1 /* $NetBSD: kern_clock.c,v 1.73 2001/01/15 20:19:59 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /*- 41 * Copyright (c) 1982, 1986, 1991, 1993 42 * The Regents of the University of California. All rights reserved. 43 * (c) UNIX System Laboratories, Inc. 44 * All or some portions of this file are derived from material licensed 45 * to the University of California by American Telephone and Telegraph 46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 47 * the permission of UNIX System Laboratories, Inc. 48 * 49 * Redistribution and use in source and binary forms, with or without 50 * modification, are permitted provided that the following conditions 51 * are met: 52 * 1. Redistributions of source code must retain the above copyright 53 * notice, this list of conditions and the following disclaimer. 54 * 2. Redistributions in binary form must reproduce the above copyright 55 * notice, this list of conditions and the following disclaimer in the 56 * documentation and/or other materials provided with the distribution. 57 * 3. All advertising materials mentioning features or use of this software 58 * must display the following acknowledgement: 59 * This product includes software developed by the University of 60 * California, Berkeley and its contributors. 61 * 4. Neither the name of the University nor the names of its contributors 62 * may be used to endorse or promote products derived from this software 63 * without specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 75 * SUCH DAMAGE. 76 * 77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 78 */ 79 80 #include "opt_ntp.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/dkstat.h> 85 #include <sys/callout.h> 86 #include <sys/kernel.h> 87 #include <sys/proc.h> 88 #include <sys/resourcevar.h> 89 #include <sys/signalvar.h> 90 #include <uvm/uvm_extern.h> 91 #include <sys/sysctl.h> 92 #include <sys/timex.h> 93 #include <sys/sched.h> 94 95 #include <machine/cpu.h> 96 97 #ifdef GPROF 98 #include <sys/gmon.h> 99 #endif 100 101 /* 102 * Clock handling routines. 103 * 104 * This code is written to operate with two timers that run independently of 105 * each other. The main clock, running hz times per second, is used to keep 106 * track of real time. The second timer handles kernel and user profiling, 107 * and does resource use estimation. If the second timer is programmable, 108 * it is randomized to avoid aliasing between the two clocks. For example, 109 * the randomization prevents an adversary from always giving up the cpu 110 * just before its quantum expires. Otherwise, it would never accumulate 111 * cpu ticks. The mean frequency of the second timer is stathz. 112 * 113 * If no second timer exists, stathz will be zero; in this case we drive 114 * profiling and statistics off the main clock. This WILL NOT be accurate; 115 * do not do it unless absolutely necessary. 116 * 117 * The statistics clock may (or may not) be run at a higher rate while 118 * profiling. This profile clock runs at profhz. We require that profhz 119 * be an integral multiple of stathz. 120 * 121 * If the statistics clock is running fast, it must be divided by the ratio 122 * profhz/stathz for statistics. (For profiling, every tick counts.) 123 */ 124 125 #ifdef NTP /* NTP phase-locked loop in kernel */ 126 /* 127 * Phase/frequency-lock loop (PLL/FLL) definitions 128 * 129 * The following variables are read and set by the ntp_adjtime() system 130 * call. 131 * 132 * time_state shows the state of the system clock, with values defined 133 * in the timex.h header file. 134 * 135 * time_status shows the status of the system clock, with bits defined 136 * in the timex.h header file. 137 * 138 * time_offset is used by the PLL/FLL to adjust the system time in small 139 * increments. 140 * 141 * time_constant determines the bandwidth or "stiffness" of the PLL. 142 * 143 * time_tolerance determines maximum frequency error or tolerance of the 144 * CPU clock oscillator and is a property of the architecture; however, 145 * in principle it could change as result of the presence of external 146 * discipline signals, for instance. 147 * 148 * time_precision is usually equal to the kernel tick variable; however, 149 * in cases where a precision clock counter or external clock is 150 * available, the resolution can be much less than this and depend on 151 * whether the external clock is working or not. 152 * 153 * time_maxerror is initialized by a ntp_adjtime() call and increased by 154 * the kernel once each second to reflect the maximum error bound 155 * growth. 156 * 157 * time_esterror is set and read by the ntp_adjtime() call, but 158 * otherwise not used by the kernel. 159 */ 160 int time_state = TIME_OK; /* clock state */ 161 int time_status = STA_UNSYNC; /* clock status bits */ 162 long time_offset = 0; /* time offset (us) */ 163 long time_constant = 0; /* pll time constant */ 164 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 165 long time_precision = 1; /* clock precision (us) */ 166 long time_maxerror = MAXPHASE; /* maximum error (us) */ 167 long time_esterror = MAXPHASE; /* estimated error (us) */ 168 169 /* 170 * The following variables establish the state of the PLL/FLL and the 171 * residual time and frequency offset of the local clock. The scale 172 * factors are defined in the timex.h header file. 173 * 174 * time_phase and time_freq are the phase increment and the frequency 175 * increment, respectively, of the kernel time variable. 176 * 177 * time_freq is set via ntp_adjtime() from a value stored in a file when 178 * the synchronization daemon is first started. Its value is retrieved 179 * via ntp_adjtime() and written to the file about once per hour by the 180 * daemon. 181 * 182 * time_adj is the adjustment added to the value of tick at each timer 183 * interrupt and is recomputed from time_phase and time_freq at each 184 * seconds rollover. 185 * 186 * time_reftime is the second's portion of the system time at the last 187 * call to ntp_adjtime(). It is used to adjust the time_freq variable 188 * and to increase the time_maxerror as the time since last update 189 * increases. 190 */ 191 long time_phase = 0; /* phase offset (scaled us) */ 192 long time_freq = 0; /* frequency offset (scaled ppm) */ 193 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 194 long time_reftime = 0; /* time at last adjustment (s) */ 195 196 #ifdef PPS_SYNC 197 /* 198 * The following variables are used only if the kernel PPS discipline 199 * code is configured (PPS_SYNC). The scale factors are defined in the 200 * timex.h header file. 201 * 202 * pps_time contains the time at each calibration interval, as read by 203 * microtime(). pps_count counts the seconds of the calibration 204 * interval, the duration of which is nominally pps_shift in powers of 205 * two. 206 * 207 * pps_offset is the time offset produced by the time median filter 208 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 209 * this filter. 210 * 211 * pps_freq is the frequency offset produced by the frequency median 212 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 213 * by this filter. 214 * 215 * pps_usec is latched from a high resolution counter or external clock 216 * at pps_time. Here we want the hardware counter contents only, not the 217 * contents plus the time_tv.usec as usual. 218 * 219 * pps_valid counts the number of seconds since the last PPS update. It 220 * is used as a watchdog timer to disable the PPS discipline should the 221 * PPS signal be lost. 222 * 223 * pps_glitch counts the number of seconds since the beginning of an 224 * offset burst more than tick/2 from current nominal offset. It is used 225 * mainly to suppress error bursts due to priority conflicts between the 226 * PPS interrupt and timer interrupt. 227 * 228 * pps_intcnt counts the calibration intervals for use in the interval- 229 * adaptation algorithm. It's just too complicated for words. 230 */ 231 struct timeval pps_time; /* kernel time at last interval */ 232 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 233 long pps_offset = 0; /* pps time offset (us) */ 234 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 235 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 236 long pps_freq = 0; /* frequency offset (scaled ppm) */ 237 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 238 long pps_usec = 0; /* microsec counter at last interval */ 239 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 240 int pps_glitch = 0; /* pps signal glitch counter */ 241 int pps_count = 0; /* calibration interval counter (s) */ 242 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 243 int pps_intcnt = 0; /* intervals at current duration */ 244 245 /* 246 * PPS signal quality monitors 247 * 248 * pps_jitcnt counts the seconds that have been discarded because the 249 * jitter measured by the time median filter exceeds the limit MAXTIME 250 * (100 us). 251 * 252 * pps_calcnt counts the frequency calibration intervals, which are 253 * variable from 4 s to 256 s. 254 * 255 * pps_errcnt counts the calibration intervals which have been discarded 256 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 257 * calibration interval jitter exceeds two ticks. 258 * 259 * pps_stbcnt counts the calibration intervals that have been discarded 260 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 261 */ 262 long pps_jitcnt = 0; /* jitter limit exceeded */ 263 long pps_calcnt = 0; /* calibration intervals */ 264 long pps_errcnt = 0; /* calibration errors */ 265 long pps_stbcnt = 0; /* stability limit exceeded */ 266 #endif /* PPS_SYNC */ 267 268 #ifdef EXT_CLOCK 269 /* 270 * External clock definitions 271 * 272 * The following definitions and declarations are used only if an 273 * external clock is configured on the system. 274 */ 275 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 276 277 /* 278 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 279 * interrupt and decremented once each second. 280 */ 281 int clock_count = 0; /* CPU clock counter */ 282 283 #ifdef HIGHBALL 284 /* 285 * The clock_offset and clock_cpu variables are used by the HIGHBALL 286 * interface. The clock_offset variable defines the offset between 287 * system time and the HIGBALL counters. The clock_cpu variable contains 288 * the offset between the system clock and the HIGHBALL clock for use in 289 * disciplining the kernel time variable. 290 */ 291 extern struct timeval clock_offset; /* Highball clock offset */ 292 long clock_cpu = 0; /* CPU clock adjust */ 293 #endif /* HIGHBALL */ 294 #endif /* EXT_CLOCK */ 295 #endif /* NTP */ 296 297 298 /* 299 * Bump a timeval by a small number of usec's. 300 */ 301 #define BUMPTIME(t, usec) { \ 302 volatile struct timeval *tp = (t); \ 303 long us; \ 304 \ 305 tp->tv_usec = us = tp->tv_usec + (usec); \ 306 if (us >= 1000000) { \ 307 tp->tv_usec = us - 1000000; \ 308 tp->tv_sec++; \ 309 } \ 310 } 311 312 int stathz; 313 int profhz; 314 int profprocs; 315 int softclock_running; /* 1 => softclock() is running */ 316 static int psdiv; /* prof => stat divider */ 317 int psratio; /* ratio: prof / stat */ 318 int tickfix, tickfixinterval; /* used if tick not really integral */ 319 #ifndef NTP 320 static int tickfixcnt; /* accumulated fractional error */ 321 #else 322 int fixtick; /* used by NTP for same */ 323 int shifthz; 324 #endif 325 326 /* 327 * We might want ldd to load the both words from time at once. 328 * To succeed we need to be quadword aligned. 329 * The sparc already does that, and that it has worked so far is a fluke. 330 */ 331 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t)))); 332 volatile struct timeval mono_time; 333 334 /* 335 * The callout mechanism is based on the work of Adam M. Costello and 336 * George Varghese, published in a technical report entitled "Redesigning 337 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent 338 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe. 339 * 340 * The original work on the data structures used in this implementation 341 * was published by G. Varghese and A. Lauck in the paper "Hashed and 342 * Hierarchical Timing Wheels: Data Structures for the Efficient 343 * Implementation of a Timer Facility" in the Proceedings of the 11th 344 * ACM Annual Symposium on Operating System Principles, Austin, Texas, 345 * November 1987. 346 */ 347 struct callout_queue *callwheel; 348 int callwheelsize, callwheelbits, callwheelmask; 349 350 static struct callout *nextsoftcheck; /* next callout to be checked */ 351 352 #ifdef CALLWHEEL_STATS 353 int callwheel_collisions; /* number of hash collisions */ 354 int callwheel_maxlength; /* length of the longest hash chain */ 355 int *callwheel_sizes; /* per-bucket length count */ 356 u_int64_t callwheel_count; /* # callouts currently */ 357 u_int64_t callwheel_established; /* # callouts established */ 358 u_int64_t callwheel_fired; /* # callouts that fired */ 359 u_int64_t callwheel_disestablished; /* # callouts disestablished */ 360 u_int64_t callwheel_changed; /* # callouts changed */ 361 u_int64_t callwheel_softclocks; /* # times softclock() called */ 362 u_int64_t callwheel_softchecks; /* # checks per softclock() */ 363 u_int64_t callwheel_softempty; /* # empty buckets seen */ 364 #endif /* CALLWHEEL_STATS */ 365 366 /* 367 * This value indicates the number of consecutive callouts that 368 * will be checked before we allow interrupts to have a chance 369 * again. 370 */ 371 #ifndef MAX_SOFTCLOCK_STEPS 372 #define MAX_SOFTCLOCK_STEPS 100 373 #endif 374 375 struct simplelock callwheel_slock; 376 377 #define CALLWHEEL_LOCK(s) \ 378 do { \ 379 s = splclock(); \ 380 simple_lock(&callwheel_slock); \ 381 } while (0) 382 383 #define CALLWHEEL_UNLOCK(s) \ 384 do { \ 385 simple_unlock(&callwheel_slock); \ 386 splx(s); \ 387 } while (0) 388 389 static void callout_stop_locked(struct callout *); 390 391 /* 392 * These are both protected by callwheel_lock. 393 * XXX SHOULD BE STATIC!! 394 */ 395 u_int64_t hardclock_ticks, softclock_ticks; 396 397 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 398 void softclock(void *); 399 void *softclock_si; 400 #endif 401 402 /* 403 * Initialize clock frequencies and start both clocks running. 404 */ 405 void 406 initclocks(void) 407 { 408 int i; 409 410 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 411 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL); 412 if (softclock_si == NULL) 413 panic("initclocks: unable to register softclock intr"); 414 #endif 415 416 /* 417 * Set divisors to 1 (normal case) and let the machine-specific 418 * code do its bit. 419 */ 420 psdiv = 1; 421 cpu_initclocks(); 422 423 /* 424 * Compute profhz/stathz/rrticks, and fix profhz if needed. 425 */ 426 i = stathz ? stathz : hz; 427 if (profhz == 0) 428 profhz = i; 429 psratio = profhz / i; 430 rrticks = hz / 10; 431 432 #ifdef NTP 433 switch (hz) { 434 case 1: 435 shifthz = SHIFT_SCALE - 0; 436 break; 437 case 2: 438 shifthz = SHIFT_SCALE - 1; 439 break; 440 case 4: 441 shifthz = SHIFT_SCALE - 2; 442 break; 443 case 8: 444 shifthz = SHIFT_SCALE - 3; 445 break; 446 case 16: 447 shifthz = SHIFT_SCALE - 4; 448 break; 449 case 32: 450 shifthz = SHIFT_SCALE - 5; 451 break; 452 case 60: 453 case 64: 454 shifthz = SHIFT_SCALE - 6; 455 break; 456 case 96: 457 case 100: 458 case 128: 459 shifthz = SHIFT_SCALE - 7; 460 break; 461 case 256: 462 shifthz = SHIFT_SCALE - 8; 463 break; 464 case 512: 465 shifthz = SHIFT_SCALE - 9; 466 break; 467 case 1000: 468 case 1024: 469 shifthz = SHIFT_SCALE - 10; 470 break; 471 case 1200: 472 case 2048: 473 shifthz = SHIFT_SCALE - 11; 474 break; 475 case 4096: 476 shifthz = SHIFT_SCALE - 12; 477 break; 478 case 8192: 479 shifthz = SHIFT_SCALE - 13; 480 break; 481 case 16384: 482 shifthz = SHIFT_SCALE - 14; 483 break; 484 case 32768: 485 shifthz = SHIFT_SCALE - 15; 486 break; 487 case 65536: 488 shifthz = SHIFT_SCALE - 16; 489 break; 490 default: 491 panic("weird hz"); 492 } 493 if (fixtick == 0) { 494 /* 495 * Give MD code a chance to set this to a better 496 * value; but, if it doesn't, we should. 497 */ 498 fixtick = (1000000 - (hz*tick)); 499 } 500 #endif 501 } 502 503 /* 504 * The real-time timer, interrupting hz times per second. 505 */ 506 void 507 hardclock(struct clockframe *frame) 508 { 509 struct proc *p; 510 int delta; 511 extern int tickdelta; 512 extern long timedelta; 513 struct cpu_info *ci = curcpu(); 514 #ifdef NTP 515 int time_update; 516 int ltemp; 517 #endif 518 519 p = curproc; 520 if (p) { 521 struct pstats *pstats; 522 523 /* 524 * Run current process's virtual and profile time, as needed. 525 */ 526 pstats = p->p_stats; 527 if (CLKF_USERMODE(frame) && 528 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 529 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 530 psignal(p, SIGVTALRM); 531 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 532 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 533 psignal(p, SIGPROF); 534 } 535 536 /* 537 * If no separate statistics clock is available, run it from here. 538 */ 539 if (stathz == 0) 540 statclock(frame); 541 if ((--ci->ci_schedstate.spc_rrticks) <= 0) 542 roundrobin(ci); 543 544 #if defined(MULTIPROCESSOR) 545 /* 546 * If we are not the primary CPU, we're not allowed to do 547 * any more work. 548 */ 549 if (CPU_IS_PRIMARY(ci) == 0) 550 return; 551 #endif 552 553 /* 554 * Increment the time-of-day. The increment is normally just 555 * ``tick''. If the machine is one which has a clock frequency 556 * such that ``hz'' would not divide the second evenly into 557 * milliseconds, a periodic adjustment must be applied. Finally, 558 * if we are still adjusting the time (see adjtime()), 559 * ``tickdelta'' may also be added in. 560 */ 561 delta = tick; 562 563 #ifndef NTP 564 if (tickfix) { 565 tickfixcnt += tickfix; 566 if (tickfixcnt >= tickfixinterval) { 567 delta++; 568 tickfixcnt -= tickfixinterval; 569 } 570 } 571 #endif /* !NTP */ 572 /* Imprecise 4bsd adjtime() handling */ 573 if (timedelta != 0) { 574 delta += tickdelta; 575 timedelta -= tickdelta; 576 } 577 578 #ifdef notyet 579 microset(); 580 #endif 581 582 #ifndef NTP 583 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 584 #endif 585 BUMPTIME(&mono_time, delta); 586 587 #ifdef NTP 588 time_update = delta; 589 590 /* 591 * Compute the phase adjustment. If the low-order bits 592 * (time_phase) of the update overflow, bump the high-order bits 593 * (time_update). 594 */ 595 time_phase += time_adj; 596 if (time_phase <= -FINEUSEC) { 597 ltemp = -time_phase >> SHIFT_SCALE; 598 time_phase += ltemp << SHIFT_SCALE; 599 time_update -= ltemp; 600 } else if (time_phase >= FINEUSEC) { 601 ltemp = time_phase >> SHIFT_SCALE; 602 time_phase -= ltemp << SHIFT_SCALE; 603 time_update += ltemp; 604 } 605 606 #ifdef HIGHBALL 607 /* 608 * If the HIGHBALL board is installed, we need to adjust the 609 * external clock offset in order to close the hardware feedback 610 * loop. This will adjust the external clock phase and frequency 611 * in small amounts. The additional phase noise and frequency 612 * wander this causes should be minimal. We also need to 613 * discipline the kernel time variable, since the PLL is used to 614 * discipline the external clock. If the Highball board is not 615 * present, we discipline kernel time with the PLL as usual. We 616 * assume that the external clock phase adjustment (time_update) 617 * and kernel phase adjustment (clock_cpu) are less than the 618 * value of tick. 619 */ 620 clock_offset.tv_usec += time_update; 621 if (clock_offset.tv_usec >= 1000000) { 622 clock_offset.tv_sec++; 623 clock_offset.tv_usec -= 1000000; 624 } 625 if (clock_offset.tv_usec < 0) { 626 clock_offset.tv_sec--; 627 clock_offset.tv_usec += 1000000; 628 } 629 time.tv_usec += clock_cpu; 630 clock_cpu = 0; 631 #else 632 time.tv_usec += time_update; 633 #endif /* HIGHBALL */ 634 635 /* 636 * On rollover of the second the phase adjustment to be used for 637 * the next second is calculated. Also, the maximum error is 638 * increased by the tolerance. If the PPS frequency discipline 639 * code is present, the phase is increased to compensate for the 640 * CPU clock oscillator frequency error. 641 * 642 * On a 32-bit machine and given parameters in the timex.h 643 * header file, the maximum phase adjustment is +-512 ms and 644 * maximum frequency offset is a tad less than) +-512 ppm. On a 645 * 64-bit machine, you shouldn't need to ask. 646 */ 647 if (time.tv_usec >= 1000000) { 648 time.tv_usec -= 1000000; 649 time.tv_sec++; 650 time_maxerror += time_tolerance >> SHIFT_USEC; 651 652 /* 653 * Leap second processing. If in leap-insert state at 654 * the end of the day, the system clock is set back one 655 * second; if in leap-delete state, the system clock is 656 * set ahead one second. The microtime() routine or 657 * external clock driver will insure that reported time 658 * is always monotonic. The ugly divides should be 659 * replaced. 660 */ 661 switch (time_state) { 662 case TIME_OK: 663 if (time_status & STA_INS) 664 time_state = TIME_INS; 665 else if (time_status & STA_DEL) 666 time_state = TIME_DEL; 667 break; 668 669 case TIME_INS: 670 if (time.tv_sec % 86400 == 0) { 671 time.tv_sec--; 672 time_state = TIME_OOP; 673 } 674 break; 675 676 case TIME_DEL: 677 if ((time.tv_sec + 1) % 86400 == 0) { 678 time.tv_sec++; 679 time_state = TIME_WAIT; 680 } 681 break; 682 683 case TIME_OOP: 684 time_state = TIME_WAIT; 685 break; 686 687 case TIME_WAIT: 688 if (!(time_status & (STA_INS | STA_DEL))) 689 time_state = TIME_OK; 690 break; 691 } 692 693 /* 694 * Compute the phase adjustment for the next second. In 695 * PLL mode, the offset is reduced by a fixed factor 696 * times the time constant. In FLL mode the offset is 697 * used directly. In either mode, the maximum phase 698 * adjustment for each second is clamped so as to spread 699 * the adjustment over not more than the number of 700 * seconds between updates. 701 */ 702 if (time_offset < 0) { 703 ltemp = -time_offset; 704 if (!(time_status & STA_FLL)) 705 ltemp >>= SHIFT_KG + time_constant; 706 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 707 ltemp = (MAXPHASE / MINSEC) << 708 SHIFT_UPDATE; 709 time_offset += ltemp; 710 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 711 } else if (time_offset > 0) { 712 ltemp = time_offset; 713 if (!(time_status & STA_FLL)) 714 ltemp >>= SHIFT_KG + time_constant; 715 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 716 ltemp = (MAXPHASE / MINSEC) << 717 SHIFT_UPDATE; 718 time_offset -= ltemp; 719 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 720 } else 721 time_adj = 0; 722 723 /* 724 * Compute the frequency estimate and additional phase 725 * adjustment due to frequency error for the next 726 * second. When the PPS signal is engaged, gnaw on the 727 * watchdog counter and update the frequency computed by 728 * the pll and the PPS signal. 729 */ 730 #ifdef PPS_SYNC 731 pps_valid++; 732 if (pps_valid == PPS_VALID) { 733 pps_jitter = MAXTIME; 734 pps_stabil = MAXFREQ; 735 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 736 STA_PPSWANDER | STA_PPSERROR); 737 } 738 ltemp = time_freq + pps_freq; 739 #else 740 ltemp = time_freq; 741 #endif /* PPS_SYNC */ 742 743 if (ltemp < 0) 744 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 745 else 746 time_adj += ltemp >> (SHIFT_USEC - shifthz); 747 time_adj += (long)fixtick << shifthz; 748 749 /* 750 * When the CPU clock oscillator frequency is not a 751 * power of 2 in Hz, shifthz is only an approximate 752 * scale factor. 753 * 754 * To determine the adjustment, you can do the following: 755 * bc -q 756 * scale=24 757 * obase=2 758 * idealhz/realhz 759 * where `idealhz' is the next higher power of 2, and `realhz' 760 * is the actual value. You may need to factor this result 761 * into a sequence of 2 multipliers to get better precision. 762 * 763 * Likewise, the error can be calculated with (e.g. for 100Hz): 764 * bc -q 765 * scale=24 766 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz 767 * (and then multiply by 1000000 to get ppm). 768 */ 769 switch (hz) { 770 case 60: 771 /* A factor of 1.000100010001 gives about 15ppm 772 error. */ 773 if (time_adj < 0) { 774 time_adj -= (-time_adj >> 4); 775 time_adj -= (-time_adj >> 8); 776 } else { 777 time_adj += (time_adj >> 4); 778 time_adj += (time_adj >> 8); 779 } 780 break; 781 782 case 96: 783 /* A factor of 1.0101010101 gives about 244ppm error. */ 784 if (time_adj < 0) { 785 time_adj -= (-time_adj >> 2); 786 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 787 } else { 788 time_adj += (time_adj >> 2); 789 time_adj += (time_adj >> 4) + (time_adj >> 8); 790 } 791 break; 792 793 case 100: 794 /* A factor of 1.010001111010111 gives about 1ppm 795 error. */ 796 if (time_adj < 0) { 797 time_adj -= (-time_adj >> 2) + (-time_adj >> 5); 798 time_adj += (-time_adj >> 10); 799 } else { 800 time_adj += (time_adj >> 2) + (time_adj >> 5); 801 time_adj -= (time_adj >> 10); 802 } 803 break; 804 805 case 1000: 806 /* A factor of 1.000001100010100001 gives about 50ppm 807 error. */ 808 if (time_adj < 0) { 809 time_adj -= (-time_adj >> 6) + (-time_adj >> 11); 810 time_adj -= (-time_adj >> 7); 811 } else { 812 time_adj += (time_adj >> 6) + (time_adj >> 11); 813 time_adj += (time_adj >> 7); 814 } 815 break; 816 817 case 1200: 818 /* A factor of 1.1011010011100001 gives about 64ppm 819 error. */ 820 if (time_adj < 0) { 821 time_adj -= (-time_adj >> 1) + (-time_adj >> 6); 822 time_adj -= (-time_adj >> 3) + (-time_adj >> 10); 823 } else { 824 time_adj += (time_adj >> 1) + (time_adj >> 6); 825 time_adj += (time_adj >> 3) + (time_adj >> 10); 826 } 827 break; 828 } 829 830 #ifdef EXT_CLOCK 831 /* 832 * If an external clock is present, it is necessary to 833 * discipline the kernel time variable anyway, since not 834 * all system components use the microtime() interface. 835 * Here, the time offset between the external clock and 836 * kernel time variable is computed every so often. 837 */ 838 clock_count++; 839 if (clock_count > CLOCK_INTERVAL) { 840 clock_count = 0; 841 microtime(&clock_ext); 842 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 843 delta.tv_usec = clock_ext.tv_usec - 844 time.tv_usec; 845 if (delta.tv_usec < 0) 846 delta.tv_sec--; 847 if (delta.tv_usec >= 500000) { 848 delta.tv_usec -= 1000000; 849 delta.tv_sec++; 850 } 851 if (delta.tv_usec < -500000) { 852 delta.tv_usec += 1000000; 853 delta.tv_sec--; 854 } 855 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 856 delta.tv_usec > MAXPHASE) || 857 delta.tv_sec < -1 || (delta.tv_sec == -1 && 858 delta.tv_usec < -MAXPHASE)) { 859 time = clock_ext; 860 delta.tv_sec = 0; 861 delta.tv_usec = 0; 862 } 863 #ifdef HIGHBALL 864 clock_cpu = delta.tv_usec; 865 #else /* HIGHBALL */ 866 hardupdate(delta.tv_usec); 867 #endif /* HIGHBALL */ 868 } 869 #endif /* EXT_CLOCK */ 870 } 871 872 #endif /* NTP */ 873 874 /* 875 * Process callouts at a very low cpu priority, so we don't keep the 876 * relatively high clock interrupt priority any longer than necessary. 877 */ 878 simple_lock(&callwheel_slock); /* already at splclock() */ 879 hardclock_ticks++; 880 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) { 881 simple_unlock(&callwheel_slock); 882 if (CLKF_BASEPRI(frame)) { 883 /* 884 * Save the overhead of a software interrupt; 885 * it will happen as soon as we return, so do 886 * it now. 887 * 888 * NOTE: If we're at ``base priority'', softclock() 889 * was not already running. 890 */ 891 spllowersoftclock(); 892 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE); 893 softclock(NULL); 894 KERNEL_UNLOCK(); 895 } else { 896 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 897 softintr_schedule(softclock_si); 898 #else 899 setsoftclock(); 900 #endif 901 } 902 return; 903 } else if (softclock_running == 0 && 904 (softclock_ticks + 1) == hardclock_ticks) { 905 softclock_ticks++; 906 } 907 simple_unlock(&callwheel_slock); 908 } 909 910 /* 911 * Software (low priority) clock interrupt. 912 * Run periodic events from timeout queue. 913 */ 914 /*ARGSUSED*/ 915 void 916 softclock(void *v) 917 { 918 struct callout_queue *bucket; 919 struct callout *c; 920 void (*func)(void *); 921 void *arg; 922 int s, idx; 923 int steps = 0; 924 925 CALLWHEEL_LOCK(s); 926 927 softclock_running = 1; 928 929 #ifdef CALLWHEEL_STATS 930 callwheel_softclocks++; 931 #endif 932 933 while (softclock_ticks != hardclock_ticks) { 934 softclock_ticks++; 935 idx = (int)(softclock_ticks & callwheelmask); 936 bucket = &callwheel[idx]; 937 c = TAILQ_FIRST(bucket); 938 #ifdef CALLWHEEL_STATS 939 if (c == NULL) 940 callwheel_softempty++; 941 #endif 942 while (c != NULL) { 943 #ifdef CALLWHEEL_STATS 944 callwheel_softchecks++; 945 #endif 946 if (c->c_time != softclock_ticks) { 947 c = TAILQ_NEXT(c, c_link); 948 if (++steps >= MAX_SOFTCLOCK_STEPS) { 949 nextsoftcheck = c; 950 /* Give interrupts a chance. */ 951 CALLWHEEL_UNLOCK(s); 952 CALLWHEEL_LOCK(s); 953 c = nextsoftcheck; 954 steps = 0; 955 } 956 } else { 957 nextsoftcheck = TAILQ_NEXT(c, c_link); 958 TAILQ_REMOVE(bucket, c, c_link); 959 #ifdef CALLWHEEL_STATS 960 callwheel_sizes[idx]--; 961 callwheel_fired++; 962 callwheel_count--; 963 #endif 964 func = c->c_func; 965 arg = c->c_arg; 966 c->c_func = NULL; 967 c->c_flags &= ~CALLOUT_PENDING; 968 CALLWHEEL_UNLOCK(s); 969 (*func)(arg); 970 CALLWHEEL_LOCK(s); 971 steps = 0; 972 c = nextsoftcheck; 973 } 974 } 975 } 976 nextsoftcheck = NULL; 977 softclock_running = 0; 978 CALLWHEEL_UNLOCK(s); 979 } 980 981 /* 982 * callout_setsize: 983 * 984 * Determine how many callwheels are necessary and 985 * set hash mask. Called from allocsys(). 986 */ 987 void 988 callout_setsize(void) 989 { 990 991 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1) 992 /* loop */ ; 993 callwheelmask = callwheelsize - 1; 994 } 995 996 /* 997 * callout_startup: 998 * 999 * Initialize the callwheel buckets. 1000 */ 1001 void 1002 callout_startup(void) 1003 { 1004 int i; 1005 1006 for (i = 0; i < callwheelsize; i++) 1007 TAILQ_INIT(&callwheel[i]); 1008 1009 simple_lock_init(&callwheel_slock); 1010 } 1011 1012 /* 1013 * callout_init: 1014 * 1015 * Initialize a callout structure so that it can be used 1016 * by callout_reset() and callout_stop(). 1017 */ 1018 void 1019 callout_init(struct callout *c) 1020 { 1021 1022 memset(c, 0, sizeof(*c)); 1023 } 1024 1025 /* 1026 * callout_reset: 1027 * 1028 * Establish or change a timeout. 1029 */ 1030 void 1031 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg) 1032 { 1033 struct callout_queue *bucket; 1034 int s; 1035 1036 if (ticks <= 0) 1037 ticks = 1; 1038 1039 CALLWHEEL_LOCK(s); 1040 1041 /* 1042 * If this callout's timer is already running, cancel it 1043 * before we modify it. 1044 */ 1045 if (c->c_flags & CALLOUT_PENDING) { 1046 callout_stop_locked(c); /* Already locked */ 1047 #ifdef CALLWHEEL_STATS 1048 callwheel_changed++; 1049 #endif 1050 } 1051 1052 c->c_arg = arg; 1053 c->c_func = func; 1054 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING; 1055 c->c_time = hardclock_ticks + ticks; 1056 1057 bucket = &callwheel[c->c_time & callwheelmask]; 1058 1059 #ifdef CALLWHEEL_STATS 1060 if (TAILQ_FIRST(bucket) != NULL) 1061 callwheel_collisions++; 1062 #endif 1063 1064 TAILQ_INSERT_TAIL(bucket, c, c_link); 1065 1066 #ifdef CALLWHEEL_STATS 1067 callwheel_count++; 1068 callwheel_established++; 1069 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength) 1070 callwheel_maxlength = 1071 callwheel_sizes[c->c_time & callwheelmask]; 1072 #endif 1073 1074 CALLWHEEL_UNLOCK(s); 1075 } 1076 1077 /* 1078 * callout_stop_locked: 1079 * 1080 * Disestablish a timeout. Callwheel is locked. 1081 */ 1082 static void 1083 callout_stop_locked(struct callout *c) 1084 { 1085 1086 /* 1087 * Don't attempt to delete a callout that's not on the queue. 1088 */ 1089 if ((c->c_flags & CALLOUT_PENDING) == 0) { 1090 c->c_flags &= ~CALLOUT_ACTIVE; 1091 return; 1092 } 1093 1094 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); 1095 1096 if (nextsoftcheck == c) 1097 nextsoftcheck = TAILQ_NEXT(c, c_link); 1098 1099 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link); 1100 #ifdef CALLWHEEL_STATS 1101 callwheel_count--; 1102 callwheel_disestablished++; 1103 callwheel_sizes[c->c_time & callwheelmask]--; 1104 #endif 1105 1106 c->c_func = NULL; 1107 } 1108 1109 /* 1110 * callout_stop: 1111 * 1112 * Disestablish a timeout. Callwheel is unlocked. This is 1113 * the standard entry point. 1114 */ 1115 void 1116 callout_stop(struct callout *c) 1117 { 1118 int s; 1119 1120 CALLWHEEL_LOCK(s); 1121 callout_stop_locked(c); 1122 CALLWHEEL_UNLOCK(s); 1123 } 1124 1125 #ifdef CALLWHEEL_STATS 1126 /* 1127 * callout_showstats: 1128 * 1129 * Display callout statistics. Call it from DDB. 1130 */ 1131 void 1132 callout_showstats(void) 1133 { 1134 u_int64_t curticks; 1135 int s; 1136 1137 s = splclock(); 1138 curticks = softclock_ticks; 1139 splx(s); 1140 1141 printf("Callwheel statistics:\n"); 1142 printf("\tCallouts currently queued: %llu\n", callwheel_count); 1143 printf("\tCallouts established: %llu\n", callwheel_established); 1144 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished); 1145 if (callwheel_changed != 0) 1146 printf("\t\tOf those, %llu were changes\n", callwheel_changed); 1147 printf("\tCallouts that fired: %llu\n", callwheel_fired); 1148 printf("\tNumber of buckets: %d\n", callwheelsize); 1149 printf("\tNumber of hash collisions: %d\n", callwheel_collisions); 1150 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength); 1151 printf("\tSoftclocks: %llu, Softchecks: %llu\n", 1152 callwheel_softclocks, callwheel_softchecks); 1153 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty); 1154 } 1155 #endif 1156 1157 /* 1158 * Compute number of hz until specified time. Used to compute second 1159 * argument to callout_reset() from an absolute time. 1160 */ 1161 int 1162 hzto(struct timeval *tv) 1163 { 1164 unsigned long ticks; 1165 long sec, usec; 1166 int s; 1167 1168 /* 1169 * If the number of usecs in the whole seconds part of the time 1170 * difference fits in a long, then the total number of usecs will 1171 * fit in an unsigned long. Compute the total and convert it to 1172 * ticks, rounding up and adding 1 to allow for the current tick 1173 * to expire. Rounding also depends on unsigned long arithmetic 1174 * to avoid overflow. 1175 * 1176 * Otherwise, if the number of ticks in the whole seconds part of 1177 * the time difference fits in a long, then convert the parts to 1178 * ticks separately and add, using similar rounding methods and 1179 * overflow avoidance. This method would work in the previous 1180 * case, but it is slightly slower and assume that hz is integral. 1181 * 1182 * Otherwise, round the time difference down to the maximum 1183 * representable value. 1184 * 1185 * If ints are 32-bit, then the maximum value for any timeout in 1186 * 10ms ticks is 248 days. 1187 */ 1188 s = splclock(); 1189 sec = tv->tv_sec - time.tv_sec; 1190 usec = tv->tv_usec - time.tv_usec; 1191 splx(s); 1192 1193 if (usec < 0) { 1194 sec--; 1195 usec += 1000000; 1196 } 1197 1198 if (sec < 0 || (sec == 0 && usec <= 0)) { 1199 /* 1200 * Would expire now or in the past. Return 0 ticks. 1201 * This is different from the legacy hzto() interface, 1202 * and callers need to check for it. 1203 */ 1204 ticks = 0; 1205 } else if (sec <= (LONG_MAX / 1000000)) 1206 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1)) 1207 / tick) + 1; 1208 else if (sec <= (LONG_MAX / hz)) 1209 ticks = (sec * hz) + 1210 (((unsigned long)usec + (tick - 1)) / tick) + 1; 1211 else 1212 ticks = LONG_MAX; 1213 1214 if (ticks > INT_MAX) 1215 ticks = INT_MAX; 1216 1217 return ((int)ticks); 1218 } 1219 1220 /* 1221 * Start profiling on a process. 1222 * 1223 * Kernel profiling passes proc0 which never exits and hence 1224 * keeps the profile clock running constantly. 1225 */ 1226 void 1227 startprofclock(struct proc *p) 1228 { 1229 1230 if ((p->p_flag & P_PROFIL) == 0) { 1231 p->p_flag |= P_PROFIL; 1232 if (++profprocs == 1 && stathz != 0) 1233 psdiv = psratio; 1234 } 1235 } 1236 1237 /* 1238 * Stop profiling on a process. 1239 */ 1240 void 1241 stopprofclock(struct proc *p) 1242 { 1243 1244 if (p->p_flag & P_PROFIL) { 1245 p->p_flag &= ~P_PROFIL; 1246 if (--profprocs == 0 && stathz != 0) 1247 psdiv = 1; 1248 } 1249 } 1250 1251 /* 1252 * Statistics clock. Grab profile sample, and if divider reaches 0, 1253 * do process and kernel statistics. 1254 */ 1255 void 1256 statclock(struct clockframe *frame) 1257 { 1258 #ifdef GPROF 1259 struct gmonparam *g; 1260 intptr_t i; 1261 #endif 1262 struct cpu_info *ci = curcpu(); 1263 struct schedstate_percpu *spc = &ci->ci_schedstate; 1264 struct proc *p; 1265 1266 /* 1267 * Notice changes in divisor frequency, and adjust clock 1268 * frequency accordingly. 1269 */ 1270 if (spc->spc_psdiv != psdiv) { 1271 spc->spc_psdiv = psdiv; 1272 spc->spc_pscnt = psdiv; 1273 if (psdiv == 1) { 1274 setstatclockrate(stathz); 1275 } else { 1276 setstatclockrate(profhz); 1277 } 1278 } 1279 p = curproc; 1280 if (CLKF_USERMODE(frame)) { 1281 if (p->p_flag & P_PROFIL) 1282 addupc_intr(p, CLKF_PC(frame)); 1283 if (--spc->spc_pscnt > 0) 1284 return; 1285 /* 1286 * Came from user mode; CPU was in user state. 1287 * If this process is being profiled record the tick. 1288 */ 1289 p->p_uticks++; 1290 if (p->p_nice > NZERO) 1291 spc->spc_cp_time[CP_NICE]++; 1292 else 1293 spc->spc_cp_time[CP_USER]++; 1294 } else { 1295 #ifdef GPROF 1296 /* 1297 * Kernel statistics are just like addupc_intr, only easier. 1298 */ 1299 g = &_gmonparam; 1300 if (g->state == GMON_PROF_ON) { 1301 i = CLKF_PC(frame) - g->lowpc; 1302 if (i < g->textsize) { 1303 i /= HISTFRACTION * sizeof(*g->kcount); 1304 g->kcount[i]++; 1305 } 1306 } 1307 #endif 1308 #ifdef PROC_PC 1309 if (p && p->p_flag & P_PROFIL) 1310 addupc_intr(p, PROC_PC(p)); 1311 #endif 1312 if (--spc->spc_pscnt > 0) 1313 return; 1314 /* 1315 * Came from kernel mode, so we were: 1316 * - handling an interrupt, 1317 * - doing syscall or trap work on behalf of the current 1318 * user process, or 1319 * - spinning in the idle loop. 1320 * Whichever it is, charge the time as appropriate. 1321 * Note that we charge interrupts to the current process, 1322 * regardless of whether they are ``for'' that process, 1323 * so that we know how much of its real time was spent 1324 * in ``non-process'' (i.e., interrupt) work. 1325 */ 1326 if (CLKF_INTR(frame)) { 1327 if (p != NULL) 1328 p->p_iticks++; 1329 spc->spc_cp_time[CP_INTR]++; 1330 } else if (p != NULL) { 1331 p->p_sticks++; 1332 spc->spc_cp_time[CP_SYS]++; 1333 } else 1334 spc->spc_cp_time[CP_IDLE]++; 1335 } 1336 spc->spc_pscnt = psdiv; 1337 1338 if (p != NULL) { 1339 ++p->p_cpticks; 1340 /* 1341 * If no separate schedclock is provided, call it here 1342 * at ~~12-25 Hz, ~~16 Hz is best 1343 */ 1344 if (schedhz == 0) 1345 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0) 1346 schedclock(p); 1347 } 1348 } 1349 1350 1351 #ifdef NTP /* NTP phase-locked loop in kernel */ 1352 1353 /* 1354 * hardupdate() - local clock update 1355 * 1356 * This routine is called by ntp_adjtime() to update the local clock 1357 * phase and frequency. The implementation is of an adaptive-parameter, 1358 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1359 * time and frequency offset estimates for each call. If the kernel PPS 1360 * discipline code is configured (PPS_SYNC), the PPS signal itself 1361 * determines the new time offset, instead of the calling argument. 1362 * Presumably, calls to ntp_adjtime() occur only when the caller 1363 * believes the local clock is valid within some bound (+-128 ms with 1364 * NTP). If the caller's time is far different than the PPS time, an 1365 * argument will ensue, and it's not clear who will lose. 1366 * 1367 * For uncompensated quartz crystal oscillatores and nominal update 1368 * intervals less than 1024 s, operation should be in phase-lock mode 1369 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1370 * intervals greater than thiss, operation should be in frequency-lock 1371 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1372 * 1373 * Note: splclock() is in effect. 1374 */ 1375 void 1376 hardupdate(long offset) 1377 { 1378 long ltemp, mtemp; 1379 1380 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1381 return; 1382 ltemp = offset; 1383 #ifdef PPS_SYNC 1384 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1385 ltemp = pps_offset; 1386 #endif /* PPS_SYNC */ 1387 1388 /* 1389 * Scale the phase adjustment and clamp to the operating range. 1390 */ 1391 if (ltemp > MAXPHASE) 1392 time_offset = MAXPHASE << SHIFT_UPDATE; 1393 else if (ltemp < -MAXPHASE) 1394 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1395 else 1396 time_offset = ltemp << SHIFT_UPDATE; 1397 1398 /* 1399 * Select whether the frequency is to be controlled and in which 1400 * mode (PLL or FLL). Clamp to the operating range. Ugly 1401 * multiply/divide should be replaced someday. 1402 */ 1403 if (time_status & STA_FREQHOLD || time_reftime == 0) 1404 time_reftime = time.tv_sec; 1405 mtemp = time.tv_sec - time_reftime; 1406 time_reftime = time.tv_sec; 1407 if (time_status & STA_FLL) { 1408 if (mtemp >= MINSEC) { 1409 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1410 SHIFT_UPDATE)); 1411 if (ltemp < 0) 1412 time_freq -= -ltemp >> SHIFT_KH; 1413 else 1414 time_freq += ltemp >> SHIFT_KH; 1415 } 1416 } else { 1417 if (mtemp < MAXSEC) { 1418 ltemp *= mtemp; 1419 if (ltemp < 0) 1420 time_freq -= -ltemp >> (time_constant + 1421 time_constant + SHIFT_KF - 1422 SHIFT_USEC); 1423 else 1424 time_freq += ltemp >> (time_constant + 1425 time_constant + SHIFT_KF - 1426 SHIFT_USEC); 1427 } 1428 } 1429 if (time_freq > time_tolerance) 1430 time_freq = time_tolerance; 1431 else if (time_freq < -time_tolerance) 1432 time_freq = -time_tolerance; 1433 } 1434 1435 #ifdef PPS_SYNC 1436 /* 1437 * hardpps() - discipline CPU clock oscillator to external PPS signal 1438 * 1439 * This routine is called at each PPS interrupt in order to discipline 1440 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1441 * and leaves it in a handy spot for the hardclock() routine. It 1442 * integrates successive PPS phase differences and calculates the 1443 * frequency offset. This is used in hardclock() to discipline the CPU 1444 * clock oscillator so that intrinsic frequency error is cancelled out. 1445 * The code requires the caller to capture the time and hardware counter 1446 * value at the on-time PPS signal transition. 1447 * 1448 * Note that, on some Unix systems, this routine runs at an interrupt 1449 * priority level higher than the timer interrupt routine hardclock(). 1450 * Therefore, the variables used are distinct from the hardclock() 1451 * variables, except for certain exceptions: The PPS frequency pps_freq 1452 * and phase pps_offset variables are determined by this routine and 1453 * updated atomically. The time_tolerance variable can be considered a 1454 * constant, since it is infrequently changed, and then only when the 1455 * PPS signal is disabled. The watchdog counter pps_valid is updated 1456 * once per second by hardclock() and is atomically cleared in this 1457 * routine. 1458 */ 1459 void 1460 hardpps(struct timeval *tvp, /* time at PPS */ 1461 long usec /* hardware counter at PPS */) 1462 { 1463 long u_usec, v_usec, bigtick; 1464 long cal_sec, cal_usec; 1465 1466 /* 1467 * An occasional glitch can be produced when the PPS interrupt 1468 * occurs in the hardclock() routine before the time variable is 1469 * updated. Here the offset is discarded when the difference 1470 * between it and the last one is greater than tick/2, but not 1471 * if the interval since the first discard exceeds 30 s. 1472 */ 1473 time_status |= STA_PPSSIGNAL; 1474 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1475 pps_valid = 0; 1476 u_usec = -tvp->tv_usec; 1477 if (u_usec < -500000) 1478 u_usec += 1000000; 1479 v_usec = pps_offset - u_usec; 1480 if (v_usec < 0) 1481 v_usec = -v_usec; 1482 if (v_usec > (tick >> 1)) { 1483 if (pps_glitch > MAXGLITCH) { 1484 pps_glitch = 0; 1485 pps_tf[2] = u_usec; 1486 pps_tf[1] = u_usec; 1487 } else { 1488 pps_glitch++; 1489 u_usec = pps_offset; 1490 } 1491 } else 1492 pps_glitch = 0; 1493 1494 /* 1495 * A three-stage median filter is used to help deglitch the pps 1496 * time. The median sample becomes the time offset estimate; the 1497 * difference between the other two samples becomes the time 1498 * dispersion (jitter) estimate. 1499 */ 1500 pps_tf[2] = pps_tf[1]; 1501 pps_tf[1] = pps_tf[0]; 1502 pps_tf[0] = u_usec; 1503 if (pps_tf[0] > pps_tf[1]) { 1504 if (pps_tf[1] > pps_tf[2]) { 1505 pps_offset = pps_tf[1]; /* 0 1 2 */ 1506 v_usec = pps_tf[0] - pps_tf[2]; 1507 } else if (pps_tf[2] > pps_tf[0]) { 1508 pps_offset = pps_tf[0]; /* 2 0 1 */ 1509 v_usec = pps_tf[2] - pps_tf[1]; 1510 } else { 1511 pps_offset = pps_tf[2]; /* 0 2 1 */ 1512 v_usec = pps_tf[0] - pps_tf[1]; 1513 } 1514 } else { 1515 if (pps_tf[1] < pps_tf[2]) { 1516 pps_offset = pps_tf[1]; /* 2 1 0 */ 1517 v_usec = pps_tf[2] - pps_tf[0]; 1518 } else if (pps_tf[2] < pps_tf[0]) { 1519 pps_offset = pps_tf[0]; /* 1 0 2 */ 1520 v_usec = pps_tf[1] - pps_tf[2]; 1521 } else { 1522 pps_offset = pps_tf[2]; /* 1 2 0 */ 1523 v_usec = pps_tf[1] - pps_tf[0]; 1524 } 1525 } 1526 if (v_usec > MAXTIME) 1527 pps_jitcnt++; 1528 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1529 if (v_usec < 0) 1530 pps_jitter -= -v_usec >> PPS_AVG; 1531 else 1532 pps_jitter += v_usec >> PPS_AVG; 1533 if (pps_jitter > (MAXTIME >> 1)) 1534 time_status |= STA_PPSJITTER; 1535 1536 /* 1537 * During the calibration interval adjust the starting time when 1538 * the tick overflows. At the end of the interval compute the 1539 * duration of the interval and the difference of the hardware 1540 * counters at the beginning and end of the interval. This code 1541 * is deliciously complicated by the fact valid differences may 1542 * exceed the value of tick when using long calibration 1543 * intervals and small ticks. Note that the counter can be 1544 * greater than tick if caught at just the wrong instant, but 1545 * the values returned and used here are correct. 1546 */ 1547 bigtick = (long)tick << SHIFT_USEC; 1548 pps_usec -= pps_freq; 1549 if (pps_usec >= bigtick) 1550 pps_usec -= bigtick; 1551 if (pps_usec < 0) 1552 pps_usec += bigtick; 1553 pps_time.tv_sec++; 1554 pps_count++; 1555 if (pps_count < (1 << pps_shift)) 1556 return; 1557 pps_count = 0; 1558 pps_calcnt++; 1559 u_usec = usec << SHIFT_USEC; 1560 v_usec = pps_usec - u_usec; 1561 if (v_usec >= bigtick >> 1) 1562 v_usec -= bigtick; 1563 if (v_usec < -(bigtick >> 1)) 1564 v_usec += bigtick; 1565 if (v_usec < 0) 1566 v_usec = -(-v_usec >> pps_shift); 1567 else 1568 v_usec = v_usec >> pps_shift; 1569 pps_usec = u_usec; 1570 cal_sec = tvp->tv_sec; 1571 cal_usec = tvp->tv_usec; 1572 cal_sec -= pps_time.tv_sec; 1573 cal_usec -= pps_time.tv_usec; 1574 if (cal_usec < 0) { 1575 cal_usec += 1000000; 1576 cal_sec--; 1577 } 1578 pps_time = *tvp; 1579 1580 /* 1581 * Check for lost interrupts, noise, excessive jitter and 1582 * excessive frequency error. The number of timer ticks during 1583 * the interval may vary +-1 tick. Add to this a margin of one 1584 * tick for the PPS signal jitter and maximum frequency 1585 * deviation. If the limits are exceeded, the calibration 1586 * interval is reset to the minimum and we start over. 1587 */ 1588 u_usec = (long)tick << 1; 1589 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1590 || (cal_sec == 0 && cal_usec < u_usec)) 1591 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1592 pps_errcnt++; 1593 pps_shift = PPS_SHIFT; 1594 pps_intcnt = 0; 1595 time_status |= STA_PPSERROR; 1596 return; 1597 } 1598 1599 /* 1600 * A three-stage median filter is used to help deglitch the pps 1601 * frequency. The median sample becomes the frequency offset 1602 * estimate; the difference between the other two samples 1603 * becomes the frequency dispersion (stability) estimate. 1604 */ 1605 pps_ff[2] = pps_ff[1]; 1606 pps_ff[1] = pps_ff[0]; 1607 pps_ff[0] = v_usec; 1608 if (pps_ff[0] > pps_ff[1]) { 1609 if (pps_ff[1] > pps_ff[2]) { 1610 u_usec = pps_ff[1]; /* 0 1 2 */ 1611 v_usec = pps_ff[0] - pps_ff[2]; 1612 } else if (pps_ff[2] > pps_ff[0]) { 1613 u_usec = pps_ff[0]; /* 2 0 1 */ 1614 v_usec = pps_ff[2] - pps_ff[1]; 1615 } else { 1616 u_usec = pps_ff[2]; /* 0 2 1 */ 1617 v_usec = pps_ff[0] - pps_ff[1]; 1618 } 1619 } else { 1620 if (pps_ff[1] < pps_ff[2]) { 1621 u_usec = pps_ff[1]; /* 2 1 0 */ 1622 v_usec = pps_ff[2] - pps_ff[0]; 1623 } else if (pps_ff[2] < pps_ff[0]) { 1624 u_usec = pps_ff[0]; /* 1 0 2 */ 1625 v_usec = pps_ff[1] - pps_ff[2]; 1626 } else { 1627 u_usec = pps_ff[2]; /* 1 2 0 */ 1628 v_usec = pps_ff[1] - pps_ff[0]; 1629 } 1630 } 1631 1632 /* 1633 * Here the frequency dispersion (stability) is updated. If it 1634 * is less than one-fourth the maximum (MAXFREQ), the frequency 1635 * offset is updated as well, but clamped to the tolerance. It 1636 * will be processed later by the hardclock() routine. 1637 */ 1638 v_usec = (v_usec >> 1) - pps_stabil; 1639 if (v_usec < 0) 1640 pps_stabil -= -v_usec >> PPS_AVG; 1641 else 1642 pps_stabil += v_usec >> PPS_AVG; 1643 if (pps_stabil > MAXFREQ >> 2) { 1644 pps_stbcnt++; 1645 time_status |= STA_PPSWANDER; 1646 return; 1647 } 1648 if (time_status & STA_PPSFREQ) { 1649 if (u_usec < 0) { 1650 pps_freq -= -u_usec >> PPS_AVG; 1651 if (pps_freq < -time_tolerance) 1652 pps_freq = -time_tolerance; 1653 u_usec = -u_usec; 1654 } else { 1655 pps_freq += u_usec >> PPS_AVG; 1656 if (pps_freq > time_tolerance) 1657 pps_freq = time_tolerance; 1658 } 1659 } 1660 1661 /* 1662 * Here the calibration interval is adjusted. If the maximum 1663 * time difference is greater than tick / 4, reduce the interval 1664 * by half. If this is not the case for four consecutive 1665 * intervals, double the interval. 1666 */ 1667 if (u_usec << pps_shift > bigtick >> 2) { 1668 pps_intcnt = 0; 1669 if (pps_shift > PPS_SHIFT) 1670 pps_shift--; 1671 } else if (pps_intcnt >= 4) { 1672 pps_intcnt = 0; 1673 if (pps_shift < PPS_SHIFTMAX) 1674 pps_shift++; 1675 } else 1676 pps_intcnt++; 1677 } 1678 #endif /* PPS_SYNC */ 1679 #endif /* NTP */ 1680 1681 /* 1682 * Return information about system clocks. 1683 */ 1684 int 1685 sysctl_clockrate(void *where, size_t *sizep) 1686 { 1687 struct clockinfo clkinfo; 1688 1689 /* 1690 * Construct clockinfo structure. 1691 */ 1692 clkinfo.tick = tick; 1693 clkinfo.tickadj = tickadj; 1694 clkinfo.hz = hz; 1695 clkinfo.profhz = profhz; 1696 clkinfo.stathz = stathz ? stathz : hz; 1697 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1698 } 1699