xref: /netbsd-src/sys/kern/kern_clock.c (revision 481fca6e59249d8ffcf24fef7cfbe7b131bfb080)
1 /*	$NetBSD: kern_clock.c,v 1.61 2000/06/27 17:41:15 mrg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*-
41  * Copyright (c) 1982, 1986, 1991, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  * (c) UNIX System Laboratories, Inc.
44  * All or some portions of this file are derived from material licensed
45  * to the University of California by American Telephone and Telegraph
46  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
47  * the permission of UNIX System Laboratories, Inc.
48  *
49  * Redistribution and use in source and binary forms, with or without
50  * modification, are permitted provided that the following conditions
51  * are met:
52  * 1. Redistributions of source code must retain the above copyright
53  *    notice, this list of conditions and the following disclaimer.
54  * 2. Redistributions in binary form must reproduce the above copyright
55  *    notice, this list of conditions and the following disclaimer in the
56  *    documentation and/or other materials provided with the distribution.
57  * 3. All advertising materials mentioning features or use of this software
58  *    must display the following acknowledgement:
59  *	This product includes software developed by the University of
60  *	California, Berkeley and its contributors.
61  * 4. Neither the name of the University nor the names of its contributors
62  *    may be used to endorse or promote products derived from this software
63  *    without specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
69  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  *
77  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
78  */
79 
80 #include "opt_ntp.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/dkstat.h>
85 #include <sys/callout.h>
86 #include <sys/kernel.h>
87 #include <sys/proc.h>
88 #include <sys/resourcevar.h>
89 #include <sys/signalvar.h>
90 #include <uvm/uvm_extern.h>
91 #include <sys/sysctl.h>
92 #include <sys/timex.h>
93 #include <sys/sched.h>
94 
95 #include <machine/cpu.h>
96 
97 #ifdef GPROF
98 #include <sys/gmon.h>
99 #endif
100 
101 /*
102  * Clock handling routines.
103  *
104  * This code is written to operate with two timers that run independently of
105  * each other.  The main clock, running hz times per second, is used to keep
106  * track of real time.  The second timer handles kernel and user profiling,
107  * and does resource use estimation.  If the second timer is programmable,
108  * it is randomized to avoid aliasing between the two clocks.  For example,
109  * the randomization prevents an adversary from always giving up the cpu
110  * just before its quantum expires.  Otherwise, it would never accumulate
111  * cpu ticks.  The mean frequency of the second timer is stathz.
112  *
113  * If no second timer exists, stathz will be zero; in this case we drive
114  * profiling and statistics off the main clock.  This WILL NOT be accurate;
115  * do not do it unless absolutely necessary.
116  *
117  * The statistics clock may (or may not) be run at a higher rate while
118  * profiling.  This profile clock runs at profhz.  We require that profhz
119  * be an integral multiple of stathz.
120  *
121  * If the statistics clock is running fast, it must be divided by the ratio
122  * profhz/stathz for statistics.  (For profiling, every tick counts.)
123  */
124 
125 #ifdef NTP	/* NTP phase-locked loop in kernel */
126 /*
127  * Phase/frequency-lock loop (PLL/FLL) definitions
128  *
129  * The following variables are read and set by the ntp_adjtime() system
130  * call.
131  *
132  * time_state shows the state of the system clock, with values defined
133  * in the timex.h header file.
134  *
135  * time_status shows the status of the system clock, with bits defined
136  * in the timex.h header file.
137  *
138  * time_offset is used by the PLL/FLL to adjust the system time in small
139  * increments.
140  *
141  * time_constant determines the bandwidth or "stiffness" of the PLL.
142  *
143  * time_tolerance determines maximum frequency error or tolerance of the
144  * CPU clock oscillator and is a property of the architecture; however,
145  * in principle it could change as result of the presence of external
146  * discipline signals, for instance.
147  *
148  * time_precision is usually equal to the kernel tick variable; however,
149  * in cases where a precision clock counter or external clock is
150  * available, the resolution can be much less than this and depend on
151  * whether the external clock is working or not.
152  *
153  * time_maxerror is initialized by a ntp_adjtime() call and increased by
154  * the kernel once each second to reflect the maximum error bound
155  * growth.
156  *
157  * time_esterror is set and read by the ntp_adjtime() call, but
158  * otherwise not used by the kernel.
159  */
160 int time_state = TIME_OK;	/* clock state */
161 int time_status = STA_UNSYNC;	/* clock status bits */
162 long time_offset = 0;		/* time offset (us) */
163 long time_constant = 0;		/* pll time constant */
164 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
165 long time_precision = 1;	/* clock precision (us) */
166 long time_maxerror = MAXPHASE;	/* maximum error (us) */
167 long time_esterror = MAXPHASE;	/* estimated error (us) */
168 
169 /*
170  * The following variables establish the state of the PLL/FLL and the
171  * residual time and frequency offset of the local clock. The scale
172  * factors are defined in the timex.h header file.
173  *
174  * time_phase and time_freq are the phase increment and the frequency
175  * increment, respectively, of the kernel time variable.
176  *
177  * time_freq is set via ntp_adjtime() from a value stored in a file when
178  * the synchronization daemon is first started. Its value is retrieved
179  * via ntp_adjtime() and written to the file about once per hour by the
180  * daemon.
181  *
182  * time_adj is the adjustment added to the value of tick at each timer
183  * interrupt and is recomputed from time_phase and time_freq at each
184  * seconds rollover.
185  *
186  * time_reftime is the second's portion of the system time at the last
187  * call to ntp_adjtime(). It is used to adjust the time_freq variable
188  * and to increase the time_maxerror as the time since last update
189  * increases.
190  */
191 long time_phase = 0;		/* phase offset (scaled us) */
192 long time_freq = 0;		/* frequency offset (scaled ppm) */
193 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
194 long time_reftime = 0;		/* time at last adjustment (s) */
195 
196 #ifdef PPS_SYNC
197 /*
198  * The following variables are used only if the kernel PPS discipline
199  * code is configured (PPS_SYNC). The scale factors are defined in the
200  * timex.h header file.
201  *
202  * pps_time contains the time at each calibration interval, as read by
203  * microtime(). pps_count counts the seconds of the calibration
204  * interval, the duration of which is nominally pps_shift in powers of
205  * two.
206  *
207  * pps_offset is the time offset produced by the time median filter
208  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
209  * this filter.
210  *
211  * pps_freq is the frequency offset produced by the frequency median
212  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
213  * by this filter.
214  *
215  * pps_usec is latched from a high resolution counter or external clock
216  * at pps_time. Here we want the hardware counter contents only, not the
217  * contents plus the time_tv.usec as usual.
218  *
219  * pps_valid counts the number of seconds since the last PPS update. It
220  * is used as a watchdog timer to disable the PPS discipline should the
221  * PPS signal be lost.
222  *
223  * pps_glitch counts the number of seconds since the beginning of an
224  * offset burst more than tick/2 from current nominal offset. It is used
225  * mainly to suppress error bursts due to priority conflicts between the
226  * PPS interrupt and timer interrupt.
227  *
228  * pps_intcnt counts the calibration intervals for use in the interval-
229  * adaptation algorithm. It's just too complicated for words.
230  */
231 struct timeval pps_time;	/* kernel time at last interval */
232 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
233 long pps_offset = 0;		/* pps time offset (us) */
234 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
235 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
236 long pps_freq = 0;		/* frequency offset (scaled ppm) */
237 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
238 long pps_usec = 0;		/* microsec counter at last interval */
239 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
240 int pps_glitch = 0;		/* pps signal glitch counter */
241 int pps_count = 0;		/* calibration interval counter (s) */
242 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
243 int pps_intcnt = 0;		/* intervals at current duration */
244 
245 /*
246  * PPS signal quality monitors
247  *
248  * pps_jitcnt counts the seconds that have been discarded because the
249  * jitter measured by the time median filter exceeds the limit MAXTIME
250  * (100 us).
251  *
252  * pps_calcnt counts the frequency calibration intervals, which are
253  * variable from 4 s to 256 s.
254  *
255  * pps_errcnt counts the calibration intervals which have been discarded
256  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
257  * calibration interval jitter exceeds two ticks.
258  *
259  * pps_stbcnt counts the calibration intervals that have been discarded
260  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
261  */
262 long pps_jitcnt = 0;		/* jitter limit exceeded */
263 long pps_calcnt = 0;		/* calibration intervals */
264 long pps_errcnt = 0;		/* calibration errors */
265 long pps_stbcnt = 0;		/* stability limit exceeded */
266 #endif /* PPS_SYNC */
267 
268 #ifdef EXT_CLOCK
269 /*
270  * External clock definitions
271  *
272  * The following definitions and declarations are used only if an
273  * external clock is configured on the system.
274  */
275 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
276 
277 /*
278  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
279  * interrupt and decremented once each second.
280  */
281 int clock_count = 0;		/* CPU clock counter */
282 
283 #ifdef HIGHBALL
284 /*
285  * The clock_offset and clock_cpu variables are used by the HIGHBALL
286  * interface. The clock_offset variable defines the offset between
287  * system time and the HIGBALL counters. The clock_cpu variable contains
288  * the offset between the system clock and the HIGHBALL clock for use in
289  * disciplining the kernel time variable.
290  */
291 extern struct timeval clock_offset; /* Highball clock offset */
292 long clock_cpu = 0;		/* CPU clock adjust */
293 #endif /* HIGHBALL */
294 #endif /* EXT_CLOCK */
295 #endif /* NTP */
296 
297 
298 /*
299  * Bump a timeval by a small number of usec's.
300  */
301 #define BUMPTIME(t, usec) { \
302 	volatile struct timeval *tp = (t); \
303 	long us; \
304  \
305 	tp->tv_usec = us = tp->tv_usec + (usec); \
306 	if (us >= 1000000) { \
307 		tp->tv_usec = us - 1000000; \
308 		tp->tv_sec++; \
309 	} \
310 }
311 
312 int	stathz;
313 int	profhz;
314 int	profprocs;
315 u_int64_t hardclock_ticks, softclock_ticks;
316 int	softclock_running;		/* 1 => softclock() is running */
317 static int psdiv, pscnt;		/* prof => stat divider */
318 int	psratio;			/* ratio: prof / stat */
319 int	tickfix, tickfixinterval;	/* used if tick not really integral */
320 #ifndef NTP
321 static int tickfixcnt;			/* accumulated fractional error */
322 #else
323 int	fixtick;			/* used by NTP for same */
324 int	shifthz;
325 #endif
326 
327 /*
328  * We might want ldd to load the both words from time at once.
329  * To succeed we need to be quadword aligned.
330  * The sparc already does that, and that it has worked so far is a fluke.
331  */
332 volatile struct	timeval time  __attribute__((__aligned__(__alignof__(quad_t))));
333 volatile struct	timeval mono_time;
334 
335 /*
336  * The callout mechanism is based on the work of Adam M. Costello and
337  * George Varghese, published in a technical report entitled "Redesigning
338  * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent
339  * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe.
340  *
341  * The original work on the data structures used in this implementation
342  * was published by G. Varghese and A. Lauck in the paper "Hashed and
343  * Hierarchical Timing Wheels: Data Structures for the Efficient
344  * Implementation of a Timer Facility" in the Proceedings of the 11th
345  * ACM Annual Symposium on Operating System Principles, Austin, Texas,
346  * November 1987.
347  */
348 struct callout_queue *callwheel;
349 int	callwheelsize, callwheelbits, callwheelmask;
350 
351 static struct callout *nextsoftcheck;	/* next callout to be checked */
352 
353 #ifdef CALLWHEEL_STATS
354 int	callwheel_collisions;		/* number of hash collisions */
355 int	callwheel_maxlength;		/* length of the longest hash chain */
356 int	*callwheel_sizes;		/* per-bucket length count */
357 u_int64_t callwheel_count;		/* # callouts currently */
358 u_int64_t callwheel_established;	/* # callouts established */
359 u_int64_t callwheel_fired;		/* # callouts that fired */
360 u_int64_t callwheel_disestablished;	/* # callouts disestablished */
361 u_int64_t callwheel_changed;		/* # callouts changed */
362 u_int64_t callwheel_softclocks;		/* # times softclock() called */
363 u_int64_t callwheel_softchecks;		/* # checks per softclock() */
364 u_int64_t callwheel_softempty;		/* # empty buckets seen */
365 #endif /* CALLWHEEL_STATS */
366 
367 /*
368  * This value indicates the number of consecutive callouts that
369  * will be checked before we allow interrupts to have a chance
370  * again.
371  */
372 #ifndef MAX_SOFTCLOCK_STEPS
373 #define	MAX_SOFTCLOCK_STEPS	100
374 #endif
375 
376 /*
377  * Initialize clock frequencies and start both clocks running.
378  */
379 void
380 initclocks()
381 {
382 	int i;
383 
384 	/*
385 	 * Set divisors to 1 (normal case) and let the machine-specific
386 	 * code do its bit.
387 	 */
388 	psdiv = pscnt = 1;
389 	cpu_initclocks();
390 
391 	/*
392 	 * Compute profhz/stathz, and fix profhz if needed.
393 	 */
394 	i = stathz ? stathz : hz;
395 	if (profhz == 0)
396 		profhz = i;
397 	psratio = profhz / i;
398 
399 #ifdef NTP
400 	switch (hz) {
401 	case 1:
402 		shifthz = SHIFT_SCALE - 0;
403 		break;
404 	case 2:
405 		shifthz = SHIFT_SCALE - 1;
406 		break;
407 	case 4:
408 		shifthz = SHIFT_SCALE - 2;
409 		break;
410 	case 8:
411 		shifthz = SHIFT_SCALE - 3;
412 		break;
413 	case 16:
414 		shifthz = SHIFT_SCALE - 4;
415 		break;
416 	case 32:
417 		shifthz = SHIFT_SCALE - 5;
418 		break;
419 	case 60:
420 	case 64:
421 		shifthz = SHIFT_SCALE - 6;
422 		break;
423 	case 96:
424 	case 100:
425 	case 128:
426 		shifthz = SHIFT_SCALE - 7;
427 		break;
428 	case 256:
429 		shifthz = SHIFT_SCALE - 8;
430 		break;
431 	case 512:
432 		shifthz = SHIFT_SCALE - 9;
433 		break;
434 	case 1000:
435 	case 1024:
436 		shifthz = SHIFT_SCALE - 10;
437 		break;
438 	case 1200:
439 	case 2048:
440 		shifthz = SHIFT_SCALE - 11;
441 		break;
442 	case 4096:
443 		shifthz = SHIFT_SCALE - 12;
444 		break;
445 	case 8192:
446 		shifthz = SHIFT_SCALE - 13;
447 		break;
448 	case 16384:
449 		shifthz = SHIFT_SCALE - 14;
450 		break;
451 	case 32768:
452 		shifthz = SHIFT_SCALE - 15;
453 		break;
454 	case 65536:
455 		shifthz = SHIFT_SCALE - 16;
456 		break;
457 	default:
458 		panic("weird hz");
459 	}
460 	if (fixtick == 0) {
461 		/*
462 		 * Give MD code a chance to set this to a better
463 		 * value; but, if it doesn't, we should.
464 		 */
465 		fixtick = (1000000 - (hz*tick));
466 	}
467 #endif
468 }
469 
470 /*
471  * The real-time timer, interrupting hz times per second.
472  */
473 void
474 hardclock(frame)
475 	struct clockframe *frame;
476 {
477 	struct proc *p;
478 	int delta;
479 	extern int tickdelta;
480 	extern long timedelta;
481 #ifdef NTP
482 	int time_update;
483 	int ltemp;
484 #endif
485 
486 	p = curproc;
487 	if (p) {
488 		struct pstats *pstats;
489 
490 		/*
491 		 * Run current process's virtual and profile time, as needed.
492 		 */
493 		pstats = p->p_stats;
494 		if (CLKF_USERMODE(frame) &&
495 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
496 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
497 			psignal(p, SIGVTALRM);
498 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
499 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
500 			psignal(p, SIGPROF);
501 	}
502 
503 	/*
504 	 * If no separate statistics clock is available, run it from here.
505 	 */
506 	if (stathz == 0)
507 		statclock(frame);
508 
509 #if defined(MULTIPROCESSOR)
510 	/*
511 	 * If we are not the primary CPU, we're not allowed to do
512 	 * any more work.
513 	 */
514 	if (CPU_IS_PRIMARY(curcpu()) == 0)
515 		return;
516 #endif
517 
518 	/*
519 	 * Increment the time-of-day.  The increment is normally just
520 	 * ``tick''.  If the machine is one which has a clock frequency
521 	 * such that ``hz'' would not divide the second evenly into
522 	 * milliseconds, a periodic adjustment must be applied.  Finally,
523 	 * if we are still adjusting the time (see adjtime()),
524 	 * ``tickdelta'' may also be added in.
525 	 */
526 	hardclock_ticks++;
527 	delta = tick;
528 
529 #ifndef NTP
530 	if (tickfix) {
531 		tickfixcnt += tickfix;
532 		if (tickfixcnt >= tickfixinterval) {
533 			delta++;
534 			tickfixcnt -= tickfixinterval;
535 		}
536 	}
537 #endif /* !NTP */
538 	/* Imprecise 4bsd adjtime() handling */
539 	if (timedelta != 0) {
540 		delta += tickdelta;
541 		timedelta -= tickdelta;
542 	}
543 
544 #ifdef notyet
545 	microset();
546 #endif
547 
548 #ifndef NTP
549 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
550 #endif
551 	BUMPTIME(&mono_time, delta);
552 
553 #ifdef NTP
554 	time_update = delta;
555 
556 	/*
557 	 * Compute the phase adjustment. If the low-order bits
558 	 * (time_phase) of the update overflow, bump the high-order bits
559 	 * (time_update).
560 	 */
561 	time_phase += time_adj;
562 	if (time_phase <= -FINEUSEC) {
563 		ltemp = -time_phase >> SHIFT_SCALE;
564 		time_phase += ltemp << SHIFT_SCALE;
565 		time_update -= ltemp;
566 	} else if (time_phase >= FINEUSEC) {
567 		ltemp = time_phase >> SHIFT_SCALE;
568 		time_phase -= ltemp << SHIFT_SCALE;
569 		time_update += ltemp;
570 	}
571 
572 #ifdef HIGHBALL
573 	/*
574 	 * If the HIGHBALL board is installed, we need to adjust the
575 	 * external clock offset in order to close the hardware feedback
576 	 * loop. This will adjust the external clock phase and frequency
577 	 * in small amounts. The additional phase noise and frequency
578 	 * wander this causes should be minimal. We also need to
579 	 * discipline the kernel time variable, since the PLL is used to
580 	 * discipline the external clock. If the Highball board is not
581 	 * present, we discipline kernel time with the PLL as usual. We
582 	 * assume that the external clock phase adjustment (time_update)
583 	 * and kernel phase adjustment (clock_cpu) are less than the
584 	 * value of tick.
585 	 */
586 	clock_offset.tv_usec += time_update;
587 	if (clock_offset.tv_usec >= 1000000) {
588 		clock_offset.tv_sec++;
589 		clock_offset.tv_usec -= 1000000;
590 	}
591 	if (clock_offset.tv_usec < 0) {
592 		clock_offset.tv_sec--;
593 		clock_offset.tv_usec += 1000000;
594 	}
595 	time.tv_usec += clock_cpu;
596 	clock_cpu = 0;
597 #else
598 	time.tv_usec += time_update;
599 #endif /* HIGHBALL */
600 
601 	/*
602 	 * On rollover of the second the phase adjustment to be used for
603 	 * the next second is calculated. Also, the maximum error is
604 	 * increased by the tolerance. If the PPS frequency discipline
605 	 * code is present, the phase is increased to compensate for the
606 	 * CPU clock oscillator frequency error.
607 	 *
608  	 * On a 32-bit machine and given parameters in the timex.h
609 	 * header file, the maximum phase adjustment is +-512 ms and
610 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
611 	 * 64-bit machine, you shouldn't need to ask.
612 	 */
613 	if (time.tv_usec >= 1000000) {
614 		time.tv_usec -= 1000000;
615 		time.tv_sec++;
616 		time_maxerror += time_tolerance >> SHIFT_USEC;
617 
618 		/*
619 		 * Leap second processing. If in leap-insert state at
620 		 * the end of the day, the system clock is set back one
621 		 * second; if in leap-delete state, the system clock is
622 		 * set ahead one second. The microtime() routine or
623 		 * external clock driver will insure that reported time
624 		 * is always monotonic. The ugly divides should be
625 		 * replaced.
626 		 */
627 		switch (time_state) {
628 		case TIME_OK:
629 			if (time_status & STA_INS)
630 				time_state = TIME_INS;
631 			else if (time_status & STA_DEL)
632 				time_state = TIME_DEL;
633 			break;
634 
635 		case TIME_INS:
636 			if (time.tv_sec % 86400 == 0) {
637 				time.tv_sec--;
638 				time_state = TIME_OOP;
639 			}
640 			break;
641 
642 		case TIME_DEL:
643 			if ((time.tv_sec + 1) % 86400 == 0) {
644 				time.tv_sec++;
645 				time_state = TIME_WAIT;
646 			}
647 			break;
648 
649 		case TIME_OOP:
650 			time_state = TIME_WAIT;
651 			break;
652 
653 		case TIME_WAIT:
654 			if (!(time_status & (STA_INS | STA_DEL)))
655 				time_state = TIME_OK;
656 			break;
657 		}
658 
659 		/*
660 		 * Compute the phase adjustment for the next second. In
661 		 * PLL mode, the offset is reduced by a fixed factor
662 		 * times the time constant. In FLL mode the offset is
663 		 * used directly. In either mode, the maximum phase
664 		 * adjustment for each second is clamped so as to spread
665 		 * the adjustment over not more than the number of
666 		 * seconds between updates.
667 		 */
668 		if (time_offset < 0) {
669 			ltemp = -time_offset;
670 			if (!(time_status & STA_FLL))
671 				ltemp >>= SHIFT_KG + time_constant;
672 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
673 				ltemp = (MAXPHASE / MINSEC) <<
674 				    SHIFT_UPDATE;
675 			time_offset += ltemp;
676 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
677 		} else if (time_offset > 0) {
678 			ltemp = time_offset;
679 			if (!(time_status & STA_FLL))
680 				ltemp >>= SHIFT_KG + time_constant;
681 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
682 				ltemp = (MAXPHASE / MINSEC) <<
683 				    SHIFT_UPDATE;
684 			time_offset -= ltemp;
685 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
686 		} else
687 			time_adj = 0;
688 
689 		/*
690 		 * Compute the frequency estimate and additional phase
691 		 * adjustment due to frequency error for the next
692 		 * second. When the PPS signal is engaged, gnaw on the
693 		 * watchdog counter and update the frequency computed by
694 		 * the pll and the PPS signal.
695 		 */
696 #ifdef PPS_SYNC
697 		pps_valid++;
698 		if (pps_valid == PPS_VALID) {
699 			pps_jitter = MAXTIME;
700 			pps_stabil = MAXFREQ;
701 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
702 			    STA_PPSWANDER | STA_PPSERROR);
703 		}
704 		ltemp = time_freq + pps_freq;
705 #else
706 		ltemp = time_freq;
707 #endif /* PPS_SYNC */
708 
709 		if (ltemp < 0)
710 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
711 		else
712 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
713 		time_adj += (long)fixtick << shifthz;
714 
715 		/*
716 		 * When the CPU clock oscillator frequency is not a
717 		 * power of 2 in Hz, shifthz is only an approximate
718 		 * scale factor.
719 		 *
720 		 * To determine the adjustment, you can do the following:
721 		 *   bc -q
722 		 *   scale=24
723 		 *   obase=2
724 		 *   idealhz/realhz
725 		 * where `idealhz' is the next higher power of 2, and `realhz'
726 		 * is the actual value.  You may need to factor this result
727 		 * into a sequence of 2 multipliers to get better precision.
728 		 *
729 		 * Likewise, the error can be calculated with (e.g. for 100Hz):
730 		 *   bc -q
731 		 *   scale=24
732 		 *   ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz
733 		 * (and then multiply by 1000000 to get ppm).
734 		 */
735 		switch (hz) {
736 		case 60:
737 			/* A factor of 1.000100010001 gives about 15ppm
738 			   error. */
739 			if (time_adj < 0) {
740 				time_adj -= (-time_adj >> 4);
741 				time_adj -= (-time_adj >> 8);
742 			} else {
743 				time_adj += (time_adj >> 4);
744 				time_adj += (time_adj >> 8);
745 			}
746 			break;
747 
748 		case 96:
749 			/* A factor of 1.0101010101 gives about 244ppm error. */
750 			if (time_adj < 0) {
751 				time_adj -= (-time_adj >> 2);
752 				time_adj -= (-time_adj >> 4) + (-time_adj >> 8);
753 			} else {
754 				time_adj += (time_adj >> 2);
755 				time_adj += (time_adj >> 4) + (time_adj >> 8);
756 			}
757 			break;
758 
759 		case 100:
760 			/* A factor of 1.010001111010111 gives about 1ppm
761 			   error. */
762 			if (time_adj < 0) {
763 				time_adj -= (-time_adj >> 2) + (-time_adj >> 5);
764 				time_adj += (-time_adj >> 10);
765 			} else {
766 				time_adj += (time_adj >> 2) + (time_adj >> 5);
767 				time_adj -= (time_adj >> 10);
768 			}
769 			break;
770 
771 		case 1000:
772 			/* A factor of 1.000001100010100001 gives about 50ppm
773 			   error. */
774 			if (time_adj < 0) {
775 				time_adj -= (-time_adj >> 6) + (-time_adj >> 11);
776 				time_adj -= (-time_adj >> 7);
777 			} else {
778 				time_adj += (time_adj >> 6) + (time_adj >> 11);
779 				time_adj += (time_adj >> 7);
780 			}
781 			break;
782 
783 		case 1200:
784 			/* A factor of 1.1011010011100001 gives about 64ppm
785 			   error. */
786 			if (time_adj < 0) {
787 				time_adj -= (-time_adj >> 1) + (-time_adj >> 6);
788 				time_adj -= (-time_adj >> 3) + (-time_adj >> 10);
789 			} else {
790 				time_adj += (time_adj >> 1) + (time_adj >> 6);
791 				time_adj += (time_adj >> 3) + (time_adj >> 10);
792 			}
793 			break;
794 		}
795 
796 #ifdef EXT_CLOCK
797 		/*
798 		 * If an external clock is present, it is necessary to
799 		 * discipline the kernel time variable anyway, since not
800 		 * all system components use the microtime() interface.
801 		 * Here, the time offset between the external clock and
802 		 * kernel time variable is computed every so often.
803 		 */
804 		clock_count++;
805 		if (clock_count > CLOCK_INTERVAL) {
806 			clock_count = 0;
807 			microtime(&clock_ext);
808 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
809 			delta.tv_usec = clock_ext.tv_usec -
810 			    time.tv_usec;
811 			if (delta.tv_usec < 0)
812 				delta.tv_sec--;
813 			if (delta.tv_usec >= 500000) {
814 				delta.tv_usec -= 1000000;
815 				delta.tv_sec++;
816 			}
817 			if (delta.tv_usec < -500000) {
818 				delta.tv_usec += 1000000;
819 				delta.tv_sec--;
820 			}
821 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
822 			    delta.tv_usec > MAXPHASE) ||
823 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
824 			    delta.tv_usec < -MAXPHASE)) {
825 				time = clock_ext;
826 				delta.tv_sec = 0;
827 				delta.tv_usec = 0;
828 			}
829 #ifdef HIGHBALL
830 			clock_cpu = delta.tv_usec;
831 #else /* HIGHBALL */
832 			hardupdate(delta.tv_usec);
833 #endif /* HIGHBALL */
834 		}
835 #endif /* EXT_CLOCK */
836 	}
837 
838 #endif /* NTP */
839 
840 	/*
841 	 * Process callouts at a very low cpu priority, so we don't keep the
842 	 * relatively high clock interrupt priority any longer than necessary.
843 	 */
844 	if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) {
845 		if (CLKF_BASEPRI(frame)) {
846 			/*
847 			 * Save the overhead of a software interrupt;
848 			 * it will happen as soon as we return, so do
849 			 * it now.
850 			 *
851 			 * NOTE: If we're at ``base priority'', softclock()
852 			 * was not already running.
853 			 */
854 			(void)spllowersoftclock();
855 			softclock();
856 		} else
857 			setsoftclock();
858 	} else if (softclock_running == 0 &&
859 		   (softclock_ticks + 1) == hardclock_ticks)
860 		softclock_ticks++;
861 }
862 
863 /*
864  * Software (low priority) clock interrupt.
865  * Run periodic events from timeout queue.
866  */
867 /*ARGSUSED*/
868 void
869 softclock()
870 {
871 	struct callout_queue *bucket;
872 	struct callout *c;
873 	void (*func) __P((void *));
874 	void *arg;
875 	int s, idx;
876 	int steps = 0;
877 
878 	s = splhigh();
879 	softclock_running = 1;
880 
881 #ifdef CALLWHEEL_STATS
882 	callwheel_softclocks++;
883 #endif
884 
885 	while (softclock_ticks != hardclock_ticks) {
886 		softclock_ticks++;
887 		idx = (int)(softclock_ticks & callwheelmask);
888 		bucket = &callwheel[idx];
889 		c = TAILQ_FIRST(bucket);
890 #ifdef CALLWHEEL_STATS
891 		if (c == NULL)
892 			callwheel_softempty++;
893 #endif
894 		while (c != NULL) {
895 #ifdef CALLWHEEL_STATS
896 			callwheel_softchecks++;
897 #endif
898 			if (c->c_time != softclock_ticks) {
899 				c = TAILQ_NEXT(c, c_link);
900 				if (++steps >= MAX_SOFTCLOCK_STEPS) {
901 					nextsoftcheck = c;
902 					/* Give interrupts a chance. */
903 					splx(s);
904 					(void) splhigh();
905 					c = nextsoftcheck;
906 					steps = 0;
907 				}
908 			} else {
909 				nextsoftcheck = TAILQ_NEXT(c, c_link);
910 				TAILQ_REMOVE(bucket, c, c_link);
911 #ifdef CALLWHEEL_STATS
912 				callwheel_sizes[idx]--;
913 				callwheel_fired++;
914 				callwheel_count--;
915 #endif
916 				func = c->c_func;
917 				arg = c->c_arg;
918 				c->c_func = NULL;
919 				c->c_flags &= ~CALLOUT_PENDING;
920 				splx(s);
921 				(*func)(arg);
922 				(void) splhigh();
923 				steps = 0;
924 				c = nextsoftcheck;
925 			}
926 		}
927 	}
928 	nextsoftcheck = NULL;
929 	softclock_running = 0;
930 	splx(s);
931 }
932 
933 /*
934  * callout_setsize:
935  *
936  *	Determine how many callwheels are necessary and
937  *	set hash mask.  Called from allocsys().
938  */
939 void
940 callout_setsize()
941 {
942 
943 	for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1)
944 		/* loop */ ;
945 	callwheelmask = callwheelsize - 1;
946 }
947 
948 /*
949  * callout_startup:
950  *
951  *	Initialize the callwheel buckets.
952  */
953 void
954 callout_startup()
955 {
956 	int i;
957 
958 	for (i = 0; i < callwheelsize; i++)
959 		TAILQ_INIT(&callwheel[i]);
960 }
961 
962 /*
963  * callout_init:
964  *
965  *	Initialize a callout structure so that it can be used
966  *	by callout_reset() and callout_stop().
967  */
968 void
969 callout_init(c)
970 	struct callout *c;
971 {
972 
973 	memset(c, 0, sizeof(*c));
974 }
975 
976 /*
977  * callout_reset:
978  *
979  *	Establish or change a timeout.
980  */
981 void
982 callout_reset(c, ticks, func, arg)
983 	struct callout *c;
984 	int ticks;
985 	void (*func) __P((void *));
986 	void *arg;
987 {
988 	struct callout_queue *bucket;
989 	int s;
990 
991 	if (ticks <= 0)
992 		ticks = 1;
993 
994 	/* Lock out the clock. */
995 	s = splhigh();
996 
997 	/*
998 	 * If this callout's timer is already running, cancel it
999 	 * before we modify it.
1000 	 */
1001 	if (c->c_flags & CALLOUT_PENDING) {
1002 		callout_stop(c);
1003 #ifdef CALLWHEEL_STATS
1004 		callwheel_changed++;
1005 #endif
1006 	}
1007 
1008 	c->c_arg = arg;
1009 	c->c_func = func;
1010 	c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING;
1011 	c->c_time = hardclock_ticks + ticks;
1012 
1013 	bucket = &callwheel[c->c_time & callwheelmask];
1014 
1015 #ifdef CALLWHEEL_STATS
1016 	if (TAILQ_FIRST(bucket) != NULL)
1017 		callwheel_collisions++;
1018 #endif
1019 
1020 	TAILQ_INSERT_TAIL(bucket, c, c_link);
1021 
1022 #ifdef CALLWHEEL_STATS
1023 	callwheel_count++;
1024 	callwheel_established++;
1025 	if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength)
1026 		callwheel_maxlength =
1027 		    callwheel_sizes[c->c_time & callwheelmask];
1028 #endif
1029 
1030 	splx(s);
1031 }
1032 
1033 /*
1034  * callout_stop:
1035  *
1036  *	Disestablish a timeout.
1037  */
1038 void
1039 callout_stop(c)
1040 	struct callout *c;
1041 {
1042 	int s;
1043 
1044 	/* Lock out the clock. */
1045 	s = splhigh();
1046 
1047 	/*
1048 	 * Don't attempt to delete a callout that's not on the queue.
1049 	 */
1050 	if ((c->c_flags & CALLOUT_PENDING) == 0) {
1051 		c->c_flags &= ~CALLOUT_ACTIVE;
1052 		splx(s);
1053 		return;
1054 	}
1055 
1056 	c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING);
1057 
1058 	if (nextsoftcheck == c)
1059 		nextsoftcheck = TAILQ_NEXT(c, c_link);
1060 
1061 	TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link);
1062 #ifdef CALLWHEEL_STATS
1063 	callwheel_count--;
1064 	callwheel_disestablished++;
1065 	callwheel_sizes[c->c_time & callwheelmask]--;
1066 #endif
1067 
1068 	c->c_func = NULL;
1069 
1070 	splx(s);
1071 }
1072 
1073 #ifdef CALLWHEEL_STATS
1074 /*
1075  * callout_showstats:
1076  *
1077  *	Display callout statistics.  Call it from DDB.
1078  */
1079 void
1080 callout_showstats()
1081 {
1082 	u_int64_t curticks;
1083 	int s;
1084 
1085 	s = splclock();
1086 	curticks = softclock_ticks;
1087 	splx(s);
1088 
1089 	printf("Callwheel statistics:\n");
1090 	printf("\tCallouts currently queued: %llu\n", callwheel_count);
1091 	printf("\tCallouts established: %llu\n", callwheel_established);
1092 	printf("\tCallouts disestablished: %llu\n", callwheel_disestablished);
1093 	if (callwheel_changed != 0)
1094 		printf("\t\tOf those, %llu were changes\n", callwheel_changed);
1095 	printf("\tCallouts that fired: %llu\n", callwheel_fired);
1096 	printf("\tNumber of buckets: %d\n", callwheelsize);
1097 	printf("\tNumber of hash collisions: %d\n", callwheel_collisions);
1098 	printf("\tMaximum hash chain length: %d\n", callwheel_maxlength);
1099 	printf("\tSoftclocks: %llu, Softchecks: %llu\n",
1100 	    callwheel_softclocks, callwheel_softchecks);
1101 	printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty);
1102 }
1103 #endif
1104 
1105 /*
1106  * Compute number of hz until specified time.  Used to compute second
1107  * argument to callout_reset() from an absolute time.
1108  */
1109 int
1110 hzto(tv)
1111 	struct timeval *tv;
1112 {
1113 	long ticks, sec;
1114 	int s;
1115 
1116 	/*
1117 	 * If number of microseconds will fit in 32 bit arithmetic,
1118 	 * then compute number of microseconds to time and scale to
1119 	 * ticks.  Otherwise just compute number of hz in time, rounding
1120 	 * times greater than representible to maximum value.  (We must
1121 	 * compute in microseconds, because hz can be greater than 1000,
1122 	 * and thus tick can be less than one millisecond).
1123 	 *
1124 	 * Delta times less than 14 hours can be computed ``exactly''.
1125 	 * (Note that if hz would yeild a non-integral number of us per
1126 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
1127 	 * than they should be.)  Maximum value for any timeout in 10ms
1128 	 * ticks is 250 days.
1129 	 */
1130 	s = splclock();
1131 	sec = tv->tv_sec - time.tv_sec;
1132 	if (sec <= 0x7fffffff / 1000000 - 1)
1133 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
1134 			(tv->tv_usec - time.tv_usec)) / tick;
1135 	else if (sec <= 0x7fffffff / hz)
1136 		ticks = sec * hz;
1137 	else
1138 		ticks = 0x7fffffff;
1139 	splx(s);
1140 	return (ticks);
1141 }
1142 
1143 /*
1144  * Start profiling on a process.
1145  *
1146  * Kernel profiling passes proc0 which never exits and hence
1147  * keeps the profile clock running constantly.
1148  */
1149 void
1150 startprofclock(p)
1151 	struct proc *p;
1152 {
1153 	int s;
1154 
1155 	if ((p->p_flag & P_PROFIL) == 0) {
1156 		p->p_flag |= P_PROFIL;
1157 		if (++profprocs == 1 && stathz != 0) {
1158 			s = splstatclock();
1159 			psdiv = pscnt = psratio;
1160 			setstatclockrate(profhz);
1161 			splx(s);
1162 		}
1163 	}
1164 }
1165 
1166 /*
1167  * Stop profiling on a process.
1168  */
1169 void
1170 stopprofclock(p)
1171 	struct proc *p;
1172 {
1173 	int s;
1174 
1175 	if (p->p_flag & P_PROFIL) {
1176 		p->p_flag &= ~P_PROFIL;
1177 		if (--profprocs == 0 && stathz != 0) {
1178 			s = splstatclock();
1179 			psdiv = pscnt = 1;
1180 			setstatclockrate(stathz);
1181 			splx(s);
1182 		}
1183 	}
1184 }
1185 
1186 /*
1187  * Statistics clock.  Grab profile sample, and if divider reaches 0,
1188  * do process and kernel statistics.
1189  */
1190 void
1191 statclock(frame)
1192 	struct clockframe *frame;
1193 {
1194 #ifdef GPROF
1195 	struct gmonparam *g;
1196 	int i;
1197 #endif
1198 	struct cpu_info *ci = curcpu();
1199 	struct schedstate_percpu *spc = &ci->ci_schedstate;
1200 	struct proc *p;
1201 
1202 	if (CLKF_USERMODE(frame)) {
1203 		p = curproc;
1204 		if (p->p_flag & P_PROFIL)
1205 			addupc_intr(p, CLKF_PC(frame), 1);
1206 		if (--pscnt > 0)
1207 			return;
1208 		/*
1209 		 * Came from user mode; CPU was in user state.
1210 		 * If this process is being profiled record the tick.
1211 		 */
1212 		p->p_uticks++;
1213 		if (p->p_nice > NZERO)
1214 			spc->spc_cp_time[CP_NICE]++;
1215 		else
1216 			spc->spc_cp_time[CP_USER]++;
1217 	} else {
1218 #ifdef GPROF
1219 		/*
1220 		 * Kernel statistics are just like addupc_intr, only easier.
1221 		 */
1222 		g = &_gmonparam;
1223 		if (g->state == GMON_PROF_ON) {
1224 			i = CLKF_PC(frame) - g->lowpc;
1225 			if (i < g->textsize) {
1226 				i /= HISTFRACTION * sizeof(*g->kcount);
1227 				g->kcount[i]++;
1228 			}
1229 		}
1230 #endif
1231 		if (--pscnt > 0)
1232 			return;
1233 		/*
1234 		 * Came from kernel mode, so we were:
1235 		 * - handling an interrupt,
1236 		 * - doing syscall or trap work on behalf of the current
1237 		 *   user process, or
1238 		 * - spinning in the idle loop.
1239 		 * Whichever it is, charge the time as appropriate.
1240 		 * Note that we charge interrupts to the current process,
1241 		 * regardless of whether they are ``for'' that process,
1242 		 * so that we know how much of its real time was spent
1243 		 * in ``non-process'' (i.e., interrupt) work.
1244 		 */
1245 		p = curproc;
1246 		if (CLKF_INTR(frame)) {
1247 			if (p != NULL)
1248 				p->p_iticks++;
1249 			spc->spc_cp_time[CP_INTR]++;
1250 		} else if (p != NULL) {
1251 			p->p_sticks++;
1252 			spc->spc_cp_time[CP_SYS]++;
1253 		} else
1254 			spc->spc_cp_time[CP_IDLE]++;
1255 	}
1256 	pscnt = psdiv;
1257 
1258 	if (p != NULL) {
1259 		++p->p_cpticks;
1260 		/*
1261 		 * If no separate schedclock is provided, call it here
1262 		 * at ~~12-25 Hz, ~~16 Hz is best
1263 		 */
1264 		if (schedhz == 0)
1265 			if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
1266 				schedclock(p);
1267 	}
1268 }
1269 
1270 
1271 #ifdef NTP	/* NTP phase-locked loop in kernel */
1272 
1273 /*
1274  * hardupdate() - local clock update
1275  *
1276  * This routine is called by ntp_adjtime() to update the local clock
1277  * phase and frequency. The implementation is of an adaptive-parameter,
1278  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
1279  * time and frequency offset estimates for each call. If the kernel PPS
1280  * discipline code is configured (PPS_SYNC), the PPS signal itself
1281  * determines the new time offset, instead of the calling argument.
1282  * Presumably, calls to ntp_adjtime() occur only when the caller
1283  * believes the local clock is valid within some bound (+-128 ms with
1284  * NTP). If the caller's time is far different than the PPS time, an
1285  * argument will ensue, and it's not clear who will lose.
1286  *
1287  * For uncompensated quartz crystal oscillatores and nominal update
1288  * intervals less than 1024 s, operation should be in phase-lock mode
1289  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1290  * intervals greater than thiss, operation should be in frequency-lock
1291  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1292  *
1293  * Note: splclock() is in effect.
1294  */
1295 void
1296 hardupdate(offset)
1297 	long offset;
1298 {
1299 	long ltemp, mtemp;
1300 
1301 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1302 		return;
1303 	ltemp = offset;
1304 #ifdef PPS_SYNC
1305 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1306 		ltemp = pps_offset;
1307 #endif /* PPS_SYNC */
1308 
1309 	/*
1310 	 * Scale the phase adjustment and clamp to the operating range.
1311 	 */
1312 	if (ltemp > MAXPHASE)
1313 		time_offset = MAXPHASE << SHIFT_UPDATE;
1314 	else if (ltemp < -MAXPHASE)
1315 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
1316 	else
1317 		time_offset = ltemp << SHIFT_UPDATE;
1318 
1319 	/*
1320 	 * Select whether the frequency is to be controlled and in which
1321 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1322 	 * multiply/divide should be replaced someday.
1323 	 */
1324 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1325 		time_reftime = time.tv_sec;
1326 	mtemp = time.tv_sec - time_reftime;
1327 	time_reftime = time.tv_sec;
1328 	if (time_status & STA_FLL) {
1329 		if (mtemp >= MINSEC) {
1330 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1331 			    SHIFT_UPDATE));
1332 			if (ltemp < 0)
1333 				time_freq -= -ltemp >> SHIFT_KH;
1334 			else
1335 				time_freq += ltemp >> SHIFT_KH;
1336 		}
1337 	} else {
1338 		if (mtemp < MAXSEC) {
1339 			ltemp *= mtemp;
1340 			if (ltemp < 0)
1341 				time_freq -= -ltemp >> (time_constant +
1342 				    time_constant + SHIFT_KF -
1343 				    SHIFT_USEC);
1344 			else
1345 				time_freq += ltemp >> (time_constant +
1346 				    time_constant + SHIFT_KF -
1347 				    SHIFT_USEC);
1348 		}
1349 	}
1350 	if (time_freq > time_tolerance)
1351 		time_freq = time_tolerance;
1352 	else if (time_freq < -time_tolerance)
1353 		time_freq = -time_tolerance;
1354 }
1355 
1356 #ifdef PPS_SYNC
1357 /*
1358  * hardpps() - discipline CPU clock oscillator to external PPS signal
1359  *
1360  * This routine is called at each PPS interrupt in order to discipline
1361  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1362  * and leaves it in a handy spot for the hardclock() routine. It
1363  * integrates successive PPS phase differences and calculates the
1364  * frequency offset. This is used in hardclock() to discipline the CPU
1365  * clock oscillator so that intrinsic frequency error is cancelled out.
1366  * The code requires the caller to capture the time and hardware counter
1367  * value at the on-time PPS signal transition.
1368  *
1369  * Note that, on some Unix systems, this routine runs at an interrupt
1370  * priority level higher than the timer interrupt routine hardclock().
1371  * Therefore, the variables used are distinct from the hardclock()
1372  * variables, except for certain exceptions: The PPS frequency pps_freq
1373  * and phase pps_offset variables are determined by this routine and
1374  * updated atomically. The time_tolerance variable can be considered a
1375  * constant, since it is infrequently changed, and then only when the
1376  * PPS signal is disabled. The watchdog counter pps_valid is updated
1377  * once per second by hardclock() and is atomically cleared in this
1378  * routine.
1379  */
1380 void
1381 hardpps(tvp, usec)
1382 	struct timeval *tvp;		/* time at PPS */
1383 	long usec;			/* hardware counter at PPS */
1384 {
1385 	long u_usec, v_usec, bigtick;
1386 	long cal_sec, cal_usec;
1387 
1388 	/*
1389 	 * An occasional glitch can be produced when the PPS interrupt
1390 	 * occurs in the hardclock() routine before the time variable is
1391 	 * updated. Here the offset is discarded when the difference
1392 	 * between it and the last one is greater than tick/2, but not
1393 	 * if the interval since the first discard exceeds 30 s.
1394 	 */
1395 	time_status |= STA_PPSSIGNAL;
1396 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1397 	pps_valid = 0;
1398 	u_usec = -tvp->tv_usec;
1399 	if (u_usec < -500000)
1400 		u_usec += 1000000;
1401 	v_usec = pps_offset - u_usec;
1402 	if (v_usec < 0)
1403 		v_usec = -v_usec;
1404 	if (v_usec > (tick >> 1)) {
1405 		if (pps_glitch > MAXGLITCH) {
1406 			pps_glitch = 0;
1407 			pps_tf[2] = u_usec;
1408 			pps_tf[1] = u_usec;
1409 		} else {
1410 			pps_glitch++;
1411 			u_usec = pps_offset;
1412 		}
1413 	} else
1414 		pps_glitch = 0;
1415 
1416 	/*
1417 	 * A three-stage median filter is used to help deglitch the pps
1418 	 * time. The median sample becomes the time offset estimate; the
1419 	 * difference between the other two samples becomes the time
1420 	 * dispersion (jitter) estimate.
1421 	 */
1422 	pps_tf[2] = pps_tf[1];
1423 	pps_tf[1] = pps_tf[0];
1424 	pps_tf[0] = u_usec;
1425 	if (pps_tf[0] > pps_tf[1]) {
1426 		if (pps_tf[1] > pps_tf[2]) {
1427 			pps_offset = pps_tf[1];		/* 0 1 2 */
1428 			v_usec = pps_tf[0] - pps_tf[2];
1429 		} else if (pps_tf[2] > pps_tf[0]) {
1430 			pps_offset = pps_tf[0];		/* 2 0 1 */
1431 			v_usec = pps_tf[2] - pps_tf[1];
1432 		} else {
1433 			pps_offset = pps_tf[2];		/* 0 2 1 */
1434 			v_usec = pps_tf[0] - pps_tf[1];
1435 		}
1436 	} else {
1437 		if (pps_tf[1] < pps_tf[2]) {
1438 			pps_offset = pps_tf[1];		/* 2 1 0 */
1439 			v_usec = pps_tf[2] - pps_tf[0];
1440 		} else  if (pps_tf[2] < pps_tf[0]) {
1441 			pps_offset = pps_tf[0];		/* 1 0 2 */
1442 			v_usec = pps_tf[1] - pps_tf[2];
1443 		} else {
1444 			pps_offset = pps_tf[2];		/* 1 2 0 */
1445 			v_usec = pps_tf[1] - pps_tf[0];
1446 		}
1447 	}
1448 	if (v_usec > MAXTIME)
1449 		pps_jitcnt++;
1450 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1451 	if (v_usec < 0)
1452 		pps_jitter -= -v_usec >> PPS_AVG;
1453 	else
1454 		pps_jitter += v_usec >> PPS_AVG;
1455 	if (pps_jitter > (MAXTIME >> 1))
1456 		time_status |= STA_PPSJITTER;
1457 
1458 	/*
1459 	 * During the calibration interval adjust the starting time when
1460 	 * the tick overflows. At the end of the interval compute the
1461 	 * duration of the interval and the difference of the hardware
1462 	 * counters at the beginning and end of the interval. This code
1463 	 * is deliciously complicated by the fact valid differences may
1464 	 * exceed the value of tick when using long calibration
1465 	 * intervals and small ticks. Note that the counter can be
1466 	 * greater than tick if caught at just the wrong instant, but
1467 	 * the values returned and used here are correct.
1468 	 */
1469 	bigtick = (long)tick << SHIFT_USEC;
1470 	pps_usec -= pps_freq;
1471 	if (pps_usec >= bigtick)
1472 		pps_usec -= bigtick;
1473 	if (pps_usec < 0)
1474 		pps_usec += bigtick;
1475 	pps_time.tv_sec++;
1476 	pps_count++;
1477 	if (pps_count < (1 << pps_shift))
1478 		return;
1479 	pps_count = 0;
1480 	pps_calcnt++;
1481 	u_usec = usec << SHIFT_USEC;
1482 	v_usec = pps_usec - u_usec;
1483 	if (v_usec >= bigtick >> 1)
1484 		v_usec -= bigtick;
1485 	if (v_usec < -(bigtick >> 1))
1486 		v_usec += bigtick;
1487 	if (v_usec < 0)
1488 		v_usec = -(-v_usec >> pps_shift);
1489 	else
1490 		v_usec = v_usec >> pps_shift;
1491 	pps_usec = u_usec;
1492 	cal_sec = tvp->tv_sec;
1493 	cal_usec = tvp->tv_usec;
1494 	cal_sec -= pps_time.tv_sec;
1495 	cal_usec -= pps_time.tv_usec;
1496 	if (cal_usec < 0) {
1497 		cal_usec += 1000000;
1498 		cal_sec--;
1499 	}
1500 	pps_time = *tvp;
1501 
1502 	/*
1503 	 * Check for lost interrupts, noise, excessive jitter and
1504 	 * excessive frequency error. The number of timer ticks during
1505 	 * the interval may vary +-1 tick. Add to this a margin of one
1506 	 * tick for the PPS signal jitter and maximum frequency
1507 	 * deviation. If the limits are exceeded, the calibration
1508 	 * interval is reset to the minimum and we start over.
1509 	 */
1510 	u_usec = (long)tick << 1;
1511 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1512 	    || (cal_sec == 0 && cal_usec < u_usec))
1513 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1514 		pps_errcnt++;
1515 		pps_shift = PPS_SHIFT;
1516 		pps_intcnt = 0;
1517 		time_status |= STA_PPSERROR;
1518 		return;
1519 	}
1520 
1521 	/*
1522 	 * A three-stage median filter is used to help deglitch the pps
1523 	 * frequency. The median sample becomes the frequency offset
1524 	 * estimate; the difference between the other two samples
1525 	 * becomes the frequency dispersion (stability) estimate.
1526 	 */
1527 	pps_ff[2] = pps_ff[1];
1528 	pps_ff[1] = pps_ff[0];
1529 	pps_ff[0] = v_usec;
1530 	if (pps_ff[0] > pps_ff[1]) {
1531 		if (pps_ff[1] > pps_ff[2]) {
1532 			u_usec = pps_ff[1];		/* 0 1 2 */
1533 			v_usec = pps_ff[0] - pps_ff[2];
1534 		} else if (pps_ff[2] > pps_ff[0]) {
1535 			u_usec = pps_ff[0];		/* 2 0 1 */
1536 			v_usec = pps_ff[2] - pps_ff[1];
1537 		} else {
1538 			u_usec = pps_ff[2];		/* 0 2 1 */
1539 			v_usec = pps_ff[0] - pps_ff[1];
1540 		}
1541 	} else {
1542 		if (pps_ff[1] < pps_ff[2]) {
1543 			u_usec = pps_ff[1];		/* 2 1 0 */
1544 			v_usec = pps_ff[2] - pps_ff[0];
1545 		} else  if (pps_ff[2] < pps_ff[0]) {
1546 			u_usec = pps_ff[0];		/* 1 0 2 */
1547 			v_usec = pps_ff[1] - pps_ff[2];
1548 		} else {
1549 			u_usec = pps_ff[2];		/* 1 2 0 */
1550 			v_usec = pps_ff[1] - pps_ff[0];
1551 		}
1552 	}
1553 
1554 	/*
1555 	 * Here the frequency dispersion (stability) is updated. If it
1556 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1557 	 * offset is updated as well, but clamped to the tolerance. It
1558 	 * will be processed later by the hardclock() routine.
1559 	 */
1560 	v_usec = (v_usec >> 1) - pps_stabil;
1561 	if (v_usec < 0)
1562 		pps_stabil -= -v_usec >> PPS_AVG;
1563 	else
1564 		pps_stabil += v_usec >> PPS_AVG;
1565 	if (pps_stabil > MAXFREQ >> 2) {
1566 		pps_stbcnt++;
1567 		time_status |= STA_PPSWANDER;
1568 		return;
1569 	}
1570 	if (time_status & STA_PPSFREQ) {
1571 		if (u_usec < 0) {
1572 			pps_freq -= -u_usec >> PPS_AVG;
1573 			if (pps_freq < -time_tolerance)
1574 				pps_freq = -time_tolerance;
1575 			u_usec = -u_usec;
1576 		} else {
1577 			pps_freq += u_usec >> PPS_AVG;
1578 			if (pps_freq > time_tolerance)
1579 				pps_freq = time_tolerance;
1580 		}
1581 	}
1582 
1583 	/*
1584 	 * Here the calibration interval is adjusted. If the maximum
1585 	 * time difference is greater than tick / 4, reduce the interval
1586 	 * by half. If this is not the case for four consecutive
1587 	 * intervals, double the interval.
1588 	 */
1589 	if (u_usec << pps_shift > bigtick >> 2) {
1590 		pps_intcnt = 0;
1591 		if (pps_shift > PPS_SHIFT)
1592 			pps_shift--;
1593 	} else if (pps_intcnt >= 4) {
1594 		pps_intcnt = 0;
1595 		if (pps_shift < PPS_SHIFTMAX)
1596 			pps_shift++;
1597 	} else
1598 		pps_intcnt++;
1599 }
1600 #endif /* PPS_SYNC */
1601 #endif /* NTP  */
1602 
1603 
1604 /*
1605  * Return information about system clocks.
1606  */
1607 int
1608 sysctl_clockrate(where, sizep)
1609 	void *where;
1610 	size_t *sizep;
1611 {
1612 	struct clockinfo clkinfo;
1613 
1614 	/*
1615 	 * Construct clockinfo structure.
1616 	 */
1617 	clkinfo.tick = tick;
1618 	clkinfo.tickadj = tickadj;
1619 	clkinfo.hz = hz;
1620 	clkinfo.profhz = profhz;
1621 	clkinfo.stathz = stathz ? stathz : hz;
1622 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1623 }
1624