1 /* $NetBSD: kern_clock.c,v 1.72 2000/12/10 19:29:31 mycroft Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /*- 41 * Copyright (c) 1982, 1986, 1991, 1993 42 * The Regents of the University of California. All rights reserved. 43 * (c) UNIX System Laboratories, Inc. 44 * All or some portions of this file are derived from material licensed 45 * to the University of California by American Telephone and Telegraph 46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 47 * the permission of UNIX System Laboratories, Inc. 48 * 49 * Redistribution and use in source and binary forms, with or without 50 * modification, are permitted provided that the following conditions 51 * are met: 52 * 1. Redistributions of source code must retain the above copyright 53 * notice, this list of conditions and the following disclaimer. 54 * 2. Redistributions in binary form must reproduce the above copyright 55 * notice, this list of conditions and the following disclaimer in the 56 * documentation and/or other materials provided with the distribution. 57 * 3. All advertising materials mentioning features or use of this software 58 * must display the following acknowledgement: 59 * This product includes software developed by the University of 60 * California, Berkeley and its contributors. 61 * 4. Neither the name of the University nor the names of its contributors 62 * may be used to endorse or promote products derived from this software 63 * without specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 75 * SUCH DAMAGE. 76 * 77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 78 */ 79 80 #include "opt_ntp.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/dkstat.h> 85 #include <sys/callout.h> 86 #include <sys/kernel.h> 87 #include <sys/proc.h> 88 #include <sys/resourcevar.h> 89 #include <sys/signalvar.h> 90 #include <uvm/uvm_extern.h> 91 #include <sys/sysctl.h> 92 #include <sys/timex.h> 93 #include <sys/sched.h> 94 95 #include <machine/cpu.h> 96 97 #ifdef GPROF 98 #include <sys/gmon.h> 99 #endif 100 101 /* 102 * Clock handling routines. 103 * 104 * This code is written to operate with two timers that run independently of 105 * each other. The main clock, running hz times per second, is used to keep 106 * track of real time. The second timer handles kernel and user profiling, 107 * and does resource use estimation. If the second timer is programmable, 108 * it is randomized to avoid aliasing between the two clocks. For example, 109 * the randomization prevents an adversary from always giving up the cpu 110 * just before its quantum expires. Otherwise, it would never accumulate 111 * cpu ticks. The mean frequency of the second timer is stathz. 112 * 113 * If no second timer exists, stathz will be zero; in this case we drive 114 * profiling and statistics off the main clock. This WILL NOT be accurate; 115 * do not do it unless absolutely necessary. 116 * 117 * The statistics clock may (or may not) be run at a higher rate while 118 * profiling. This profile clock runs at profhz. We require that profhz 119 * be an integral multiple of stathz. 120 * 121 * If the statistics clock is running fast, it must be divided by the ratio 122 * profhz/stathz for statistics. (For profiling, every tick counts.) 123 */ 124 125 #ifdef NTP /* NTP phase-locked loop in kernel */ 126 /* 127 * Phase/frequency-lock loop (PLL/FLL) definitions 128 * 129 * The following variables are read and set by the ntp_adjtime() system 130 * call. 131 * 132 * time_state shows the state of the system clock, with values defined 133 * in the timex.h header file. 134 * 135 * time_status shows the status of the system clock, with bits defined 136 * in the timex.h header file. 137 * 138 * time_offset is used by the PLL/FLL to adjust the system time in small 139 * increments. 140 * 141 * time_constant determines the bandwidth or "stiffness" of the PLL. 142 * 143 * time_tolerance determines maximum frequency error or tolerance of the 144 * CPU clock oscillator and is a property of the architecture; however, 145 * in principle it could change as result of the presence of external 146 * discipline signals, for instance. 147 * 148 * time_precision is usually equal to the kernel tick variable; however, 149 * in cases where a precision clock counter or external clock is 150 * available, the resolution can be much less than this and depend on 151 * whether the external clock is working or not. 152 * 153 * time_maxerror is initialized by a ntp_adjtime() call and increased by 154 * the kernel once each second to reflect the maximum error bound 155 * growth. 156 * 157 * time_esterror is set and read by the ntp_adjtime() call, but 158 * otherwise not used by the kernel. 159 */ 160 int time_state = TIME_OK; /* clock state */ 161 int time_status = STA_UNSYNC; /* clock status bits */ 162 long time_offset = 0; /* time offset (us) */ 163 long time_constant = 0; /* pll time constant */ 164 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 165 long time_precision = 1; /* clock precision (us) */ 166 long time_maxerror = MAXPHASE; /* maximum error (us) */ 167 long time_esterror = MAXPHASE; /* estimated error (us) */ 168 169 /* 170 * The following variables establish the state of the PLL/FLL and the 171 * residual time and frequency offset of the local clock. The scale 172 * factors are defined in the timex.h header file. 173 * 174 * time_phase and time_freq are the phase increment and the frequency 175 * increment, respectively, of the kernel time variable. 176 * 177 * time_freq is set via ntp_adjtime() from a value stored in a file when 178 * the synchronization daemon is first started. Its value is retrieved 179 * via ntp_adjtime() and written to the file about once per hour by the 180 * daemon. 181 * 182 * time_adj is the adjustment added to the value of tick at each timer 183 * interrupt and is recomputed from time_phase and time_freq at each 184 * seconds rollover. 185 * 186 * time_reftime is the second's portion of the system time at the last 187 * call to ntp_adjtime(). It is used to adjust the time_freq variable 188 * and to increase the time_maxerror as the time since last update 189 * increases. 190 */ 191 long time_phase = 0; /* phase offset (scaled us) */ 192 long time_freq = 0; /* frequency offset (scaled ppm) */ 193 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 194 long time_reftime = 0; /* time at last adjustment (s) */ 195 196 #ifdef PPS_SYNC 197 /* 198 * The following variables are used only if the kernel PPS discipline 199 * code is configured (PPS_SYNC). The scale factors are defined in the 200 * timex.h header file. 201 * 202 * pps_time contains the time at each calibration interval, as read by 203 * microtime(). pps_count counts the seconds of the calibration 204 * interval, the duration of which is nominally pps_shift in powers of 205 * two. 206 * 207 * pps_offset is the time offset produced by the time median filter 208 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 209 * this filter. 210 * 211 * pps_freq is the frequency offset produced by the frequency median 212 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 213 * by this filter. 214 * 215 * pps_usec is latched from a high resolution counter or external clock 216 * at pps_time. Here we want the hardware counter contents only, not the 217 * contents plus the time_tv.usec as usual. 218 * 219 * pps_valid counts the number of seconds since the last PPS update. It 220 * is used as a watchdog timer to disable the PPS discipline should the 221 * PPS signal be lost. 222 * 223 * pps_glitch counts the number of seconds since the beginning of an 224 * offset burst more than tick/2 from current nominal offset. It is used 225 * mainly to suppress error bursts due to priority conflicts between the 226 * PPS interrupt and timer interrupt. 227 * 228 * pps_intcnt counts the calibration intervals for use in the interval- 229 * adaptation algorithm. It's just too complicated for words. 230 */ 231 struct timeval pps_time; /* kernel time at last interval */ 232 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 233 long pps_offset = 0; /* pps time offset (us) */ 234 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 235 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 236 long pps_freq = 0; /* frequency offset (scaled ppm) */ 237 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 238 long pps_usec = 0; /* microsec counter at last interval */ 239 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 240 int pps_glitch = 0; /* pps signal glitch counter */ 241 int pps_count = 0; /* calibration interval counter (s) */ 242 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 243 int pps_intcnt = 0; /* intervals at current duration */ 244 245 /* 246 * PPS signal quality monitors 247 * 248 * pps_jitcnt counts the seconds that have been discarded because the 249 * jitter measured by the time median filter exceeds the limit MAXTIME 250 * (100 us). 251 * 252 * pps_calcnt counts the frequency calibration intervals, which are 253 * variable from 4 s to 256 s. 254 * 255 * pps_errcnt counts the calibration intervals which have been discarded 256 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 257 * calibration interval jitter exceeds two ticks. 258 * 259 * pps_stbcnt counts the calibration intervals that have been discarded 260 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 261 */ 262 long pps_jitcnt = 0; /* jitter limit exceeded */ 263 long pps_calcnt = 0; /* calibration intervals */ 264 long pps_errcnt = 0; /* calibration errors */ 265 long pps_stbcnt = 0; /* stability limit exceeded */ 266 #endif /* PPS_SYNC */ 267 268 #ifdef EXT_CLOCK 269 /* 270 * External clock definitions 271 * 272 * The following definitions and declarations are used only if an 273 * external clock is configured on the system. 274 */ 275 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 276 277 /* 278 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 279 * interrupt and decremented once each second. 280 */ 281 int clock_count = 0; /* CPU clock counter */ 282 283 #ifdef HIGHBALL 284 /* 285 * The clock_offset and clock_cpu variables are used by the HIGHBALL 286 * interface. The clock_offset variable defines the offset between 287 * system time and the HIGBALL counters. The clock_cpu variable contains 288 * the offset between the system clock and the HIGHBALL clock for use in 289 * disciplining the kernel time variable. 290 */ 291 extern struct timeval clock_offset; /* Highball clock offset */ 292 long clock_cpu = 0; /* CPU clock adjust */ 293 #endif /* HIGHBALL */ 294 #endif /* EXT_CLOCK */ 295 #endif /* NTP */ 296 297 298 /* 299 * Bump a timeval by a small number of usec's. 300 */ 301 #define BUMPTIME(t, usec) { \ 302 volatile struct timeval *tp = (t); \ 303 long us; \ 304 \ 305 tp->tv_usec = us = tp->tv_usec + (usec); \ 306 if (us >= 1000000) { \ 307 tp->tv_usec = us - 1000000; \ 308 tp->tv_sec++; \ 309 } \ 310 } 311 312 int stathz; 313 int profhz; 314 int profprocs; 315 int softclock_running; /* 1 => softclock() is running */ 316 static int psdiv; /* prof => stat divider */ 317 int psratio; /* ratio: prof / stat */ 318 int tickfix, tickfixinterval; /* used if tick not really integral */ 319 #ifndef NTP 320 static int tickfixcnt; /* accumulated fractional error */ 321 #else 322 int fixtick; /* used by NTP for same */ 323 int shifthz; 324 #endif 325 326 /* 327 * We might want ldd to load the both words from time at once. 328 * To succeed we need to be quadword aligned. 329 * The sparc already does that, and that it has worked so far is a fluke. 330 */ 331 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t)))); 332 volatile struct timeval mono_time; 333 334 /* 335 * The callout mechanism is based on the work of Adam M. Costello and 336 * George Varghese, published in a technical report entitled "Redesigning 337 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent 338 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe. 339 * 340 * The original work on the data structures used in this implementation 341 * was published by G. Varghese and A. Lauck in the paper "Hashed and 342 * Hierarchical Timing Wheels: Data Structures for the Efficient 343 * Implementation of a Timer Facility" in the Proceedings of the 11th 344 * ACM Annual Symposium on Operating System Principles, Austin, Texas, 345 * November 1987. 346 */ 347 struct callout_queue *callwheel; 348 int callwheelsize, callwheelbits, callwheelmask; 349 350 static struct callout *nextsoftcheck; /* next callout to be checked */ 351 352 #ifdef CALLWHEEL_STATS 353 int callwheel_collisions; /* number of hash collisions */ 354 int callwheel_maxlength; /* length of the longest hash chain */ 355 int *callwheel_sizes; /* per-bucket length count */ 356 u_int64_t callwheel_count; /* # callouts currently */ 357 u_int64_t callwheel_established; /* # callouts established */ 358 u_int64_t callwheel_fired; /* # callouts that fired */ 359 u_int64_t callwheel_disestablished; /* # callouts disestablished */ 360 u_int64_t callwheel_changed; /* # callouts changed */ 361 u_int64_t callwheel_softclocks; /* # times softclock() called */ 362 u_int64_t callwheel_softchecks; /* # checks per softclock() */ 363 u_int64_t callwheel_softempty; /* # empty buckets seen */ 364 #endif /* CALLWHEEL_STATS */ 365 366 /* 367 * This value indicates the number of consecutive callouts that 368 * will be checked before we allow interrupts to have a chance 369 * again. 370 */ 371 #ifndef MAX_SOFTCLOCK_STEPS 372 #define MAX_SOFTCLOCK_STEPS 100 373 #endif 374 375 struct simplelock callwheel_slock; 376 377 #define CALLWHEEL_LOCK(s) \ 378 do { \ 379 s = splclock(); \ 380 simple_lock(&callwheel_slock); \ 381 } while (0) 382 383 #define CALLWHEEL_UNLOCK(s) \ 384 do { \ 385 simple_unlock(&callwheel_slock); \ 386 splx(s); \ 387 } while (0) 388 389 static void callout_stop_locked(struct callout *); 390 391 /* 392 * These are both protected by callwheel_lock. 393 * XXX SHOULD BE STATIC!! 394 */ 395 u_int64_t hardclock_ticks, softclock_ticks; 396 397 /* 398 * Initialize clock frequencies and start both clocks running. 399 */ 400 void 401 initclocks(void) 402 { 403 int i; 404 405 /* 406 * Set divisors to 1 (normal case) and let the machine-specific 407 * code do its bit. 408 */ 409 psdiv = 1; 410 cpu_initclocks(); 411 412 /* 413 * Compute profhz/stathz/rrticks, and fix profhz if needed. 414 */ 415 i = stathz ? stathz : hz; 416 if (profhz == 0) 417 profhz = i; 418 psratio = profhz / i; 419 rrticks = hz / 10; 420 421 #ifdef NTP 422 switch (hz) { 423 case 1: 424 shifthz = SHIFT_SCALE - 0; 425 break; 426 case 2: 427 shifthz = SHIFT_SCALE - 1; 428 break; 429 case 4: 430 shifthz = SHIFT_SCALE - 2; 431 break; 432 case 8: 433 shifthz = SHIFT_SCALE - 3; 434 break; 435 case 16: 436 shifthz = SHIFT_SCALE - 4; 437 break; 438 case 32: 439 shifthz = SHIFT_SCALE - 5; 440 break; 441 case 60: 442 case 64: 443 shifthz = SHIFT_SCALE - 6; 444 break; 445 case 96: 446 case 100: 447 case 128: 448 shifthz = SHIFT_SCALE - 7; 449 break; 450 case 256: 451 shifthz = SHIFT_SCALE - 8; 452 break; 453 case 512: 454 shifthz = SHIFT_SCALE - 9; 455 break; 456 case 1000: 457 case 1024: 458 shifthz = SHIFT_SCALE - 10; 459 break; 460 case 1200: 461 case 2048: 462 shifthz = SHIFT_SCALE - 11; 463 break; 464 case 4096: 465 shifthz = SHIFT_SCALE - 12; 466 break; 467 case 8192: 468 shifthz = SHIFT_SCALE - 13; 469 break; 470 case 16384: 471 shifthz = SHIFT_SCALE - 14; 472 break; 473 case 32768: 474 shifthz = SHIFT_SCALE - 15; 475 break; 476 case 65536: 477 shifthz = SHIFT_SCALE - 16; 478 break; 479 default: 480 panic("weird hz"); 481 } 482 if (fixtick == 0) { 483 /* 484 * Give MD code a chance to set this to a better 485 * value; but, if it doesn't, we should. 486 */ 487 fixtick = (1000000 - (hz*tick)); 488 } 489 #endif 490 } 491 492 /* 493 * The real-time timer, interrupting hz times per second. 494 */ 495 void 496 hardclock(struct clockframe *frame) 497 { 498 struct proc *p; 499 int delta; 500 extern int tickdelta; 501 extern long timedelta; 502 struct cpu_info *ci = curcpu(); 503 #ifdef NTP 504 int time_update; 505 int ltemp; 506 #endif 507 508 p = curproc; 509 if (p) { 510 struct pstats *pstats; 511 512 /* 513 * Run current process's virtual and profile time, as needed. 514 */ 515 pstats = p->p_stats; 516 if (CLKF_USERMODE(frame) && 517 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 518 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 519 psignal(p, SIGVTALRM); 520 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 521 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 522 psignal(p, SIGPROF); 523 } 524 525 /* 526 * If no separate statistics clock is available, run it from here. 527 */ 528 if (stathz == 0) 529 statclock(frame); 530 if ((--ci->ci_schedstate.spc_rrticks) <= 0) 531 roundrobin(ci); 532 533 #if defined(MULTIPROCESSOR) 534 /* 535 * If we are not the primary CPU, we're not allowed to do 536 * any more work. 537 */ 538 if (CPU_IS_PRIMARY(ci) == 0) 539 return; 540 #endif 541 542 /* 543 * Increment the time-of-day. The increment is normally just 544 * ``tick''. If the machine is one which has a clock frequency 545 * such that ``hz'' would not divide the second evenly into 546 * milliseconds, a periodic adjustment must be applied. Finally, 547 * if we are still adjusting the time (see adjtime()), 548 * ``tickdelta'' may also be added in. 549 */ 550 delta = tick; 551 552 #ifndef NTP 553 if (tickfix) { 554 tickfixcnt += tickfix; 555 if (tickfixcnt >= tickfixinterval) { 556 delta++; 557 tickfixcnt -= tickfixinterval; 558 } 559 } 560 #endif /* !NTP */ 561 /* Imprecise 4bsd adjtime() handling */ 562 if (timedelta != 0) { 563 delta += tickdelta; 564 timedelta -= tickdelta; 565 } 566 567 #ifdef notyet 568 microset(); 569 #endif 570 571 #ifndef NTP 572 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 573 #endif 574 BUMPTIME(&mono_time, delta); 575 576 #ifdef NTP 577 time_update = delta; 578 579 /* 580 * Compute the phase adjustment. If the low-order bits 581 * (time_phase) of the update overflow, bump the high-order bits 582 * (time_update). 583 */ 584 time_phase += time_adj; 585 if (time_phase <= -FINEUSEC) { 586 ltemp = -time_phase >> SHIFT_SCALE; 587 time_phase += ltemp << SHIFT_SCALE; 588 time_update -= ltemp; 589 } else if (time_phase >= FINEUSEC) { 590 ltemp = time_phase >> SHIFT_SCALE; 591 time_phase -= ltemp << SHIFT_SCALE; 592 time_update += ltemp; 593 } 594 595 #ifdef HIGHBALL 596 /* 597 * If the HIGHBALL board is installed, we need to adjust the 598 * external clock offset in order to close the hardware feedback 599 * loop. This will adjust the external clock phase and frequency 600 * in small amounts. The additional phase noise and frequency 601 * wander this causes should be minimal. We also need to 602 * discipline the kernel time variable, since the PLL is used to 603 * discipline the external clock. If the Highball board is not 604 * present, we discipline kernel time with the PLL as usual. We 605 * assume that the external clock phase adjustment (time_update) 606 * and kernel phase adjustment (clock_cpu) are less than the 607 * value of tick. 608 */ 609 clock_offset.tv_usec += time_update; 610 if (clock_offset.tv_usec >= 1000000) { 611 clock_offset.tv_sec++; 612 clock_offset.tv_usec -= 1000000; 613 } 614 if (clock_offset.tv_usec < 0) { 615 clock_offset.tv_sec--; 616 clock_offset.tv_usec += 1000000; 617 } 618 time.tv_usec += clock_cpu; 619 clock_cpu = 0; 620 #else 621 time.tv_usec += time_update; 622 #endif /* HIGHBALL */ 623 624 /* 625 * On rollover of the second the phase adjustment to be used for 626 * the next second is calculated. Also, the maximum error is 627 * increased by the tolerance. If the PPS frequency discipline 628 * code is present, the phase is increased to compensate for the 629 * CPU clock oscillator frequency error. 630 * 631 * On a 32-bit machine and given parameters in the timex.h 632 * header file, the maximum phase adjustment is +-512 ms and 633 * maximum frequency offset is a tad less than) +-512 ppm. On a 634 * 64-bit machine, you shouldn't need to ask. 635 */ 636 if (time.tv_usec >= 1000000) { 637 time.tv_usec -= 1000000; 638 time.tv_sec++; 639 time_maxerror += time_tolerance >> SHIFT_USEC; 640 641 /* 642 * Leap second processing. If in leap-insert state at 643 * the end of the day, the system clock is set back one 644 * second; if in leap-delete state, the system clock is 645 * set ahead one second. The microtime() routine or 646 * external clock driver will insure that reported time 647 * is always monotonic. The ugly divides should be 648 * replaced. 649 */ 650 switch (time_state) { 651 case TIME_OK: 652 if (time_status & STA_INS) 653 time_state = TIME_INS; 654 else if (time_status & STA_DEL) 655 time_state = TIME_DEL; 656 break; 657 658 case TIME_INS: 659 if (time.tv_sec % 86400 == 0) { 660 time.tv_sec--; 661 time_state = TIME_OOP; 662 } 663 break; 664 665 case TIME_DEL: 666 if ((time.tv_sec + 1) % 86400 == 0) { 667 time.tv_sec++; 668 time_state = TIME_WAIT; 669 } 670 break; 671 672 case TIME_OOP: 673 time_state = TIME_WAIT; 674 break; 675 676 case TIME_WAIT: 677 if (!(time_status & (STA_INS | STA_DEL))) 678 time_state = TIME_OK; 679 break; 680 } 681 682 /* 683 * Compute the phase adjustment for the next second. In 684 * PLL mode, the offset is reduced by a fixed factor 685 * times the time constant. In FLL mode the offset is 686 * used directly. In either mode, the maximum phase 687 * adjustment for each second is clamped so as to spread 688 * the adjustment over not more than the number of 689 * seconds between updates. 690 */ 691 if (time_offset < 0) { 692 ltemp = -time_offset; 693 if (!(time_status & STA_FLL)) 694 ltemp >>= SHIFT_KG + time_constant; 695 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 696 ltemp = (MAXPHASE / MINSEC) << 697 SHIFT_UPDATE; 698 time_offset += ltemp; 699 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 700 } else if (time_offset > 0) { 701 ltemp = time_offset; 702 if (!(time_status & STA_FLL)) 703 ltemp >>= SHIFT_KG + time_constant; 704 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 705 ltemp = (MAXPHASE / MINSEC) << 706 SHIFT_UPDATE; 707 time_offset -= ltemp; 708 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 709 } else 710 time_adj = 0; 711 712 /* 713 * Compute the frequency estimate and additional phase 714 * adjustment due to frequency error for the next 715 * second. When the PPS signal is engaged, gnaw on the 716 * watchdog counter and update the frequency computed by 717 * the pll and the PPS signal. 718 */ 719 #ifdef PPS_SYNC 720 pps_valid++; 721 if (pps_valid == PPS_VALID) { 722 pps_jitter = MAXTIME; 723 pps_stabil = MAXFREQ; 724 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 725 STA_PPSWANDER | STA_PPSERROR); 726 } 727 ltemp = time_freq + pps_freq; 728 #else 729 ltemp = time_freq; 730 #endif /* PPS_SYNC */ 731 732 if (ltemp < 0) 733 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 734 else 735 time_adj += ltemp >> (SHIFT_USEC - shifthz); 736 time_adj += (long)fixtick << shifthz; 737 738 /* 739 * When the CPU clock oscillator frequency is not a 740 * power of 2 in Hz, shifthz is only an approximate 741 * scale factor. 742 * 743 * To determine the adjustment, you can do the following: 744 * bc -q 745 * scale=24 746 * obase=2 747 * idealhz/realhz 748 * where `idealhz' is the next higher power of 2, and `realhz' 749 * is the actual value. You may need to factor this result 750 * into a sequence of 2 multipliers to get better precision. 751 * 752 * Likewise, the error can be calculated with (e.g. for 100Hz): 753 * bc -q 754 * scale=24 755 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz 756 * (and then multiply by 1000000 to get ppm). 757 */ 758 switch (hz) { 759 case 60: 760 /* A factor of 1.000100010001 gives about 15ppm 761 error. */ 762 if (time_adj < 0) { 763 time_adj -= (-time_adj >> 4); 764 time_adj -= (-time_adj >> 8); 765 } else { 766 time_adj += (time_adj >> 4); 767 time_adj += (time_adj >> 8); 768 } 769 break; 770 771 case 96: 772 /* A factor of 1.0101010101 gives about 244ppm error. */ 773 if (time_adj < 0) { 774 time_adj -= (-time_adj >> 2); 775 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 776 } else { 777 time_adj += (time_adj >> 2); 778 time_adj += (time_adj >> 4) + (time_adj >> 8); 779 } 780 break; 781 782 case 100: 783 /* A factor of 1.010001111010111 gives about 1ppm 784 error. */ 785 if (time_adj < 0) { 786 time_adj -= (-time_adj >> 2) + (-time_adj >> 5); 787 time_adj += (-time_adj >> 10); 788 } else { 789 time_adj += (time_adj >> 2) + (time_adj >> 5); 790 time_adj -= (time_adj >> 10); 791 } 792 break; 793 794 case 1000: 795 /* A factor of 1.000001100010100001 gives about 50ppm 796 error. */ 797 if (time_adj < 0) { 798 time_adj -= (-time_adj >> 6) + (-time_adj >> 11); 799 time_adj -= (-time_adj >> 7); 800 } else { 801 time_adj += (time_adj >> 6) + (time_adj >> 11); 802 time_adj += (time_adj >> 7); 803 } 804 break; 805 806 case 1200: 807 /* A factor of 1.1011010011100001 gives about 64ppm 808 error. */ 809 if (time_adj < 0) { 810 time_adj -= (-time_adj >> 1) + (-time_adj >> 6); 811 time_adj -= (-time_adj >> 3) + (-time_adj >> 10); 812 } else { 813 time_adj += (time_adj >> 1) + (time_adj >> 6); 814 time_adj += (time_adj >> 3) + (time_adj >> 10); 815 } 816 break; 817 } 818 819 #ifdef EXT_CLOCK 820 /* 821 * If an external clock is present, it is necessary to 822 * discipline the kernel time variable anyway, since not 823 * all system components use the microtime() interface. 824 * Here, the time offset between the external clock and 825 * kernel time variable is computed every so often. 826 */ 827 clock_count++; 828 if (clock_count > CLOCK_INTERVAL) { 829 clock_count = 0; 830 microtime(&clock_ext); 831 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 832 delta.tv_usec = clock_ext.tv_usec - 833 time.tv_usec; 834 if (delta.tv_usec < 0) 835 delta.tv_sec--; 836 if (delta.tv_usec >= 500000) { 837 delta.tv_usec -= 1000000; 838 delta.tv_sec++; 839 } 840 if (delta.tv_usec < -500000) { 841 delta.tv_usec += 1000000; 842 delta.tv_sec--; 843 } 844 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 845 delta.tv_usec > MAXPHASE) || 846 delta.tv_sec < -1 || (delta.tv_sec == -1 && 847 delta.tv_usec < -MAXPHASE)) { 848 time = clock_ext; 849 delta.tv_sec = 0; 850 delta.tv_usec = 0; 851 } 852 #ifdef HIGHBALL 853 clock_cpu = delta.tv_usec; 854 #else /* HIGHBALL */ 855 hardupdate(delta.tv_usec); 856 #endif /* HIGHBALL */ 857 } 858 #endif /* EXT_CLOCK */ 859 } 860 861 #endif /* NTP */ 862 863 /* 864 * Process callouts at a very low cpu priority, so we don't keep the 865 * relatively high clock interrupt priority any longer than necessary. 866 */ 867 simple_lock(&callwheel_slock); /* already at splclock() */ 868 hardclock_ticks++; 869 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) { 870 simple_unlock(&callwheel_slock); 871 if (CLKF_BASEPRI(frame)) { 872 /* 873 * Save the overhead of a software interrupt; 874 * it will happen as soon as we return, so do 875 * it now. 876 * 877 * NOTE: If we're at ``base priority'', softclock() 878 * was not already running. 879 */ 880 spllowersoftclock(); 881 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE); 882 softclock(); 883 KERNEL_UNLOCK(); 884 } else 885 setsoftclock(); 886 return; 887 } else if (softclock_running == 0 && 888 (softclock_ticks + 1) == hardclock_ticks) { 889 softclock_ticks++; 890 } 891 simple_unlock(&callwheel_slock); 892 } 893 894 /* 895 * Software (low priority) clock interrupt. 896 * Run periodic events from timeout queue. 897 */ 898 /*ARGSUSED*/ 899 void 900 softclock(void) 901 { 902 struct callout_queue *bucket; 903 struct callout *c; 904 void (*func)(void *); 905 void *arg; 906 int s, idx; 907 int steps = 0; 908 909 CALLWHEEL_LOCK(s); 910 911 softclock_running = 1; 912 913 #ifdef CALLWHEEL_STATS 914 callwheel_softclocks++; 915 #endif 916 917 while (softclock_ticks != hardclock_ticks) { 918 softclock_ticks++; 919 idx = (int)(softclock_ticks & callwheelmask); 920 bucket = &callwheel[idx]; 921 c = TAILQ_FIRST(bucket); 922 #ifdef CALLWHEEL_STATS 923 if (c == NULL) 924 callwheel_softempty++; 925 #endif 926 while (c != NULL) { 927 #ifdef CALLWHEEL_STATS 928 callwheel_softchecks++; 929 #endif 930 if (c->c_time != softclock_ticks) { 931 c = TAILQ_NEXT(c, c_link); 932 if (++steps >= MAX_SOFTCLOCK_STEPS) { 933 nextsoftcheck = c; 934 /* Give interrupts a chance. */ 935 CALLWHEEL_UNLOCK(s); 936 CALLWHEEL_LOCK(s); 937 c = nextsoftcheck; 938 steps = 0; 939 } 940 } else { 941 nextsoftcheck = TAILQ_NEXT(c, c_link); 942 TAILQ_REMOVE(bucket, c, c_link); 943 #ifdef CALLWHEEL_STATS 944 callwheel_sizes[idx]--; 945 callwheel_fired++; 946 callwheel_count--; 947 #endif 948 func = c->c_func; 949 arg = c->c_arg; 950 c->c_func = NULL; 951 c->c_flags &= ~CALLOUT_PENDING; 952 CALLWHEEL_UNLOCK(s); 953 (*func)(arg); 954 CALLWHEEL_LOCK(s); 955 steps = 0; 956 c = nextsoftcheck; 957 } 958 } 959 } 960 nextsoftcheck = NULL; 961 softclock_running = 0; 962 CALLWHEEL_UNLOCK(s); 963 } 964 965 /* 966 * callout_setsize: 967 * 968 * Determine how many callwheels are necessary and 969 * set hash mask. Called from allocsys(). 970 */ 971 void 972 callout_setsize(void) 973 { 974 975 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1) 976 /* loop */ ; 977 callwheelmask = callwheelsize - 1; 978 } 979 980 /* 981 * callout_startup: 982 * 983 * Initialize the callwheel buckets. 984 */ 985 void 986 callout_startup(void) 987 { 988 int i; 989 990 for (i = 0; i < callwheelsize; i++) 991 TAILQ_INIT(&callwheel[i]); 992 993 simple_lock_init(&callwheel_slock); 994 } 995 996 /* 997 * callout_init: 998 * 999 * Initialize a callout structure so that it can be used 1000 * by callout_reset() and callout_stop(). 1001 */ 1002 void 1003 callout_init(struct callout *c) 1004 { 1005 1006 memset(c, 0, sizeof(*c)); 1007 } 1008 1009 /* 1010 * callout_reset: 1011 * 1012 * Establish or change a timeout. 1013 */ 1014 void 1015 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg) 1016 { 1017 struct callout_queue *bucket; 1018 int s; 1019 1020 if (ticks <= 0) 1021 ticks = 1; 1022 1023 CALLWHEEL_LOCK(s); 1024 1025 /* 1026 * If this callout's timer is already running, cancel it 1027 * before we modify it. 1028 */ 1029 if (c->c_flags & CALLOUT_PENDING) { 1030 callout_stop_locked(c); /* Already locked */ 1031 #ifdef CALLWHEEL_STATS 1032 callwheel_changed++; 1033 #endif 1034 } 1035 1036 c->c_arg = arg; 1037 c->c_func = func; 1038 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING; 1039 c->c_time = hardclock_ticks + ticks; 1040 1041 bucket = &callwheel[c->c_time & callwheelmask]; 1042 1043 #ifdef CALLWHEEL_STATS 1044 if (TAILQ_FIRST(bucket) != NULL) 1045 callwheel_collisions++; 1046 #endif 1047 1048 TAILQ_INSERT_TAIL(bucket, c, c_link); 1049 1050 #ifdef CALLWHEEL_STATS 1051 callwheel_count++; 1052 callwheel_established++; 1053 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength) 1054 callwheel_maxlength = 1055 callwheel_sizes[c->c_time & callwheelmask]; 1056 #endif 1057 1058 CALLWHEEL_UNLOCK(s); 1059 } 1060 1061 /* 1062 * callout_stop_locked: 1063 * 1064 * Disestablish a timeout. Callwheel is locked. 1065 */ 1066 static void 1067 callout_stop_locked(struct callout *c) 1068 { 1069 1070 /* 1071 * Don't attempt to delete a callout that's not on the queue. 1072 */ 1073 if ((c->c_flags & CALLOUT_PENDING) == 0) { 1074 c->c_flags &= ~CALLOUT_ACTIVE; 1075 return; 1076 } 1077 1078 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); 1079 1080 if (nextsoftcheck == c) 1081 nextsoftcheck = TAILQ_NEXT(c, c_link); 1082 1083 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link); 1084 #ifdef CALLWHEEL_STATS 1085 callwheel_count--; 1086 callwheel_disestablished++; 1087 callwheel_sizes[c->c_time & callwheelmask]--; 1088 #endif 1089 1090 c->c_func = NULL; 1091 } 1092 1093 /* 1094 * callout_stop: 1095 * 1096 * Disestablish a timeout. Callwheel is unlocked. This is 1097 * the standard entry point. 1098 */ 1099 void 1100 callout_stop(struct callout *c) 1101 { 1102 int s; 1103 1104 CALLWHEEL_LOCK(s); 1105 callout_stop_locked(c); 1106 CALLWHEEL_UNLOCK(s); 1107 } 1108 1109 #ifdef CALLWHEEL_STATS 1110 /* 1111 * callout_showstats: 1112 * 1113 * Display callout statistics. Call it from DDB. 1114 */ 1115 void 1116 callout_showstats(void) 1117 { 1118 u_int64_t curticks; 1119 int s; 1120 1121 s = splclock(); 1122 curticks = softclock_ticks; 1123 splx(s); 1124 1125 printf("Callwheel statistics:\n"); 1126 printf("\tCallouts currently queued: %llu\n", callwheel_count); 1127 printf("\tCallouts established: %llu\n", callwheel_established); 1128 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished); 1129 if (callwheel_changed != 0) 1130 printf("\t\tOf those, %llu were changes\n", callwheel_changed); 1131 printf("\tCallouts that fired: %llu\n", callwheel_fired); 1132 printf("\tNumber of buckets: %d\n", callwheelsize); 1133 printf("\tNumber of hash collisions: %d\n", callwheel_collisions); 1134 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength); 1135 printf("\tSoftclocks: %llu, Softchecks: %llu\n", 1136 callwheel_softclocks, callwheel_softchecks); 1137 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty); 1138 } 1139 #endif 1140 1141 /* 1142 * Compute number of hz until specified time. Used to compute second 1143 * argument to callout_reset() from an absolute time. 1144 */ 1145 int 1146 hzto(struct timeval *tv) 1147 { 1148 unsigned long ticks; 1149 long sec, usec; 1150 int s; 1151 1152 /* 1153 * If the number of usecs in the whole seconds part of the time 1154 * difference fits in a long, then the total number of usecs will 1155 * fit in an unsigned long. Compute the total and convert it to 1156 * ticks, rounding up and adding 1 to allow for the current tick 1157 * to expire. Rounding also depends on unsigned long arithmetic 1158 * to avoid overflow. 1159 * 1160 * Otherwise, if the number of ticks in the whole seconds part of 1161 * the time difference fits in a long, then convert the parts to 1162 * ticks separately and add, using similar rounding methods and 1163 * overflow avoidance. This method would work in the previous 1164 * case, but it is slightly slower and assume that hz is integral. 1165 * 1166 * Otherwise, round the time difference down to the maximum 1167 * representable value. 1168 * 1169 * If ints are 32-bit, then the maximum value for any timeout in 1170 * 10ms ticks is 248 days. 1171 */ 1172 s = splclock(); 1173 sec = tv->tv_sec - time.tv_sec; 1174 usec = tv->tv_usec - time.tv_usec; 1175 splx(s); 1176 1177 if (usec < 0) { 1178 sec--; 1179 usec += 1000000; 1180 } 1181 1182 if (sec < 0 || (sec == 0 && usec <= 0)) { 1183 /* 1184 * Would expire now or in the past. Return 0 ticks. 1185 * This is different from the legacy hzto() interface, 1186 * and callers need to check for it. 1187 */ 1188 ticks = 0; 1189 } else if (sec <= (LONG_MAX / 1000000)) 1190 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1)) 1191 / tick) + 1; 1192 else if (sec <= (LONG_MAX / hz)) 1193 ticks = (sec * hz) + 1194 (((unsigned long)usec + (tick - 1)) / tick) + 1; 1195 else 1196 ticks = LONG_MAX; 1197 1198 if (ticks > INT_MAX) 1199 ticks = INT_MAX; 1200 1201 return ((int)ticks); 1202 } 1203 1204 /* 1205 * Start profiling on a process. 1206 * 1207 * Kernel profiling passes proc0 which never exits and hence 1208 * keeps the profile clock running constantly. 1209 */ 1210 void 1211 startprofclock(struct proc *p) 1212 { 1213 1214 if ((p->p_flag & P_PROFIL) == 0) { 1215 p->p_flag |= P_PROFIL; 1216 if (++profprocs == 1 && stathz != 0) 1217 psdiv = psratio; 1218 } 1219 } 1220 1221 /* 1222 * Stop profiling on a process. 1223 */ 1224 void 1225 stopprofclock(struct proc *p) 1226 { 1227 1228 if (p->p_flag & P_PROFIL) { 1229 p->p_flag &= ~P_PROFIL; 1230 if (--profprocs == 0 && stathz != 0) 1231 psdiv = 1; 1232 } 1233 } 1234 1235 /* 1236 * Statistics clock. Grab profile sample, and if divider reaches 0, 1237 * do process and kernel statistics. 1238 */ 1239 void 1240 statclock(struct clockframe *frame) 1241 { 1242 #ifdef GPROF 1243 struct gmonparam *g; 1244 intptr_t i; 1245 #endif 1246 struct cpu_info *ci = curcpu(); 1247 struct schedstate_percpu *spc = &ci->ci_schedstate; 1248 struct proc *p; 1249 1250 /* 1251 * Notice changes in divisor frequency, and adjust clock 1252 * frequency accordingly. 1253 */ 1254 if (spc->spc_psdiv != psdiv) { 1255 spc->spc_psdiv = psdiv; 1256 spc->spc_pscnt = psdiv; 1257 if (psdiv == 1) { 1258 setstatclockrate(stathz); 1259 } else { 1260 setstatclockrate(profhz); 1261 } 1262 } 1263 p = curproc; 1264 if (CLKF_USERMODE(frame)) { 1265 if (p->p_flag & P_PROFIL) 1266 addupc_intr(p, CLKF_PC(frame)); 1267 if (--spc->spc_pscnt > 0) 1268 return; 1269 /* 1270 * Came from user mode; CPU was in user state. 1271 * If this process is being profiled record the tick. 1272 */ 1273 p->p_uticks++; 1274 if (p->p_nice > NZERO) 1275 spc->spc_cp_time[CP_NICE]++; 1276 else 1277 spc->spc_cp_time[CP_USER]++; 1278 } else { 1279 #ifdef GPROF 1280 /* 1281 * Kernel statistics are just like addupc_intr, only easier. 1282 */ 1283 g = &_gmonparam; 1284 if (g->state == GMON_PROF_ON) { 1285 i = CLKF_PC(frame) - g->lowpc; 1286 if (i < g->textsize) { 1287 i /= HISTFRACTION * sizeof(*g->kcount); 1288 g->kcount[i]++; 1289 } 1290 } 1291 #endif 1292 #ifdef PROC_PC 1293 if (p && p->p_flag & P_PROFIL) 1294 addupc_intr(p, PROC_PC(p)); 1295 #endif 1296 if (--spc->spc_pscnt > 0) 1297 return; 1298 /* 1299 * Came from kernel mode, so we were: 1300 * - handling an interrupt, 1301 * - doing syscall or trap work on behalf of the current 1302 * user process, or 1303 * - spinning in the idle loop. 1304 * Whichever it is, charge the time as appropriate. 1305 * Note that we charge interrupts to the current process, 1306 * regardless of whether they are ``for'' that process, 1307 * so that we know how much of its real time was spent 1308 * in ``non-process'' (i.e., interrupt) work. 1309 */ 1310 if (CLKF_INTR(frame)) { 1311 if (p != NULL) 1312 p->p_iticks++; 1313 spc->spc_cp_time[CP_INTR]++; 1314 } else if (p != NULL) { 1315 p->p_sticks++; 1316 spc->spc_cp_time[CP_SYS]++; 1317 } else 1318 spc->spc_cp_time[CP_IDLE]++; 1319 } 1320 spc->spc_pscnt = psdiv; 1321 1322 if (p != NULL) { 1323 ++p->p_cpticks; 1324 /* 1325 * If no separate schedclock is provided, call it here 1326 * at ~~12-25 Hz, ~~16 Hz is best 1327 */ 1328 if (schedhz == 0) 1329 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0) 1330 schedclock(p); 1331 } 1332 } 1333 1334 1335 #ifdef NTP /* NTP phase-locked loop in kernel */ 1336 1337 /* 1338 * hardupdate() - local clock update 1339 * 1340 * This routine is called by ntp_adjtime() to update the local clock 1341 * phase and frequency. The implementation is of an adaptive-parameter, 1342 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1343 * time and frequency offset estimates for each call. If the kernel PPS 1344 * discipline code is configured (PPS_SYNC), the PPS signal itself 1345 * determines the new time offset, instead of the calling argument. 1346 * Presumably, calls to ntp_adjtime() occur only when the caller 1347 * believes the local clock is valid within some bound (+-128 ms with 1348 * NTP). If the caller's time is far different than the PPS time, an 1349 * argument will ensue, and it's not clear who will lose. 1350 * 1351 * For uncompensated quartz crystal oscillatores and nominal update 1352 * intervals less than 1024 s, operation should be in phase-lock mode 1353 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1354 * intervals greater than thiss, operation should be in frequency-lock 1355 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1356 * 1357 * Note: splclock() is in effect. 1358 */ 1359 void 1360 hardupdate(long offset) 1361 { 1362 long ltemp, mtemp; 1363 1364 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1365 return; 1366 ltemp = offset; 1367 #ifdef PPS_SYNC 1368 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1369 ltemp = pps_offset; 1370 #endif /* PPS_SYNC */ 1371 1372 /* 1373 * Scale the phase adjustment and clamp to the operating range. 1374 */ 1375 if (ltemp > MAXPHASE) 1376 time_offset = MAXPHASE << SHIFT_UPDATE; 1377 else if (ltemp < -MAXPHASE) 1378 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1379 else 1380 time_offset = ltemp << SHIFT_UPDATE; 1381 1382 /* 1383 * Select whether the frequency is to be controlled and in which 1384 * mode (PLL or FLL). Clamp to the operating range. Ugly 1385 * multiply/divide should be replaced someday. 1386 */ 1387 if (time_status & STA_FREQHOLD || time_reftime == 0) 1388 time_reftime = time.tv_sec; 1389 mtemp = time.tv_sec - time_reftime; 1390 time_reftime = time.tv_sec; 1391 if (time_status & STA_FLL) { 1392 if (mtemp >= MINSEC) { 1393 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1394 SHIFT_UPDATE)); 1395 if (ltemp < 0) 1396 time_freq -= -ltemp >> SHIFT_KH; 1397 else 1398 time_freq += ltemp >> SHIFT_KH; 1399 } 1400 } else { 1401 if (mtemp < MAXSEC) { 1402 ltemp *= mtemp; 1403 if (ltemp < 0) 1404 time_freq -= -ltemp >> (time_constant + 1405 time_constant + SHIFT_KF - 1406 SHIFT_USEC); 1407 else 1408 time_freq += ltemp >> (time_constant + 1409 time_constant + SHIFT_KF - 1410 SHIFT_USEC); 1411 } 1412 } 1413 if (time_freq > time_tolerance) 1414 time_freq = time_tolerance; 1415 else if (time_freq < -time_tolerance) 1416 time_freq = -time_tolerance; 1417 } 1418 1419 #ifdef PPS_SYNC 1420 /* 1421 * hardpps() - discipline CPU clock oscillator to external PPS signal 1422 * 1423 * This routine is called at each PPS interrupt in order to discipline 1424 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1425 * and leaves it in a handy spot for the hardclock() routine. It 1426 * integrates successive PPS phase differences and calculates the 1427 * frequency offset. This is used in hardclock() to discipline the CPU 1428 * clock oscillator so that intrinsic frequency error is cancelled out. 1429 * The code requires the caller to capture the time and hardware counter 1430 * value at the on-time PPS signal transition. 1431 * 1432 * Note that, on some Unix systems, this routine runs at an interrupt 1433 * priority level higher than the timer interrupt routine hardclock(). 1434 * Therefore, the variables used are distinct from the hardclock() 1435 * variables, except for certain exceptions: The PPS frequency pps_freq 1436 * and phase pps_offset variables are determined by this routine and 1437 * updated atomically. The time_tolerance variable can be considered a 1438 * constant, since it is infrequently changed, and then only when the 1439 * PPS signal is disabled. The watchdog counter pps_valid is updated 1440 * once per second by hardclock() and is atomically cleared in this 1441 * routine. 1442 */ 1443 void 1444 hardpps(struct timeval *tvp, /* time at PPS */ 1445 long usec /* hardware counter at PPS */) 1446 { 1447 long u_usec, v_usec, bigtick; 1448 long cal_sec, cal_usec; 1449 1450 /* 1451 * An occasional glitch can be produced when the PPS interrupt 1452 * occurs in the hardclock() routine before the time variable is 1453 * updated. Here the offset is discarded when the difference 1454 * between it and the last one is greater than tick/2, but not 1455 * if the interval since the first discard exceeds 30 s. 1456 */ 1457 time_status |= STA_PPSSIGNAL; 1458 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1459 pps_valid = 0; 1460 u_usec = -tvp->tv_usec; 1461 if (u_usec < -500000) 1462 u_usec += 1000000; 1463 v_usec = pps_offset - u_usec; 1464 if (v_usec < 0) 1465 v_usec = -v_usec; 1466 if (v_usec > (tick >> 1)) { 1467 if (pps_glitch > MAXGLITCH) { 1468 pps_glitch = 0; 1469 pps_tf[2] = u_usec; 1470 pps_tf[1] = u_usec; 1471 } else { 1472 pps_glitch++; 1473 u_usec = pps_offset; 1474 } 1475 } else 1476 pps_glitch = 0; 1477 1478 /* 1479 * A three-stage median filter is used to help deglitch the pps 1480 * time. The median sample becomes the time offset estimate; the 1481 * difference between the other two samples becomes the time 1482 * dispersion (jitter) estimate. 1483 */ 1484 pps_tf[2] = pps_tf[1]; 1485 pps_tf[1] = pps_tf[0]; 1486 pps_tf[0] = u_usec; 1487 if (pps_tf[0] > pps_tf[1]) { 1488 if (pps_tf[1] > pps_tf[2]) { 1489 pps_offset = pps_tf[1]; /* 0 1 2 */ 1490 v_usec = pps_tf[0] - pps_tf[2]; 1491 } else if (pps_tf[2] > pps_tf[0]) { 1492 pps_offset = pps_tf[0]; /* 2 0 1 */ 1493 v_usec = pps_tf[2] - pps_tf[1]; 1494 } else { 1495 pps_offset = pps_tf[2]; /* 0 2 1 */ 1496 v_usec = pps_tf[0] - pps_tf[1]; 1497 } 1498 } else { 1499 if (pps_tf[1] < pps_tf[2]) { 1500 pps_offset = pps_tf[1]; /* 2 1 0 */ 1501 v_usec = pps_tf[2] - pps_tf[0]; 1502 } else if (pps_tf[2] < pps_tf[0]) { 1503 pps_offset = pps_tf[0]; /* 1 0 2 */ 1504 v_usec = pps_tf[1] - pps_tf[2]; 1505 } else { 1506 pps_offset = pps_tf[2]; /* 1 2 0 */ 1507 v_usec = pps_tf[1] - pps_tf[0]; 1508 } 1509 } 1510 if (v_usec > MAXTIME) 1511 pps_jitcnt++; 1512 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1513 if (v_usec < 0) 1514 pps_jitter -= -v_usec >> PPS_AVG; 1515 else 1516 pps_jitter += v_usec >> PPS_AVG; 1517 if (pps_jitter > (MAXTIME >> 1)) 1518 time_status |= STA_PPSJITTER; 1519 1520 /* 1521 * During the calibration interval adjust the starting time when 1522 * the tick overflows. At the end of the interval compute the 1523 * duration of the interval and the difference of the hardware 1524 * counters at the beginning and end of the interval. This code 1525 * is deliciously complicated by the fact valid differences may 1526 * exceed the value of tick when using long calibration 1527 * intervals and small ticks. Note that the counter can be 1528 * greater than tick if caught at just the wrong instant, but 1529 * the values returned and used here are correct. 1530 */ 1531 bigtick = (long)tick << SHIFT_USEC; 1532 pps_usec -= pps_freq; 1533 if (pps_usec >= bigtick) 1534 pps_usec -= bigtick; 1535 if (pps_usec < 0) 1536 pps_usec += bigtick; 1537 pps_time.tv_sec++; 1538 pps_count++; 1539 if (pps_count < (1 << pps_shift)) 1540 return; 1541 pps_count = 0; 1542 pps_calcnt++; 1543 u_usec = usec << SHIFT_USEC; 1544 v_usec = pps_usec - u_usec; 1545 if (v_usec >= bigtick >> 1) 1546 v_usec -= bigtick; 1547 if (v_usec < -(bigtick >> 1)) 1548 v_usec += bigtick; 1549 if (v_usec < 0) 1550 v_usec = -(-v_usec >> pps_shift); 1551 else 1552 v_usec = v_usec >> pps_shift; 1553 pps_usec = u_usec; 1554 cal_sec = tvp->tv_sec; 1555 cal_usec = tvp->tv_usec; 1556 cal_sec -= pps_time.tv_sec; 1557 cal_usec -= pps_time.tv_usec; 1558 if (cal_usec < 0) { 1559 cal_usec += 1000000; 1560 cal_sec--; 1561 } 1562 pps_time = *tvp; 1563 1564 /* 1565 * Check for lost interrupts, noise, excessive jitter and 1566 * excessive frequency error. The number of timer ticks during 1567 * the interval may vary +-1 tick. Add to this a margin of one 1568 * tick for the PPS signal jitter and maximum frequency 1569 * deviation. If the limits are exceeded, the calibration 1570 * interval is reset to the minimum and we start over. 1571 */ 1572 u_usec = (long)tick << 1; 1573 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1574 || (cal_sec == 0 && cal_usec < u_usec)) 1575 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1576 pps_errcnt++; 1577 pps_shift = PPS_SHIFT; 1578 pps_intcnt = 0; 1579 time_status |= STA_PPSERROR; 1580 return; 1581 } 1582 1583 /* 1584 * A three-stage median filter is used to help deglitch the pps 1585 * frequency. The median sample becomes the frequency offset 1586 * estimate; the difference between the other two samples 1587 * becomes the frequency dispersion (stability) estimate. 1588 */ 1589 pps_ff[2] = pps_ff[1]; 1590 pps_ff[1] = pps_ff[0]; 1591 pps_ff[0] = v_usec; 1592 if (pps_ff[0] > pps_ff[1]) { 1593 if (pps_ff[1] > pps_ff[2]) { 1594 u_usec = pps_ff[1]; /* 0 1 2 */ 1595 v_usec = pps_ff[0] - pps_ff[2]; 1596 } else if (pps_ff[2] > pps_ff[0]) { 1597 u_usec = pps_ff[0]; /* 2 0 1 */ 1598 v_usec = pps_ff[2] - pps_ff[1]; 1599 } else { 1600 u_usec = pps_ff[2]; /* 0 2 1 */ 1601 v_usec = pps_ff[0] - pps_ff[1]; 1602 } 1603 } else { 1604 if (pps_ff[1] < pps_ff[2]) { 1605 u_usec = pps_ff[1]; /* 2 1 0 */ 1606 v_usec = pps_ff[2] - pps_ff[0]; 1607 } else if (pps_ff[2] < pps_ff[0]) { 1608 u_usec = pps_ff[0]; /* 1 0 2 */ 1609 v_usec = pps_ff[1] - pps_ff[2]; 1610 } else { 1611 u_usec = pps_ff[2]; /* 1 2 0 */ 1612 v_usec = pps_ff[1] - pps_ff[0]; 1613 } 1614 } 1615 1616 /* 1617 * Here the frequency dispersion (stability) is updated. If it 1618 * is less than one-fourth the maximum (MAXFREQ), the frequency 1619 * offset is updated as well, but clamped to the tolerance. It 1620 * will be processed later by the hardclock() routine. 1621 */ 1622 v_usec = (v_usec >> 1) - pps_stabil; 1623 if (v_usec < 0) 1624 pps_stabil -= -v_usec >> PPS_AVG; 1625 else 1626 pps_stabil += v_usec >> PPS_AVG; 1627 if (pps_stabil > MAXFREQ >> 2) { 1628 pps_stbcnt++; 1629 time_status |= STA_PPSWANDER; 1630 return; 1631 } 1632 if (time_status & STA_PPSFREQ) { 1633 if (u_usec < 0) { 1634 pps_freq -= -u_usec >> PPS_AVG; 1635 if (pps_freq < -time_tolerance) 1636 pps_freq = -time_tolerance; 1637 u_usec = -u_usec; 1638 } else { 1639 pps_freq += u_usec >> PPS_AVG; 1640 if (pps_freq > time_tolerance) 1641 pps_freq = time_tolerance; 1642 } 1643 } 1644 1645 /* 1646 * Here the calibration interval is adjusted. If the maximum 1647 * time difference is greater than tick / 4, reduce the interval 1648 * by half. If this is not the case for four consecutive 1649 * intervals, double the interval. 1650 */ 1651 if (u_usec << pps_shift > bigtick >> 2) { 1652 pps_intcnt = 0; 1653 if (pps_shift > PPS_SHIFT) 1654 pps_shift--; 1655 } else if (pps_intcnt >= 4) { 1656 pps_intcnt = 0; 1657 if (pps_shift < PPS_SHIFTMAX) 1658 pps_shift++; 1659 } else 1660 pps_intcnt++; 1661 } 1662 #endif /* PPS_SYNC */ 1663 #endif /* NTP */ 1664 1665 /* 1666 * Return information about system clocks. 1667 */ 1668 int 1669 sysctl_clockrate(void *where, size_t *sizep) 1670 { 1671 struct clockinfo clkinfo; 1672 1673 /* 1674 * Construct clockinfo structure. 1675 */ 1676 clkinfo.tick = tick; 1677 clkinfo.tickadj = tickadj; 1678 clkinfo.hz = hz; 1679 clkinfo.profhz = profhz; 1680 clkinfo.stathz = stathz ? stathz : hz; 1681 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1682 } 1683