xref: /netbsd-src/sys/kern/kern_clock.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*	$NetBSD: kern_clock.c,v 1.37 1996/11/15 23:51:23 cgd Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/dkstat.h>
46 #include <sys/callout.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/signalvar.h>
51 #include <vm/vm.h>
52 #include <sys/sysctl.h>
53 #include <sys/timex.h>
54 
55 #include <machine/cpu.h>
56 
57 #ifdef GPROF
58 #include <sys/gmon.h>
59 #endif
60 
61 /*
62  * Clock handling routines.
63  *
64  * This code is written to operate with two timers that run independently of
65  * each other.  The main clock, running hz times per second, is used to keep
66  * track of real time.  The second timer handles kernel and user profiling,
67  * and does resource use estimation.  If the second timer is programmable,
68  * it is randomized to avoid aliasing between the two clocks.  For example,
69  * the randomization prevents an adversary from always giving up the cpu
70  * just before its quantum expires.  Otherwise, it would never accumulate
71  * cpu ticks.  The mean frequency of the second timer is stathz.
72  *
73  * If no second timer exists, stathz will be zero; in this case we drive
74  * profiling and statistics off the main clock.  This WILL NOT be accurate;
75  * do not do it unless absolutely necessary.
76  *
77  * The statistics clock may (or may not) be run at a higher rate while
78  * profiling.  This profile clock runs at profhz.  We require that profhz
79  * be an integral multiple of stathz.
80  *
81  * If the statistics clock is running fast, it must be divided by the ratio
82  * profhz/stathz for statistics.  (For profiling, every tick counts.)
83  */
84 
85 /*
86  * TODO:
87  *	allocate more timeout table slots when table overflows.
88  */
89 
90 
91 #ifdef NTP	/* NTP phase-locked loop in kernel */
92 /*
93  * Phase/frequency-lock loop (PLL/FLL) definitions
94  *
95  * The following variables are read and set by the ntp_adjtime() system
96  * call.
97  *
98  * time_state shows the state of the system clock, with values defined
99  * in the timex.h header file.
100  *
101  * time_status shows the status of the system clock, with bits defined
102  * in the timex.h header file.
103  *
104  * time_offset is used by the PLL/FLL to adjust the system time in small
105  * increments.
106  *
107  * time_constant determines the bandwidth or "stiffness" of the PLL.
108  *
109  * time_tolerance determines maximum frequency error or tolerance of the
110  * CPU clock oscillator and is a property of the architecture; however,
111  * in principle it could change as result of the presence of external
112  * discipline signals, for instance.
113  *
114  * time_precision is usually equal to the kernel tick variable; however,
115  * in cases where a precision clock counter or external clock is
116  * available, the resolution can be much less than this and depend on
117  * whether the external clock is working or not.
118  *
119  * time_maxerror is initialized by a ntp_adjtime() call and increased by
120  * the kernel once each second to reflect the maximum error bound
121  * growth.
122  *
123  * time_esterror is set and read by the ntp_adjtime() call, but
124  * otherwise not used by the kernel.
125  */
126 int time_state = TIME_OK;	/* clock state */
127 int time_status = STA_UNSYNC;	/* clock status bits */
128 long time_offset = 0;		/* time offset (us) */
129 long time_constant = 0;		/* pll time constant */
130 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
131 long time_precision = 1;	/* clock precision (us) */
132 long time_maxerror = MAXPHASE;	/* maximum error (us) */
133 long time_esterror = MAXPHASE;	/* estimated error (us) */
134 
135 /*
136  * The following variables establish the state of the PLL/FLL and the
137  * residual time and frequency offset of the local clock. The scale
138  * factors are defined in the timex.h header file.
139  *
140  * time_phase and time_freq are the phase increment and the frequency
141  * increment, respectively, of the kernel time variable.
142  *
143  * time_freq is set via ntp_adjtime() from a value stored in a file when
144  * the synchronization daemon is first started. Its value is retrieved
145  * via ntp_adjtime() and written to the file about once per hour by the
146  * daemon.
147  *
148  * time_adj is the adjustment added to the value of tick at each timer
149  * interrupt and is recomputed from time_phase and time_freq at each
150  * seconds rollover.
151  *
152  * time_reftime is the second's portion of the system time at the last
153  * call to ntp_adjtime(). It is used to adjust the time_freq variable
154  * and to increase the time_maxerror as the time since last update
155  * increases.
156  */
157 long time_phase = 0;		/* phase offset (scaled us) */
158 long time_freq = 0;		/* frequency offset (scaled ppm) */
159 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
160 long time_reftime = 0;		/* time at last adjustment (s) */
161 
162 #ifdef PPS_SYNC
163 /*
164  * The following variables are used only if the kernel PPS discipline
165  * code is configured (PPS_SYNC). The scale factors are defined in the
166  * timex.h header file.
167  *
168  * pps_time contains the time at each calibration interval, as read by
169  * microtime(). pps_count counts the seconds of the calibration
170  * interval, the duration of which is nominally pps_shift in powers of
171  * two.
172  *
173  * pps_offset is the time offset produced by the time median filter
174  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
175  * this filter.
176  *
177  * pps_freq is the frequency offset produced by the frequency median
178  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
179  * by this filter.
180  *
181  * pps_usec is latched from a high resolution counter or external clock
182  * at pps_time. Here we want the hardware counter contents only, not the
183  * contents plus the time_tv.usec as usual.
184  *
185  * pps_valid counts the number of seconds since the last PPS update. It
186  * is used as a watchdog timer to disable the PPS discipline should the
187  * PPS signal be lost.
188  *
189  * pps_glitch counts the number of seconds since the beginning of an
190  * offset burst more than tick/2 from current nominal offset. It is used
191  * mainly to suppress error bursts due to priority conflicts between the
192  * PPS interrupt and timer interrupt.
193  *
194  * pps_intcnt counts the calibration intervals for use in the interval-
195  * adaptation algorithm. It's just too complicated for words.
196  */
197 struct timeval pps_time;	/* kernel time at last interval */
198 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
199 long pps_offset = 0;		/* pps time offset (us) */
200 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
201 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
202 long pps_freq = 0;		/* frequency offset (scaled ppm) */
203 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
204 long pps_usec = 0;		/* microsec counter at last interval */
205 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
206 int pps_glitch = 0;		/* pps signal glitch counter */
207 int pps_count = 0;		/* calibration interval counter (s) */
208 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
209 int pps_intcnt = 0;		/* intervals at current duration */
210 
211 /*
212  * PPS signal quality monitors
213  *
214  * pps_jitcnt counts the seconds that have been discarded because the
215  * jitter measured by the time median filter exceeds the limit MAXTIME
216  * (100 us).
217  *
218  * pps_calcnt counts the frequency calibration intervals, which are
219  * variable from 4 s to 256 s.
220  *
221  * pps_errcnt counts the calibration intervals which have been discarded
222  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
223  * calibration interval jitter exceeds two ticks.
224  *
225  * pps_stbcnt counts the calibration intervals that have been discarded
226  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
227  */
228 long pps_jitcnt = 0;		/* jitter limit exceeded */
229 long pps_calcnt = 0;		/* calibration intervals */
230 long pps_errcnt = 0;		/* calibration errors */
231 long pps_stbcnt = 0;		/* stability limit exceeded */
232 #endif /* PPS_SYNC */
233 
234 #ifdef EXT_CLOCK
235 /*
236  * External clock definitions
237  *
238  * The following definitions and declarations are used only if an
239  * external clock is configured on the system.
240  */
241 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
242 
243 /*
244  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
245  * interrupt and decremented once each second.
246  */
247 int clock_count = 0;		/* CPU clock counter */
248 
249 #ifdef HIGHBALL
250 /*
251  * The clock_offset and clock_cpu variables are used by the HIGHBALL
252  * interface. The clock_offset variable defines the offset between
253  * system time and the HIGBALL counters. The clock_cpu variable contains
254  * the offset between the system clock and the HIGHBALL clock for use in
255  * disciplining the kernel time variable.
256  */
257 extern struct timeval clock_offset; /* Highball clock offset */
258 long clock_cpu = 0;		/* CPU clock adjust */
259 #endif /* HIGHBALL */
260 #endif /* EXT_CLOCK */
261 #endif /* NTP */
262 
263 
264 /*
265  * Bump a timeval by a small number of usec's.
266  */
267 #define BUMPTIME(t, usec) { \
268 	register volatile struct timeval *tp = (t); \
269 	register long us; \
270  \
271 	tp->tv_usec = us = tp->tv_usec + (usec); \
272 	if (us >= 1000000) { \
273 		tp->tv_usec = us - 1000000; \
274 		tp->tv_sec++; \
275 	} \
276 }
277 
278 int	stathz;
279 int	profhz;
280 int	profprocs;
281 int	ticks;
282 static int psdiv, pscnt;		/* prof => stat divider */
283 int	psratio;			/* ratio: prof / stat */
284 int	tickfix, tickfixinterval;	/* used if tick not really integral */
285 #ifndef NTP
286 static int tickfixcnt;			/* number of ticks since last fix */
287 #else
288 int	fixtick;			/* used by NTP for same */
289 int	shifthz;
290 #endif
291 
292 volatile struct	timeval time;
293 volatile struct	timeval mono_time;
294 
295 /*
296  * Initialize clock frequencies and start both clocks running.
297  */
298 void
299 initclocks()
300 {
301 	register int i;
302 
303 	/*
304 	 * Set divisors to 1 (normal case) and let the machine-specific
305 	 * code do its bit.
306 	 */
307 	psdiv = pscnt = 1;
308 	cpu_initclocks();
309 
310 	/*
311 	 * Compute profhz/stathz, and fix profhz if needed.
312 	 */
313 	i = stathz ? stathz : hz;
314 	if (profhz == 0)
315 		profhz = i;
316 	psratio = profhz / i;
317 
318 #ifdef NTP
319 	switch (hz) {
320 	case 60:
321 	case 64:
322 		shifthz = SHIFT_SCALE - 6;
323 		break;
324 	case 96:
325 	case 100:
326 	case 128:
327 		shifthz = SHIFT_SCALE - 7;
328 		break;
329 	case 256:
330 		shifthz = SHIFT_SCALE - 8;
331 		break;
332 	case 1024:
333 		shifthz = SHIFT_SCALE - 10;
334 		break;
335 	default:
336 		panic("weird hz");
337 	}
338 #endif
339 }
340 
341 /*
342  * The real-time timer, interrupting hz times per second.
343  */
344 void
345 hardclock(frame)
346 	register struct clockframe *frame;
347 {
348 	register struct callout *p1;
349 	register struct proc *p;
350 	register int delta, needsoft;
351 	extern int tickdelta;
352 	extern long timedelta;
353 #ifdef NTP
354 	register int time_update;
355 	register int ltemp;
356 #endif
357 
358 	/*
359 	 * Update real-time timeout queue.
360 	 * At front of queue are some number of events which are ``due''.
361 	 * The time to these is <= 0 and if negative represents the
362 	 * number of ticks which have passed since it was supposed to happen.
363 	 * The rest of the q elements (times > 0) are events yet to happen,
364 	 * where the time for each is given as a delta from the previous.
365 	 * Decrementing just the first of these serves to decrement the time
366 	 * to all events.
367 	 */
368 	needsoft = 0;
369 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
370 		if (--p1->c_time > 0)
371 			break;
372 		needsoft = 1;
373 		if (p1->c_time == 0)
374 			break;
375 	}
376 
377 	p = curproc;
378 	if (p) {
379 		register struct pstats *pstats;
380 
381 		/*
382 		 * Run current process's virtual and profile time, as needed.
383 		 */
384 		pstats = p->p_stats;
385 		if (CLKF_USERMODE(frame) &&
386 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
387 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
388 			psignal(p, SIGVTALRM);
389 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
390 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
391 			psignal(p, SIGPROF);
392 	}
393 
394 	/*
395 	 * If no separate statistics clock is available, run it from here.
396 	 */
397 	if (stathz == 0)
398 		statclock(frame);
399 
400 	/*
401 	 * Increment the time-of-day.  The increment is normally just
402 	 * ``tick''.  If the machine is one which has a clock frequency
403 	 * such that ``hz'' would not divide the second evenly into
404 	 * milliseconds, a periodic adjustment must be applied.  Finally,
405 	 * if we are still adjusting the time (see adjtime()),
406 	 * ``tickdelta'' may also be added in.
407 	 */
408 	ticks++;
409 	delta = tick;
410 
411 #ifndef NTP
412 	if (tickfix) {
413 		tickfixcnt++;
414 		if (tickfixcnt >= tickfixinterval) {
415 			delta += tickfix;
416 			tickfixcnt = 0;
417 		}
418 	}
419 #endif /* !NTP */
420 	/* Imprecise 4bsd adjtime() handling */
421 	if (timedelta != 0) {
422 		delta = tick + tickdelta;
423 		timedelta -= tickdelta;
424 	}
425 
426 #ifdef notyet
427 	microset();
428 #endif
429 
430 #ifndef NTP
431 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
432 #endif
433 	BUMPTIME(&mono_time, delta);
434 
435 #ifdef NTP
436 	time_update = delta;
437 
438 	/*
439 	 * Compute the phase adjustment. If the low-order bits
440 	 * (time_phase) of the update overflow, bump the high-order bits
441 	 * (time_update).
442 	 */
443 	time_phase += time_adj;
444 	if (time_phase <= -FINEUSEC) {
445 		ltemp = -time_phase >> SHIFT_SCALE;
446 		time_phase += ltemp << SHIFT_SCALE;
447 		time_update -= ltemp;
448 	} else if (time_phase >= FINEUSEC) {
449 		ltemp = time_phase >> SHIFT_SCALE;
450 		time_phase -= ltemp << SHIFT_SCALE;
451 		time_update += ltemp;
452 	}
453 
454 #ifdef HIGHBALL
455 	/*
456 	 * If the HIGHBALL board is installed, we need to adjust the
457 	 * external clock offset in order to close the hardware feedback
458 	 * loop. This will adjust the external clock phase and frequency
459 	 * in small amounts. The additional phase noise and frequency
460 	 * wander this causes should be minimal. We also need to
461 	 * discipline the kernel time variable, since the PLL is used to
462 	 * discipline the external clock. If the Highball board is not
463 	 * present, we discipline kernel time with the PLL as usual. We
464 	 * assume that the external clock phase adjustment (time_update)
465 	 * and kernel phase adjustment (clock_cpu) are less than the
466 	 * value of tick.
467 	 */
468 	clock_offset.tv_usec += time_update;
469 	if (clock_offset.tv_usec >= 1000000) {
470 		clock_offset.tv_sec++;
471 		clock_offset.tv_usec -= 1000000;
472 	}
473 	if (clock_offset.tv_usec < 0) {
474 		clock_offset.tv_sec--;
475 		clock_offset.tv_usec += 1000000;
476 	}
477 	time.tv_usec += clock_cpu;
478 	clock_cpu = 0;
479 #else
480 	time.tv_usec += time_update;
481 #endif /* HIGHBALL */
482 
483 	/*
484 	 * On rollover of the second the phase adjustment to be used for
485 	 * the next second is calculated. Also, the maximum error is
486 	 * increased by the tolerance. If the PPS frequency discipline
487 	 * code is present, the phase is increased to compensate for the
488 	 * CPU clock oscillator frequency error.
489 	 *
490  	 * On a 32-bit machine and given parameters in the timex.h
491 	 * header file, the maximum phase adjustment is +-512 ms and
492 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
493 	 * 64-bit machine, you shouldn't need to ask.
494 	 */
495 	if (time.tv_usec >= 1000000) {
496 		time.tv_usec -= 1000000;
497 		time.tv_sec++;
498 		time_maxerror += time_tolerance >> SHIFT_USEC;
499 
500 		/*
501 		 * Leap second processing. If in leap-insert state at
502 		 * the end of the day, the system clock is set back one
503 		 * second; if in leap-delete state, the system clock is
504 		 * set ahead one second. The microtime() routine or
505 		 * external clock driver will insure that reported time
506 		 * is always monotonic. The ugly divides should be
507 		 * replaced.
508 		 */
509 		switch (time_state) {
510 		case TIME_OK:
511 			if (time_status & STA_INS)
512 				time_state = TIME_INS;
513 			else if (time_status & STA_DEL)
514 				time_state = TIME_DEL;
515 			break;
516 
517 		case TIME_INS:
518 			if (time.tv_sec % 86400 == 0) {
519 				time.tv_sec--;
520 				time_state = TIME_OOP;
521 			}
522 			break;
523 
524 		case TIME_DEL:
525 			if ((time.tv_sec + 1) % 86400 == 0) {
526 				time.tv_sec++;
527 				time_state = TIME_WAIT;
528 			}
529 			break;
530 
531 		case TIME_OOP:
532 			time_state = TIME_WAIT;
533 			break;
534 
535 		case TIME_WAIT:
536 			if (!(time_status & (STA_INS | STA_DEL)))
537 				time_state = TIME_OK;
538 			break;
539 		}
540 
541 		/*
542 		 * Compute the phase adjustment for the next second. In
543 		 * PLL mode, the offset is reduced by a fixed factor
544 		 * times the time constant. In FLL mode the offset is
545 		 * used directly. In either mode, the maximum phase
546 		 * adjustment for each second is clamped so as to spread
547 		 * the adjustment over not more than the number of
548 		 * seconds between updates.
549 		 */
550 		if (time_offset < 0) {
551 			ltemp = -time_offset;
552 			if (!(time_status & STA_FLL))
553 				ltemp >>= SHIFT_KG + time_constant;
554 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
555 				ltemp = (MAXPHASE / MINSEC) <<
556 				    SHIFT_UPDATE;
557 			time_offset += ltemp;
558 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
559 		} else if (time_offset > 0) {
560 			ltemp = time_offset;
561 			if (!(time_status & STA_FLL))
562 				ltemp >>= SHIFT_KG + time_constant;
563 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
564 				ltemp = (MAXPHASE / MINSEC) <<
565 				    SHIFT_UPDATE;
566 			time_offset -= ltemp;
567 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
568 		} else
569 			time_adj = 0;
570 
571 		/*
572 		 * Compute the frequency estimate and additional phase
573 		 * adjustment due to frequency error for the next
574 		 * second. When the PPS signal is engaged, gnaw on the
575 		 * watchdog counter and update the frequency computed by
576 		 * the pll and the PPS signal.
577 		 */
578 #ifdef PPS_SYNC
579 		pps_valid++;
580 		if (pps_valid == PPS_VALID) {
581 			pps_jitter = MAXTIME;
582 			pps_stabil = MAXFREQ;
583 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
584 			    STA_PPSWANDER | STA_PPSERROR);
585 		}
586 		ltemp = time_freq + pps_freq;
587 #else
588 		ltemp = time_freq;
589 #endif /* PPS_SYNC */
590 
591 		if (ltemp < 0)
592 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
593 		else
594 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
595 		time_adj += (long)fixtick << shifthz;
596 
597 		/*
598 		 * When the CPU clock oscillator frequency is not a
599 		 * power of 2 in Hz, shifthz is only an approximate
600 		 * scale factor.
601 		 */
602 		switch (hz) {
603 		case 96:
604 		case 100:
605 			/*
606 			 * In the following code the overall gain is increased
607 			 * by a factor of 1.25, which results in a residual
608 			 * error less than 3 percent.
609 			 */
610 			if (time_adj < 0)
611 				time_adj -= -time_adj >> 2;
612 			else
613 				time_adj += time_adj >> 2;
614 			break;
615 		case 60:
616 			/*
617 			 * 60 Hz m68k and vaxes have a PLL gain factor of of
618 			 * 60/64 (15/16) of what it should be.  In the following code
619 			 * the overall gain is increased by a factor of 1.0625,
620 			 * (17/16) which results in a residual error of just less
621 			 * than 0.4 percent.
622 			 */
623 			if (time_adj < 0)
624 				time_adj -= -time_adj >> 4;
625 			else
626 				time_adj += time_adj >> 4;
627 			break;
628 		}
629 
630 #ifdef EXT_CLOCK
631 		/*
632 		 * If an external clock is present, it is necessary to
633 		 * discipline the kernel time variable anyway, since not
634 		 * all system components use the microtime() interface.
635 		 * Here, the time offset between the external clock and
636 		 * kernel time variable is computed every so often.
637 		 */
638 		clock_count++;
639 		if (clock_count > CLOCK_INTERVAL) {
640 			clock_count = 0;
641 			microtime(&clock_ext);
642 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
643 			delta.tv_usec = clock_ext.tv_usec -
644 			    time.tv_usec;
645 			if (delta.tv_usec < 0)
646 				delta.tv_sec--;
647 			if (delta.tv_usec >= 500000) {
648 				delta.tv_usec -= 1000000;
649 				delta.tv_sec++;
650 			}
651 			if (delta.tv_usec < -500000) {
652 				delta.tv_usec += 1000000;
653 				delta.tv_sec--;
654 			}
655 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
656 			    delta.tv_usec > MAXPHASE) ||
657 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
658 			    delta.tv_usec < -MAXPHASE)) {
659 				time = clock_ext;
660 				delta.tv_sec = 0;
661 				delta.tv_usec = 0;
662 			}
663 #ifdef HIGHBALL
664 			clock_cpu = delta.tv_usec;
665 #else /* HIGHBALL */
666 			hardupdate(delta.tv_usec);
667 #endif /* HIGHBALL */
668 		}
669 #endif /* EXT_CLOCK */
670 	}
671 
672 #endif /* NTP */
673 
674 	/*
675 	 * Process callouts at a very low cpu priority, so we don't keep the
676 	 * relatively high clock interrupt priority any longer than necessary.
677 	 */
678 	if (needsoft) {
679 		if (CLKF_BASEPRI(frame)) {
680 			/*
681 			 * Save the overhead of a software interrupt;
682 			 * it will happen as soon as we return, so do it now.
683 			 */
684 			(void)splsoftclock();
685 			softclock();
686 		} else
687 			setsoftclock();
688 	}
689 }
690 
691 /*
692  * Software (low priority) clock interrupt.
693  * Run periodic events from timeout queue.
694  */
695 /*ARGSUSED*/
696 void
697 softclock()
698 {
699 	register struct callout *c;
700 	register void *arg;
701 	register void (*func) __P((void *));
702 	register int s;
703 
704 	s = splhigh();
705 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
706 		func = c->c_func;
707 		arg = c->c_arg;
708 		calltodo.c_next = c->c_next;
709 		c->c_next = callfree;
710 		callfree = c;
711 		splx(s);
712 		(*func)(arg);
713 		(void) splhigh();
714 	}
715 	splx(s);
716 }
717 
718 /*
719  * timeout --
720  *	Execute a function after a specified length of time.
721  *
722  * untimeout --
723  *	Cancel previous timeout function call.
724  *
725  *	See AT&T BCI Driver Reference Manual for specification.  This
726  *	implementation differs from that one in that no identification
727  *	value is returned from timeout, rather, the original arguments
728  *	to timeout are used to identify entries for untimeout.
729  */
730 void
731 timeout(ftn, arg, ticks)
732 	void (*ftn) __P((void *));
733 	void *arg;
734 	register int ticks;
735 {
736 	register struct callout *new, *p, *t;
737 	register int s;
738 
739 	if (ticks <= 0)
740 		ticks = 1;
741 
742 	/* Lock out the clock. */
743 	s = splhigh();
744 
745 	/* Fill in the next free callout structure. */
746 	if (callfree == NULL)
747 		panic("timeout table full");
748 	new = callfree;
749 	callfree = new->c_next;
750 	new->c_arg = arg;
751 	new->c_func = ftn;
752 
753 	/*
754 	 * The time for each event is stored as a difference from the time
755 	 * of the previous event on the queue.  Walk the queue, correcting
756 	 * the ticks argument for queue entries passed.  Correct the ticks
757 	 * value for the queue entry immediately after the insertion point
758 	 * as well.  Watch out for negative c_time values; these represent
759 	 * overdue events.
760 	 */
761 	for (p = &calltodo;
762 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
763 		if (t->c_time > 0)
764 			ticks -= t->c_time;
765 	new->c_time = ticks;
766 	if (t != NULL)
767 		t->c_time -= ticks;
768 
769 	/* Insert the new entry into the queue. */
770 	p->c_next = new;
771 	new->c_next = t;
772 	splx(s);
773 }
774 
775 void
776 untimeout(ftn, arg)
777 	void (*ftn) __P((void *));
778 	void *arg;
779 {
780 	register struct callout *p, *t;
781 	register int s;
782 
783 	s = splhigh();
784 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
785 		if (t->c_func == ftn && t->c_arg == arg) {
786 			/* Increment next entry's tick count. */
787 			if (t->c_next && t->c_time > 0)
788 				t->c_next->c_time += t->c_time;
789 
790 			/* Move entry from callout queue to callfree queue. */
791 			p->c_next = t->c_next;
792 			t->c_next = callfree;
793 			callfree = t;
794 			break;
795 		}
796 	splx(s);
797 }
798 
799 /*
800  * Compute number of hz until specified time.  Used to
801  * compute third argument to timeout() from an absolute time.
802  */
803 int
804 hzto(tv)
805 	struct timeval *tv;
806 {
807 	register long ticks, sec;
808 	int s;
809 
810 	/*
811 	 * If number of microseconds will fit in 32 bit arithmetic,
812 	 * then compute number of microseconds to time and scale to
813 	 * ticks.  Otherwise just compute number of hz in time, rounding
814 	 * times greater than representible to maximum value.  (We must
815 	 * compute in microseconds, because hz can be greater than 1000,
816 	 * and thus tick can be less than one millisecond).
817 	 *
818 	 * Delta times less than 14 hours can be computed ``exactly''.
819 	 * (Note that if hz would yeild a non-integral number of us per
820 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
821 	 * than they should be.)  Maximum value for any timeout in 10ms
822 	 * ticks is 250 days.
823 	 */
824 	s = splhigh();
825 	sec = tv->tv_sec - time.tv_sec;
826 	if (sec <= 0x7fffffff / 1000000 - 1)
827 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
828 			(tv->tv_usec - time.tv_usec)) / tick;
829 	else if (sec <= 0x7fffffff / hz)
830 		ticks = sec * hz;
831 	else
832 		ticks = 0x7fffffff;
833 	splx(s);
834 	return (ticks);
835 }
836 
837 /*
838  * Start profiling on a process.
839  *
840  * Kernel profiling passes proc0 which never exits and hence
841  * keeps the profile clock running constantly.
842  */
843 void
844 startprofclock(p)
845 	register struct proc *p;
846 {
847 	int s;
848 
849 	if ((p->p_flag & P_PROFIL) == 0) {
850 		p->p_flag |= P_PROFIL;
851 		if (++profprocs == 1 && stathz != 0) {
852 			s = splstatclock();
853 			psdiv = pscnt = psratio;
854 			setstatclockrate(profhz);
855 			splx(s);
856 		}
857 	}
858 }
859 
860 /*
861  * Stop profiling on a process.
862  */
863 void
864 stopprofclock(p)
865 	register struct proc *p;
866 {
867 	int s;
868 
869 	if (p->p_flag & P_PROFIL) {
870 		p->p_flag &= ~P_PROFIL;
871 		if (--profprocs == 0 && stathz != 0) {
872 			s = splstatclock();
873 			psdiv = pscnt = 1;
874 			setstatclockrate(stathz);
875 			splx(s);
876 		}
877 	}
878 }
879 
880 /*
881  * Statistics clock.  Grab profile sample, and if divider reaches 0,
882  * do process and kernel statistics.
883  */
884 void
885 statclock(frame)
886 	register struct clockframe *frame;
887 {
888 #ifdef GPROF
889 	register struct gmonparam *g;
890 	register int i;
891 #endif
892 	register struct proc *p;
893 
894 	if (CLKF_USERMODE(frame)) {
895 		p = curproc;
896 		if (p->p_flag & P_PROFIL)
897 			addupc_intr(p, CLKF_PC(frame), 1);
898 		if (--pscnt > 0)
899 			return;
900 		/*
901 		 * Came from user mode; CPU was in user state.
902 		 * If this process is being profiled record the tick.
903 		 */
904 		p->p_uticks++;
905 		if (p->p_nice > NZERO)
906 			cp_time[CP_NICE]++;
907 		else
908 			cp_time[CP_USER]++;
909 	} else {
910 #ifdef GPROF
911 		/*
912 		 * Kernel statistics are just like addupc_intr, only easier.
913 		 */
914 		g = &_gmonparam;
915 		if (g->state == GMON_PROF_ON) {
916 			i = CLKF_PC(frame) - g->lowpc;
917 			if (i < g->textsize) {
918 				i /= HISTFRACTION * sizeof(*g->kcount);
919 				g->kcount[i]++;
920 			}
921 		}
922 #endif
923 		if (--pscnt > 0)
924 			return;
925 		/*
926 		 * Came from kernel mode, so we were:
927 		 * - handling an interrupt,
928 		 * - doing syscall or trap work on behalf of the current
929 		 *   user process, or
930 		 * - spinning in the idle loop.
931 		 * Whichever it is, charge the time as appropriate.
932 		 * Note that we charge interrupts to the current process,
933 		 * regardless of whether they are ``for'' that process,
934 		 * so that we know how much of its real time was spent
935 		 * in ``non-process'' (i.e., interrupt) work.
936 		 */
937 		p = curproc;
938 		if (CLKF_INTR(frame)) {
939 			if (p != NULL)
940 				p->p_iticks++;
941 			cp_time[CP_INTR]++;
942 		} else if (p != NULL) {
943 			p->p_sticks++;
944 			cp_time[CP_SYS]++;
945 		} else
946 			cp_time[CP_IDLE]++;
947 	}
948 	pscnt = psdiv;
949 
950 	/*
951 	 * We adjust the priority of the current process.  The priority of
952 	 * a process gets worse as it accumulates CPU time.  The cpu usage
953 	 * estimator (p_estcpu) is increased here.  The formula for computing
954 	 * priorities (in kern_synch.c) will compute a different value each
955 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
956 	 * quite quickly when the process is running (linearly), and decays
957 	 * away exponentially, at a rate which is proportionally slower when
958 	 * the system is busy.  The basic principal is that the system will
959 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
960 	 * seconds.  This causes the system to favor processes which haven't
961 	 * run much recently, and to round-robin among other processes.
962 	 */
963 	if (p != NULL) {
964 		p->p_cpticks++;
965 		if (++p->p_estcpu == 0)
966 			p->p_estcpu--;
967 		if ((p->p_estcpu & 3) == 0) {
968 			resetpriority(p);
969 			if (p->p_priority >= PUSER)
970 				p->p_priority = p->p_usrpri;
971 		}
972 	}
973 }
974 
975 
976 #ifdef NTP	/* NTP phase-locked loop in kernel */
977 
978 /*
979  * hardupdate() - local clock update
980  *
981  * This routine is called by ntp_adjtime() to update the local clock
982  * phase and frequency. The implementation is of an adaptive-parameter,
983  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
984  * time and frequency offset estimates for each call. If the kernel PPS
985  * discipline code is configured (PPS_SYNC), the PPS signal itself
986  * determines the new time offset, instead of the calling argument.
987  * Presumably, calls to ntp_adjtime() occur only when the caller
988  * believes the local clock is valid within some bound (+-128 ms with
989  * NTP). If the caller's time is far different than the PPS time, an
990  * argument will ensue, and it's not clear who will lose.
991  *
992  * For uncompensated quartz crystal oscillatores and nominal update
993  * intervals less than 1024 s, operation should be in phase-lock mode
994  * (STA_FLL = 0), where the loop is disciplined to phase. For update
995  * intervals greater than thiss, operation should be in frequency-lock
996  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
997  *
998  * Note: splclock() is in effect.
999  */
1000 void
1001 hardupdate(offset)
1002 	long offset;
1003 {
1004 	long ltemp, mtemp;
1005 
1006 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1007 		return;
1008 	ltemp = offset;
1009 #ifdef PPS_SYNC
1010 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1011 		ltemp = pps_offset;
1012 #endif /* PPS_SYNC */
1013 
1014 	/*
1015 	 * Scale the phase adjustment and clamp to the operating range.
1016 	 */
1017 	if (ltemp > MAXPHASE)
1018 		time_offset = MAXPHASE << SHIFT_UPDATE;
1019 	else if (ltemp < -MAXPHASE)
1020 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
1021 	else
1022 		time_offset = ltemp << SHIFT_UPDATE;
1023 
1024 	/*
1025 	 * Select whether the frequency is to be controlled and in which
1026 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1027 	 * multiply/divide should be replaced someday.
1028 	 */
1029 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1030 		time_reftime = time.tv_sec;
1031 	mtemp = time.tv_sec - time_reftime;
1032 	time_reftime = time.tv_sec;
1033 	if (time_status & STA_FLL) {
1034 		if (mtemp >= MINSEC) {
1035 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1036 			    SHIFT_UPDATE));
1037 			if (ltemp < 0)
1038 				time_freq -= -ltemp >> SHIFT_KH;
1039 			else
1040 				time_freq += ltemp >> SHIFT_KH;
1041 		}
1042 	} else {
1043 		if (mtemp < MAXSEC) {
1044 			ltemp *= mtemp;
1045 			if (ltemp < 0)
1046 				time_freq -= -ltemp >> (time_constant +
1047 				    time_constant + SHIFT_KF -
1048 				    SHIFT_USEC);
1049 			else
1050 				time_freq += ltemp >> (time_constant +
1051 				    time_constant + SHIFT_KF -
1052 				    SHIFT_USEC);
1053 		}
1054 	}
1055 	if (time_freq > time_tolerance)
1056 		time_freq = time_tolerance;
1057 	else if (time_freq < -time_tolerance)
1058 		time_freq = -time_tolerance;
1059 }
1060 
1061 #ifdef PPS_SYNC
1062 /*
1063  * hardpps() - discipline CPU clock oscillator to external PPS signal
1064  *
1065  * This routine is called at each PPS interrupt in order to discipline
1066  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1067  * and leaves it in a handy spot for the hardclock() routine. It
1068  * integrates successive PPS phase differences and calculates the
1069  * frequency offset. This is used in hardclock() to discipline the CPU
1070  * clock oscillator so that intrinsic frequency error is cancelled out.
1071  * The code requires the caller to capture the time and hardware counter
1072  * value at the on-time PPS signal transition.
1073  *
1074  * Note that, on some Unix systems, this routine runs at an interrupt
1075  * priority level higher than the timer interrupt routine hardclock().
1076  * Therefore, the variables used are distinct from the hardclock()
1077  * variables, except for certain exceptions: The PPS frequency pps_freq
1078  * and phase pps_offset variables are determined by this routine and
1079  * updated atomically. The time_tolerance variable can be considered a
1080  * constant, since it is infrequently changed, and then only when the
1081  * PPS signal is disabled. The watchdog counter pps_valid is updated
1082  * once per second by hardclock() and is atomically cleared in this
1083  * routine.
1084  */
1085 void
1086 hardpps(tvp, usec)
1087 	struct timeval *tvp;		/* time at PPS */
1088 	long usec;			/* hardware counter at PPS */
1089 {
1090 	long u_usec, v_usec, bigtick;
1091 	long cal_sec, cal_usec;
1092 
1093 	/*
1094 	 * An occasional glitch can be produced when the PPS interrupt
1095 	 * occurs in the hardclock() routine before the time variable is
1096 	 * updated. Here the offset is discarded when the difference
1097 	 * between it and the last one is greater than tick/2, but not
1098 	 * if the interval since the first discard exceeds 30 s.
1099 	 */
1100 	time_status |= STA_PPSSIGNAL;
1101 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1102 	pps_valid = 0;
1103 	u_usec = -tvp->tv_usec;
1104 	if (u_usec < -500000)
1105 		u_usec += 1000000;
1106 	v_usec = pps_offset - u_usec;
1107 	if (v_usec < 0)
1108 		v_usec = -v_usec;
1109 	if (v_usec > (tick >> 1)) {
1110 		if (pps_glitch > MAXGLITCH) {
1111 			pps_glitch = 0;
1112 			pps_tf[2] = u_usec;
1113 			pps_tf[1] = u_usec;
1114 		} else {
1115 			pps_glitch++;
1116 			u_usec = pps_offset;
1117 		}
1118 	} else
1119 		pps_glitch = 0;
1120 
1121 	/*
1122 	 * A three-stage median filter is used to help deglitch the pps
1123 	 * time. The median sample becomes the time offset estimate; the
1124 	 * difference between the other two samples becomes the time
1125 	 * dispersion (jitter) estimate.
1126 	 */
1127 	pps_tf[2] = pps_tf[1];
1128 	pps_tf[1] = pps_tf[0];
1129 	pps_tf[0] = u_usec;
1130 	if (pps_tf[0] > pps_tf[1]) {
1131 		if (pps_tf[1] > pps_tf[2]) {
1132 			pps_offset = pps_tf[1];		/* 0 1 2 */
1133 			v_usec = pps_tf[0] - pps_tf[2];
1134 		} else if (pps_tf[2] > pps_tf[0]) {
1135 			pps_offset = pps_tf[0];		/* 2 0 1 */
1136 			v_usec = pps_tf[2] - pps_tf[1];
1137 		} else {
1138 			pps_offset = pps_tf[2];		/* 0 2 1 */
1139 			v_usec = pps_tf[0] - pps_tf[1];
1140 		}
1141 	} else {
1142 		if (pps_tf[1] < pps_tf[2]) {
1143 			pps_offset = pps_tf[1];		/* 2 1 0 */
1144 			v_usec = pps_tf[2] - pps_tf[0];
1145 		} else  if (pps_tf[2] < pps_tf[0]) {
1146 			pps_offset = pps_tf[0];		/* 1 0 2 */
1147 			v_usec = pps_tf[1] - pps_tf[2];
1148 		} else {
1149 			pps_offset = pps_tf[2];		/* 1 2 0 */
1150 			v_usec = pps_tf[1] - pps_tf[0];
1151 		}
1152 	}
1153 	if (v_usec > MAXTIME)
1154 		pps_jitcnt++;
1155 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1156 	if (v_usec < 0)
1157 		pps_jitter -= -v_usec >> PPS_AVG;
1158 	else
1159 		pps_jitter += v_usec >> PPS_AVG;
1160 	if (pps_jitter > (MAXTIME >> 1))
1161 		time_status |= STA_PPSJITTER;
1162 
1163 	/*
1164 	 * During the calibration interval adjust the starting time when
1165 	 * the tick overflows. At the end of the interval compute the
1166 	 * duration of the interval and the difference of the hardware
1167 	 * counters at the beginning and end of the interval. This code
1168 	 * is deliciously complicated by the fact valid differences may
1169 	 * exceed the value of tick when using long calibration
1170 	 * intervals and small ticks. Note that the counter can be
1171 	 * greater than tick if caught at just the wrong instant, but
1172 	 * the values returned and used here are correct.
1173 	 */
1174 	bigtick = (long)tick << SHIFT_USEC;
1175 	pps_usec -= pps_freq;
1176 	if (pps_usec >= bigtick)
1177 		pps_usec -= bigtick;
1178 	if (pps_usec < 0)
1179 		pps_usec += bigtick;
1180 	pps_time.tv_sec++;
1181 	pps_count++;
1182 	if (pps_count < (1 << pps_shift))
1183 		return;
1184 	pps_count = 0;
1185 	pps_calcnt++;
1186 	u_usec = usec << SHIFT_USEC;
1187 	v_usec = pps_usec - u_usec;
1188 	if (v_usec >= bigtick >> 1)
1189 		v_usec -= bigtick;
1190 	if (v_usec < -(bigtick >> 1))
1191 		v_usec += bigtick;
1192 	if (v_usec < 0)
1193 		v_usec = -(-v_usec >> pps_shift);
1194 	else
1195 		v_usec = v_usec >> pps_shift;
1196 	pps_usec = u_usec;
1197 	cal_sec = tvp->tv_sec;
1198 	cal_usec = tvp->tv_usec;
1199 	cal_sec -= pps_time.tv_sec;
1200 	cal_usec -= pps_time.tv_usec;
1201 	if (cal_usec < 0) {
1202 		cal_usec += 1000000;
1203 		cal_sec--;
1204 	}
1205 	pps_time = *tvp;
1206 
1207 	/*
1208 	 * Check for lost interrupts, noise, excessive jitter and
1209 	 * excessive frequency error. The number of timer ticks during
1210 	 * the interval may vary +-1 tick. Add to this a margin of one
1211 	 * tick for the PPS signal jitter and maximum frequency
1212 	 * deviation. If the limits are exceeded, the calibration
1213 	 * interval is reset to the minimum and we start over.
1214 	 */
1215 	u_usec = (long)tick << 1;
1216 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1217 	    || (cal_sec == 0 && cal_usec < u_usec))
1218 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1219 		pps_errcnt++;
1220 		pps_shift = PPS_SHIFT;
1221 		pps_intcnt = 0;
1222 		time_status |= STA_PPSERROR;
1223 		return;
1224 	}
1225 
1226 	/*
1227 	 * A three-stage median filter is used to help deglitch the pps
1228 	 * frequency. The median sample becomes the frequency offset
1229 	 * estimate; the difference between the other two samples
1230 	 * becomes the frequency dispersion (stability) estimate.
1231 	 */
1232 	pps_ff[2] = pps_ff[1];
1233 	pps_ff[1] = pps_ff[0];
1234 	pps_ff[0] = v_usec;
1235 	if (pps_ff[0] > pps_ff[1]) {
1236 		if (pps_ff[1] > pps_ff[2]) {
1237 			u_usec = pps_ff[1];		/* 0 1 2 */
1238 			v_usec = pps_ff[0] - pps_ff[2];
1239 		} else if (pps_ff[2] > pps_ff[0]) {
1240 			u_usec = pps_ff[0];		/* 2 0 1 */
1241 			v_usec = pps_ff[2] - pps_ff[1];
1242 		} else {
1243 			u_usec = pps_ff[2];		/* 0 2 1 */
1244 			v_usec = pps_ff[0] - pps_ff[1];
1245 		}
1246 	} else {
1247 		if (pps_ff[1] < pps_ff[2]) {
1248 			u_usec = pps_ff[1];		/* 2 1 0 */
1249 			v_usec = pps_ff[2] - pps_ff[0];
1250 		} else  if (pps_ff[2] < pps_ff[0]) {
1251 			u_usec = pps_ff[0];		/* 1 0 2 */
1252 			v_usec = pps_ff[1] - pps_ff[2];
1253 		} else {
1254 			u_usec = pps_ff[2];		/* 1 2 0 */
1255 			v_usec = pps_ff[1] - pps_ff[0];
1256 		}
1257 	}
1258 
1259 	/*
1260 	 * Here the frequency dispersion (stability) is updated. If it
1261 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1262 	 * offset is updated as well, but clamped to the tolerance. It
1263 	 * will be processed later by the hardclock() routine.
1264 	 */
1265 	v_usec = (v_usec >> 1) - pps_stabil;
1266 	if (v_usec < 0)
1267 		pps_stabil -= -v_usec >> PPS_AVG;
1268 	else
1269 		pps_stabil += v_usec >> PPS_AVG;
1270 	if (pps_stabil > MAXFREQ >> 2) {
1271 		pps_stbcnt++;
1272 		time_status |= STA_PPSWANDER;
1273 		return;
1274 	}
1275 	if (time_status & STA_PPSFREQ) {
1276 		if (u_usec < 0) {
1277 			pps_freq -= -u_usec >> PPS_AVG;
1278 			if (pps_freq < -time_tolerance)
1279 				pps_freq = -time_tolerance;
1280 			u_usec = -u_usec;
1281 		} else {
1282 			pps_freq += u_usec >> PPS_AVG;
1283 			if (pps_freq > time_tolerance)
1284 				pps_freq = time_tolerance;
1285 		}
1286 	}
1287 
1288 	/*
1289 	 * Here the calibration interval is adjusted. If the maximum
1290 	 * time difference is greater than tick / 4, reduce the interval
1291 	 * by half. If this is not the case for four consecutive
1292 	 * intervals, double the interval.
1293 	 */
1294 	if (u_usec << pps_shift > bigtick >> 2) {
1295 		pps_intcnt = 0;
1296 		if (pps_shift > PPS_SHIFT)
1297 			pps_shift--;
1298 	} else if (pps_intcnt >= 4) {
1299 		pps_intcnt = 0;
1300 		if (pps_shift < PPS_SHIFTMAX)
1301 			pps_shift++;
1302 	} else
1303 		pps_intcnt++;
1304 }
1305 #endif /* PPS_SYNC */
1306 #endif /* NTP  */
1307 
1308 
1309 /*
1310  * Return information about system clocks.
1311  */
1312 int
1313 sysctl_clockrate(where, sizep)
1314 	register char *where;
1315 	size_t *sizep;
1316 {
1317 	struct clockinfo clkinfo;
1318 
1319 	/*
1320 	 * Construct clockinfo structure.
1321 	 */
1322 	clkinfo.tick = tick;
1323 	clkinfo.tickadj = tickadj;
1324 	clkinfo.hz = hz;
1325 	clkinfo.profhz = profhz;
1326 	clkinfo.stathz = stathz ? stathz : hz;
1327 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1328 }
1329 
1330 #ifdef DDB
1331 #include <machine/db_machdep.h>
1332 
1333 #include <ddb/db_interface.h>
1334 #include <ddb/db_access.h>
1335 #include <ddb/db_sym.h>
1336 #include <ddb/db_output.h>
1337 
1338 void db_show_callout(addr, haddr, count, modif)
1339 	db_expr_t addr;
1340 	int haddr;
1341 	db_expr_t count;
1342 	char *modif;
1343 {
1344 	register struct callout *p1;
1345 	register int	cum;
1346 	register int	s;
1347 	db_expr_t	offset;
1348 	char		*name;
1349 
1350 	db_printf("      cum     ticks      arg  func\n");
1351 	s = splhigh();
1352 	for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
1353 		register int t = p1->c_time;
1354 
1355 		if (t > 0)
1356 			cum += t;
1357 
1358 		db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
1359 		if (name == NULL)
1360 			name = "?";
1361 
1362 		db_printf("%9d %9d %p  %s (%p)\n",
1363 			  cum, t, p1->c_arg, name, p1->c_func);
1364 	}
1365 	splx(s);
1366 }
1367 #endif
1368