1 /* $NetBSD: kern_clock.c,v 1.61 2000/06/27 17:41:15 mrg Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /*- 41 * Copyright (c) 1982, 1986, 1991, 1993 42 * The Regents of the University of California. All rights reserved. 43 * (c) UNIX System Laboratories, Inc. 44 * All or some portions of this file are derived from material licensed 45 * to the University of California by American Telephone and Telegraph 46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 47 * the permission of UNIX System Laboratories, Inc. 48 * 49 * Redistribution and use in source and binary forms, with or without 50 * modification, are permitted provided that the following conditions 51 * are met: 52 * 1. Redistributions of source code must retain the above copyright 53 * notice, this list of conditions and the following disclaimer. 54 * 2. Redistributions in binary form must reproduce the above copyright 55 * notice, this list of conditions and the following disclaimer in the 56 * documentation and/or other materials provided with the distribution. 57 * 3. All advertising materials mentioning features or use of this software 58 * must display the following acknowledgement: 59 * This product includes software developed by the University of 60 * California, Berkeley and its contributors. 61 * 4. Neither the name of the University nor the names of its contributors 62 * may be used to endorse or promote products derived from this software 63 * without specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 75 * SUCH DAMAGE. 76 * 77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 78 */ 79 80 #include "opt_ntp.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/dkstat.h> 85 #include <sys/callout.h> 86 #include <sys/kernel.h> 87 #include <sys/proc.h> 88 #include <sys/resourcevar.h> 89 #include <sys/signalvar.h> 90 #include <uvm/uvm_extern.h> 91 #include <sys/sysctl.h> 92 #include <sys/timex.h> 93 #include <sys/sched.h> 94 95 #include <machine/cpu.h> 96 97 #ifdef GPROF 98 #include <sys/gmon.h> 99 #endif 100 101 /* 102 * Clock handling routines. 103 * 104 * This code is written to operate with two timers that run independently of 105 * each other. The main clock, running hz times per second, is used to keep 106 * track of real time. The second timer handles kernel and user profiling, 107 * and does resource use estimation. If the second timer is programmable, 108 * it is randomized to avoid aliasing between the two clocks. For example, 109 * the randomization prevents an adversary from always giving up the cpu 110 * just before its quantum expires. Otherwise, it would never accumulate 111 * cpu ticks. The mean frequency of the second timer is stathz. 112 * 113 * If no second timer exists, stathz will be zero; in this case we drive 114 * profiling and statistics off the main clock. This WILL NOT be accurate; 115 * do not do it unless absolutely necessary. 116 * 117 * The statistics clock may (or may not) be run at a higher rate while 118 * profiling. This profile clock runs at profhz. We require that profhz 119 * be an integral multiple of stathz. 120 * 121 * If the statistics clock is running fast, it must be divided by the ratio 122 * profhz/stathz for statistics. (For profiling, every tick counts.) 123 */ 124 125 #ifdef NTP /* NTP phase-locked loop in kernel */ 126 /* 127 * Phase/frequency-lock loop (PLL/FLL) definitions 128 * 129 * The following variables are read and set by the ntp_adjtime() system 130 * call. 131 * 132 * time_state shows the state of the system clock, with values defined 133 * in the timex.h header file. 134 * 135 * time_status shows the status of the system clock, with bits defined 136 * in the timex.h header file. 137 * 138 * time_offset is used by the PLL/FLL to adjust the system time in small 139 * increments. 140 * 141 * time_constant determines the bandwidth or "stiffness" of the PLL. 142 * 143 * time_tolerance determines maximum frequency error or tolerance of the 144 * CPU clock oscillator and is a property of the architecture; however, 145 * in principle it could change as result of the presence of external 146 * discipline signals, for instance. 147 * 148 * time_precision is usually equal to the kernel tick variable; however, 149 * in cases where a precision clock counter or external clock is 150 * available, the resolution can be much less than this and depend on 151 * whether the external clock is working or not. 152 * 153 * time_maxerror is initialized by a ntp_adjtime() call and increased by 154 * the kernel once each second to reflect the maximum error bound 155 * growth. 156 * 157 * time_esterror is set and read by the ntp_adjtime() call, but 158 * otherwise not used by the kernel. 159 */ 160 int time_state = TIME_OK; /* clock state */ 161 int time_status = STA_UNSYNC; /* clock status bits */ 162 long time_offset = 0; /* time offset (us) */ 163 long time_constant = 0; /* pll time constant */ 164 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 165 long time_precision = 1; /* clock precision (us) */ 166 long time_maxerror = MAXPHASE; /* maximum error (us) */ 167 long time_esterror = MAXPHASE; /* estimated error (us) */ 168 169 /* 170 * The following variables establish the state of the PLL/FLL and the 171 * residual time and frequency offset of the local clock. The scale 172 * factors are defined in the timex.h header file. 173 * 174 * time_phase and time_freq are the phase increment and the frequency 175 * increment, respectively, of the kernel time variable. 176 * 177 * time_freq is set via ntp_adjtime() from a value stored in a file when 178 * the synchronization daemon is first started. Its value is retrieved 179 * via ntp_adjtime() and written to the file about once per hour by the 180 * daemon. 181 * 182 * time_adj is the adjustment added to the value of tick at each timer 183 * interrupt and is recomputed from time_phase and time_freq at each 184 * seconds rollover. 185 * 186 * time_reftime is the second's portion of the system time at the last 187 * call to ntp_adjtime(). It is used to adjust the time_freq variable 188 * and to increase the time_maxerror as the time since last update 189 * increases. 190 */ 191 long time_phase = 0; /* phase offset (scaled us) */ 192 long time_freq = 0; /* frequency offset (scaled ppm) */ 193 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 194 long time_reftime = 0; /* time at last adjustment (s) */ 195 196 #ifdef PPS_SYNC 197 /* 198 * The following variables are used only if the kernel PPS discipline 199 * code is configured (PPS_SYNC). The scale factors are defined in the 200 * timex.h header file. 201 * 202 * pps_time contains the time at each calibration interval, as read by 203 * microtime(). pps_count counts the seconds of the calibration 204 * interval, the duration of which is nominally pps_shift in powers of 205 * two. 206 * 207 * pps_offset is the time offset produced by the time median filter 208 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 209 * this filter. 210 * 211 * pps_freq is the frequency offset produced by the frequency median 212 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 213 * by this filter. 214 * 215 * pps_usec is latched from a high resolution counter or external clock 216 * at pps_time. Here we want the hardware counter contents only, not the 217 * contents plus the time_tv.usec as usual. 218 * 219 * pps_valid counts the number of seconds since the last PPS update. It 220 * is used as a watchdog timer to disable the PPS discipline should the 221 * PPS signal be lost. 222 * 223 * pps_glitch counts the number of seconds since the beginning of an 224 * offset burst more than tick/2 from current nominal offset. It is used 225 * mainly to suppress error bursts due to priority conflicts between the 226 * PPS interrupt and timer interrupt. 227 * 228 * pps_intcnt counts the calibration intervals for use in the interval- 229 * adaptation algorithm. It's just too complicated for words. 230 */ 231 struct timeval pps_time; /* kernel time at last interval */ 232 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 233 long pps_offset = 0; /* pps time offset (us) */ 234 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 235 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 236 long pps_freq = 0; /* frequency offset (scaled ppm) */ 237 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 238 long pps_usec = 0; /* microsec counter at last interval */ 239 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 240 int pps_glitch = 0; /* pps signal glitch counter */ 241 int pps_count = 0; /* calibration interval counter (s) */ 242 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 243 int pps_intcnt = 0; /* intervals at current duration */ 244 245 /* 246 * PPS signal quality monitors 247 * 248 * pps_jitcnt counts the seconds that have been discarded because the 249 * jitter measured by the time median filter exceeds the limit MAXTIME 250 * (100 us). 251 * 252 * pps_calcnt counts the frequency calibration intervals, which are 253 * variable from 4 s to 256 s. 254 * 255 * pps_errcnt counts the calibration intervals which have been discarded 256 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 257 * calibration interval jitter exceeds two ticks. 258 * 259 * pps_stbcnt counts the calibration intervals that have been discarded 260 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 261 */ 262 long pps_jitcnt = 0; /* jitter limit exceeded */ 263 long pps_calcnt = 0; /* calibration intervals */ 264 long pps_errcnt = 0; /* calibration errors */ 265 long pps_stbcnt = 0; /* stability limit exceeded */ 266 #endif /* PPS_SYNC */ 267 268 #ifdef EXT_CLOCK 269 /* 270 * External clock definitions 271 * 272 * The following definitions and declarations are used only if an 273 * external clock is configured on the system. 274 */ 275 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 276 277 /* 278 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 279 * interrupt and decremented once each second. 280 */ 281 int clock_count = 0; /* CPU clock counter */ 282 283 #ifdef HIGHBALL 284 /* 285 * The clock_offset and clock_cpu variables are used by the HIGHBALL 286 * interface. The clock_offset variable defines the offset between 287 * system time and the HIGBALL counters. The clock_cpu variable contains 288 * the offset between the system clock and the HIGHBALL clock for use in 289 * disciplining the kernel time variable. 290 */ 291 extern struct timeval clock_offset; /* Highball clock offset */ 292 long clock_cpu = 0; /* CPU clock adjust */ 293 #endif /* HIGHBALL */ 294 #endif /* EXT_CLOCK */ 295 #endif /* NTP */ 296 297 298 /* 299 * Bump a timeval by a small number of usec's. 300 */ 301 #define BUMPTIME(t, usec) { \ 302 volatile struct timeval *tp = (t); \ 303 long us; \ 304 \ 305 tp->tv_usec = us = tp->tv_usec + (usec); \ 306 if (us >= 1000000) { \ 307 tp->tv_usec = us - 1000000; \ 308 tp->tv_sec++; \ 309 } \ 310 } 311 312 int stathz; 313 int profhz; 314 int profprocs; 315 u_int64_t hardclock_ticks, softclock_ticks; 316 int softclock_running; /* 1 => softclock() is running */ 317 static int psdiv, pscnt; /* prof => stat divider */ 318 int psratio; /* ratio: prof / stat */ 319 int tickfix, tickfixinterval; /* used if tick not really integral */ 320 #ifndef NTP 321 static int tickfixcnt; /* accumulated fractional error */ 322 #else 323 int fixtick; /* used by NTP for same */ 324 int shifthz; 325 #endif 326 327 /* 328 * We might want ldd to load the both words from time at once. 329 * To succeed we need to be quadword aligned. 330 * The sparc already does that, and that it has worked so far is a fluke. 331 */ 332 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t)))); 333 volatile struct timeval mono_time; 334 335 /* 336 * The callout mechanism is based on the work of Adam M. Costello and 337 * George Varghese, published in a technical report entitled "Redesigning 338 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent 339 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe. 340 * 341 * The original work on the data structures used in this implementation 342 * was published by G. Varghese and A. Lauck in the paper "Hashed and 343 * Hierarchical Timing Wheels: Data Structures for the Efficient 344 * Implementation of a Timer Facility" in the Proceedings of the 11th 345 * ACM Annual Symposium on Operating System Principles, Austin, Texas, 346 * November 1987. 347 */ 348 struct callout_queue *callwheel; 349 int callwheelsize, callwheelbits, callwheelmask; 350 351 static struct callout *nextsoftcheck; /* next callout to be checked */ 352 353 #ifdef CALLWHEEL_STATS 354 int callwheel_collisions; /* number of hash collisions */ 355 int callwheel_maxlength; /* length of the longest hash chain */ 356 int *callwheel_sizes; /* per-bucket length count */ 357 u_int64_t callwheel_count; /* # callouts currently */ 358 u_int64_t callwheel_established; /* # callouts established */ 359 u_int64_t callwheel_fired; /* # callouts that fired */ 360 u_int64_t callwheel_disestablished; /* # callouts disestablished */ 361 u_int64_t callwheel_changed; /* # callouts changed */ 362 u_int64_t callwheel_softclocks; /* # times softclock() called */ 363 u_int64_t callwheel_softchecks; /* # checks per softclock() */ 364 u_int64_t callwheel_softempty; /* # empty buckets seen */ 365 #endif /* CALLWHEEL_STATS */ 366 367 /* 368 * This value indicates the number of consecutive callouts that 369 * will be checked before we allow interrupts to have a chance 370 * again. 371 */ 372 #ifndef MAX_SOFTCLOCK_STEPS 373 #define MAX_SOFTCLOCK_STEPS 100 374 #endif 375 376 /* 377 * Initialize clock frequencies and start both clocks running. 378 */ 379 void 380 initclocks() 381 { 382 int i; 383 384 /* 385 * Set divisors to 1 (normal case) and let the machine-specific 386 * code do its bit. 387 */ 388 psdiv = pscnt = 1; 389 cpu_initclocks(); 390 391 /* 392 * Compute profhz/stathz, and fix profhz if needed. 393 */ 394 i = stathz ? stathz : hz; 395 if (profhz == 0) 396 profhz = i; 397 psratio = profhz / i; 398 399 #ifdef NTP 400 switch (hz) { 401 case 1: 402 shifthz = SHIFT_SCALE - 0; 403 break; 404 case 2: 405 shifthz = SHIFT_SCALE - 1; 406 break; 407 case 4: 408 shifthz = SHIFT_SCALE - 2; 409 break; 410 case 8: 411 shifthz = SHIFT_SCALE - 3; 412 break; 413 case 16: 414 shifthz = SHIFT_SCALE - 4; 415 break; 416 case 32: 417 shifthz = SHIFT_SCALE - 5; 418 break; 419 case 60: 420 case 64: 421 shifthz = SHIFT_SCALE - 6; 422 break; 423 case 96: 424 case 100: 425 case 128: 426 shifthz = SHIFT_SCALE - 7; 427 break; 428 case 256: 429 shifthz = SHIFT_SCALE - 8; 430 break; 431 case 512: 432 shifthz = SHIFT_SCALE - 9; 433 break; 434 case 1000: 435 case 1024: 436 shifthz = SHIFT_SCALE - 10; 437 break; 438 case 1200: 439 case 2048: 440 shifthz = SHIFT_SCALE - 11; 441 break; 442 case 4096: 443 shifthz = SHIFT_SCALE - 12; 444 break; 445 case 8192: 446 shifthz = SHIFT_SCALE - 13; 447 break; 448 case 16384: 449 shifthz = SHIFT_SCALE - 14; 450 break; 451 case 32768: 452 shifthz = SHIFT_SCALE - 15; 453 break; 454 case 65536: 455 shifthz = SHIFT_SCALE - 16; 456 break; 457 default: 458 panic("weird hz"); 459 } 460 if (fixtick == 0) { 461 /* 462 * Give MD code a chance to set this to a better 463 * value; but, if it doesn't, we should. 464 */ 465 fixtick = (1000000 - (hz*tick)); 466 } 467 #endif 468 } 469 470 /* 471 * The real-time timer, interrupting hz times per second. 472 */ 473 void 474 hardclock(frame) 475 struct clockframe *frame; 476 { 477 struct proc *p; 478 int delta; 479 extern int tickdelta; 480 extern long timedelta; 481 #ifdef NTP 482 int time_update; 483 int ltemp; 484 #endif 485 486 p = curproc; 487 if (p) { 488 struct pstats *pstats; 489 490 /* 491 * Run current process's virtual and profile time, as needed. 492 */ 493 pstats = p->p_stats; 494 if (CLKF_USERMODE(frame) && 495 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 496 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 497 psignal(p, SIGVTALRM); 498 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 499 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 500 psignal(p, SIGPROF); 501 } 502 503 /* 504 * If no separate statistics clock is available, run it from here. 505 */ 506 if (stathz == 0) 507 statclock(frame); 508 509 #if defined(MULTIPROCESSOR) 510 /* 511 * If we are not the primary CPU, we're not allowed to do 512 * any more work. 513 */ 514 if (CPU_IS_PRIMARY(curcpu()) == 0) 515 return; 516 #endif 517 518 /* 519 * Increment the time-of-day. The increment is normally just 520 * ``tick''. If the machine is one which has a clock frequency 521 * such that ``hz'' would not divide the second evenly into 522 * milliseconds, a periodic adjustment must be applied. Finally, 523 * if we are still adjusting the time (see adjtime()), 524 * ``tickdelta'' may also be added in. 525 */ 526 hardclock_ticks++; 527 delta = tick; 528 529 #ifndef NTP 530 if (tickfix) { 531 tickfixcnt += tickfix; 532 if (tickfixcnt >= tickfixinterval) { 533 delta++; 534 tickfixcnt -= tickfixinterval; 535 } 536 } 537 #endif /* !NTP */ 538 /* Imprecise 4bsd adjtime() handling */ 539 if (timedelta != 0) { 540 delta += tickdelta; 541 timedelta -= tickdelta; 542 } 543 544 #ifdef notyet 545 microset(); 546 #endif 547 548 #ifndef NTP 549 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 550 #endif 551 BUMPTIME(&mono_time, delta); 552 553 #ifdef NTP 554 time_update = delta; 555 556 /* 557 * Compute the phase adjustment. If the low-order bits 558 * (time_phase) of the update overflow, bump the high-order bits 559 * (time_update). 560 */ 561 time_phase += time_adj; 562 if (time_phase <= -FINEUSEC) { 563 ltemp = -time_phase >> SHIFT_SCALE; 564 time_phase += ltemp << SHIFT_SCALE; 565 time_update -= ltemp; 566 } else if (time_phase >= FINEUSEC) { 567 ltemp = time_phase >> SHIFT_SCALE; 568 time_phase -= ltemp << SHIFT_SCALE; 569 time_update += ltemp; 570 } 571 572 #ifdef HIGHBALL 573 /* 574 * If the HIGHBALL board is installed, we need to adjust the 575 * external clock offset in order to close the hardware feedback 576 * loop. This will adjust the external clock phase and frequency 577 * in small amounts. The additional phase noise and frequency 578 * wander this causes should be minimal. We also need to 579 * discipline the kernel time variable, since the PLL is used to 580 * discipline the external clock. If the Highball board is not 581 * present, we discipline kernel time with the PLL as usual. We 582 * assume that the external clock phase adjustment (time_update) 583 * and kernel phase adjustment (clock_cpu) are less than the 584 * value of tick. 585 */ 586 clock_offset.tv_usec += time_update; 587 if (clock_offset.tv_usec >= 1000000) { 588 clock_offset.tv_sec++; 589 clock_offset.tv_usec -= 1000000; 590 } 591 if (clock_offset.tv_usec < 0) { 592 clock_offset.tv_sec--; 593 clock_offset.tv_usec += 1000000; 594 } 595 time.tv_usec += clock_cpu; 596 clock_cpu = 0; 597 #else 598 time.tv_usec += time_update; 599 #endif /* HIGHBALL */ 600 601 /* 602 * On rollover of the second the phase adjustment to be used for 603 * the next second is calculated. Also, the maximum error is 604 * increased by the tolerance. If the PPS frequency discipline 605 * code is present, the phase is increased to compensate for the 606 * CPU clock oscillator frequency error. 607 * 608 * On a 32-bit machine and given parameters in the timex.h 609 * header file, the maximum phase adjustment is +-512 ms and 610 * maximum frequency offset is a tad less than) +-512 ppm. On a 611 * 64-bit machine, you shouldn't need to ask. 612 */ 613 if (time.tv_usec >= 1000000) { 614 time.tv_usec -= 1000000; 615 time.tv_sec++; 616 time_maxerror += time_tolerance >> SHIFT_USEC; 617 618 /* 619 * Leap second processing. If in leap-insert state at 620 * the end of the day, the system clock is set back one 621 * second; if in leap-delete state, the system clock is 622 * set ahead one second. The microtime() routine or 623 * external clock driver will insure that reported time 624 * is always monotonic. The ugly divides should be 625 * replaced. 626 */ 627 switch (time_state) { 628 case TIME_OK: 629 if (time_status & STA_INS) 630 time_state = TIME_INS; 631 else if (time_status & STA_DEL) 632 time_state = TIME_DEL; 633 break; 634 635 case TIME_INS: 636 if (time.tv_sec % 86400 == 0) { 637 time.tv_sec--; 638 time_state = TIME_OOP; 639 } 640 break; 641 642 case TIME_DEL: 643 if ((time.tv_sec + 1) % 86400 == 0) { 644 time.tv_sec++; 645 time_state = TIME_WAIT; 646 } 647 break; 648 649 case TIME_OOP: 650 time_state = TIME_WAIT; 651 break; 652 653 case TIME_WAIT: 654 if (!(time_status & (STA_INS | STA_DEL))) 655 time_state = TIME_OK; 656 break; 657 } 658 659 /* 660 * Compute the phase adjustment for the next second. In 661 * PLL mode, the offset is reduced by a fixed factor 662 * times the time constant. In FLL mode the offset is 663 * used directly. In either mode, the maximum phase 664 * adjustment for each second is clamped so as to spread 665 * the adjustment over not more than the number of 666 * seconds between updates. 667 */ 668 if (time_offset < 0) { 669 ltemp = -time_offset; 670 if (!(time_status & STA_FLL)) 671 ltemp >>= SHIFT_KG + time_constant; 672 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 673 ltemp = (MAXPHASE / MINSEC) << 674 SHIFT_UPDATE; 675 time_offset += ltemp; 676 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 677 } else if (time_offset > 0) { 678 ltemp = time_offset; 679 if (!(time_status & STA_FLL)) 680 ltemp >>= SHIFT_KG + time_constant; 681 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 682 ltemp = (MAXPHASE / MINSEC) << 683 SHIFT_UPDATE; 684 time_offset -= ltemp; 685 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 686 } else 687 time_adj = 0; 688 689 /* 690 * Compute the frequency estimate and additional phase 691 * adjustment due to frequency error for the next 692 * second. When the PPS signal is engaged, gnaw on the 693 * watchdog counter and update the frequency computed by 694 * the pll and the PPS signal. 695 */ 696 #ifdef PPS_SYNC 697 pps_valid++; 698 if (pps_valid == PPS_VALID) { 699 pps_jitter = MAXTIME; 700 pps_stabil = MAXFREQ; 701 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 702 STA_PPSWANDER | STA_PPSERROR); 703 } 704 ltemp = time_freq + pps_freq; 705 #else 706 ltemp = time_freq; 707 #endif /* PPS_SYNC */ 708 709 if (ltemp < 0) 710 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 711 else 712 time_adj += ltemp >> (SHIFT_USEC - shifthz); 713 time_adj += (long)fixtick << shifthz; 714 715 /* 716 * When the CPU clock oscillator frequency is not a 717 * power of 2 in Hz, shifthz is only an approximate 718 * scale factor. 719 * 720 * To determine the adjustment, you can do the following: 721 * bc -q 722 * scale=24 723 * obase=2 724 * idealhz/realhz 725 * where `idealhz' is the next higher power of 2, and `realhz' 726 * is the actual value. You may need to factor this result 727 * into a sequence of 2 multipliers to get better precision. 728 * 729 * Likewise, the error can be calculated with (e.g. for 100Hz): 730 * bc -q 731 * scale=24 732 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz 733 * (and then multiply by 1000000 to get ppm). 734 */ 735 switch (hz) { 736 case 60: 737 /* A factor of 1.000100010001 gives about 15ppm 738 error. */ 739 if (time_adj < 0) { 740 time_adj -= (-time_adj >> 4); 741 time_adj -= (-time_adj >> 8); 742 } else { 743 time_adj += (time_adj >> 4); 744 time_adj += (time_adj >> 8); 745 } 746 break; 747 748 case 96: 749 /* A factor of 1.0101010101 gives about 244ppm error. */ 750 if (time_adj < 0) { 751 time_adj -= (-time_adj >> 2); 752 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 753 } else { 754 time_adj += (time_adj >> 2); 755 time_adj += (time_adj >> 4) + (time_adj >> 8); 756 } 757 break; 758 759 case 100: 760 /* A factor of 1.010001111010111 gives about 1ppm 761 error. */ 762 if (time_adj < 0) { 763 time_adj -= (-time_adj >> 2) + (-time_adj >> 5); 764 time_adj += (-time_adj >> 10); 765 } else { 766 time_adj += (time_adj >> 2) + (time_adj >> 5); 767 time_adj -= (time_adj >> 10); 768 } 769 break; 770 771 case 1000: 772 /* A factor of 1.000001100010100001 gives about 50ppm 773 error. */ 774 if (time_adj < 0) { 775 time_adj -= (-time_adj >> 6) + (-time_adj >> 11); 776 time_adj -= (-time_adj >> 7); 777 } else { 778 time_adj += (time_adj >> 6) + (time_adj >> 11); 779 time_adj += (time_adj >> 7); 780 } 781 break; 782 783 case 1200: 784 /* A factor of 1.1011010011100001 gives about 64ppm 785 error. */ 786 if (time_adj < 0) { 787 time_adj -= (-time_adj >> 1) + (-time_adj >> 6); 788 time_adj -= (-time_adj >> 3) + (-time_adj >> 10); 789 } else { 790 time_adj += (time_adj >> 1) + (time_adj >> 6); 791 time_adj += (time_adj >> 3) + (time_adj >> 10); 792 } 793 break; 794 } 795 796 #ifdef EXT_CLOCK 797 /* 798 * If an external clock is present, it is necessary to 799 * discipline the kernel time variable anyway, since not 800 * all system components use the microtime() interface. 801 * Here, the time offset between the external clock and 802 * kernel time variable is computed every so often. 803 */ 804 clock_count++; 805 if (clock_count > CLOCK_INTERVAL) { 806 clock_count = 0; 807 microtime(&clock_ext); 808 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 809 delta.tv_usec = clock_ext.tv_usec - 810 time.tv_usec; 811 if (delta.tv_usec < 0) 812 delta.tv_sec--; 813 if (delta.tv_usec >= 500000) { 814 delta.tv_usec -= 1000000; 815 delta.tv_sec++; 816 } 817 if (delta.tv_usec < -500000) { 818 delta.tv_usec += 1000000; 819 delta.tv_sec--; 820 } 821 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 822 delta.tv_usec > MAXPHASE) || 823 delta.tv_sec < -1 || (delta.tv_sec == -1 && 824 delta.tv_usec < -MAXPHASE)) { 825 time = clock_ext; 826 delta.tv_sec = 0; 827 delta.tv_usec = 0; 828 } 829 #ifdef HIGHBALL 830 clock_cpu = delta.tv_usec; 831 #else /* HIGHBALL */ 832 hardupdate(delta.tv_usec); 833 #endif /* HIGHBALL */ 834 } 835 #endif /* EXT_CLOCK */ 836 } 837 838 #endif /* NTP */ 839 840 /* 841 * Process callouts at a very low cpu priority, so we don't keep the 842 * relatively high clock interrupt priority any longer than necessary. 843 */ 844 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) { 845 if (CLKF_BASEPRI(frame)) { 846 /* 847 * Save the overhead of a software interrupt; 848 * it will happen as soon as we return, so do 849 * it now. 850 * 851 * NOTE: If we're at ``base priority'', softclock() 852 * was not already running. 853 */ 854 (void)spllowersoftclock(); 855 softclock(); 856 } else 857 setsoftclock(); 858 } else if (softclock_running == 0 && 859 (softclock_ticks + 1) == hardclock_ticks) 860 softclock_ticks++; 861 } 862 863 /* 864 * Software (low priority) clock interrupt. 865 * Run periodic events from timeout queue. 866 */ 867 /*ARGSUSED*/ 868 void 869 softclock() 870 { 871 struct callout_queue *bucket; 872 struct callout *c; 873 void (*func) __P((void *)); 874 void *arg; 875 int s, idx; 876 int steps = 0; 877 878 s = splhigh(); 879 softclock_running = 1; 880 881 #ifdef CALLWHEEL_STATS 882 callwheel_softclocks++; 883 #endif 884 885 while (softclock_ticks != hardclock_ticks) { 886 softclock_ticks++; 887 idx = (int)(softclock_ticks & callwheelmask); 888 bucket = &callwheel[idx]; 889 c = TAILQ_FIRST(bucket); 890 #ifdef CALLWHEEL_STATS 891 if (c == NULL) 892 callwheel_softempty++; 893 #endif 894 while (c != NULL) { 895 #ifdef CALLWHEEL_STATS 896 callwheel_softchecks++; 897 #endif 898 if (c->c_time != softclock_ticks) { 899 c = TAILQ_NEXT(c, c_link); 900 if (++steps >= MAX_SOFTCLOCK_STEPS) { 901 nextsoftcheck = c; 902 /* Give interrupts a chance. */ 903 splx(s); 904 (void) splhigh(); 905 c = nextsoftcheck; 906 steps = 0; 907 } 908 } else { 909 nextsoftcheck = TAILQ_NEXT(c, c_link); 910 TAILQ_REMOVE(bucket, c, c_link); 911 #ifdef CALLWHEEL_STATS 912 callwheel_sizes[idx]--; 913 callwheel_fired++; 914 callwheel_count--; 915 #endif 916 func = c->c_func; 917 arg = c->c_arg; 918 c->c_func = NULL; 919 c->c_flags &= ~CALLOUT_PENDING; 920 splx(s); 921 (*func)(arg); 922 (void) splhigh(); 923 steps = 0; 924 c = nextsoftcheck; 925 } 926 } 927 } 928 nextsoftcheck = NULL; 929 softclock_running = 0; 930 splx(s); 931 } 932 933 /* 934 * callout_setsize: 935 * 936 * Determine how many callwheels are necessary and 937 * set hash mask. Called from allocsys(). 938 */ 939 void 940 callout_setsize() 941 { 942 943 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1) 944 /* loop */ ; 945 callwheelmask = callwheelsize - 1; 946 } 947 948 /* 949 * callout_startup: 950 * 951 * Initialize the callwheel buckets. 952 */ 953 void 954 callout_startup() 955 { 956 int i; 957 958 for (i = 0; i < callwheelsize; i++) 959 TAILQ_INIT(&callwheel[i]); 960 } 961 962 /* 963 * callout_init: 964 * 965 * Initialize a callout structure so that it can be used 966 * by callout_reset() and callout_stop(). 967 */ 968 void 969 callout_init(c) 970 struct callout *c; 971 { 972 973 memset(c, 0, sizeof(*c)); 974 } 975 976 /* 977 * callout_reset: 978 * 979 * Establish or change a timeout. 980 */ 981 void 982 callout_reset(c, ticks, func, arg) 983 struct callout *c; 984 int ticks; 985 void (*func) __P((void *)); 986 void *arg; 987 { 988 struct callout_queue *bucket; 989 int s; 990 991 if (ticks <= 0) 992 ticks = 1; 993 994 /* Lock out the clock. */ 995 s = splhigh(); 996 997 /* 998 * If this callout's timer is already running, cancel it 999 * before we modify it. 1000 */ 1001 if (c->c_flags & CALLOUT_PENDING) { 1002 callout_stop(c); 1003 #ifdef CALLWHEEL_STATS 1004 callwheel_changed++; 1005 #endif 1006 } 1007 1008 c->c_arg = arg; 1009 c->c_func = func; 1010 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING; 1011 c->c_time = hardclock_ticks + ticks; 1012 1013 bucket = &callwheel[c->c_time & callwheelmask]; 1014 1015 #ifdef CALLWHEEL_STATS 1016 if (TAILQ_FIRST(bucket) != NULL) 1017 callwheel_collisions++; 1018 #endif 1019 1020 TAILQ_INSERT_TAIL(bucket, c, c_link); 1021 1022 #ifdef CALLWHEEL_STATS 1023 callwheel_count++; 1024 callwheel_established++; 1025 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength) 1026 callwheel_maxlength = 1027 callwheel_sizes[c->c_time & callwheelmask]; 1028 #endif 1029 1030 splx(s); 1031 } 1032 1033 /* 1034 * callout_stop: 1035 * 1036 * Disestablish a timeout. 1037 */ 1038 void 1039 callout_stop(c) 1040 struct callout *c; 1041 { 1042 int s; 1043 1044 /* Lock out the clock. */ 1045 s = splhigh(); 1046 1047 /* 1048 * Don't attempt to delete a callout that's not on the queue. 1049 */ 1050 if ((c->c_flags & CALLOUT_PENDING) == 0) { 1051 c->c_flags &= ~CALLOUT_ACTIVE; 1052 splx(s); 1053 return; 1054 } 1055 1056 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); 1057 1058 if (nextsoftcheck == c) 1059 nextsoftcheck = TAILQ_NEXT(c, c_link); 1060 1061 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link); 1062 #ifdef CALLWHEEL_STATS 1063 callwheel_count--; 1064 callwheel_disestablished++; 1065 callwheel_sizes[c->c_time & callwheelmask]--; 1066 #endif 1067 1068 c->c_func = NULL; 1069 1070 splx(s); 1071 } 1072 1073 #ifdef CALLWHEEL_STATS 1074 /* 1075 * callout_showstats: 1076 * 1077 * Display callout statistics. Call it from DDB. 1078 */ 1079 void 1080 callout_showstats() 1081 { 1082 u_int64_t curticks; 1083 int s; 1084 1085 s = splclock(); 1086 curticks = softclock_ticks; 1087 splx(s); 1088 1089 printf("Callwheel statistics:\n"); 1090 printf("\tCallouts currently queued: %llu\n", callwheel_count); 1091 printf("\tCallouts established: %llu\n", callwheel_established); 1092 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished); 1093 if (callwheel_changed != 0) 1094 printf("\t\tOf those, %llu were changes\n", callwheel_changed); 1095 printf("\tCallouts that fired: %llu\n", callwheel_fired); 1096 printf("\tNumber of buckets: %d\n", callwheelsize); 1097 printf("\tNumber of hash collisions: %d\n", callwheel_collisions); 1098 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength); 1099 printf("\tSoftclocks: %llu, Softchecks: %llu\n", 1100 callwheel_softclocks, callwheel_softchecks); 1101 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty); 1102 } 1103 #endif 1104 1105 /* 1106 * Compute number of hz until specified time. Used to compute second 1107 * argument to callout_reset() from an absolute time. 1108 */ 1109 int 1110 hzto(tv) 1111 struct timeval *tv; 1112 { 1113 long ticks, sec; 1114 int s; 1115 1116 /* 1117 * If number of microseconds will fit in 32 bit arithmetic, 1118 * then compute number of microseconds to time and scale to 1119 * ticks. Otherwise just compute number of hz in time, rounding 1120 * times greater than representible to maximum value. (We must 1121 * compute in microseconds, because hz can be greater than 1000, 1122 * and thus tick can be less than one millisecond). 1123 * 1124 * Delta times less than 14 hours can be computed ``exactly''. 1125 * (Note that if hz would yeild a non-integral number of us per 1126 * tick, i.e. tickfix is nonzero, timouts can be a tick longer 1127 * than they should be.) Maximum value for any timeout in 10ms 1128 * ticks is 250 days. 1129 */ 1130 s = splclock(); 1131 sec = tv->tv_sec - time.tv_sec; 1132 if (sec <= 0x7fffffff / 1000000 - 1) 1133 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 + 1134 (tv->tv_usec - time.tv_usec)) / tick; 1135 else if (sec <= 0x7fffffff / hz) 1136 ticks = sec * hz; 1137 else 1138 ticks = 0x7fffffff; 1139 splx(s); 1140 return (ticks); 1141 } 1142 1143 /* 1144 * Start profiling on a process. 1145 * 1146 * Kernel profiling passes proc0 which never exits and hence 1147 * keeps the profile clock running constantly. 1148 */ 1149 void 1150 startprofclock(p) 1151 struct proc *p; 1152 { 1153 int s; 1154 1155 if ((p->p_flag & P_PROFIL) == 0) { 1156 p->p_flag |= P_PROFIL; 1157 if (++profprocs == 1 && stathz != 0) { 1158 s = splstatclock(); 1159 psdiv = pscnt = psratio; 1160 setstatclockrate(profhz); 1161 splx(s); 1162 } 1163 } 1164 } 1165 1166 /* 1167 * Stop profiling on a process. 1168 */ 1169 void 1170 stopprofclock(p) 1171 struct proc *p; 1172 { 1173 int s; 1174 1175 if (p->p_flag & P_PROFIL) { 1176 p->p_flag &= ~P_PROFIL; 1177 if (--profprocs == 0 && stathz != 0) { 1178 s = splstatclock(); 1179 psdiv = pscnt = 1; 1180 setstatclockrate(stathz); 1181 splx(s); 1182 } 1183 } 1184 } 1185 1186 /* 1187 * Statistics clock. Grab profile sample, and if divider reaches 0, 1188 * do process and kernel statistics. 1189 */ 1190 void 1191 statclock(frame) 1192 struct clockframe *frame; 1193 { 1194 #ifdef GPROF 1195 struct gmonparam *g; 1196 int i; 1197 #endif 1198 struct cpu_info *ci = curcpu(); 1199 struct schedstate_percpu *spc = &ci->ci_schedstate; 1200 struct proc *p; 1201 1202 if (CLKF_USERMODE(frame)) { 1203 p = curproc; 1204 if (p->p_flag & P_PROFIL) 1205 addupc_intr(p, CLKF_PC(frame), 1); 1206 if (--pscnt > 0) 1207 return; 1208 /* 1209 * Came from user mode; CPU was in user state. 1210 * If this process is being profiled record the tick. 1211 */ 1212 p->p_uticks++; 1213 if (p->p_nice > NZERO) 1214 spc->spc_cp_time[CP_NICE]++; 1215 else 1216 spc->spc_cp_time[CP_USER]++; 1217 } else { 1218 #ifdef GPROF 1219 /* 1220 * Kernel statistics are just like addupc_intr, only easier. 1221 */ 1222 g = &_gmonparam; 1223 if (g->state == GMON_PROF_ON) { 1224 i = CLKF_PC(frame) - g->lowpc; 1225 if (i < g->textsize) { 1226 i /= HISTFRACTION * sizeof(*g->kcount); 1227 g->kcount[i]++; 1228 } 1229 } 1230 #endif 1231 if (--pscnt > 0) 1232 return; 1233 /* 1234 * Came from kernel mode, so we were: 1235 * - handling an interrupt, 1236 * - doing syscall or trap work on behalf of the current 1237 * user process, or 1238 * - spinning in the idle loop. 1239 * Whichever it is, charge the time as appropriate. 1240 * Note that we charge interrupts to the current process, 1241 * regardless of whether they are ``for'' that process, 1242 * so that we know how much of its real time was spent 1243 * in ``non-process'' (i.e., interrupt) work. 1244 */ 1245 p = curproc; 1246 if (CLKF_INTR(frame)) { 1247 if (p != NULL) 1248 p->p_iticks++; 1249 spc->spc_cp_time[CP_INTR]++; 1250 } else if (p != NULL) { 1251 p->p_sticks++; 1252 spc->spc_cp_time[CP_SYS]++; 1253 } else 1254 spc->spc_cp_time[CP_IDLE]++; 1255 } 1256 pscnt = psdiv; 1257 1258 if (p != NULL) { 1259 ++p->p_cpticks; 1260 /* 1261 * If no separate schedclock is provided, call it here 1262 * at ~~12-25 Hz, ~~16 Hz is best 1263 */ 1264 if (schedhz == 0) 1265 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0) 1266 schedclock(p); 1267 } 1268 } 1269 1270 1271 #ifdef NTP /* NTP phase-locked loop in kernel */ 1272 1273 /* 1274 * hardupdate() - local clock update 1275 * 1276 * This routine is called by ntp_adjtime() to update the local clock 1277 * phase and frequency. The implementation is of an adaptive-parameter, 1278 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1279 * time and frequency offset estimates for each call. If the kernel PPS 1280 * discipline code is configured (PPS_SYNC), the PPS signal itself 1281 * determines the new time offset, instead of the calling argument. 1282 * Presumably, calls to ntp_adjtime() occur only when the caller 1283 * believes the local clock is valid within some bound (+-128 ms with 1284 * NTP). If the caller's time is far different than the PPS time, an 1285 * argument will ensue, and it's not clear who will lose. 1286 * 1287 * For uncompensated quartz crystal oscillatores and nominal update 1288 * intervals less than 1024 s, operation should be in phase-lock mode 1289 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1290 * intervals greater than thiss, operation should be in frequency-lock 1291 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1292 * 1293 * Note: splclock() is in effect. 1294 */ 1295 void 1296 hardupdate(offset) 1297 long offset; 1298 { 1299 long ltemp, mtemp; 1300 1301 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1302 return; 1303 ltemp = offset; 1304 #ifdef PPS_SYNC 1305 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1306 ltemp = pps_offset; 1307 #endif /* PPS_SYNC */ 1308 1309 /* 1310 * Scale the phase adjustment and clamp to the operating range. 1311 */ 1312 if (ltemp > MAXPHASE) 1313 time_offset = MAXPHASE << SHIFT_UPDATE; 1314 else if (ltemp < -MAXPHASE) 1315 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1316 else 1317 time_offset = ltemp << SHIFT_UPDATE; 1318 1319 /* 1320 * Select whether the frequency is to be controlled and in which 1321 * mode (PLL or FLL). Clamp to the operating range. Ugly 1322 * multiply/divide should be replaced someday. 1323 */ 1324 if (time_status & STA_FREQHOLD || time_reftime == 0) 1325 time_reftime = time.tv_sec; 1326 mtemp = time.tv_sec - time_reftime; 1327 time_reftime = time.tv_sec; 1328 if (time_status & STA_FLL) { 1329 if (mtemp >= MINSEC) { 1330 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1331 SHIFT_UPDATE)); 1332 if (ltemp < 0) 1333 time_freq -= -ltemp >> SHIFT_KH; 1334 else 1335 time_freq += ltemp >> SHIFT_KH; 1336 } 1337 } else { 1338 if (mtemp < MAXSEC) { 1339 ltemp *= mtemp; 1340 if (ltemp < 0) 1341 time_freq -= -ltemp >> (time_constant + 1342 time_constant + SHIFT_KF - 1343 SHIFT_USEC); 1344 else 1345 time_freq += ltemp >> (time_constant + 1346 time_constant + SHIFT_KF - 1347 SHIFT_USEC); 1348 } 1349 } 1350 if (time_freq > time_tolerance) 1351 time_freq = time_tolerance; 1352 else if (time_freq < -time_tolerance) 1353 time_freq = -time_tolerance; 1354 } 1355 1356 #ifdef PPS_SYNC 1357 /* 1358 * hardpps() - discipline CPU clock oscillator to external PPS signal 1359 * 1360 * This routine is called at each PPS interrupt in order to discipline 1361 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1362 * and leaves it in a handy spot for the hardclock() routine. It 1363 * integrates successive PPS phase differences and calculates the 1364 * frequency offset. This is used in hardclock() to discipline the CPU 1365 * clock oscillator so that intrinsic frequency error is cancelled out. 1366 * The code requires the caller to capture the time and hardware counter 1367 * value at the on-time PPS signal transition. 1368 * 1369 * Note that, on some Unix systems, this routine runs at an interrupt 1370 * priority level higher than the timer interrupt routine hardclock(). 1371 * Therefore, the variables used are distinct from the hardclock() 1372 * variables, except for certain exceptions: The PPS frequency pps_freq 1373 * and phase pps_offset variables are determined by this routine and 1374 * updated atomically. The time_tolerance variable can be considered a 1375 * constant, since it is infrequently changed, and then only when the 1376 * PPS signal is disabled. The watchdog counter pps_valid is updated 1377 * once per second by hardclock() and is atomically cleared in this 1378 * routine. 1379 */ 1380 void 1381 hardpps(tvp, usec) 1382 struct timeval *tvp; /* time at PPS */ 1383 long usec; /* hardware counter at PPS */ 1384 { 1385 long u_usec, v_usec, bigtick; 1386 long cal_sec, cal_usec; 1387 1388 /* 1389 * An occasional glitch can be produced when the PPS interrupt 1390 * occurs in the hardclock() routine before the time variable is 1391 * updated. Here the offset is discarded when the difference 1392 * between it and the last one is greater than tick/2, but not 1393 * if the interval since the first discard exceeds 30 s. 1394 */ 1395 time_status |= STA_PPSSIGNAL; 1396 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1397 pps_valid = 0; 1398 u_usec = -tvp->tv_usec; 1399 if (u_usec < -500000) 1400 u_usec += 1000000; 1401 v_usec = pps_offset - u_usec; 1402 if (v_usec < 0) 1403 v_usec = -v_usec; 1404 if (v_usec > (tick >> 1)) { 1405 if (pps_glitch > MAXGLITCH) { 1406 pps_glitch = 0; 1407 pps_tf[2] = u_usec; 1408 pps_tf[1] = u_usec; 1409 } else { 1410 pps_glitch++; 1411 u_usec = pps_offset; 1412 } 1413 } else 1414 pps_glitch = 0; 1415 1416 /* 1417 * A three-stage median filter is used to help deglitch the pps 1418 * time. The median sample becomes the time offset estimate; the 1419 * difference between the other two samples becomes the time 1420 * dispersion (jitter) estimate. 1421 */ 1422 pps_tf[2] = pps_tf[1]; 1423 pps_tf[1] = pps_tf[0]; 1424 pps_tf[0] = u_usec; 1425 if (pps_tf[0] > pps_tf[1]) { 1426 if (pps_tf[1] > pps_tf[2]) { 1427 pps_offset = pps_tf[1]; /* 0 1 2 */ 1428 v_usec = pps_tf[0] - pps_tf[2]; 1429 } else if (pps_tf[2] > pps_tf[0]) { 1430 pps_offset = pps_tf[0]; /* 2 0 1 */ 1431 v_usec = pps_tf[2] - pps_tf[1]; 1432 } else { 1433 pps_offset = pps_tf[2]; /* 0 2 1 */ 1434 v_usec = pps_tf[0] - pps_tf[1]; 1435 } 1436 } else { 1437 if (pps_tf[1] < pps_tf[2]) { 1438 pps_offset = pps_tf[1]; /* 2 1 0 */ 1439 v_usec = pps_tf[2] - pps_tf[0]; 1440 } else if (pps_tf[2] < pps_tf[0]) { 1441 pps_offset = pps_tf[0]; /* 1 0 2 */ 1442 v_usec = pps_tf[1] - pps_tf[2]; 1443 } else { 1444 pps_offset = pps_tf[2]; /* 1 2 0 */ 1445 v_usec = pps_tf[1] - pps_tf[0]; 1446 } 1447 } 1448 if (v_usec > MAXTIME) 1449 pps_jitcnt++; 1450 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1451 if (v_usec < 0) 1452 pps_jitter -= -v_usec >> PPS_AVG; 1453 else 1454 pps_jitter += v_usec >> PPS_AVG; 1455 if (pps_jitter > (MAXTIME >> 1)) 1456 time_status |= STA_PPSJITTER; 1457 1458 /* 1459 * During the calibration interval adjust the starting time when 1460 * the tick overflows. At the end of the interval compute the 1461 * duration of the interval and the difference of the hardware 1462 * counters at the beginning and end of the interval. This code 1463 * is deliciously complicated by the fact valid differences may 1464 * exceed the value of tick when using long calibration 1465 * intervals and small ticks. Note that the counter can be 1466 * greater than tick if caught at just the wrong instant, but 1467 * the values returned and used here are correct. 1468 */ 1469 bigtick = (long)tick << SHIFT_USEC; 1470 pps_usec -= pps_freq; 1471 if (pps_usec >= bigtick) 1472 pps_usec -= bigtick; 1473 if (pps_usec < 0) 1474 pps_usec += bigtick; 1475 pps_time.tv_sec++; 1476 pps_count++; 1477 if (pps_count < (1 << pps_shift)) 1478 return; 1479 pps_count = 0; 1480 pps_calcnt++; 1481 u_usec = usec << SHIFT_USEC; 1482 v_usec = pps_usec - u_usec; 1483 if (v_usec >= bigtick >> 1) 1484 v_usec -= bigtick; 1485 if (v_usec < -(bigtick >> 1)) 1486 v_usec += bigtick; 1487 if (v_usec < 0) 1488 v_usec = -(-v_usec >> pps_shift); 1489 else 1490 v_usec = v_usec >> pps_shift; 1491 pps_usec = u_usec; 1492 cal_sec = tvp->tv_sec; 1493 cal_usec = tvp->tv_usec; 1494 cal_sec -= pps_time.tv_sec; 1495 cal_usec -= pps_time.tv_usec; 1496 if (cal_usec < 0) { 1497 cal_usec += 1000000; 1498 cal_sec--; 1499 } 1500 pps_time = *tvp; 1501 1502 /* 1503 * Check for lost interrupts, noise, excessive jitter and 1504 * excessive frequency error. The number of timer ticks during 1505 * the interval may vary +-1 tick. Add to this a margin of one 1506 * tick for the PPS signal jitter and maximum frequency 1507 * deviation. If the limits are exceeded, the calibration 1508 * interval is reset to the minimum and we start over. 1509 */ 1510 u_usec = (long)tick << 1; 1511 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1512 || (cal_sec == 0 && cal_usec < u_usec)) 1513 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1514 pps_errcnt++; 1515 pps_shift = PPS_SHIFT; 1516 pps_intcnt = 0; 1517 time_status |= STA_PPSERROR; 1518 return; 1519 } 1520 1521 /* 1522 * A three-stage median filter is used to help deglitch the pps 1523 * frequency. The median sample becomes the frequency offset 1524 * estimate; the difference between the other two samples 1525 * becomes the frequency dispersion (stability) estimate. 1526 */ 1527 pps_ff[2] = pps_ff[1]; 1528 pps_ff[1] = pps_ff[0]; 1529 pps_ff[0] = v_usec; 1530 if (pps_ff[0] > pps_ff[1]) { 1531 if (pps_ff[1] > pps_ff[2]) { 1532 u_usec = pps_ff[1]; /* 0 1 2 */ 1533 v_usec = pps_ff[0] - pps_ff[2]; 1534 } else if (pps_ff[2] > pps_ff[0]) { 1535 u_usec = pps_ff[0]; /* 2 0 1 */ 1536 v_usec = pps_ff[2] - pps_ff[1]; 1537 } else { 1538 u_usec = pps_ff[2]; /* 0 2 1 */ 1539 v_usec = pps_ff[0] - pps_ff[1]; 1540 } 1541 } else { 1542 if (pps_ff[1] < pps_ff[2]) { 1543 u_usec = pps_ff[1]; /* 2 1 0 */ 1544 v_usec = pps_ff[2] - pps_ff[0]; 1545 } else if (pps_ff[2] < pps_ff[0]) { 1546 u_usec = pps_ff[0]; /* 1 0 2 */ 1547 v_usec = pps_ff[1] - pps_ff[2]; 1548 } else { 1549 u_usec = pps_ff[2]; /* 1 2 0 */ 1550 v_usec = pps_ff[1] - pps_ff[0]; 1551 } 1552 } 1553 1554 /* 1555 * Here the frequency dispersion (stability) is updated. If it 1556 * is less than one-fourth the maximum (MAXFREQ), the frequency 1557 * offset is updated as well, but clamped to the tolerance. It 1558 * will be processed later by the hardclock() routine. 1559 */ 1560 v_usec = (v_usec >> 1) - pps_stabil; 1561 if (v_usec < 0) 1562 pps_stabil -= -v_usec >> PPS_AVG; 1563 else 1564 pps_stabil += v_usec >> PPS_AVG; 1565 if (pps_stabil > MAXFREQ >> 2) { 1566 pps_stbcnt++; 1567 time_status |= STA_PPSWANDER; 1568 return; 1569 } 1570 if (time_status & STA_PPSFREQ) { 1571 if (u_usec < 0) { 1572 pps_freq -= -u_usec >> PPS_AVG; 1573 if (pps_freq < -time_tolerance) 1574 pps_freq = -time_tolerance; 1575 u_usec = -u_usec; 1576 } else { 1577 pps_freq += u_usec >> PPS_AVG; 1578 if (pps_freq > time_tolerance) 1579 pps_freq = time_tolerance; 1580 } 1581 } 1582 1583 /* 1584 * Here the calibration interval is adjusted. If the maximum 1585 * time difference is greater than tick / 4, reduce the interval 1586 * by half. If this is not the case for four consecutive 1587 * intervals, double the interval. 1588 */ 1589 if (u_usec << pps_shift > bigtick >> 2) { 1590 pps_intcnt = 0; 1591 if (pps_shift > PPS_SHIFT) 1592 pps_shift--; 1593 } else if (pps_intcnt >= 4) { 1594 pps_intcnt = 0; 1595 if (pps_shift < PPS_SHIFTMAX) 1596 pps_shift++; 1597 } else 1598 pps_intcnt++; 1599 } 1600 #endif /* PPS_SYNC */ 1601 #endif /* NTP */ 1602 1603 1604 /* 1605 * Return information about system clocks. 1606 */ 1607 int 1608 sysctl_clockrate(where, sizep) 1609 void *where; 1610 size_t *sizep; 1611 { 1612 struct clockinfo clkinfo; 1613 1614 /* 1615 * Construct clockinfo structure. 1616 */ 1617 clkinfo.tick = tick; 1618 clkinfo.tickadj = tickadj; 1619 clkinfo.hz = hz; 1620 clkinfo.profhz = profhz; 1621 clkinfo.stathz = stathz ? stathz : hz; 1622 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1623 } 1624