cal_usec += 1000000; 1308 cal_sec--; 1309 } 1310 pps_time = *tvp; 1311 1312 /* 1313 * Check for lost interrupts, noise, excessive jitter and 1314 * excessive frequency error. The number of timer ticks during 1315 * the interval may vary +-1 tick. Add to this a margin of one 1316 * tick for the PPS signal jitter and maximum frequency 1317 * deviation. If the limits are exceeded, the calibration 1318 * interval is reset to the minimum and we start over. 1319 */ 1320 u_usec = (long)tick << 1; 1321 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1322 || (cal_sec == 0 && cal_usec < u_usec)) 1323 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1324 pps_errcnt++; 1325 pps_shift = PPS_SHIFT; 1326 pps_intcnt = 0; 1327 time_status |= STA_PPSERROR; 1328 return; 1329 } 1330 1331 /* 1332 * A three-stage median filter is used to help deglitch the pps 1333 * frequency. The median sample becomes the frequency offset 1334 * estimate; the difference between the other two samples 1335 * becomes the frequency dispersion (stability) estimate. 1336 */ 1337 pps_ff[2] = pps_ff[1]; 1338 pps_ff[1] = pps_ff[0]; 1339 pps_ff[0] = v_usec; 1340 if (pps_ff[0] > pps_ff[1]) { 1341 if (pps_ff[1] > pps_ff[2]) { 1342 u_usec = pps_ff[1]; /* 0 1 2 */ 1343 v_usec = pps_ff[0] - pps_ff[2]; 1344 } else if (pps_ff[2] > pps_ff[0]) { 1345 u_usec = pps_ff[0]; /* 2 0 1 */ 1346 v_usec = pps_ff[2] - pps_ff[1]; 1347 } else { 1348 u_usec = pps_ff[2]; /* 0 2 1 */ 1349 v_usec = pps_ff[0] - pps_ff[1]; 1350 } 1351 } else { 1352 if (pps_ff[1] < pps_ff[2]) { 1353 u_usec = pps_ff[1]; /* 2 1 0 */ 1354 v_usec = pps_ff[2] - pps_ff[0]; 1355 } else if (pps_ff[2] < pps_ff[0]) { 1356 u_usec = pps_ff[0]; /* 1 0 2 */ 1357 v_usec = pps_ff[1] - pps_ff[2]; 1358 } else { 1359 u_usec = pps_ff[2]; /* 1 2 0 */ 1360 v_usec = pps_ff[1] - pps_ff[0]; 1361 } 1362 } 1363 1364 /* 1365 * Here the frequency dispersion (stability) is updated. If it 1366 * is less than one-fourth the maximum (MAXFREQ), the frequency 1367 * offset is updated as well, but clamped to the tolerance. It 1368 * will be processed later by the hardclock() routine. 1369 */ 1370 v_usec = (v_usec >> 1) - pps_stabil; 1371 if (v_usec < 0) 1372 pps_stabil -= -v_usec >> PPS_AVG; 1373 else 1374 pps_stabil += v_usec >> PPS_AVG; 1375 if (pps_stabil > MAXFREQ >> 2) { 1376 pps_stbcnt++; 1377 time_status |= STA_PPSWANDER; 1378 return; 1379 } 1380 if (time_status & STA_PPSFREQ) { 1381 if (u_usec < 0) { 1382 pps_freq -= -u_usec >> PPS_AVG; 1383 if (pps_freq < -time_tolerance) 1384 pps_freq = -time_tolerance; 1385 u_usec = -u_usec; 1386 } else { 1387 pps_freq += u_usec >> PPS_AVG; 1388 if (pps_freq > time_tolerance) 1389 pps_freq = time_tolerance; 1390 } 1391 } 1392 1393 /* 1394 * Here the calibration interval is adjusted. If the maximum 1395 * time difference is greater than tick / 4, reduce the interval 1396 * by half. If this is not the case for four consecutive 1397 * intervals, double the interval. 1398 */ 1399 if (u_usec << pps_shift > bigtick >> 2) { 1400 pps_intcnt = 0; 1401 if (pps_shift > PPS_SHIFT) 1402 pps_shift--; 1403 } else if (pps_intcnt >= 4) { 1404 pps_intcnt = 0; 1405 if (pps_shift < PPS_SHIFTMAX) 1406 pps_shift++; 1407 } else 1408 pps_intcnt++; 1409 } 1410 #endif /* PPS_SYNC */ 1411 #endif /* NTP */ 1412 1413 /* 1414 * Return information about system clocks. 1415 */ 1416 int 1417 sysctl_clockrate(void *where, size_t *sizep) 1418 { 1419 struct clockinfo clkinfo; 1420 1421 /* 1422 * Construct clockinfo structure. 1423 */ 1424 clkinfo.tick = tick; 1425 clkinfo.tickadj = tickadj; 1426 clkinfo.hz = hz; 1427 clkinfo.profhz = profhz; 1428 clkinfo.stathz = stathz ? stathz : hz; 1429 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1430 } 1431