1 /* $NetBSD: kern_clock.c,v 1.37 1996/11/15 23:51:23 cgd Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by the University of 23 * California, Berkeley and its contributors. 24 * 4. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 41 */ 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/dkstat.h> 46 #include <sys/callout.h> 47 #include <sys/kernel.h> 48 #include <sys/proc.h> 49 #include <sys/resourcevar.h> 50 #include <sys/signalvar.h> 51 #include <vm/vm.h> 52 #include <sys/sysctl.h> 53 #include <sys/timex.h> 54 55 #include <machine/cpu.h> 56 57 #ifdef GPROF 58 #include <sys/gmon.h> 59 #endif 60 61 /* 62 * Clock handling routines. 63 * 64 * This code is written to operate with two timers that run independently of 65 * each other. The main clock, running hz times per second, is used to keep 66 * track of real time. The second timer handles kernel and user profiling, 67 * and does resource use estimation. If the second timer is programmable, 68 * it is randomized to avoid aliasing between the two clocks. For example, 69 * the randomization prevents an adversary from always giving up the cpu 70 * just before its quantum expires. Otherwise, it would never accumulate 71 * cpu ticks. The mean frequency of the second timer is stathz. 72 * 73 * If no second timer exists, stathz will be zero; in this case we drive 74 * profiling and statistics off the main clock. This WILL NOT be accurate; 75 * do not do it unless absolutely necessary. 76 * 77 * The statistics clock may (or may not) be run at a higher rate while 78 * profiling. This profile clock runs at profhz. We require that profhz 79 * be an integral multiple of stathz. 80 * 81 * If the statistics clock is running fast, it must be divided by the ratio 82 * profhz/stathz for statistics. (For profiling, every tick counts.) 83 */ 84 85 /* 86 * TODO: 87 * allocate more timeout table slots when table overflows. 88 */ 89 90 91 #ifdef NTP /* NTP phase-locked loop in kernel */ 92 /* 93 * Phase/frequency-lock loop (PLL/FLL) definitions 94 * 95 * The following variables are read and set by the ntp_adjtime() system 96 * call. 97 * 98 * time_state shows the state of the system clock, with values defined 99 * in the timex.h header file. 100 * 101 * time_status shows the status of the system clock, with bits defined 102 * in the timex.h header file. 103 * 104 * time_offset is used by the PLL/FLL to adjust the system time in small 105 * increments. 106 * 107 * time_constant determines the bandwidth or "stiffness" of the PLL. 108 * 109 * time_tolerance determines maximum frequency error or tolerance of the 110 * CPU clock oscillator and is a property of the architecture; however, 111 * in principle it could change as result of the presence of external 112 * discipline signals, for instance. 113 * 114 * time_precision is usually equal to the kernel tick variable; however, 115 * in cases where a precision clock counter or external clock is 116 * available, the resolution can be much less than this and depend on 117 * whether the external clock is working or not. 118 * 119 * time_maxerror is initialized by a ntp_adjtime() call and increased by 120 * the kernel once each second to reflect the maximum error bound 121 * growth. 122 * 123 * time_esterror is set and read by the ntp_adjtime() call, but 124 * otherwise not used by the kernel. 125 */ 126 int time_state = TIME_OK; /* clock state */ 127 int time_status = STA_UNSYNC; /* clock status bits */ 128 long time_offset = 0; /* time offset (us) */ 129 long time_constant = 0; /* pll time constant */ 130 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 131 long time_precision = 1; /* clock precision (us) */ 132 long time_maxerror = MAXPHASE; /* maximum error (us) */ 133 long time_esterror = MAXPHASE; /* estimated error (us) */ 134 135 /* 136 * The following variables establish the state of the PLL/FLL and the 137 * residual time and frequency offset of the local clock. The scale 138 * factors are defined in the timex.h header file. 139 * 140 * time_phase and time_freq are the phase increment and the frequency 141 * increment, respectively, of the kernel time variable. 142 * 143 * time_freq is set via ntp_adjtime() from a value stored in a file when 144 * the synchronization daemon is first started. Its value is retrieved 145 * via ntp_adjtime() and written to the file about once per hour by the 146 * daemon. 147 * 148 * time_adj is the adjustment added to the value of tick at each timer 149 * interrupt and is recomputed from time_phase and time_freq at each 150 * seconds rollover. 151 * 152 * time_reftime is the second's portion of the system time at the last 153 * call to ntp_adjtime(). It is used to adjust the time_freq variable 154 * and to increase the time_maxerror as the time since last update 155 * increases. 156 */ 157 long time_phase = 0; /* phase offset (scaled us) */ 158 long time_freq = 0; /* frequency offset (scaled ppm) */ 159 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 160 long time_reftime = 0; /* time at last adjustment (s) */ 161 162 #ifdef PPS_SYNC 163 /* 164 * The following variables are used only if the kernel PPS discipline 165 * code is configured (PPS_SYNC). The scale factors are defined in the 166 * timex.h header file. 167 * 168 * pps_time contains the time at each calibration interval, as read by 169 * microtime(). pps_count counts the seconds of the calibration 170 * interval, the duration of which is nominally pps_shift in powers of 171 * two. 172 * 173 * pps_offset is the time offset produced by the time median filter 174 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 175 * this filter. 176 * 177 * pps_freq is the frequency offset produced by the frequency median 178 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 179 * by this filter. 180 * 181 * pps_usec is latched from a high resolution counter or external clock 182 * at pps_time. Here we want the hardware counter contents only, not the 183 * contents plus the time_tv.usec as usual. 184 * 185 * pps_valid counts the number of seconds since the last PPS update. It 186 * is used as a watchdog timer to disable the PPS discipline should the 187 * PPS signal be lost. 188 * 189 * pps_glitch counts the number of seconds since the beginning of an 190 * offset burst more than tick/2 from current nominal offset. It is used 191 * mainly to suppress error bursts due to priority conflicts between the 192 * PPS interrupt and timer interrupt. 193 * 194 * pps_intcnt counts the calibration intervals for use in the interval- 195 * adaptation algorithm. It's just too complicated for words. 196 */ 197 struct timeval pps_time; /* kernel time at last interval */ 198 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 199 long pps_offset = 0; /* pps time offset (us) */ 200 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 201 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 202 long pps_freq = 0; /* frequency offset (scaled ppm) */ 203 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 204 long pps_usec = 0; /* microsec counter at last interval */ 205 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 206 int pps_glitch = 0; /* pps signal glitch counter */ 207 int pps_count = 0; /* calibration interval counter (s) */ 208 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 209 int pps_intcnt = 0; /* intervals at current duration */ 210 211 /* 212 * PPS signal quality monitors 213 * 214 * pps_jitcnt counts the seconds that have been discarded because the 215 * jitter measured by the time median filter exceeds the limit MAXTIME 216 * (100 us). 217 * 218 * pps_calcnt counts the frequency calibration intervals, which are 219 * variable from 4 s to 256 s. 220 * 221 * pps_errcnt counts the calibration intervals which have been discarded 222 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 223 * calibration interval jitter exceeds two ticks. 224 * 225 * pps_stbcnt counts the calibration intervals that have been discarded 226 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 227 */ 228 long pps_jitcnt = 0; /* jitter limit exceeded */ 229 long pps_calcnt = 0; /* calibration intervals */ 230 long pps_errcnt = 0; /* calibration errors */ 231 long pps_stbcnt = 0; /* stability limit exceeded */ 232 #endif /* PPS_SYNC */ 233 234 #ifdef EXT_CLOCK 235 /* 236 * External clock definitions 237 * 238 * The following definitions and declarations are used only if an 239 * external clock is configured on the system. 240 */ 241 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 242 243 /* 244 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 245 * interrupt and decremented once each second. 246 */ 247 int clock_count = 0; /* CPU clock counter */ 248 249 #ifdef HIGHBALL 250 /* 251 * The clock_offset and clock_cpu variables are used by the HIGHBALL 252 * interface. The clock_offset variable defines the offset between 253 * system time and the HIGBALL counters. The clock_cpu variable contains 254 * the offset between the system clock and the HIGHBALL clock for use in 255 * disciplining the kernel time variable. 256 */ 257 extern struct timeval clock_offset; /* Highball clock offset */ 258 long clock_cpu = 0; /* CPU clock adjust */ 259 #endif /* HIGHBALL */ 260 #endif /* EXT_CLOCK */ 261 #endif /* NTP */ 262 263 264 /* 265 * Bump a timeval by a small number of usec's. 266 */ 267 #define BUMPTIME(t, usec) { \ 268 register volatile struct timeval *tp = (t); \ 269 register long us; \ 270 \ 271 tp->tv_usec = us = tp->tv_usec + (usec); \ 272 if (us >= 1000000) { \ 273 tp->tv_usec = us - 1000000; \ 274 tp->tv_sec++; \ 275 } \ 276 } 277 278 int stathz; 279 int profhz; 280 int profprocs; 281 int ticks; 282 static int psdiv, pscnt; /* prof => stat divider */ 283 int psratio; /* ratio: prof / stat */ 284 int tickfix, tickfixinterval; /* used if tick not really integral */ 285 #ifndef NTP 286 static int tickfixcnt; /* number of ticks since last fix */ 287 #else 288 int fixtick; /* used by NTP for same */ 289 int shifthz; 290 #endif 291 292 volatile struct timeval time; 293 volatile struct timeval mono_time; 294 295 /* 296 * Initialize clock frequencies and start both clocks running. 297 */ 298 void 299 initclocks() 300 { 301 register int i; 302 303 /* 304 * Set divisors to 1 (normal case) and let the machine-specific 305 * code do its bit. 306 */ 307 psdiv = pscnt = 1; 308 cpu_initclocks(); 309 310 /* 311 * Compute profhz/stathz, and fix profhz if needed. 312 */ 313 i = stathz ? stathz : hz; 314 if (profhz == 0) 315 profhz = i; 316 psratio = profhz / i; 317 318 #ifdef NTP 319 switch (hz) { 320 case 60: 321 case 64: 322 shifthz = SHIFT_SCALE - 6; 323 break; 324 case 96: 325 case 100: 326 case 128: 327 shifthz = SHIFT_SCALE - 7; 328 break; 329 case 256: 330 shifthz = SHIFT_SCALE - 8; 331 break; 332 case 1024: 333 shifthz = SHIFT_SCALE - 10; 334 break; 335 default: 336 panic("weird hz"); 337 } 338 #endif 339 } 340 341 /* 342 * The real-time timer, interrupting hz times per second. 343 */ 344 void 345 hardclock(frame) 346 register struct clockframe *frame; 347 { 348 register struct callout *p1; 349 register struct proc *p; 350 register int delta, needsoft; 351 extern int tickdelta; 352 extern long timedelta; 353 #ifdef NTP 354 register int time_update; 355 register int ltemp; 356 #endif 357 358 /* 359 * Update real-time timeout queue. 360 * At front of queue are some number of events which are ``due''. 361 * The time to these is <= 0 and if negative represents the 362 * number of ticks which have passed since it was supposed to happen. 363 * The rest of the q elements (times > 0) are events yet to happen, 364 * where the time for each is given as a delta from the previous. 365 * Decrementing just the first of these serves to decrement the time 366 * to all events. 367 */ 368 needsoft = 0; 369 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 370 if (--p1->c_time > 0) 371 break; 372 needsoft = 1; 373 if (p1->c_time == 0) 374 break; 375 } 376 377 p = curproc; 378 if (p) { 379 register struct pstats *pstats; 380 381 /* 382 * Run current process's virtual and profile time, as needed. 383 */ 384 pstats = p->p_stats; 385 if (CLKF_USERMODE(frame) && 386 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 387 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 388 psignal(p, SIGVTALRM); 389 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 390 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 391 psignal(p, SIGPROF); 392 } 393 394 /* 395 * If no separate statistics clock is available, run it from here. 396 */ 397 if (stathz == 0) 398 statclock(frame); 399 400 /* 401 * Increment the time-of-day. The increment is normally just 402 * ``tick''. If the machine is one which has a clock frequency 403 * such that ``hz'' would not divide the second evenly into 404 * milliseconds, a periodic adjustment must be applied. Finally, 405 * if we are still adjusting the time (see adjtime()), 406 * ``tickdelta'' may also be added in. 407 */ 408 ticks++; 409 delta = tick; 410 411 #ifndef NTP 412 if (tickfix) { 413 tickfixcnt++; 414 if (tickfixcnt >= tickfixinterval) { 415 delta += tickfix; 416 tickfixcnt = 0; 417 } 418 } 419 #endif /* !NTP */ 420 /* Imprecise 4bsd adjtime() handling */ 421 if (timedelta != 0) { 422 delta = tick + tickdelta; 423 timedelta -= tickdelta; 424 } 425 426 #ifdef notyet 427 microset(); 428 #endif 429 430 #ifndef NTP 431 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 432 #endif 433 BUMPTIME(&mono_time, delta); 434 435 #ifdef NTP 436 time_update = delta; 437 438 /* 439 * Compute the phase adjustment. If the low-order bits 440 * (time_phase) of the update overflow, bump the high-order bits 441 * (time_update). 442 */ 443 time_phase += time_adj; 444 if (time_phase <= -FINEUSEC) { 445 ltemp = -time_phase >> SHIFT_SCALE; 446 time_phase += ltemp << SHIFT_SCALE; 447 time_update -= ltemp; 448 } else if (time_phase >= FINEUSEC) { 449 ltemp = time_phase >> SHIFT_SCALE; 450 time_phase -= ltemp << SHIFT_SCALE; 451 time_update += ltemp; 452 } 453 454 #ifdef HIGHBALL 455 /* 456 * If the HIGHBALL board is installed, we need to adjust the 457 * external clock offset in order to close the hardware feedback 458 * loop. This will adjust the external clock phase and frequency 459 * in small amounts. The additional phase noise and frequency 460 * wander this causes should be minimal. We also need to 461 * discipline the kernel time variable, since the PLL is used to 462 * discipline the external clock. If the Highball board is not 463 * present, we discipline kernel time with the PLL as usual. We 464 * assume that the external clock phase adjustment (time_update) 465 * and kernel phase adjustment (clock_cpu) are less than the 466 * value of tick. 467 */ 468 clock_offset.tv_usec += time_update; 469 if (clock_offset.tv_usec >= 1000000) { 470 clock_offset.tv_sec++; 471 clock_offset.tv_usec -= 1000000; 472 } 473 if (clock_offset.tv_usec < 0) { 474 clock_offset.tv_sec--; 475 clock_offset.tv_usec += 1000000; 476 } 477 time.tv_usec += clock_cpu; 478 clock_cpu = 0; 479 #else 480 time.tv_usec += time_update; 481 #endif /* HIGHBALL */ 482 483 /* 484 * On rollover of the second the phase adjustment to be used for 485 * the next second is calculated. Also, the maximum error is 486 * increased by the tolerance. If the PPS frequency discipline 487 * code is present, the phase is increased to compensate for the 488 * CPU clock oscillator frequency error. 489 * 490 * On a 32-bit machine and given parameters in the timex.h 491 * header file, the maximum phase adjustment is +-512 ms and 492 * maximum frequency offset is a tad less than) +-512 ppm. On a 493 * 64-bit machine, you shouldn't need to ask. 494 */ 495 if (time.tv_usec >= 1000000) { 496 time.tv_usec -= 1000000; 497 time.tv_sec++; 498 time_maxerror += time_tolerance >> SHIFT_USEC; 499 500 /* 501 * Leap second processing. If in leap-insert state at 502 * the end of the day, the system clock is set back one 503 * second; if in leap-delete state, the system clock is 504 * set ahead one second. The microtime() routine or 505 * external clock driver will insure that reported time 506 * is always monotonic. The ugly divides should be 507 * replaced. 508 */ 509 switch (time_state) { 510 case TIME_OK: 511 if (time_status & STA_INS) 512 time_state = TIME_INS; 513 else if (time_status & STA_DEL) 514 time_state = TIME_DEL; 515 break; 516 517 case TIME_INS: 518 if (time.tv_sec % 86400 == 0) { 519 time.tv_sec--; 520 time_state = TIME_OOP; 521 } 522 break; 523 524 case TIME_DEL: 525 if ((time.tv_sec + 1) % 86400 == 0) { 526 time.tv_sec++; 527 time_state = TIME_WAIT; 528 } 529 break; 530 531 case TIME_OOP: 532 time_state = TIME_WAIT; 533 break; 534 535 case TIME_WAIT: 536 if (!(time_status & (STA_INS | STA_DEL))) 537 time_state = TIME_OK; 538 break; 539 } 540 541 /* 542 * Compute the phase adjustment for the next second. In 543 * PLL mode, the offset is reduced by a fixed factor 544 * times the time constant. In FLL mode the offset is 545 * used directly. In either mode, the maximum phase 546 * adjustment for each second is clamped so as to spread 547 * the adjustment over not more than the number of 548 * seconds between updates. 549 */ 550 if (time_offset < 0) { 551 ltemp = -time_offset; 552 if (!(time_status & STA_FLL)) 553 ltemp >>= SHIFT_KG + time_constant; 554 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 555 ltemp = (MAXPHASE / MINSEC) << 556 SHIFT_UPDATE; 557 time_offset += ltemp; 558 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 559 } else if (time_offset > 0) { 560 ltemp = time_offset; 561 if (!(time_status & STA_FLL)) 562 ltemp >>= SHIFT_KG + time_constant; 563 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 564 ltemp = (MAXPHASE / MINSEC) << 565 SHIFT_UPDATE; 566 time_offset -= ltemp; 567 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 568 } else 569 time_adj = 0; 570 571 /* 572 * Compute the frequency estimate and additional phase 573 * adjustment due to frequency error for the next 574 * second. When the PPS signal is engaged, gnaw on the 575 * watchdog counter and update the frequency computed by 576 * the pll and the PPS signal. 577 */ 578 #ifdef PPS_SYNC 579 pps_valid++; 580 if (pps_valid == PPS_VALID) { 581 pps_jitter = MAXTIME; 582 pps_stabil = MAXFREQ; 583 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 584 STA_PPSWANDER | STA_PPSERROR); 585 } 586 ltemp = time_freq + pps_freq; 587 #else 588 ltemp = time_freq; 589 #endif /* PPS_SYNC */ 590 591 if (ltemp < 0) 592 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 593 else 594 time_adj += ltemp >> (SHIFT_USEC - shifthz); 595 time_adj += (long)fixtick << shifthz; 596 597 /* 598 * When the CPU clock oscillator frequency is not a 599 * power of 2 in Hz, shifthz is only an approximate 600 * scale factor. 601 */ 602 switch (hz) { 603 case 96: 604 case 100: 605 /* 606 * In the following code the overall gain is increased 607 * by a factor of 1.25, which results in a residual 608 * error less than 3 percent. 609 */ 610 if (time_adj < 0) 611 time_adj -= -time_adj >> 2; 612 else 613 time_adj += time_adj >> 2; 614 break; 615 case 60: 616 /* 617 * 60 Hz m68k and vaxes have a PLL gain factor of of 618 * 60/64 (15/16) of what it should be. In the following code 619 * the overall gain is increased by a factor of 1.0625, 620 * (17/16) which results in a residual error of just less 621 * than 0.4 percent. 622 */ 623 if (time_adj < 0) 624 time_adj -= -time_adj >> 4; 625 else 626 time_adj += time_adj >> 4; 627 break; 628 } 629 630 #ifdef EXT_CLOCK 631 /* 632 * If an external clock is present, it is necessary to 633 * discipline the kernel time variable anyway, since not 634 * all system components use the microtime() interface. 635 * Here, the time offset between the external clock and 636 * kernel time variable is computed every so often. 637 */ 638 clock_count++; 639 if (clock_count > CLOCK_INTERVAL) { 640 clock_count = 0; 641 microtime(&clock_ext); 642 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 643 delta.tv_usec = clock_ext.tv_usec - 644 time.tv_usec; 645 if (delta.tv_usec < 0) 646 delta.tv_sec--; 647 if (delta.tv_usec >= 500000) { 648 delta.tv_usec -= 1000000; 649 delta.tv_sec++; 650 } 651 if (delta.tv_usec < -500000) { 652 delta.tv_usec += 1000000; 653 delta.tv_sec--; 654 } 655 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 656 delta.tv_usec > MAXPHASE) || 657 delta.tv_sec < -1 || (delta.tv_sec == -1 && 658 delta.tv_usec < -MAXPHASE)) { 659 time = clock_ext; 660 delta.tv_sec = 0; 661 delta.tv_usec = 0; 662 } 663 #ifdef HIGHBALL 664 clock_cpu = delta.tv_usec; 665 #else /* HIGHBALL */ 666 hardupdate(delta.tv_usec); 667 #endif /* HIGHBALL */ 668 } 669 #endif /* EXT_CLOCK */ 670 } 671 672 #endif /* NTP */ 673 674 /* 675 * Process callouts at a very low cpu priority, so we don't keep the 676 * relatively high clock interrupt priority any longer than necessary. 677 */ 678 if (needsoft) { 679 if (CLKF_BASEPRI(frame)) { 680 /* 681 * Save the overhead of a software interrupt; 682 * it will happen as soon as we return, so do it now. 683 */ 684 (void)splsoftclock(); 685 softclock(); 686 } else 687 setsoftclock(); 688 } 689 } 690 691 /* 692 * Software (low priority) clock interrupt. 693 * Run periodic events from timeout queue. 694 */ 695 /*ARGSUSED*/ 696 void 697 softclock() 698 { 699 register struct callout *c; 700 register void *arg; 701 register void (*func) __P((void *)); 702 register int s; 703 704 s = splhigh(); 705 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 706 func = c->c_func; 707 arg = c->c_arg; 708 calltodo.c_next = c->c_next; 709 c->c_next = callfree; 710 callfree = c; 711 splx(s); 712 (*func)(arg); 713 (void) splhigh(); 714 } 715 splx(s); 716 } 717 718 /* 719 * timeout -- 720 * Execute a function after a specified length of time. 721 * 722 * untimeout -- 723 * Cancel previous timeout function call. 724 * 725 * See AT&T BCI Driver Reference Manual for specification. This 726 * implementation differs from that one in that no identification 727 * value is returned from timeout, rather, the original arguments 728 * to timeout are used to identify entries for untimeout. 729 */ 730 void 731 timeout(ftn, arg, ticks) 732 void (*ftn) __P((void *)); 733 void *arg; 734 register int ticks; 735 { 736 register struct callout *new, *p, *t; 737 register int s; 738 739 if (ticks <= 0) 740 ticks = 1; 741 742 /* Lock out the clock. */ 743 s = splhigh(); 744 745 /* Fill in the next free callout structure. */ 746 if (callfree == NULL) 747 panic("timeout table full"); 748 new = callfree; 749 callfree = new->c_next; 750 new->c_arg = arg; 751 new->c_func = ftn; 752 753 /* 754 * The time for each event is stored as a difference from the time 755 * of the previous event on the queue. Walk the queue, correcting 756 * the ticks argument for queue entries passed. Correct the ticks 757 * value for the queue entry immediately after the insertion point 758 * as well. Watch out for negative c_time values; these represent 759 * overdue events. 760 */ 761 for (p = &calltodo; 762 (t = p->c_next) != NULL && ticks > t->c_time; p = t) 763 if (t->c_time > 0) 764 ticks -= t->c_time; 765 new->c_time = ticks; 766 if (t != NULL) 767 t->c_time -= ticks; 768 769 /* Insert the new entry into the queue. */ 770 p->c_next = new; 771 new->c_next = t; 772 splx(s); 773 } 774 775 void 776 untimeout(ftn, arg) 777 void (*ftn) __P((void *)); 778 void *arg; 779 { 780 register struct callout *p, *t; 781 register int s; 782 783 s = splhigh(); 784 for (p = &calltodo; (t = p->c_next) != NULL; p = t) 785 if (t->c_func == ftn && t->c_arg == arg) { 786 /* Increment next entry's tick count. */ 787 if (t->c_next && t->c_time > 0) 788 t->c_next->c_time += t->c_time; 789 790 /* Move entry from callout queue to callfree queue. */ 791 p->c_next = t->c_next; 792 t->c_next = callfree; 793 callfree = t; 794 break; 795 } 796 splx(s); 797 } 798 799 /* 800 * Compute number of hz until specified time. Used to 801 * compute third argument to timeout() from an absolute time. 802 */ 803 int 804 hzto(tv) 805 struct timeval *tv; 806 { 807 register long ticks, sec; 808 int s; 809 810 /* 811 * If number of microseconds will fit in 32 bit arithmetic, 812 * then compute number of microseconds to time and scale to 813 * ticks. Otherwise just compute number of hz in time, rounding 814 * times greater than representible to maximum value. (We must 815 * compute in microseconds, because hz can be greater than 1000, 816 * and thus tick can be less than one millisecond). 817 * 818 * Delta times less than 14 hours can be computed ``exactly''. 819 * (Note that if hz would yeild a non-integral number of us per 820 * tick, i.e. tickfix is nonzero, timouts can be a tick longer 821 * than they should be.) Maximum value for any timeout in 10ms 822 * ticks is 250 days. 823 */ 824 s = splhigh(); 825 sec = tv->tv_sec - time.tv_sec; 826 if (sec <= 0x7fffffff / 1000000 - 1) 827 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 + 828 (tv->tv_usec - time.tv_usec)) / tick; 829 else if (sec <= 0x7fffffff / hz) 830 ticks = sec * hz; 831 else 832 ticks = 0x7fffffff; 833 splx(s); 834 return (ticks); 835 } 836 837 /* 838 * Start profiling on a process. 839 * 840 * Kernel profiling passes proc0 which never exits and hence 841 * keeps the profile clock running constantly. 842 */ 843 void 844 startprofclock(p) 845 register struct proc *p; 846 { 847 int s; 848 849 if ((p->p_flag & P_PROFIL) == 0) { 850 p->p_flag |= P_PROFIL; 851 if (++profprocs == 1 && stathz != 0) { 852 s = splstatclock(); 853 psdiv = pscnt = psratio; 854 setstatclockrate(profhz); 855 splx(s); 856 } 857 } 858 } 859 860 /* 861 * Stop profiling on a process. 862 */ 863 void 864 stopprofclock(p) 865 register struct proc *p; 866 { 867 int s; 868 869 if (p->p_flag & P_PROFIL) { 870 p->p_flag &= ~P_PROFIL; 871 if (--profprocs == 0 && stathz != 0) { 872 s = splstatclock(); 873 psdiv = pscnt = 1; 874 setstatclockrate(stathz); 875 splx(s); 876 } 877 } 878 } 879 880 /* 881 * Statistics clock. Grab profile sample, and if divider reaches 0, 882 * do process and kernel statistics. 883 */ 884 void 885 statclock(frame) 886 register struct clockframe *frame; 887 { 888 #ifdef GPROF 889 register struct gmonparam *g; 890 register int i; 891 #endif 892 register struct proc *p; 893 894 if (CLKF_USERMODE(frame)) { 895 p = curproc; 896 if (p->p_flag & P_PROFIL) 897 addupc_intr(p, CLKF_PC(frame), 1); 898 if (--pscnt > 0) 899 return; 900 /* 901 * Came from user mode; CPU was in user state. 902 * If this process is being profiled record the tick. 903 */ 904 p->p_uticks++; 905 if (p->p_nice > NZERO) 906 cp_time[CP_NICE]++; 907 else 908 cp_time[CP_USER]++; 909 } else { 910 #ifdef GPROF 911 /* 912 * Kernel statistics are just like addupc_intr, only easier. 913 */ 914 g = &_gmonparam; 915 if (g->state == GMON_PROF_ON) { 916 i = CLKF_PC(frame) - g->lowpc; 917 if (i < g->textsize) { 918 i /= HISTFRACTION * sizeof(*g->kcount); 919 g->kcount[i]++; 920 } 921 } 922 #endif 923 if (--pscnt > 0) 924 return; 925 /* 926 * Came from kernel mode, so we were: 927 * - handling an interrupt, 928 * - doing syscall or trap work on behalf of the current 929 * user process, or 930 * - spinning in the idle loop. 931 * Whichever it is, charge the time as appropriate. 932 * Note that we charge interrupts to the current process, 933 * regardless of whether they are ``for'' that process, 934 * so that we know how much of its real time was spent 935 * in ``non-process'' (i.e., interrupt) work. 936 */ 937 p = curproc; 938 if (CLKF_INTR(frame)) { 939 if (p != NULL) 940 p->p_iticks++; 941 cp_time[CP_INTR]++; 942 } else if (p != NULL) { 943 p->p_sticks++; 944 cp_time[CP_SYS]++; 945 } else 946 cp_time[CP_IDLE]++; 947 } 948 pscnt = psdiv; 949 950 /* 951 * We adjust the priority of the current process. The priority of 952 * a process gets worse as it accumulates CPU time. The cpu usage 953 * estimator (p_estcpu) is increased here. The formula for computing 954 * priorities (in kern_synch.c) will compute a different value each 955 * time p_estcpu increases by 4. The cpu usage estimator ramps up 956 * quite quickly when the process is running (linearly), and decays 957 * away exponentially, at a rate which is proportionally slower when 958 * the system is busy. The basic principal is that the system will 959 * 90% forget that the process used a lot of CPU time in 5 * loadav 960 * seconds. This causes the system to favor processes which haven't 961 * run much recently, and to round-robin among other processes. 962 */ 963 if (p != NULL) { 964 p->p_cpticks++; 965 if (++p->p_estcpu == 0) 966 p->p_estcpu--; 967 if ((p->p_estcpu & 3) == 0) { 968 resetpriority(p); 969 if (p->p_priority >= PUSER) 970 p->p_priority = p->p_usrpri; 971 } 972 } 973 } 974 975 976 #ifdef NTP /* NTP phase-locked loop in kernel */ 977 978 /* 979 * hardupdate() - local clock update 980 * 981 * This routine is called by ntp_adjtime() to update the local clock 982 * phase and frequency. The implementation is of an adaptive-parameter, 983 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 984 * time and frequency offset estimates for each call. If the kernel PPS 985 * discipline code is configured (PPS_SYNC), the PPS signal itself 986 * determines the new time offset, instead of the calling argument. 987 * Presumably, calls to ntp_adjtime() occur only when the caller 988 * believes the local clock is valid within some bound (+-128 ms with 989 * NTP). If the caller's time is far different than the PPS time, an 990 * argument will ensue, and it's not clear who will lose. 991 * 992 * For uncompensated quartz crystal oscillatores and nominal update 993 * intervals less than 1024 s, operation should be in phase-lock mode 994 * (STA_FLL = 0), where the loop is disciplined to phase. For update 995 * intervals greater than thiss, operation should be in frequency-lock 996 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 997 * 998 * Note: splclock() is in effect. 999 */ 1000 void 1001 hardupdate(offset) 1002 long offset; 1003 { 1004 long ltemp, mtemp; 1005 1006 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1007 return; 1008 ltemp = offset; 1009 #ifdef PPS_SYNC 1010 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1011 ltemp = pps_offset; 1012 #endif /* PPS_SYNC */ 1013 1014 /* 1015 * Scale the phase adjustment and clamp to the operating range. 1016 */ 1017 if (ltemp > MAXPHASE) 1018 time_offset = MAXPHASE << SHIFT_UPDATE; 1019 else if (ltemp < -MAXPHASE) 1020 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1021 else 1022 time_offset = ltemp << SHIFT_UPDATE; 1023 1024 /* 1025 * Select whether the frequency is to be controlled and in which 1026 * mode (PLL or FLL). Clamp to the operating range. Ugly 1027 * multiply/divide should be replaced someday. 1028 */ 1029 if (time_status & STA_FREQHOLD || time_reftime == 0) 1030 time_reftime = time.tv_sec; 1031 mtemp = time.tv_sec - time_reftime; 1032 time_reftime = time.tv_sec; 1033 if (time_status & STA_FLL) { 1034 if (mtemp >= MINSEC) { 1035 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1036 SHIFT_UPDATE)); 1037 if (ltemp < 0) 1038 time_freq -= -ltemp >> SHIFT_KH; 1039 else 1040 time_freq += ltemp >> SHIFT_KH; 1041 } 1042 } else { 1043 if (mtemp < MAXSEC) { 1044 ltemp *= mtemp; 1045 if (ltemp < 0) 1046 time_freq -= -ltemp >> (time_constant + 1047 time_constant + SHIFT_KF - 1048 SHIFT_USEC); 1049 else 1050 time_freq += ltemp >> (time_constant + 1051 time_constant + SHIFT_KF - 1052 SHIFT_USEC); 1053 } 1054 } 1055 if (time_freq > time_tolerance) 1056 time_freq = time_tolerance; 1057 else if (time_freq < -time_tolerance) 1058 time_freq = -time_tolerance; 1059 } 1060 1061 #ifdef PPS_SYNC 1062 /* 1063 * hardpps() - discipline CPU clock oscillator to external PPS signal 1064 * 1065 * This routine is called at each PPS interrupt in order to discipline 1066 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1067 * and leaves it in a handy spot for the hardclock() routine. It 1068 * integrates successive PPS phase differences and calculates the 1069 * frequency offset. This is used in hardclock() to discipline the CPU 1070 * clock oscillator so that intrinsic frequency error is cancelled out. 1071 * The code requires the caller to capture the time and hardware counter 1072 * value at the on-time PPS signal transition. 1073 * 1074 * Note that, on some Unix systems, this routine runs at an interrupt 1075 * priority level higher than the timer interrupt routine hardclock(). 1076 * Therefore, the variables used are distinct from the hardclock() 1077 * variables, except for certain exceptions: The PPS frequency pps_freq 1078 * and phase pps_offset variables are determined by this routine and 1079 * updated atomically. The time_tolerance variable can be considered a 1080 * constant, since it is infrequently changed, and then only when the 1081 * PPS signal is disabled. The watchdog counter pps_valid is updated 1082 * once per second by hardclock() and is atomically cleared in this 1083 * routine. 1084 */ 1085 void 1086 hardpps(tvp, usec) 1087 struct timeval *tvp; /* time at PPS */ 1088 long usec; /* hardware counter at PPS */ 1089 { 1090 long u_usec, v_usec, bigtick; 1091 long cal_sec, cal_usec; 1092 1093 /* 1094 * An occasional glitch can be produced when the PPS interrupt 1095 * occurs in the hardclock() routine before the time variable is 1096 * updated. Here the offset is discarded when the difference 1097 * between it and the last one is greater than tick/2, but not 1098 * if the interval since the first discard exceeds 30 s. 1099 */ 1100 time_status |= STA_PPSSIGNAL; 1101 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1102 pps_valid = 0; 1103 u_usec = -tvp->tv_usec; 1104 if (u_usec < -500000) 1105 u_usec += 1000000; 1106 v_usec = pps_offset - u_usec; 1107 if (v_usec < 0) 1108 v_usec = -v_usec; 1109 if (v_usec > (tick >> 1)) { 1110 if (pps_glitch > MAXGLITCH) { 1111 pps_glitch = 0; 1112 pps_tf[2] = u_usec; 1113 pps_tf[1] = u_usec; 1114 } else { 1115 pps_glitch++; 1116 u_usec = pps_offset; 1117 } 1118 } else 1119 pps_glitch = 0; 1120 1121 /* 1122 * A three-stage median filter is used to help deglitch the pps 1123 * time. The median sample becomes the time offset estimate; the 1124 * difference between the other two samples becomes the time 1125 * dispersion (jitter) estimate. 1126 */ 1127 pps_tf[2] = pps_tf[1]; 1128 pps_tf[1] = pps_tf[0]; 1129 pps_tf[0] = u_usec; 1130 if (pps_tf[0] > pps_tf[1]) { 1131 if (pps_tf[1] > pps_tf[2]) { 1132 pps_offset = pps_tf[1]; /* 0 1 2 */ 1133 v_usec = pps_tf[0] - pps_tf[2]; 1134 } else if (pps_tf[2] > pps_tf[0]) { 1135 pps_offset = pps_tf[0]; /* 2 0 1 */ 1136 v_usec = pps_tf[2] - pps_tf[1]; 1137 } else { 1138 pps_offset = pps_tf[2]; /* 0 2 1 */ 1139 v_usec = pps_tf[0] - pps_tf[1]; 1140 } 1141 } else { 1142 if (pps_tf[1] < pps_tf[2]) { 1143 pps_offset = pps_tf[1]; /* 2 1 0 */ 1144 v_usec = pps_tf[2] - pps_tf[0]; 1145 } else if (pps_tf[2] < pps_tf[0]) { 1146 pps_offset = pps_tf[0]; /* 1 0 2 */ 1147 v_usec = pps_tf[1] - pps_tf[2]; 1148 } else { 1149 pps_offset = pps_tf[2]; /* 1 2 0 */ 1150 v_usec = pps_tf[1] - pps_tf[0]; 1151 } 1152 } 1153 if (v_usec > MAXTIME) 1154 pps_jitcnt++; 1155 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1156 if (v_usec < 0) 1157 pps_jitter -= -v_usec >> PPS_AVG; 1158 else 1159 pps_jitter += v_usec >> PPS_AVG; 1160 if (pps_jitter > (MAXTIME >> 1)) 1161 time_status |= STA_PPSJITTER; 1162 1163 /* 1164 * During the calibration interval adjust the starting time when 1165 * the tick overflows. At the end of the interval compute the 1166 * duration of the interval and the difference of the hardware 1167 * counters at the beginning and end of the interval. This code 1168 * is deliciously complicated by the fact valid differences may 1169 * exceed the value of tick when using long calibration 1170 * intervals and small ticks. Note that the counter can be 1171 * greater than tick if caught at just the wrong instant, but 1172 * the values returned and used here are correct. 1173 */ 1174 bigtick = (long)tick << SHIFT_USEC; 1175 pps_usec -= pps_freq; 1176 if (pps_usec >= bigtick) 1177 pps_usec -= bigtick; 1178 if (pps_usec < 0) 1179 pps_usec += bigtick; 1180 pps_time.tv_sec++; 1181 pps_count++; 1182 if (pps_count < (1 << pps_shift)) 1183 return; 1184 pps_count = 0; 1185 pps_calcnt++; 1186 u_usec = usec << SHIFT_USEC; 1187 v_usec = pps_usec - u_usec; 1188 if (v_usec >= bigtick >> 1) 1189 v_usec -= bigtick; 1190 if (v_usec < -(bigtick >> 1)) 1191 v_usec += bigtick; 1192 if (v_usec < 0) 1193 v_usec = -(-v_usec >> pps_shift); 1194 else 1195 v_usec = v_usec >> pps_shift; 1196 pps_usec = u_usec; 1197 cal_sec = tvp->tv_sec; 1198 cal_usec = tvp->tv_usec; 1199 cal_sec -= pps_time.tv_sec; 1200 cal_usec -= pps_time.tv_usec; 1201 if (cal_usec < 0) { 1202 cal_usec += 1000000; 1203 cal_sec--; 1204 } 1205 pps_time = *tvp; 1206 1207 /* 1208 * Check for lost interrupts, noise, excessive jitter and 1209 * excessive frequency error. The number of timer ticks during 1210 * the interval may vary +-1 tick. Add to this a margin of one 1211 * tick for the PPS signal jitter and maximum frequency 1212 * deviation. If the limits are exceeded, the calibration 1213 * interval is reset to the minimum and we start over. 1214 */ 1215 u_usec = (long)tick << 1; 1216 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1217 || (cal_sec == 0 && cal_usec < u_usec)) 1218 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1219 pps_errcnt++; 1220 pps_shift = PPS_SHIFT; 1221 pps_intcnt = 0; 1222 time_status |= STA_PPSERROR; 1223 return; 1224 } 1225 1226 /* 1227 * A three-stage median filter is used to help deglitch the pps 1228 * frequency. The median sample becomes the frequency offset 1229 * estimate; the difference between the other two samples 1230 * becomes the frequency dispersion (stability) estimate. 1231 */ 1232 pps_ff[2] = pps_ff[1]; 1233 pps_ff[1] = pps_ff[0]; 1234 pps_ff[0] = v_usec; 1235 if (pps_ff[0] > pps_ff[1]) { 1236 if (pps_ff[1] > pps_ff[2]) { 1237 u_usec = pps_ff[1]; /* 0 1 2 */ 1238 v_usec = pps_ff[0] - pps_ff[2]; 1239 } else if (pps_ff[2] > pps_ff[0]) { 1240 u_usec = pps_ff[0]; /* 2 0 1 */ 1241 v_usec = pps_ff[2] - pps_ff[1]; 1242 } else { 1243 u_usec = pps_ff[2]; /* 0 2 1 */ 1244 v_usec = pps_ff[0] - pps_ff[1]; 1245 } 1246 } else { 1247 if (pps_ff[1] < pps_ff[2]) { 1248 u_usec = pps_ff[1]; /* 2 1 0 */ 1249 v_usec = pps_ff[2] - pps_ff[0]; 1250 } else if (pps_ff[2] < pps_ff[0]) { 1251 u_usec = pps_ff[0]; /* 1 0 2 */ 1252 v_usec = pps_ff[1] - pps_ff[2]; 1253 } else { 1254 u_usec = pps_ff[2]; /* 1 2 0 */ 1255 v_usec = pps_ff[1] - pps_ff[0]; 1256 } 1257 } 1258 1259 /* 1260 * Here the frequency dispersion (stability) is updated. If it 1261 * is less than one-fourth the maximum (MAXFREQ), the frequency 1262 * offset is updated as well, but clamped to the tolerance. It 1263 * will be processed later by the hardclock() routine. 1264 */ 1265 v_usec = (v_usec >> 1) - pps_stabil; 1266 if (v_usec < 0) 1267 pps_stabil -= -v_usec >> PPS_AVG; 1268 else 1269 pps_stabil += v_usec >> PPS_AVG; 1270 if (pps_stabil > MAXFREQ >> 2) { 1271 pps_stbcnt++; 1272 time_status |= STA_PPSWANDER; 1273 return; 1274 } 1275 if (time_status & STA_PPSFREQ) { 1276 if (u_usec < 0) { 1277 pps_freq -= -u_usec >> PPS_AVG; 1278 if (pps_freq < -time_tolerance) 1279 pps_freq = -time_tolerance; 1280 u_usec = -u_usec; 1281 } else { 1282 pps_freq += u_usec >> PPS_AVG; 1283 if (pps_freq > time_tolerance) 1284 pps_freq = time_tolerance; 1285 } 1286 } 1287 1288 /* 1289 * Here the calibration interval is adjusted. If the maximum 1290 * time difference is greater than tick / 4, reduce the interval 1291 * by half. If this is not the case for four consecutive 1292 * intervals, double the interval. 1293 */ 1294 if (u_usec << pps_shift > bigtick >> 2) { 1295 pps_intcnt = 0; 1296 if (pps_shift > PPS_SHIFT) 1297 pps_shift--; 1298 } else if (pps_intcnt >= 4) { 1299 pps_intcnt = 0; 1300 if (pps_shift < PPS_SHIFTMAX) 1301 pps_shift++; 1302 } else 1303 pps_intcnt++; 1304 } 1305 #endif /* PPS_SYNC */ 1306 #endif /* NTP */ 1307 1308 1309 /* 1310 * Return information about system clocks. 1311 */ 1312 int 1313 sysctl_clockrate(where, sizep) 1314 register char *where; 1315 size_t *sizep; 1316 { 1317 struct clockinfo clkinfo; 1318 1319 /* 1320 * Construct clockinfo structure. 1321 */ 1322 clkinfo.tick = tick; 1323 clkinfo.tickadj = tickadj; 1324 clkinfo.hz = hz; 1325 clkinfo.profhz = profhz; 1326 clkinfo.stathz = stathz ? stathz : hz; 1327 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1328 } 1329 1330 #ifdef DDB 1331 #include <machine/db_machdep.h> 1332 1333 #include <ddb/db_interface.h> 1334 #include <ddb/db_access.h> 1335 #include <ddb/db_sym.h> 1336 #include <ddb/db_output.h> 1337 1338 void db_show_callout(addr, haddr, count, modif) 1339 db_expr_t addr; 1340 int haddr; 1341 db_expr_t count; 1342 char *modif; 1343 { 1344 register struct callout *p1; 1345 register int cum; 1346 register int s; 1347 db_expr_t offset; 1348 char *name; 1349 1350 db_printf(" cum ticks arg func\n"); 1351 s = splhigh(); 1352 for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) { 1353 register int t = p1->c_time; 1354 1355 if (t > 0) 1356 cum += t; 1357 1358 db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset); 1359 if (name == NULL) 1360 name = "?"; 1361 1362 db_printf("%9d %9d %p %s (%p)\n", 1363 cum, t, p1->c_arg, name, p1->c_func); 1364 } 1365 splx(s); 1366 } 1367 #endif 1368