1 /* $NetBSD: kern_clock.c,v 1.146 2021/08/14 21:17:11 ryo Exp $ */ 2 3 /*- 4 * Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * This code is derived from software contributed to The NetBSD Foundation 11 * by Charles M. Hannum. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 32 * POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /*- 36 * Copyright (c) 1982, 1986, 1991, 1993 37 * The Regents of the University of California. All rights reserved. 38 * (c) UNIX System Laboratories, Inc. 39 * All or some portions of this file are derived from material licensed 40 * to the University of California by American Telephone and Telegraph 41 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 42 * the permission of UNIX System Laboratories, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. Neither the name of the University nor the names of its contributors 53 * may be used to endorse or promote products derived from this software 54 * without specific prior written permission. 55 * 56 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 57 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 58 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 59 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 60 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 61 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 62 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 63 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 64 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 65 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 66 * SUCH DAMAGE. 67 * 68 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 69 */ 70 71 #include <sys/cdefs.h> 72 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.146 2021/08/14 21:17:11 ryo Exp $"); 73 74 #ifdef _KERNEL_OPT 75 #include "opt_dtrace.h" 76 #include "opt_gprof.h" 77 #include "opt_multiprocessor.h" 78 #endif 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/callout.h> 83 #include <sys/kernel.h> 84 #include <sys/proc.h> 85 #include <sys/resourcevar.h> 86 #include <sys/signalvar.h> 87 #include <sys/sysctl.h> 88 #include <sys/timex.h> 89 #include <sys/sched.h> 90 #include <sys/time.h> 91 #include <sys/timetc.h> 92 #include <sys/cpu.h> 93 #include <sys/atomic.h> 94 #include <sys/rndsource.h> 95 96 #ifdef GPROF 97 #include <sys/gmon.h> 98 #endif 99 100 #ifdef KDTRACE_HOOKS 101 #include <sys/dtrace_bsd.h> 102 #include <sys/cpu.h> 103 104 cyclic_clock_func_t cyclic_clock_func[MAXCPUS]; 105 #endif 106 107 static int sysctl_kern_clockrate(SYSCTLFN_PROTO); 108 109 /* 110 * Clock handling routines. 111 * 112 * This code is written to operate with two timers that run independently of 113 * each other. The main clock, running hz times per second, is used to keep 114 * track of real time. The second timer handles kernel and user profiling, 115 * and does resource use estimation. If the second timer is programmable, 116 * it is randomized to avoid aliasing between the two clocks. For example, 117 * the randomization prevents an adversary from always giving up the CPU 118 * just before its quantum expires. Otherwise, it would never accumulate 119 * CPU ticks. The mean frequency of the second timer is stathz. 120 * 121 * If no second timer exists, stathz will be zero; in this case we drive 122 * profiling and statistics off the main clock. This WILL NOT be accurate; 123 * do not do it unless absolutely necessary. 124 * 125 * The statistics clock may (or may not) be run at a higher rate while 126 * profiling. This profile clock runs at profhz. We require that profhz 127 * be an integral multiple of stathz. 128 * 129 * If the statistics clock is running fast, it must be divided by the ratio 130 * profhz/stathz for statistics. (For profiling, every tick counts.) 131 */ 132 133 int stathz; 134 int profhz; 135 int profsrc; 136 int schedhz; 137 int profprocs; 138 int hardclock_ticks; 139 static int hardscheddiv; /* hard => sched divider (used if schedhz == 0) */ 140 static int psdiv; /* prof => stat divider */ 141 int psratio; /* ratio: prof / stat */ 142 143 struct clockrnd { 144 struct krndsource source; 145 unsigned needed; 146 }; 147 148 static struct clockrnd hardclockrnd __aligned(COHERENCY_UNIT); 149 static struct clockrnd statclockrnd __aligned(COHERENCY_UNIT); 150 151 static void 152 clockrnd_get(size_t needed, void *cookie) 153 { 154 struct clockrnd *C = cookie; 155 156 /* Start sampling. */ 157 atomic_store_relaxed(&C->needed, 2*NBBY*needed); 158 } 159 160 static void 161 clockrnd_sample(struct clockrnd *C) 162 { 163 struct cpu_info *ci = curcpu(); 164 165 /* If there's nothing needed right now, stop here. */ 166 if (__predict_true(C->needed == 0)) 167 return; 168 169 /* 170 * If we're not the primary core of a package, we're probably 171 * driven by the same clock as the primary core, so don't 172 * bother. 173 */ 174 if (ci != ci->ci_package1st) 175 return; 176 177 /* Take a sample and enter it into the pool. */ 178 rnd_add_uint32(&C->source, 0); 179 180 /* 181 * On the primary CPU, count down. Using an atomic decrement 182 * here isn't really necessary -- on every platform we care 183 * about, stores to unsigned int are atomic, and the only other 184 * memory operation that could happen here is for another CPU 185 * to store a higher value for needed. But using an atomic 186 * decrement avoids giving the impression of data races, and is 187 * unlikely to hurt because only one CPU will ever be writing 188 * to the location. 189 */ 190 if (CPU_IS_PRIMARY(curcpu())) { 191 unsigned needed __diagused; 192 193 needed = atomic_dec_uint_nv(&C->needed); 194 KASSERT(needed != UINT_MAX); 195 } 196 } 197 198 static u_int get_intr_timecount(struct timecounter *); 199 200 static struct timecounter intr_timecounter = { 201 .tc_get_timecount = get_intr_timecount, 202 .tc_poll_pps = NULL, 203 .tc_counter_mask = ~0u, 204 .tc_frequency = 0, 205 .tc_name = "clockinterrupt", 206 /* quality - minimum implementation level for a clock */ 207 .tc_quality = 0, 208 .tc_priv = NULL, 209 }; 210 211 static u_int 212 get_intr_timecount(struct timecounter *tc) 213 { 214 215 return (u_int)getticks(); 216 } 217 218 int 219 getticks(void) 220 { 221 return atomic_load_relaxed(&hardclock_ticks); 222 } 223 224 /* 225 * Initialize clock frequencies and start both clocks running. 226 */ 227 void 228 initclocks(void) 229 { 230 static struct sysctllog *clog; 231 int i; 232 233 /* 234 * Set divisors to 1 (normal case) and let the machine-specific 235 * code do its bit. 236 */ 237 psdiv = 1; 238 239 /* 240 * Call cpu_initclocks() before registering the default 241 * timecounter, in case it needs to adjust hz. 242 */ 243 const int old_hz = hz; 244 cpu_initclocks(); 245 if (old_hz != hz) { 246 tick = 1000000 / hz; 247 tickadj = (240000 / (60 * hz)) ? (240000 / (60 * hz)) : 1; 248 } 249 250 /* 251 * provide minimum default time counter 252 * will only run at interrupt resolution 253 */ 254 intr_timecounter.tc_frequency = hz; 255 tc_init(&intr_timecounter); 256 257 /* 258 * Compute profhz and stathz, fix profhz if needed. 259 */ 260 i = stathz ? stathz : hz; 261 if (profhz == 0) 262 profhz = i; 263 psratio = profhz / i; 264 if (schedhz == 0) { 265 /* 16Hz is best */ 266 hardscheddiv = hz / 16; 267 if (hardscheddiv <= 0) 268 panic("hardscheddiv"); 269 } 270 271 sysctl_createv(&clog, 0, NULL, NULL, 272 CTLFLAG_PERMANENT, 273 CTLTYPE_STRUCT, "clockrate", 274 SYSCTL_DESCR("Kernel clock rates"), 275 sysctl_kern_clockrate, 0, NULL, 276 sizeof(struct clockinfo), 277 CTL_KERN, KERN_CLOCKRATE, CTL_EOL); 278 sysctl_createv(&clog, 0, NULL, NULL, 279 CTLFLAG_PERMANENT, 280 CTLTYPE_INT, "hardclock_ticks", 281 SYSCTL_DESCR("Number of hardclock ticks"), 282 NULL, 0, &hardclock_ticks, sizeof(hardclock_ticks), 283 CTL_KERN, KERN_HARDCLOCK_TICKS, CTL_EOL); 284 285 rndsource_setcb(&hardclockrnd.source, clockrnd_get, &hardclockrnd); 286 rnd_attach_source(&hardclockrnd.source, "hardclock", RND_TYPE_SKEW, 287 RND_FLAG_COLLECT_TIME|RND_FLAG_HASCB); 288 if (stathz) { 289 rndsource_setcb(&statclockrnd.source, clockrnd_get, 290 &statclockrnd); 291 rnd_attach_source(&statclockrnd.source, "statclock", 292 RND_TYPE_SKEW, RND_FLAG_COLLECT_TIME|RND_FLAG_HASCB); 293 } 294 } 295 296 /* 297 * The real-time timer, interrupting hz times per second. 298 */ 299 void 300 hardclock(struct clockframe *frame) 301 { 302 struct lwp *l; 303 struct cpu_info *ci; 304 305 clockrnd_sample(&hardclockrnd); 306 307 ci = curcpu(); 308 l = ci->ci_onproc; 309 310 ptimer_tick(l, CLKF_USERMODE(frame)); 311 312 /* 313 * If no separate statistics clock is available, run it from here. 314 */ 315 if (stathz == 0) 316 statclock(frame); 317 /* 318 * If no separate schedclock is provided, call it here 319 * at about 16 Hz. 320 */ 321 if (schedhz == 0) { 322 if ((int)(--ci->ci_schedstate.spc_schedticks) <= 0) { 323 schedclock(l); 324 ci->ci_schedstate.spc_schedticks = hardscheddiv; 325 } 326 } 327 if ((--ci->ci_schedstate.spc_ticks) <= 0) 328 sched_tick(ci); 329 330 if (CPU_IS_PRIMARY(ci)) { 331 atomic_store_relaxed(&hardclock_ticks, 332 atomic_load_relaxed(&hardclock_ticks) + 1); 333 tc_ticktock(); 334 } 335 336 /* 337 * Update real-time timeout queue. 338 */ 339 callout_hardclock(); 340 } 341 342 /* 343 * Start profiling on a process. 344 * 345 * Kernel profiling passes proc0 which never exits and hence 346 * keeps the profile clock running constantly. 347 */ 348 void 349 startprofclock(struct proc *p) 350 { 351 352 KASSERT(mutex_owned(&p->p_stmutex)); 353 354 if ((p->p_stflag & PST_PROFIL) == 0) { 355 p->p_stflag |= PST_PROFIL; 356 /* 357 * This is only necessary if using the clock as the 358 * profiling source. 359 */ 360 if (++profprocs == 1 && stathz != 0) 361 psdiv = psratio; 362 } 363 } 364 365 /* 366 * Stop profiling on a process. 367 */ 368 void 369 stopprofclock(struct proc *p) 370 { 371 372 KASSERT(mutex_owned(&p->p_stmutex)); 373 374 if (p->p_stflag & PST_PROFIL) { 375 p->p_stflag &= ~PST_PROFIL; 376 /* 377 * This is only necessary if using the clock as the 378 * profiling source. 379 */ 380 if (--profprocs == 0 && stathz != 0) 381 psdiv = 1; 382 } 383 } 384 385 void 386 schedclock(struct lwp *l) 387 { 388 if ((l->l_flag & LW_IDLE) != 0) 389 return; 390 391 sched_schedclock(l); 392 } 393 394 /* 395 * Statistics clock. Grab profile sample, and if divider reaches 0, 396 * do process and kernel statistics. 397 */ 398 void 399 statclock(struct clockframe *frame) 400 { 401 #ifdef GPROF 402 struct gmonparam *g; 403 intptr_t i; 404 #endif 405 struct cpu_info *ci = curcpu(); 406 struct schedstate_percpu *spc = &ci->ci_schedstate; 407 struct proc *p; 408 struct lwp *l; 409 410 if (stathz) 411 clockrnd_sample(&statclockrnd); 412 413 /* 414 * Notice changes in divisor frequency, and adjust clock 415 * frequency accordingly. 416 */ 417 if (spc->spc_psdiv != psdiv) { 418 spc->spc_psdiv = psdiv; 419 spc->spc_pscnt = psdiv; 420 if (psdiv == 1) { 421 setstatclockrate(stathz); 422 } else { 423 setstatclockrate(profhz); 424 } 425 } 426 l = ci->ci_onproc; 427 if ((l->l_flag & LW_IDLE) != 0) { 428 /* 429 * don't account idle lwps as swapper. 430 */ 431 p = NULL; 432 } else { 433 p = l->l_proc; 434 mutex_spin_enter(&p->p_stmutex); 435 } 436 437 if (CLKF_USERMODE(frame)) { 438 KASSERT(p != NULL); 439 if ((p->p_stflag & PST_PROFIL) && profsrc == PROFSRC_CLOCK) 440 addupc_intr(l, CLKF_PC(frame)); 441 if (--spc->spc_pscnt > 0) { 442 mutex_spin_exit(&p->p_stmutex); 443 return; 444 } 445 446 /* 447 * Came from user mode; CPU was in user state. 448 * If this process is being profiled record the tick. 449 */ 450 p->p_uticks++; 451 if (p->p_nice > NZERO) 452 spc->spc_cp_time[CP_NICE]++; 453 else 454 spc->spc_cp_time[CP_USER]++; 455 } else { 456 #ifdef GPROF 457 /* 458 * Kernel statistics are just like addupc_intr, only easier. 459 */ 460 #if defined(MULTIPROCESSOR) && !defined(_RUMPKERNEL) 461 g = curcpu()->ci_gmon; 462 if (g != NULL && 463 profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) { 464 #else 465 g = &_gmonparam; 466 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) { 467 #endif 468 i = CLKF_PC(frame) - g->lowpc; 469 if (i < g->textsize) { 470 i /= HISTFRACTION * sizeof(*g->kcount); 471 g->kcount[i]++; 472 } 473 } 474 #endif 475 #ifdef LWP_PC 476 if (p != NULL && profsrc == PROFSRC_CLOCK && 477 (p->p_stflag & PST_PROFIL)) { 478 addupc_intr(l, LWP_PC(l)); 479 } 480 #endif 481 if (--spc->spc_pscnt > 0) { 482 if (p != NULL) 483 mutex_spin_exit(&p->p_stmutex); 484 return; 485 } 486 /* 487 * Came from kernel mode, so we were: 488 * - handling an interrupt, 489 * - doing syscall or trap work on behalf of the current 490 * user process, or 491 * - spinning in the idle loop. 492 * Whichever it is, charge the time as appropriate. 493 * Note that we charge interrupts to the current process, 494 * regardless of whether they are ``for'' that process, 495 * so that we know how much of its real time was spent 496 * in ``non-process'' (i.e., interrupt) work. 497 */ 498 if (CLKF_INTR(frame) || (curlwp->l_pflag & LP_INTR) != 0) { 499 if (p != NULL) { 500 p->p_iticks++; 501 } 502 spc->spc_cp_time[CP_INTR]++; 503 } else if (p != NULL) { 504 p->p_sticks++; 505 spc->spc_cp_time[CP_SYS]++; 506 } else { 507 spc->spc_cp_time[CP_IDLE]++; 508 } 509 } 510 spc->spc_pscnt = psdiv; 511 512 if (p != NULL) { 513 atomic_inc_uint(&l->l_cpticks); 514 mutex_spin_exit(&p->p_stmutex); 515 } 516 517 #ifdef KDTRACE_HOOKS 518 cyclic_clock_func_t func = cyclic_clock_func[cpu_index(ci)]; 519 if (func) { 520 (*func)((struct clockframe *)frame); 521 } 522 #endif 523 } 524 525 /* 526 * sysctl helper routine for kern.clockrate. Assembles a struct on 527 * the fly to be returned to the caller. 528 */ 529 static int 530 sysctl_kern_clockrate(SYSCTLFN_ARGS) 531 { 532 struct clockinfo clkinfo; 533 struct sysctlnode node; 534 535 clkinfo.tick = tick; 536 clkinfo.tickadj = tickadj; 537 clkinfo.hz = hz; 538 clkinfo.profhz = profhz; 539 clkinfo.stathz = stathz ? stathz : hz; 540 541 node = *rnode; 542 node.sysctl_data = &clkinfo; 543 return (sysctl_lookup(SYSCTLFN_CALL(&node))); 544 } 545