xref: /netbsd-src/sys/kern/kern_clock.c (revision 7cc2f76925f078d01ddc9e640a98f4ccfc9f8c3b)
1 /*	$NetBSD: kern_clock.c,v 1.72 2000/12/10 19:29:31 mycroft Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*-
41  * Copyright (c) 1982, 1986, 1991, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
78  */
79 
80 #include "opt_ntp.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94 
95 #include <machine/cpu.h>
96 
97 #ifdef GPROF
98 #include <sys/gmon.h>
99 #endif
100 
101 /*
102  * Clock handling routines.
103  *
104  * This code is written to operate with two timers that run independently of
105  * each other.  The main clock, running hz times per second, is used to keep
106  * track of real time.  The second timer handles kernel and user profiling,
107  * and does resource use estimation.  If the second timer is programmable,
108  * it is randomized to avoid aliasing between the two clocks.  For example,
109  * the randomization prevents an adversary from always giving up the cpu
110  * just before its quantum expires.  Otherwise, it would never accumulate
111  * cpu ticks.  The mean frequency of the second timer is stathz.
112  *
113  * If no second timer exists, stathz will be zero; in this case we drive
114  * profiling and statistics off the main clock.  This WILL NOT be accurate;
115  * do not do it unless absolutely necessary.
116  *
117  * The statistics clock may (or may not) be run at a higher rate while
118  * profiling.  This profile clock runs at profhz.  We require that profhz
119  * be an integral multiple of stathz.
120  *
121  * If the statistics clock is running fast, it must be divided by the ratio
122  * profhz/stathz for statistics.  (For profiling, every tick counts.)
123  */
124 
125 #ifdef NTP	/* NTP phase-locked loop in kernel */
126 /*
127  * Phase/frequency-lock loop (PLL/FLL) definitions
128  *
129  * The following variables are read and set by the ntp_adjtime() system
130  * call.
131  *
132  * time_state shows the state of the system clock, with values defined
133  * in the timex.h header file.
134  *
135  * time_status shows the status of the system clock, with bits defined
136  * in the timex.h header file.
137  *
138  * time_offset is used by the PLL/FLL to adjust the system time in small
139  * increments.
140  *
141  * time_constant determines the bandwidth or "stiffness" of the PLL.
142  *
143  * time_tolerance determines maximum frequency error or tolerance of the
144  * CPU clock oscillator and is a property of the architecture; however,
145  * in principle it could change as result of the presence of external
146  * discipline signals, for instance.
147  *
148  * time_precision is usually equal to the kernel tick variable; however,
149  * in cases where a precision clock counter or external clock is
150  * available, the resolution can be much less than this and depend on
151  * whether the external clock is working or not.
152  *
153  * time_maxerror is initialized by a ntp_adjtime() call and increased by
154  * the kernel once each second to reflect the maximum error bound
155  * growth.
156  *
157  * time_esterror is set and read by the ntp_adjtime() call, but
158  * otherwise not used by the kernel.
159  */
160 int time_state = TIME_OK;	/* clock state */
161 int time_status = STA_UNSYNC;	/* clock status bits */
162 long time_offset = 0;		/* time offset (us) */
163 long time_constant = 0;		/* pll time constant */
164 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
165 long time_precision = 1;	/* clock precision (us) */
166 long time_maxerror = MAXPHASE;	/* maximum error (us) */
167 long time_esterror = MAXPHASE;	/* estimated error (us) */
168 
169 /*
170  * The following variables establish the state of the PLL/FLL and the
171  * residual time and frequency offset of the local clock. The scale
172  * factors are defined in the timex.h header file.
173  *
174  * time_phase and time_freq are the phase increment and the frequency
175  * increment, respectively, of the kernel time variable.
176  *
177  * time_freq is set via ntp_adjtime() from a value stored in a file when
178  * the synchronization daemon is first started. Its value is retrieved
179  * via ntp_adjtime() and written to the file about once per hour by the
180  * daemon.
181  *
182  * time_adj is the adjustment added to the value of tick at each timer
183  * interrupt and is recomputed from time_phase and time_freq at each
184  * seconds rollover.
185  *
186  * time_reftime is the second's portion of the system time at the last
187  * call to ntp_adjtime(). It is used to adjust the time_freq variable
188  * and to increase the time_maxerror as the time since last update
189  * increases.
190  */
191 long time_phase = 0;		/* phase offset (scaled us) */
192 long time_freq = 0;		/* frequency offset (scaled ppm) */
193 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
194 long time_reftime = 0;		/* time at last adjustment (s) */
195 
196 #ifdef PPS_SYNC
197 /*
198  * The following variables are used only if the kernel PPS discipline
199  * code is configured (PPS_SYNC). The scale factors are defined in the
200  * timex.h header file.
201  *
202  * pps_time contains the time at each calibration interval, as read by
203  * microtime(). pps_count counts the seconds of the calibration
204  * interval, the duration of which is nominally pps_shift in powers of
205  * two.
206  *
207  * pps_offset is the time offset produced by the time median filter
208  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209  * this filter.
210  *
211  * pps_freq is the frequency offset produced by the frequency median
212  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213  * by this filter.
214  *
215  * pps_usec is latched from a high resolution counter or external clock
216  * at pps_time. Here we want the hardware counter contents only, not the
217  * contents plus the time_tv.usec as usual.
218  *
219  * pps_valid counts the number of seconds since the last PPS update. It
220  * is used as a watchdog timer to disable the PPS discipline should the
221  * PPS signal be lost.
222  *
223  * pps_glitch counts the number of seconds since the beginning of an
224  * offset burst more than tick/2 from current nominal offset. It is used
225  * mainly to suppress error bursts due to priority conflicts between the
226  * PPS interrupt and timer interrupt.
227  *
228  * pps_intcnt counts the calibration intervals for use in the interval-
229  * adaptation algorithm. It's just too complicated for words.
230  */
231 struct timeval pps_time;	/* kernel time at last interval */
232 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
233 long pps_offset = 0;		/* pps time offset (us) */
234 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
235 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
236 long pps_freq = 0;		/* frequency offset (scaled ppm) */
237 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
238 long pps_usec = 0;		/* microsec counter at last interval */
239 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
240 int pps_glitch = 0;		/* pps signal glitch counter */
241 int pps_count = 0;		/* calibration interval counter (s) */
242 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
243 int pps_intcnt = 0;		/* intervals at current duration */
244 
245 /*
246  * PPS signal quality monitors
247  *
248  * pps_jitcnt counts the seconds that have been discarded because the
249  * jitter measured by the time median filter exceeds the limit MAXTIME
250  * (100 us).
251  *
252  * pps_calcnt counts the frequency calibration intervals, which are
253  * variable from 4 s to 256 s.
254  *
255  * pps_errcnt counts the calibration intervals which have been discarded
256  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257  * calibration interval jitter exceeds two ticks.
258  *
259  * pps_stbcnt counts the calibration intervals that have been discarded
260  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261  */
262 long pps_jitcnt = 0;		/* jitter limit exceeded */
263 long pps_calcnt = 0;		/* calibration intervals */
264 long pps_errcnt = 0;		/* calibration errors */
265 long pps_stbcnt = 0;		/* stability limit exceeded */
266 #endif /* PPS_SYNC */
267 
268 #ifdef EXT_CLOCK
269 /*
270  * External clock definitions
271  *
272  * The following definitions and declarations are used only if an
273  * external clock is configured on the system.
274  */
275 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
276 
277 /*
278  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279  * interrupt and decremented once each second.
280  */
281 int clock_count = 0;		/* CPU clock counter */
282 
283 #ifdef HIGHBALL
284 /*
285  * The clock_offset and clock_cpu variables are used by the HIGHBALL
286  * interface. The clock_offset variable defines the offset between
287  * system time and the HIGBALL counters. The clock_cpu variable contains
288  * the offset between the system clock and the HIGHBALL clock for use in
289  * disciplining the kernel time variable.
290  */
291 extern struct timeval clock_offset; /* Highball clock offset */
292 long clock_cpu = 0;		/* CPU clock adjust */
293 #endif /* HIGHBALL */
294 #endif /* EXT_CLOCK */
295 #endif /* NTP */
296 
297 
298 /*
299  * Bump a timeval by a small number of usec's.
300  */
301 #define BUMPTIME(t, usec) { \
302 	volatile struct timeval *tp = (t); \
303 	long us; \
304  \
305 	tp->tv_usec = us = tp->tv_usec + (usec); \
306 	if (us >= 1000000) { \
307 		tp->tv_usec = us - 1000000; \
308 		tp->tv_sec++; \
309 	} \
310 }
311 
312 int	stathz;
313 int	profhz;
314 int	profprocs;
315 int	softclock_running;		/* 1 => softclock() is running */
316 static int psdiv;			/* prof => stat divider */
317 int	psratio;			/* ratio: prof / stat */
318 int	tickfix, tickfixinterval;	/* used if tick not really integral */
319 #ifndef NTP
320 static int tickfixcnt;			/* accumulated fractional error */
321 #else
322 int	fixtick;			/* used by NTP for same */
323 int	shifthz;
324 #endif
325 
326 /*
327  * We might want ldd to load the both words from time at once.
328  * To succeed we need to be quadword aligned.
329  * The sparc already does that, and that it has worked so far is a fluke.
330  */
331 volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
332 volatile struct	timeval mono_time;
333 
334 /*
335  * The callout mechanism is based on the work of Adam M. Costello and
336  * George Varghese, published in a technical report entitled "Redesigning
337  * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
338  * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
339  *
340  * The original work on the data structures used in this implementation
341  * was published by G. Varghese and A. Lauck in the paper "Hashed and
342  * Hierarchical Timing Wheels: Data Structures for the Efficient
343  * Implementation of a Timer Facility" in the Proceedings of the 11th
344  * ACM Annual Symposium on Operating System Principles, Austin, Texas,
345  * November 1987.
346  */
347 struct callout_queue *callwheel;
348 int	callwheelsize, callwheelbits, callwheelmask;
349 
350 static struct callout *nextsoftcheck;	/* next callout to be checked */
351 
352 #ifdef CALLWHEEL_STATS
353 int	callwheel_collisions;		/* number of hash collisions */
354 int	callwheel_maxlength;		/* length of the longest hash chain */
355 int	*callwheel_sizes;		/* per-bucket length count */
356 u_int64_t callwheel_count;		/* # callouts currently */
357 u_int64_t callwheel_established;	/* # callouts established */
358 u_int64_t callwheel_fired;		/* # callouts that fired */
359 u_int64_t callwheel_disestablished;	/* # callouts disestablished */
360 u_int64_t callwheel_changed;		/* # callouts changed */
361 u_int64_t callwheel_softclocks;		/* # times softclock() called */
362 u_int64_t callwheel_softchecks;		/* # checks per softclock() */
363 u_int64_t callwheel_softempty;		/* # empty buckets seen */
364 #endif /* CALLWHEEL_STATS */
365 
366 /*
367  * This value indicates the number of consecutive callouts that
368  * will be checked before we allow interrupts to have a chance
369  * again.
370  */
371 #ifndef MAX_SOFTCLOCK_STEPS
372 #define	MAX_SOFTCLOCK_STEPS	100
373 #endif
374 
375 struct simplelock callwheel_slock;
376 
377 #define	CALLWHEEL_LOCK(s)						\
378 do {									\
379 	s = splclock();							\
380 	simple_lock(&callwheel_slock);					\
381 } while (0)
382 
383 #define	CALLWHEEL_UNLOCK(s)						\
384 do {									\
385 	simple_unlock(&callwheel_slock);				\
386 	splx(s);							\
387 } while (0)
388 
389 static void callout_stop_locked(struct callout *);
390 
391 /*
392  * These are both protected by callwheel_lock.
393  * XXX SHOULD BE STATIC!!
394  */
395 u_int64_t hardclock_ticks, softclock_ticks;
396 
397 /*
398  * Initialize clock frequencies and start both clocks running.
399  */
400 void
401 initclocks(void)
402 {
403 	int i;
404 
405 	/*
406 	 * Set divisors to 1 (normal case) and let the machine-specific
407 	 * code do its bit.
408 	 */
409 	psdiv = 1;
410 	cpu_initclocks();
411 
412 	/*
413 	 * Compute profhz/stathz/rrticks, and fix profhz if needed.
414 	 */
415 	i = stathz ? stathz : hz;
416 	if (profhz == 0)
417 		profhz = i;
418 	psratio = profhz / i;
419 	rrticks = hz / 10;
420 
421 #ifdef NTP
422 	switch (hz) {
423 	case 1:
424 		shifthz = SHIFT_SCALE - 0;
425 		break;
426 	case 2:
427 		shifthz = SHIFT_SCALE - 1;
428 		break;
429 	case 4:
430 		shifthz = SHIFT_SCALE - 2;
431 		break;
432 	case 8:
433 		shifthz = SHIFT_SCALE - 3;
434 		break;
435 	case 16:
436 		shifthz = SHIFT_SCALE - 4;
437 		break;
438 	case 32:
439 		shifthz = SHIFT_SCALE - 5;
440 		break;
441 	case 60:
442 	case 64:
443 		shifthz = SHIFT_SCALE - 6;
444 		break;
445 	case 96:
446 	case 100:
447 	case 128:
448 		shifthz = SHIFT_SCALE - 7;
449 		break;
450 	case 256:
451 		shifthz = SHIFT_SCALE - 8;
452 		break;
453 	case 512:
454 		shifthz = SHIFT_SCALE - 9;
455 		break;
456 	case 1000:
457 	case 1024:
458 		shifthz = SHIFT_SCALE - 10;
459 		break;
460 	case 1200:
461 	case 2048:
462 		shifthz = SHIFT_SCALE - 11;
463 		break;
464 	case 4096:
465 		shifthz = SHIFT_SCALE - 12;
466 		break;
467 	case 8192:
468 		shifthz = SHIFT_SCALE - 13;
469 		break;
470 	case 16384:
471 		shifthz = SHIFT_SCALE - 14;
472 		break;
473 	case 32768:
474 		shifthz = SHIFT_SCALE - 15;
475 		break;
476 	case 65536:
477 		shifthz = SHIFT_SCALE - 16;
478 		break;
479 	default:
480 		panic("weird hz");
481 	}
482 	if (fixtick == 0) {
483 		/*
484 		 * Give MD code a chance to set this to a better
485 		 * value; but, if it doesn't, we should.
486 		 */
487 		fixtick = (1000000 - (hz*tick));
488 	}
489 #endif
490 }
491 
492 /*
493  * The real-time timer, interrupting hz times per second.
494  */
495 void
496 hardclock(struct clockframe *frame)
497 {
498 	struct proc *p;
499 	int delta;
500 	extern int tickdelta;
501 	extern long timedelta;
502 	struct cpu_info *ci = curcpu();
503 #ifdef NTP
504 	int time_update;
505 	int ltemp;
506 #endif
507 
508 	p = curproc;
509 	if (p) {
510 		struct pstats *pstats;
511 
512 		/*
513 		 * Run current process's virtual and profile time, as needed.
514 		 */
515 		pstats = p->p_stats;
516 		if (CLKF_USERMODE(frame) &&
517 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
518 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
519 			psignal(p, SIGVTALRM);
520 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
521 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
522 			psignal(p, SIGPROF);
523 	}
524 
525 	/*
526 	 * If no separate statistics clock is available, run it from here.
527 	 */
528 	if (stathz == 0)
529 		statclock(frame);
530 	if ((--ci->ci_schedstate.spc_rrticks) <= 0)
531 		roundrobin(ci);
532 
533 #if defined(MULTIPROCESSOR)
534 	/*
535 	 * If we are not the primary CPU, we're not allowed to do
536 	 * any more work.
537 	 */
538 	if (CPU_IS_PRIMARY(ci) == 0)
539 		return;
540 #endif
541 
542 	/*
543 	 * Increment the time-of-day.  The increment is normally just
544 	 * ``tick''.  If the machine is one which has a clock frequency
545 	 * such that ``hz'' would not divide the second evenly into
546 	 * milliseconds, a periodic adjustment must be applied.  Finally,
547 	 * if we are still adjusting the time (see adjtime()),
548 	 * ``tickdelta'' may also be added in.
549 	 */
550 	delta = tick;
551 
552 #ifndef NTP
553 	if (tickfix) {
554 		tickfixcnt += tickfix;
555 		if (tickfixcnt >= tickfixinterval) {
556 			delta++;
557 			tickfixcnt -= tickfixinterval;
558 		}
559 	}
560 #endif /* !NTP */
561 	/* Imprecise 4bsd adjtime() handling */
562 	if (timedelta != 0) {
563 		delta += tickdelta;
564 		timedelta -= tickdelta;
565 	}
566 
567 #ifdef notyet
568 	microset();
569 #endif
570 
571 #ifndef NTP
572 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
573 #endif
574 	BUMPTIME(&mono_time, delta);
575 
576 #ifdef NTP
577 	time_update = delta;
578 
579 	/*
580 	 * Compute the phase adjustment. If the low-order bits
581 	 * (time_phase) of the update overflow, bump the high-order bits
582 	 * (time_update).
583 	 */
584 	time_phase += time_adj;
585 	if (time_phase <= -FINEUSEC) {
586 		ltemp = -time_phase >> SHIFT_SCALE;
587 		time_phase += ltemp << SHIFT_SCALE;
588 		time_update -= ltemp;
589 	} else if (time_phase >= FINEUSEC) {
590 		ltemp = time_phase >> SHIFT_SCALE;
591 		time_phase -= ltemp << SHIFT_SCALE;
592 		time_update += ltemp;
593 	}
594 
595 #ifdef HIGHBALL
596 	/*
597 	 * If the HIGHBALL board is installed, we need to adjust the
598 	 * external clock offset in order to close the hardware feedback
599 	 * loop. This will adjust the external clock phase and frequency
600 	 * in small amounts. The additional phase noise and frequency
601 	 * wander this causes should be minimal. We also need to
602 	 * discipline the kernel time variable, since the PLL is used to
603 	 * discipline the external clock. If the Highball board is not
604 	 * present, we discipline kernel time with the PLL as usual. We
605 	 * assume that the external clock phase adjustment (time_update)
606 	 * and kernel phase adjustment (clock_cpu) are less than the
607 	 * value of tick.
608 	 */
609 	clock_offset.tv_usec += time_update;
610 	if (clock_offset.tv_usec >= 1000000) {
611 		clock_offset.tv_sec++;
612 		clock_offset.tv_usec -= 1000000;
613 	}
614 	if (clock_offset.tv_usec < 0) {
615 		clock_offset.tv_sec--;
616 		clock_offset.tv_usec += 1000000;
617 	}
618 	time.tv_usec += clock_cpu;
619 	clock_cpu = 0;
620 #else
621 	time.tv_usec += time_update;
622 #endif /* HIGHBALL */
623 
624 	/*
625 	 * On rollover of the second the phase adjustment to be used for
626 	 * the next second is calculated. Also, the maximum error is
627 	 * increased by the tolerance. If the PPS frequency discipline
628 	 * code is present, the phase is increased to compensate for the
629 	 * CPU clock oscillator frequency error.
630 	 *
631  	 * On a 32-bit machine and given parameters in the timex.h
632 	 * header file, the maximum phase adjustment is +-512 ms and
633 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
634 	 * 64-bit machine, you shouldn't need to ask.
635 	 */
636 	if (time.tv_usec >= 1000000) {
637 		time.tv_usec -= 1000000;
638 		time.tv_sec++;
639 		time_maxerror += time_tolerance >> SHIFT_USEC;
640 
641 		/*
642 		 * Leap second processing. If in leap-insert state at
643 		 * the end of the day, the system clock is set back one
644 		 * second; if in leap-delete state, the system clock is
645 		 * set ahead one second. The microtime() routine or
646 		 * external clock driver will insure that reported time
647 		 * is always monotonic. The ugly divides should be
648 		 * replaced.
649 		 */
650 		switch (time_state) {
651 		case TIME_OK:
652 			if (time_status & STA_INS)
653 				time_state = TIME_INS;
654 			else if (time_status & STA_DEL)
655 				time_state = TIME_DEL;
656 			break;
657 
658 		case TIME_INS:
659 			if (time.tv_sec % 86400 == 0) {
660 				time.tv_sec--;
661 				time_state = TIME_OOP;
662 			}
663 			break;
664 
665 		case TIME_DEL:
666 			if ((time.tv_sec + 1) % 86400 == 0) {
667 				time.tv_sec++;
668 				time_state = TIME_WAIT;
669 			}
670 			break;
671 
672 		case TIME_OOP:
673 			time_state = TIME_WAIT;
674 			break;
675 
676 		case TIME_WAIT:
677 			if (!(time_status & (STA_INS | STA_DEL)))
678 				time_state = TIME_OK;
679 			break;
680 		}
681 
682 		/*
683 		 * Compute the phase adjustment for the next second. In
684 		 * PLL mode, the offset is reduced by a fixed factor
685 		 * times the time constant. In FLL mode the offset is
686 		 * used directly. In either mode, the maximum phase
687 		 * adjustment for each second is clamped so as to spread
688 		 * the adjustment over not more than the number of
689 		 * seconds between updates.
690 		 */
691 		if (time_offset < 0) {
692 			ltemp = -time_offset;
693 			if (!(time_status & STA_FLL))
694 				ltemp >>= SHIFT_KG + time_constant;
695 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
696 				ltemp = (MAXPHASE / MINSEC) <<
697 				    SHIFT_UPDATE;
698 			time_offset += ltemp;
699 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
700 		} else if (time_offset > 0) {
701 			ltemp = time_offset;
702 			if (!(time_status & STA_FLL))
703 				ltemp >>= SHIFT_KG + time_constant;
704 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
705 				ltemp = (MAXPHASE / MINSEC) <<
706 				    SHIFT_UPDATE;
707 			time_offset -= ltemp;
708 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
709 		} else
710 			time_adj = 0;
711 
712 		/*
713 		 * Compute the frequency estimate and additional phase
714 		 * adjustment due to frequency error for the next
715 		 * second. When the PPS signal is engaged, gnaw on the
716 		 * watchdog counter and update the frequency computed by
717 		 * the pll and the PPS signal.
718 		 */
719 #ifdef PPS_SYNC
720 		pps_valid++;
721 		if (pps_valid == PPS_VALID) {
722 			pps_jitter = MAXTIME;
723 			pps_stabil = MAXFREQ;
724 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
725 			    STA_PPSWANDER | STA_PPSERROR);
726 		}
727 		ltemp = time_freq + pps_freq;
728 #else
729 		ltemp = time_freq;
730 #endif /* PPS_SYNC */
731 
732 		if (ltemp < 0)
733 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
734 		else
735 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
736 		time_adj += (long)fixtick << shifthz;
737 
738 		/*
739 		 * When the CPU clock oscillator frequency is not a
740 		 * power of 2 in Hz, shifthz is only an approximate
741 		 * scale factor.
742 		 *
743 		 * To determine the adjustment, you can do the following:
744 		 *   bc -q
745 		 *   scale=24
746 		 *   obase=2
747 		 *   idealhz/realhz
748 		 * where `idealhz' is the next higher power of 2, and `realhz'
749 		 * is the actual value.  You may need to factor this result
750 		 * into a sequence of 2 multipliers to get better precision.
751 		 *
752 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
753 		 *   bc -q
754 		 *   scale=24
755 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
756 		 * (and then multiply by 1000000 to get ppm).
757 		 */
758 		switch (hz) {
759 		case 60:
760 			/* A factor of 1.000100010001 gives about 15ppm
761 			   error. */
762 			if (time_adj < 0) {
763 				time_adj -= (-time_adj >> 4);
764 				time_adj -= (-time_adj >> 8);
765 			} else {
766 				time_adj += (time_adj >> 4);
767 				time_adj += (time_adj >> 8);
768 			}
769 			break;
770 
771 		case 96:
772 			/* A factor of 1.0101010101 gives about 244ppm error. */
773 			if (time_adj < 0) {
774 				time_adj -= (-time_adj >> 2);
775 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
776 			} else {
777 				time_adj += (time_adj >> 2);
778 				time_adj += (time_adj >> 4) + (time_adj >> 8);
779 			}
780 			break;
781 
782 		case 100:
783 			/* A factor of 1.010001111010111 gives about 1ppm
784 			   error. */
785 			if (time_adj < 0) {
786 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
787 				time_adj += (-time_adj >> 10);
788 			} else {
789 				time_adj += (time_adj >> 2) + (time_adj >> 5);
790 				time_adj -= (time_adj >> 10);
791 			}
792 			break;
793 
794 		case 1000:
795 			/* A factor of 1.000001100010100001 gives about 50ppm
796 			   error. */
797 			if (time_adj < 0) {
798 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
799 				time_adj -= (-time_adj >> 7);
800 			} else {
801 				time_adj += (time_adj >> 6) + (time_adj >> 11);
802 				time_adj += (time_adj >> 7);
803 			}
804 			break;
805 
806 		case 1200:
807 			/* A factor of 1.1011010011100001 gives about 64ppm
808 			   error. */
809 			if (time_adj < 0) {
810 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
811 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
812 			} else {
813 				time_adj += (time_adj >> 1) + (time_adj >> 6);
814 				time_adj += (time_adj >> 3) + (time_adj >> 10);
815 			}
816 			break;
817 		}
818 
819 #ifdef EXT_CLOCK
820 		/*
821 		 * If an external clock is present, it is necessary to
822 		 * discipline the kernel time variable anyway, since not
823 		 * all system components use the microtime() interface.
824 		 * Here, the time offset between the external clock and
825 		 * kernel time variable is computed every so often.
826 		 */
827 		clock_count++;
828 		if (clock_count > CLOCK_INTERVAL) {
829 			clock_count = 0;
830 			microtime(&clock_ext);
831 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
832 			delta.tv_usec = clock_ext.tv_usec -
833 			    time.tv_usec;
834 			if (delta.tv_usec < 0)
835 				delta.tv_sec--;
836 			if (delta.tv_usec >= 500000) {
837 				delta.tv_usec -= 1000000;
838 				delta.tv_sec++;
839 			}
840 			if (delta.tv_usec < -500000) {
841 				delta.tv_usec += 1000000;
842 				delta.tv_sec--;
843 			}
844 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
845 			    delta.tv_usec > MAXPHASE) ||
846 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
847 			    delta.tv_usec < -MAXPHASE)) {
848 				time = clock_ext;
849 				delta.tv_sec = 0;
850 				delta.tv_usec = 0;
851 			}
852 #ifdef HIGHBALL
853 			clock_cpu = delta.tv_usec;
854 #else /* HIGHBALL */
855 			hardupdate(delta.tv_usec);
856 #endif /* HIGHBALL */
857 		}
858 #endif /* EXT_CLOCK */
859 	}
860 
861 #endif /* NTP */
862 
863 	/*
864 	 * Process callouts at a very low cpu priority, so we don't keep the
865 	 * relatively high clock interrupt priority any longer than necessary.
866 	 */
867 	simple_lock(&callwheel_slock);	/* already at splclock() */
868 	hardclock_ticks++;
869 	if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
870 		simple_unlock(&callwheel_slock);
871 		if (CLKF_BASEPRI(frame)) {
872 			/*
873 			 * Save the overhead of a software interrupt;
874 			 * it will happen as soon as we return, so do
875 			 * it now.
876 			 *
877 			 * NOTE: If we're at ``base priority'', softclock()
878 			 * was not already running.
879 			 */
880 			spllowersoftclock();
881 			KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE);
882 			softclock();
883 			KERNEL_UNLOCK();
884 		} else
885 			setsoftclock();
886 		return;
887 	} else if (softclock_running == 0 &&
888 		   (softclock_ticks + 1) == hardclock_ticks) {
889 		softclock_ticks++;
890 	}
891 	simple_unlock(&callwheel_slock);
892 }
893 
894 /*
895  * Software (low priority) clock interrupt.
896  * Run periodic events from timeout queue.
897  */
898 /*ARGSUSED*/
899 void
900 softclock(void)
901 {
902 	struct callout_queue *bucket;
903 	struct callout *c;
904 	void (*func)(void *);
905 	void *arg;
906 	int s, idx;
907 	int steps = 0;
908 
909 	CALLWHEEL_LOCK(s);
910 
911 	softclock_running = 1;
912 
913 #ifdef CALLWHEEL_STATS
914 	callwheel_softclocks++;
915 #endif
916 
917 	while (softclock_ticks != hardclock_ticks) {
918 		softclock_ticks++;
919 		idx = (int)(softclock_ticks & callwheelmask);
920 		bucket = &callwheel[idx];
921 		c = TAILQ_FIRST(bucket);
922 #ifdef CALLWHEEL_STATS
923 		if (c == NULL)
924 			callwheel_softempty++;
925 #endif
926 		while (c != NULL) {
927 #ifdef CALLWHEEL_STATS
928 			callwheel_softchecks++;
929 #endif
930 			if (c->c_time != softclock_ticks) {
931 				c = TAILQ_NEXT(c, c_link);
932 				if (++steps >= MAX_SOFTCLOCK_STEPS) {
933 					nextsoftcheck = c;
934 					/* Give interrupts a chance. */
935 					CALLWHEEL_UNLOCK(s);
936 					CALLWHEEL_LOCK(s);
937 					c = nextsoftcheck;
938 					steps = 0;
939 				}
940 			} else {
941 				nextsoftcheck = TAILQ_NEXT(c, c_link);
942 				TAILQ_REMOVE(bucket, c, c_link);
943 #ifdef CALLWHEEL_STATS
944 				callwheel_sizes[idx]--;
945 				callwheel_fired++;
946 				callwheel_count--;
947 #endif
948 				func = c->c_func;
949 				arg = c->c_arg;
950 				c->c_func = NULL;
951 				c->c_flags &= ~CALLOUT_PENDING;
952 				CALLWHEEL_UNLOCK(s);
953 				(*func)(arg);
954 				CALLWHEEL_LOCK(s);
955 				steps = 0;
956 				c = nextsoftcheck;
957 			}
958 		}
959 	}
960 	nextsoftcheck = NULL;
961 	softclock_running = 0;
962 	CALLWHEEL_UNLOCK(s);
963 }
964 
965 /*
966  * callout_setsize:
967  *
968  *	Determine how many callwheels are necessary and
969  *	set hash mask.  Called from allocsys().
970  */
971 void
972 callout_setsize(void)
973 {
974 
975 	for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
976 		/* loop */ ;
977 	callwheelmask = callwheelsize - 1;
978 }
979 
980 /*
981  * callout_startup:
982  *
983  *	Initialize the callwheel buckets.
984  */
985 void
986 callout_startup(void)
987 {
988 	int i;
989 
990 	for (i = 0; i < callwheelsize; i++)
991 		TAILQ_INIT(&callwheel[i]);
992 
993 	simple_lock_init(&callwheel_slock);
994 }
995 
996 /*
997  * callout_init:
998  *
999  *	Initialize a callout structure so that it can be used
1000  *	by callout_reset() and callout_stop().
1001  */
1002 void
1003 callout_init(struct callout *c)
1004 {
1005 
1006 	memset(c, 0, sizeof(*c));
1007 }
1008 
1009 /*
1010  * callout_reset:
1011  *
1012  *	Establish or change a timeout.
1013  */
1014 void
1015 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg)
1016 {
1017 	struct callout_queue *bucket;
1018 	int s;
1019 
1020 	if (ticks <= 0)
1021 		ticks = 1;
1022 
1023 	CALLWHEEL_LOCK(s);
1024 
1025 	/*
1026 	 * If this callout's timer is already running, cancel it
1027 	 * before we modify it.
1028 	 */
1029 	if (c->c_flags & CALLOUT_PENDING) {
1030 		callout_stop_locked(c);	/* Already locked */
1031 #ifdef CALLWHEEL_STATS
1032 		callwheel_changed++;
1033 #endif
1034 	}
1035 
1036 	c->c_arg = arg;
1037 	c->c_func = func;
1038 	c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1039 	c->c_time = hardclock_ticks + ticks;
1040 
1041 	bucket = &callwheel[c->c_time & callwheelmask];
1042 
1043 #ifdef CALLWHEEL_STATS
1044 	if (TAILQ_FIRST(bucket) != NULL)
1045 		callwheel_collisions++;
1046 #endif
1047 
1048 	TAILQ_INSERT_TAIL(bucket, c, c_link);
1049 
1050 #ifdef CALLWHEEL_STATS
1051 	callwheel_count++;
1052 	callwheel_established++;
1053 	if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1054 		callwheel_maxlength =
1055 		    callwheel_sizes[c->c_time & callwheelmask];
1056 #endif
1057 
1058 	CALLWHEEL_UNLOCK(s);
1059 }
1060 
1061 /*
1062  * callout_stop_locked:
1063  *
1064  *	Disestablish a timeout.  Callwheel is locked.
1065  */
1066 static void
1067 callout_stop_locked(struct callout *c)
1068 {
1069 
1070 	/*
1071 	 * Don't attempt to delete a callout that's not on the queue.
1072 	 */
1073 	if ((c->c_flags & CALLOUT_PENDING) == 0) {
1074 		c->c_flags &= ~CALLOUT_ACTIVE;
1075 		return;
1076 	}
1077 
1078 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1079 
1080 	if (nextsoftcheck == c)
1081 		nextsoftcheck = TAILQ_NEXT(c, c_link);
1082 
1083 	TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1084 #ifdef CALLWHEEL_STATS
1085 	callwheel_count--;
1086 	callwheel_disestablished++;
1087 	callwheel_sizes[c->c_time & callwheelmask]--;
1088 #endif
1089 
1090 	c->c_func = NULL;
1091 }
1092 
1093 /*
1094  * callout_stop:
1095  *
1096  *	Disestablish a timeout.  Callwheel is unlocked.  This is
1097  *	the standard entry point.
1098  */
1099 void
1100 callout_stop(struct callout *c)
1101 {
1102 	int s;
1103 
1104 	CALLWHEEL_LOCK(s);
1105 	callout_stop_locked(c);
1106 	CALLWHEEL_UNLOCK(s);
1107 }
1108 
1109 #ifdef CALLWHEEL_STATS
1110 /*
1111  * callout_showstats:
1112  *
1113  *	Display callout statistics.  Call it from DDB.
1114  */
1115 void
1116 callout_showstats(void)
1117 {
1118 	u_int64_t curticks;
1119 	int s;
1120 
1121 	s = splclock();
1122 	curticks = softclock_ticks;
1123 	splx(s);
1124 
1125 	printf("Callwheel statistics:\n");
1126 	printf("\tCallouts currently queued: %llu\n", callwheel_count);
1127 	printf("\tCallouts established: %llu\n", callwheel_established);
1128 	printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1129 	if (callwheel_changed != 0)
1130 		printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1131 	printf("\tCallouts that fired: %llu\n", callwheel_fired);
1132 	printf("\tNumber of buckets: %d\n", callwheelsize);
1133 	printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1134 	printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1135 	printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1136 	    callwheel_softclocks, callwheel_softchecks);
1137 	printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1138 }
1139 #endif
1140 
1141 /*
1142  * Compute number of hz until specified time.  Used to compute second
1143  * argument to callout_reset() from an absolute time.
1144  */
1145 int
1146 hzto(struct timeval *tv)
1147 {
1148 	unsigned long ticks;
1149 	long sec, usec;
1150 	int s;
1151 
1152 	/*
1153 	 * If the number of usecs in the whole seconds part of the time
1154 	 * difference fits in a long, then the total number of usecs will
1155 	 * fit in an unsigned long.  Compute the total and convert it to
1156 	 * ticks, rounding up and adding 1 to allow for the current tick
1157 	 * to expire.  Rounding also depends on unsigned long arithmetic
1158 	 * to avoid overflow.
1159 	 *
1160 	 * Otherwise, if the number of ticks in the whole seconds part of
1161 	 * the time difference fits in a long, then convert the parts to
1162 	 * ticks separately and add, using similar rounding methods and
1163 	 * overflow avoidance.  This method would work in the previous
1164 	 * case, but it is slightly slower and assume that hz is integral.
1165 	 *
1166 	 * Otherwise, round the time difference down to the maximum
1167 	 * representable value.
1168 	 *
1169 	 * If ints are 32-bit, then the maximum value for any timeout in
1170 	 * 10ms ticks is 248 days.
1171 	 */
1172 	s = splclock();
1173 	sec = tv->tv_sec - time.tv_sec;
1174 	usec = tv->tv_usec - time.tv_usec;
1175 	splx(s);
1176 
1177 	if (usec < 0) {
1178 		sec--;
1179 		usec += 1000000;
1180 	}
1181 
1182 	if (sec < 0 || (sec == 0 && usec <= 0)) {
1183 		/*
1184 		 * Would expire now or in the past.  Return 0 ticks.
1185 		 * This is different from the legacy hzto() interface,
1186 		 * and callers need to check for it.
1187 		 */
1188 		ticks = 0;
1189 	} else if (sec <= (LONG_MAX / 1000000))
1190 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
1191 		    / tick) + 1;
1192 	else if (sec <= (LONG_MAX / hz))
1193 		ticks = (sec * hz) +
1194 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
1195 	else
1196 		ticks = LONG_MAX;
1197 
1198 	if (ticks > INT_MAX)
1199 		ticks = INT_MAX;
1200 
1201 	return ((int)ticks);
1202 }
1203 
1204 /*
1205  * Start profiling on a process.
1206  *
1207  * Kernel profiling passes proc0 which never exits and hence
1208  * keeps the profile clock running constantly.
1209  */
1210 void
1211 startprofclock(struct proc *p)
1212 {
1213 
1214 	if ((p->p_flag & P_PROFIL) == 0) {
1215 		p->p_flag |= P_PROFIL;
1216 		if (++profprocs == 1 && stathz != 0)
1217 			psdiv = psratio;
1218 	}
1219 }
1220 
1221 /*
1222  * Stop profiling on a process.
1223  */
1224 void
1225 stopprofclock(struct proc *p)
1226 {
1227 
1228 	if (p->p_flag & P_PROFIL) {
1229 		p->p_flag &= ~P_PROFIL;
1230 		if (--profprocs == 0 && stathz != 0)
1231 			psdiv = 1;
1232 	}
1233 }
1234 
1235 /*
1236  * Statistics clock.  Grab profile sample, and if divider reaches 0,
1237  * do process and kernel statistics.
1238  */
1239 void
1240 statclock(struct clockframe *frame)
1241 {
1242 #ifdef GPROF
1243 	struct gmonparam *g;
1244 	intptr_t i;
1245 #endif
1246 	struct cpu_info *ci = curcpu();
1247 	struct schedstate_percpu *spc = &ci->ci_schedstate;
1248 	struct proc *p;
1249 
1250 	/*
1251 	 * Notice changes in divisor frequency, and adjust clock
1252 	 * frequency accordingly.
1253 	 */
1254 	if (spc->spc_psdiv != psdiv) {
1255 		spc->spc_psdiv = psdiv;
1256 		spc->spc_pscnt = psdiv;
1257 		if (psdiv == 1) {
1258 			setstatclockrate(stathz);
1259 		} else {
1260 			setstatclockrate(profhz);
1261 		}
1262 	}
1263 	p = curproc;
1264 	if (CLKF_USERMODE(frame)) {
1265 		if (p->p_flag & P_PROFIL)
1266 			addupc_intr(p, CLKF_PC(frame));
1267 		if (--spc->spc_pscnt > 0)
1268 			return;
1269 		/*
1270 		 * Came from user mode; CPU was in user state.
1271 		 * If this process is being profiled record the tick.
1272 		 */
1273 		p->p_uticks++;
1274 		if (p->p_nice > NZERO)
1275 			spc->spc_cp_time[CP_NICE]++;
1276 		else
1277 			spc->spc_cp_time[CP_USER]++;
1278 	} else {
1279 #ifdef GPROF
1280 		/*
1281 		 * Kernel statistics are just like addupc_intr, only easier.
1282 		 */
1283 		g = &_gmonparam;
1284 		if (g->state == GMON_PROF_ON) {
1285 			i = CLKF_PC(frame) - g->lowpc;
1286 			if (i < g->textsize) {
1287 				i /= HISTFRACTION * sizeof(*g->kcount);
1288 				g->kcount[i]++;
1289 			}
1290 		}
1291 #endif
1292 #ifdef PROC_PC
1293 		if (p && p->p_flag & P_PROFIL)
1294 			addupc_intr(p, PROC_PC(p));
1295 #endif
1296 		if (--spc->spc_pscnt > 0)
1297 			return;
1298 		/*
1299 		 * Came from kernel mode, so we were:
1300 		 * - handling an interrupt,
1301 		 * - doing syscall or trap work on behalf of the current
1302 		 *   user process, or
1303 		 * - spinning in the idle loop.
1304 		 * Whichever it is, charge the time as appropriate.
1305 		 * Note that we charge interrupts to the current process,
1306 		 * regardless of whether they are ``for'' that process,
1307 		 * so that we know how much of its real time was spent
1308 		 * in ``non-process'' (i.e., interrupt) work.
1309 		 */
1310 		if (CLKF_INTR(frame)) {
1311 			if (p != NULL)
1312 				p->p_iticks++;
1313 			spc->spc_cp_time[CP_INTR]++;
1314 		} else if (p != NULL) {
1315 			p->p_sticks++;
1316 			spc->spc_cp_time[CP_SYS]++;
1317 		} else
1318 			spc->spc_cp_time[CP_IDLE]++;
1319 	}
1320 	spc->spc_pscnt = psdiv;
1321 
1322 	if (p != NULL) {
1323 		++p->p_cpticks;
1324 		/*
1325 		 * If no separate schedclock is provided, call it here
1326 		 * at ~~12-25 Hz, ~~16 Hz is best
1327 		 */
1328 		if (schedhz == 0)
1329 			if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1330 				schedclock(p);
1331 	}
1332 }
1333 
1334 
1335 #ifdef NTP	/* NTP phase-locked loop in kernel */
1336 
1337 /*
1338  * hardupdate() - local clock update
1339  *
1340  * This routine is called by ntp_adjtime() to update the local clock
1341  * phase and frequency. The implementation is of an adaptive-parameter,
1342  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1343  * time and frequency offset estimates for each call. If the kernel PPS
1344  * discipline code is configured (PPS_SYNC), the PPS signal itself
1345  * determines the new time offset, instead of the calling argument.
1346  * Presumably, calls to ntp_adjtime() occur only when the caller
1347  * believes the local clock is valid within some bound (+-128 ms with
1348  * NTP). If the caller's time is far different than the PPS time, an
1349  * argument will ensue, and it's not clear who will lose.
1350  *
1351  * For uncompensated quartz crystal oscillatores and nominal update
1352  * intervals less than 1024 s, operation should be in phase-lock mode
1353  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1354  * intervals greater than thiss, operation should be in frequency-lock
1355  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1356  *
1357  * Note: splclock() is in effect.
1358  */
1359 void
1360 hardupdate(long offset)
1361 {
1362 	long ltemp, mtemp;
1363 
1364 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1365 		return;
1366 	ltemp = offset;
1367 #ifdef PPS_SYNC
1368 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1369 		ltemp = pps_offset;
1370 #endif /* PPS_SYNC */
1371 
1372 	/*
1373 	 * Scale the phase adjustment and clamp to the operating range.
1374 	 */
1375 	if (ltemp > MAXPHASE)
1376 		time_offset = MAXPHASE << SHIFT_UPDATE;
1377 	else if (ltemp < -MAXPHASE)
1378 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
1379 	else
1380 		time_offset = ltemp << SHIFT_UPDATE;
1381 
1382 	/*
1383 	 * Select whether the frequency is to be controlled and in which
1384 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1385 	 * multiply/divide should be replaced someday.
1386 	 */
1387 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1388 		time_reftime = time.tv_sec;
1389 	mtemp = time.tv_sec - time_reftime;
1390 	time_reftime = time.tv_sec;
1391 	if (time_status & STA_FLL) {
1392 		if (mtemp >= MINSEC) {
1393 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1394 			    SHIFT_UPDATE));
1395 			if (ltemp < 0)
1396 				time_freq -= -ltemp >> SHIFT_KH;
1397 			else
1398 				time_freq += ltemp >> SHIFT_KH;
1399 		}
1400 	} else {
1401 		if (mtemp < MAXSEC) {
1402 			ltemp *= mtemp;
1403 			if (ltemp < 0)
1404 				time_freq -= -ltemp >> (time_constant +
1405 				    time_constant + SHIFT_KF -
1406 				    SHIFT_USEC);
1407 			else
1408 				time_freq += ltemp >> (time_constant +
1409 				    time_constant + SHIFT_KF -
1410 				    SHIFT_USEC);
1411 		}
1412 	}
1413 	if (time_freq > time_tolerance)
1414 		time_freq = time_tolerance;
1415 	else if (time_freq < -time_tolerance)
1416 		time_freq = -time_tolerance;
1417 }
1418 
1419 #ifdef PPS_SYNC
1420 /*
1421  * hardpps() - discipline CPU clock oscillator to external PPS signal
1422  *
1423  * This routine is called at each PPS interrupt in order to discipline
1424  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1425  * and leaves it in a handy spot for the hardclock() routine. It
1426  * integrates successive PPS phase differences and calculates the
1427  * frequency offset. This is used in hardclock() to discipline the CPU
1428  * clock oscillator so that intrinsic frequency error is cancelled out.
1429  * The code requires the caller to capture the time and hardware counter
1430  * value at the on-time PPS signal transition.
1431  *
1432  * Note that, on some Unix systems, this routine runs at an interrupt
1433  * priority level higher than the timer interrupt routine hardclock().
1434  * Therefore, the variables used are distinct from the hardclock()
1435  * variables, except for certain exceptions: The PPS frequency pps_freq
1436  * and phase pps_offset variables are determined by this routine and
1437  * updated atomically. The time_tolerance variable can be considered a
1438  * constant, since it is infrequently changed, and then only when the
1439  * PPS signal is disabled. The watchdog counter pps_valid is updated
1440  * once per second by hardclock() and is atomically cleared in this
1441  * routine.
1442  */
1443 void
1444 hardpps(struct timeval *tvp,		/* time at PPS */
1445 	long usec			/* hardware counter at PPS */)
1446 {
1447 	long u_usec, v_usec, bigtick;
1448 	long cal_sec, cal_usec;
1449 
1450 	/*
1451 	 * An occasional glitch can be produced when the PPS interrupt
1452 	 * occurs in the hardclock() routine before the time variable is
1453 	 * updated. Here the offset is discarded when the difference
1454 	 * between it and the last one is greater than tick/2, but not
1455 	 * if the interval since the first discard exceeds 30 s.
1456 	 */
1457 	time_status |= STA_PPSSIGNAL;
1458 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1459 	pps_valid = 0;
1460 	u_usec = -tvp->tv_usec;
1461 	if (u_usec < -500000)
1462 		u_usec += 1000000;
1463 	v_usec = pps_offset - u_usec;
1464 	if (v_usec < 0)
1465 		v_usec = -v_usec;
1466 	if (v_usec > (tick >> 1)) {
1467 		if (pps_glitch > MAXGLITCH) {
1468 			pps_glitch = 0;
1469 			pps_tf[2] = u_usec;
1470 			pps_tf[1] = u_usec;
1471 		} else {
1472 			pps_glitch++;
1473 			u_usec = pps_offset;
1474 		}
1475 	} else
1476 		pps_glitch = 0;
1477 
1478 	/*
1479 	 * A three-stage median filter is used to help deglitch the pps
1480 	 * time. The median sample becomes the time offset estimate; the
1481 	 * difference between the other two samples becomes the time
1482 	 * dispersion (jitter) estimate.
1483 	 */
1484 	pps_tf[2] = pps_tf[1];
1485 	pps_tf[1] = pps_tf[0];
1486 	pps_tf[0] = u_usec;
1487 	if (pps_tf[0] > pps_tf[1]) {
1488 		if (pps_tf[1] > pps_tf[2]) {
1489 			pps_offset = pps_tf[1];		/* 0 1 2 */
1490 			v_usec = pps_tf[0] - pps_tf[2];
1491 		} else if (pps_tf[2] > pps_tf[0]) {
1492 			pps_offset = pps_tf[0];		/* 2 0 1 */
1493 			v_usec = pps_tf[2] - pps_tf[1];
1494 		} else {
1495 			pps_offset = pps_tf[2];		/* 0 2 1 */
1496 			v_usec = pps_tf[0] - pps_tf[1];
1497 		}
1498 	} else {
1499 		if (pps_tf[1] < pps_tf[2]) {
1500 			pps_offset = pps_tf[1];		/* 2 1 0 */
1501 			v_usec = pps_tf[2] - pps_tf[0];
1502 		} else  if (pps_tf[2] < pps_tf[0]) {
1503 			pps_offset = pps_tf[0];		/* 1 0 2 */
1504 			v_usec = pps_tf[1] - pps_tf[2];
1505 		} else {
1506 			pps_offset = pps_tf[2];		/* 1 2 0 */
1507 			v_usec = pps_tf[1] - pps_tf[0];
1508 		}
1509 	}
1510 	if (v_usec > MAXTIME)
1511 		pps_jitcnt++;
1512 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1513 	if (v_usec < 0)
1514 		pps_jitter -= -v_usec >> PPS_AVG;
1515 	else
1516 		pps_jitter += v_usec >> PPS_AVG;
1517 	if (pps_jitter > (MAXTIME >> 1))
1518 		time_status |= STA_PPSJITTER;
1519 
1520 	/*
1521 	 * During the calibration interval adjust the starting time when
1522 	 * the tick overflows. At the end of the interval compute the
1523 	 * duration of the interval and the difference of the hardware
1524 	 * counters at the beginning and end of the interval. This code
1525 	 * is deliciously complicated by the fact valid differences may
1526 	 * exceed the value of tick when using long calibration
1527 	 * intervals and small ticks. Note that the counter can be
1528 	 * greater than tick if caught at just the wrong instant, but
1529 	 * the values returned and used here are correct.
1530 	 */
1531 	bigtick = (long)tick << SHIFT_USEC;
1532 	pps_usec -= pps_freq;
1533 	if (pps_usec >= bigtick)
1534 		pps_usec -= bigtick;
1535 	if (pps_usec < 0)
1536 		pps_usec += bigtick;
1537 	pps_time.tv_sec++;
1538 	pps_count++;
1539 	if (pps_count < (1 << pps_shift))
1540 		return;
1541 	pps_count = 0;
1542 	pps_calcnt++;
1543 	u_usec = usec << SHIFT_USEC;
1544 	v_usec = pps_usec - u_usec;
1545 	if (v_usec >= bigtick >> 1)
1546 		v_usec -= bigtick;
1547 	if (v_usec < -(bigtick >> 1))
1548 		v_usec += bigtick;
1549 	if (v_usec < 0)
1550 		v_usec = -(-v_usec >> pps_shift);
1551 	else
1552 		v_usec = v_usec >> pps_shift;
1553 	pps_usec = u_usec;
1554 	cal_sec = tvp->tv_sec;
1555 	cal_usec = tvp->tv_usec;
1556 	cal_sec -= pps_time.tv_sec;
1557 	cal_usec -= pps_time.tv_usec;
1558 	if (cal_usec < 0) {
1559 		cal_usec += 1000000;
1560 		cal_sec--;
1561 	}
1562 	pps_time = *tvp;
1563 
1564 	/*
1565 	 * Check for lost interrupts, noise, excessive jitter and
1566 	 * excessive frequency error. The number of timer ticks during
1567 	 * the interval may vary +-1 tick. Add to this a margin of one
1568 	 * tick for the PPS signal jitter and maximum frequency
1569 	 * deviation. If the limits are exceeded, the calibration
1570 	 * interval is reset to the minimum and we start over.
1571 	 */
1572 	u_usec = (long)tick << 1;
1573 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1574 	    || (cal_sec == 0 && cal_usec < u_usec))
1575 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1576 		pps_errcnt++;
1577 		pps_shift = PPS_SHIFT;
1578 		pps_intcnt = 0;
1579 		time_status |= STA_PPSERROR;
1580 		return;
1581 	}
1582 
1583 	/*
1584 	 * A three-stage median filter is used to help deglitch the pps
1585 	 * frequency. The median sample becomes the frequency offset
1586 	 * estimate; the difference between the other two samples
1587 	 * becomes the frequency dispersion (stability) estimate.
1588 	 */
1589 	pps_ff[2] = pps_ff[1];
1590 	pps_ff[1] = pps_ff[0];
1591 	pps_ff[0] = v_usec;
1592 	if (pps_ff[0] > pps_ff[1]) {
1593 		if (pps_ff[1] > pps_ff[2]) {
1594 			u_usec = pps_ff[1];		/* 0 1 2 */
1595 			v_usec = pps_ff[0] - pps_ff[2];
1596 		} else if (pps_ff[2] > pps_ff[0]) {
1597 			u_usec = pps_ff[0];		/* 2 0 1 */
1598 			v_usec = pps_ff[2] - pps_ff[1];
1599 		} else {
1600 			u_usec = pps_ff[2];		/* 0 2 1 */
1601 			v_usec = pps_ff[0] - pps_ff[1];
1602 		}
1603 	} else {
1604 		if (pps_ff[1] < pps_ff[2]) {
1605 			u_usec = pps_ff[1];		/* 2 1 0 */
1606 			v_usec = pps_ff[2] - pps_ff[0];
1607 		} else  if (pps_ff[2] < pps_ff[0]) {
1608 			u_usec = pps_ff[0];		/* 1 0 2 */
1609 			v_usec = pps_ff[1] - pps_ff[2];
1610 		} else {
1611 			u_usec = pps_ff[2];		/* 1 2 0 */
1612 			v_usec = pps_ff[1] - pps_ff[0];
1613 		}
1614 	}
1615 
1616 	/*
1617 	 * Here the frequency dispersion (stability) is updated. If it
1618 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1619 	 * offset is updated as well, but clamped to the tolerance. It
1620 	 * will be processed later by the hardclock() routine.
1621 	 */
1622 	v_usec = (v_usec >> 1) - pps_stabil;
1623 	if (v_usec < 0)
1624 		pps_stabil -= -v_usec >> PPS_AVG;
1625 	else
1626 		pps_stabil += v_usec >> PPS_AVG;
1627 	if (pps_stabil > MAXFREQ >> 2) {
1628 		pps_stbcnt++;
1629 		time_status |= STA_PPSWANDER;
1630 		return;
1631 	}
1632 	if (time_status & STA_PPSFREQ) {
1633 		if (u_usec < 0) {
1634 			pps_freq -= -u_usec >> PPS_AVG;
1635 			if (pps_freq < -time_tolerance)
1636 				pps_freq = -time_tolerance;
1637 			u_usec = -u_usec;
1638 		} else {
1639 			pps_freq += u_usec >> PPS_AVG;
1640 			if (pps_freq > time_tolerance)
1641 				pps_freq = time_tolerance;
1642 		}
1643 	}
1644 
1645 	/*
1646 	 * Here the calibration interval is adjusted. If the maximum
1647 	 * time difference is greater than tick / 4, reduce the interval
1648 	 * by half. If this is not the case for four consecutive
1649 	 * intervals, double the interval.
1650 	 */
1651 	if (u_usec << pps_shift > bigtick >> 2) {
1652 		pps_intcnt = 0;
1653 		if (pps_shift > PPS_SHIFT)
1654 			pps_shift--;
1655 	} else if (pps_intcnt >= 4) {
1656 		pps_intcnt = 0;
1657 		if (pps_shift < PPS_SHIFTMAX)
1658 			pps_shift++;
1659 	} else
1660 		pps_intcnt++;
1661 }
1662 #endif /* PPS_SYNC */
1663 #endif /* NTP  */
1664 
1665 /*
1666  * Return information about system clocks.
1667  */
1668 int
1669 sysctl_clockrate(void *where, size_t *sizep)
1670 {
1671 	struct clockinfo clkinfo;
1672 
1673 	/*
1674 	 * Construct clockinfo structure.
1675 	 */
1676 	clkinfo.tick = tick;
1677 	clkinfo.tickadj = tickadj;
1678 	clkinfo.hz = hz;
1679 	clkinfo.profhz = profhz;
1680 	clkinfo.stathz = stathz ? stathz : hz;
1681 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1682 }
1683