xref: /netbsd-src/sys/kern/kern_clock.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /*	$NetBSD: kern_clock.c,v 1.42 1997/05/21 19:55:45 gwr Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
41  */
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/dkstat.h>
46 #include <sys/callout.h>
47 #include <sys/kernel.h>
48 #include <sys/proc.h>
49 #include <sys/resourcevar.h>
50 #include <sys/signalvar.h>
51 #include <vm/vm.h>
52 #include <sys/sysctl.h>
53 #include <sys/timex.h>
54 
55 #include <machine/cpu.h>
56 
57 #ifdef GPROF
58 #include <sys/gmon.h>
59 #endif
60 
61 /*
62  * Clock handling routines.
63  *
64  * This code is written to operate with two timers that run independently of
65  * each other.  The main clock, running hz times per second, is used to keep
66  * track of real time.  The second timer handles kernel and user profiling,
67  * and does resource use estimation.  If the second timer is programmable,
68  * it is randomized to avoid aliasing between the two clocks.  For example,
69  * the randomization prevents an adversary from always giving up the cpu
70  * just before its quantum expires.  Otherwise, it would never accumulate
71  * cpu ticks.  The mean frequency of the second timer is stathz.
72  *
73  * If no second timer exists, stathz will be zero; in this case we drive
74  * profiling and statistics off the main clock.  This WILL NOT be accurate;
75  * do not do it unless absolutely necessary.
76  *
77  * The statistics clock may (or may not) be run at a higher rate while
78  * profiling.  This profile clock runs at profhz.  We require that profhz
79  * be an integral multiple of stathz.
80  *
81  * If the statistics clock is running fast, it must be divided by the ratio
82  * profhz/stathz for statistics.  (For profiling, every tick counts.)
83  */
84 
85 /*
86  * TODO:
87  *	allocate more timeout table slots when table overflows.
88  */
89 
90 
91 #ifdef NTP	/* NTP phase-locked loop in kernel */
92 /*
93  * Phase/frequency-lock loop (PLL/FLL) definitions
94  *
95  * The following variables are read and set by the ntp_adjtime() system
96  * call.
97  *
98  * time_state shows the state of the system clock, with values defined
99  * in the timex.h header file.
100  *
101  * time_status shows the status of the system clock, with bits defined
102  * in the timex.h header file.
103  *
104  * time_offset is used by the PLL/FLL to adjust the system time in small
105  * increments.
106  *
107  * time_constant determines the bandwidth or "stiffness" of the PLL.
108  *
109  * time_tolerance determines maximum frequency error or tolerance of the
110  * CPU clock oscillator and is a property of the architecture; however,
111  * in principle it could change as result of the presence of external
112  * discipline signals, for instance.
113  *
114  * time_precision is usually equal to the kernel tick variable; however,
115  * in cases where a precision clock counter or external clock is
116  * available, the resolution can be much less than this and depend on
117  * whether the external clock is working or not.
118  *
119  * time_maxerror is initialized by a ntp_adjtime() call and increased by
120  * the kernel once each second to reflect the maximum error bound
121  * growth.
122  *
123  * time_esterror is set and read by the ntp_adjtime() call, but
124  * otherwise not used by the kernel.
125  */
126 int time_state = TIME_OK;	/* clock state */
127 int time_status = STA_UNSYNC;	/* clock status bits */
128 long time_offset = 0;		/* time offset (us) */
129 long time_constant = 0;		/* pll time constant */
130 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
131 long time_precision = 1;	/* clock precision (us) */
132 long time_maxerror = MAXPHASE;	/* maximum error (us) */
133 long time_esterror = MAXPHASE;	/* estimated error (us) */
134 
135 /*
136  * The following variables establish the state of the PLL/FLL and the
137  * residual time and frequency offset of the local clock. The scale
138  * factors are defined in the timex.h header file.
139  *
140  * time_phase and time_freq are the phase increment and the frequency
141  * increment, respectively, of the kernel time variable.
142  *
143  * time_freq is set via ntp_adjtime() from a value stored in a file when
144  * the synchronization daemon is first started. Its value is retrieved
145  * via ntp_adjtime() and written to the file about once per hour by the
146  * daemon.
147  *
148  * time_adj is the adjustment added to the value of tick at each timer
149  * interrupt and is recomputed from time_phase and time_freq at each
150  * seconds rollover.
151  *
152  * time_reftime is the second's portion of the system time at the last
153  * call to ntp_adjtime(). It is used to adjust the time_freq variable
154  * and to increase the time_maxerror as the time since last update
155  * increases.
156  */
157 long time_phase = 0;		/* phase offset (scaled us) */
158 long time_freq = 0;		/* frequency offset (scaled ppm) */
159 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
160 long time_reftime = 0;		/* time at last adjustment (s) */
161 
162 #ifdef PPS_SYNC
163 /*
164  * The following variables are used only if the kernel PPS discipline
165  * code is configured (PPS_SYNC). The scale factors are defined in the
166  * timex.h header file.
167  *
168  * pps_time contains the time at each calibration interval, as read by
169  * microtime(). pps_count counts the seconds of the calibration
170  * interval, the duration of which is nominally pps_shift in powers of
171  * two.
172  *
173  * pps_offset is the time offset produced by the time median filter
174  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
175  * this filter.
176  *
177  * pps_freq is the frequency offset produced by the frequency median
178  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
179  * by this filter.
180  *
181  * pps_usec is latched from a high resolution counter or external clock
182  * at pps_time. Here we want the hardware counter contents only, not the
183  * contents plus the time_tv.usec as usual.
184  *
185  * pps_valid counts the number of seconds since the last PPS update. It
186  * is used as a watchdog timer to disable the PPS discipline should the
187  * PPS signal be lost.
188  *
189  * pps_glitch counts the number of seconds since the beginning of an
190  * offset burst more than tick/2 from current nominal offset. It is used
191  * mainly to suppress error bursts due to priority conflicts between the
192  * PPS interrupt and timer interrupt.
193  *
194  * pps_intcnt counts the calibration intervals for use in the interval-
195  * adaptation algorithm. It's just too complicated for words.
196  */
197 struct timeval pps_time;	/* kernel time at last interval */
198 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
199 long pps_offset = 0;		/* pps time offset (us) */
200 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
201 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
202 long pps_freq = 0;		/* frequency offset (scaled ppm) */
203 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
204 long pps_usec = 0;		/* microsec counter at last interval */
205 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
206 int pps_glitch = 0;		/* pps signal glitch counter */
207 int pps_count = 0;		/* calibration interval counter (s) */
208 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
209 int pps_intcnt = 0;		/* intervals at current duration */
210 
211 /*
212  * PPS signal quality monitors
213  *
214  * pps_jitcnt counts the seconds that have been discarded because the
215  * jitter measured by the time median filter exceeds the limit MAXTIME
216  * (100 us).
217  *
218  * pps_calcnt counts the frequency calibration intervals, which are
219  * variable from 4 s to 256 s.
220  *
221  * pps_errcnt counts the calibration intervals which have been discarded
222  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
223  * calibration interval jitter exceeds two ticks.
224  *
225  * pps_stbcnt counts the calibration intervals that have been discarded
226  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
227  */
228 long pps_jitcnt = 0;		/* jitter limit exceeded */
229 long pps_calcnt = 0;		/* calibration intervals */
230 long pps_errcnt = 0;		/* calibration errors */
231 long pps_stbcnt = 0;		/* stability limit exceeded */
232 #endif /* PPS_SYNC */
233 
234 #ifdef EXT_CLOCK
235 /*
236  * External clock definitions
237  *
238  * The following definitions and declarations are used only if an
239  * external clock is configured on the system.
240  */
241 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
242 
243 /*
244  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
245  * interrupt and decremented once each second.
246  */
247 int clock_count = 0;		/* CPU clock counter */
248 
249 #ifdef HIGHBALL
250 /*
251  * The clock_offset and clock_cpu variables are used by the HIGHBALL
252  * interface. The clock_offset variable defines the offset between
253  * system time and the HIGBALL counters. The clock_cpu variable contains
254  * the offset between the system clock and the HIGHBALL clock for use in
255  * disciplining the kernel time variable.
256  */
257 extern struct timeval clock_offset; /* Highball clock offset */
258 long clock_cpu = 0;		/* CPU clock adjust */
259 #endif /* HIGHBALL */
260 #endif /* EXT_CLOCK */
261 #endif /* NTP */
262 
263 
264 /*
265  * Bump a timeval by a small number of usec's.
266  */
267 #define BUMPTIME(t, usec) { \
268 	register volatile struct timeval *tp = (t); \
269 	register long us; \
270  \
271 	tp->tv_usec = us = tp->tv_usec + (usec); \
272 	if (us >= 1000000) { \
273 		tp->tv_usec = us - 1000000; \
274 		tp->tv_sec++; \
275 	} \
276 }
277 
278 int	stathz;
279 int	profhz;
280 int	profprocs;
281 int	ticks;
282 static int psdiv, pscnt;		/* prof => stat divider */
283 int	psratio;			/* ratio: prof / stat */
284 int	tickfix, tickfixinterval;	/* used if tick not really integral */
285 #ifndef NTP
286 static int tickfixcnt;			/* accumulated fractional error */
287 #else
288 int	fixtick;			/* used by NTP for same */
289 int	shifthz;
290 #endif
291 
292 volatile struct	timeval time;
293 volatile struct	timeval mono_time;
294 
295 /*
296  * Initialize clock frequencies and start both clocks running.
297  */
298 void
299 initclocks()
300 {
301 	register int i;
302 
303 	/*
304 	 * Set divisors to 1 (normal case) and let the machine-specific
305 	 * code do its bit.
306 	 */
307 	psdiv = pscnt = 1;
308 	cpu_initclocks();
309 
310 	/*
311 	 * Compute profhz/stathz, and fix profhz if needed.
312 	 */
313 	i = stathz ? stathz : hz;
314 	if (profhz == 0)
315 		profhz = i;
316 	psratio = profhz / i;
317 
318 #ifdef NTP
319 	switch (hz) {
320 	case 60:
321 	case 64:
322 		shifthz = SHIFT_SCALE - 6;
323 		break;
324 	case 96:
325 	case 100:
326 	case 128:
327 		shifthz = SHIFT_SCALE - 7;
328 		break;
329 	case 256:
330 		shifthz = SHIFT_SCALE - 8;
331 		break;
332 	case 512:
333 		shifthz = SHIFT_SCALE - 9;
334 		break;
335 	case 1024:
336 		shifthz = SHIFT_SCALE - 10;
337 		break;
338 	default:
339 		panic("weird hz");
340 	}
341 #endif
342 }
343 
344 /*
345  * The real-time timer, interrupting hz times per second.
346  */
347 void
348 hardclock(frame)
349 	register struct clockframe *frame;
350 {
351 	register struct callout *p1;
352 	register struct proc *p;
353 	register int delta, needsoft;
354 	extern int tickdelta;
355 	extern long timedelta;
356 #ifdef NTP
357 	register int time_update;
358 	register int ltemp;
359 #endif
360 
361 	/*
362 	 * Update real-time timeout queue.
363 	 * At front of queue are some number of events which are ``due''.
364 	 * The time to these is <= 0 and if negative represents the
365 	 * number of ticks which have passed since it was supposed to happen.
366 	 * The rest of the q elements (times > 0) are events yet to happen,
367 	 * where the time for each is given as a delta from the previous.
368 	 * Decrementing just the first of these serves to decrement the time
369 	 * to all events.
370 	 */
371 	needsoft = 0;
372 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
373 		if (--p1->c_time > 0)
374 			break;
375 		needsoft = 1;
376 		if (p1->c_time == 0)
377 			break;
378 	}
379 
380 	p = curproc;
381 	if (p) {
382 		register struct pstats *pstats;
383 
384 		/*
385 		 * Run current process's virtual and profile time, as needed.
386 		 */
387 		pstats = p->p_stats;
388 		if (CLKF_USERMODE(frame) &&
389 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
390 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
391 			psignal(p, SIGVTALRM);
392 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
393 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
394 			psignal(p, SIGPROF);
395 	}
396 
397 	/*
398 	 * If no separate statistics clock is available, run it from here.
399 	 */
400 	if (stathz == 0)
401 		statclock(frame);
402 
403 	/*
404 	 * Increment the time-of-day.  The increment is normally just
405 	 * ``tick''.  If the machine is one which has a clock frequency
406 	 * such that ``hz'' would not divide the second evenly into
407 	 * milliseconds, a periodic adjustment must be applied.  Finally,
408 	 * if we are still adjusting the time (see adjtime()),
409 	 * ``tickdelta'' may also be added in.
410 	 */
411 	ticks++;
412 	delta = tick;
413 
414 #ifndef NTP
415 	if (tickfix) {
416 		tickfixcnt += tickfix;
417 		if (tickfixcnt >= tickfixinterval) {
418 			delta++;
419 			tickfixcnt -= tickfixinterval;
420 		}
421 	}
422 #endif /* !NTP */
423 	/* Imprecise 4bsd adjtime() handling */
424 	if (timedelta != 0) {
425 		delta += tickdelta;
426 		timedelta -= tickdelta;
427 	}
428 
429 #ifdef notyet
430 	microset();
431 #endif
432 
433 #ifndef NTP
434 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
435 #endif
436 	BUMPTIME(&mono_time, delta);
437 
438 #ifdef NTP
439 	time_update = delta;
440 
441 	/*
442 	 * Compute the phase adjustment. If the low-order bits
443 	 * (time_phase) of the update overflow, bump the high-order bits
444 	 * (time_update).
445 	 */
446 	time_phase += time_adj;
447 	if (time_phase <= -FINEUSEC) {
448 		ltemp = -time_phase >> SHIFT_SCALE;
449 		time_phase += ltemp << SHIFT_SCALE;
450 		time_update -= ltemp;
451 	} else if (time_phase >= FINEUSEC) {
452 		ltemp = time_phase >> SHIFT_SCALE;
453 		time_phase -= ltemp << SHIFT_SCALE;
454 		time_update += ltemp;
455 	}
456 
457 #ifdef HIGHBALL
458 	/*
459 	 * If the HIGHBALL board is installed, we need to adjust the
460 	 * external clock offset in order to close the hardware feedback
461 	 * loop. This will adjust the external clock phase and frequency
462 	 * in small amounts. The additional phase noise and frequency
463 	 * wander this causes should be minimal. We also need to
464 	 * discipline the kernel time variable, since the PLL is used to
465 	 * discipline the external clock. If the Highball board is not
466 	 * present, we discipline kernel time with the PLL as usual. We
467 	 * assume that the external clock phase adjustment (time_update)
468 	 * and kernel phase adjustment (clock_cpu) are less than the
469 	 * value of tick.
470 	 */
471 	clock_offset.tv_usec += time_update;
472 	if (clock_offset.tv_usec >= 1000000) {
473 		clock_offset.tv_sec++;
474 		clock_offset.tv_usec -= 1000000;
475 	}
476 	if (clock_offset.tv_usec < 0) {
477 		clock_offset.tv_sec--;
478 		clock_offset.tv_usec += 1000000;
479 	}
480 	time.tv_usec += clock_cpu;
481 	clock_cpu = 0;
482 #else
483 	time.tv_usec += time_update;
484 #endif /* HIGHBALL */
485 
486 	/*
487 	 * On rollover of the second the phase adjustment to be used for
488 	 * the next second is calculated. Also, the maximum error is
489 	 * increased by the tolerance. If the PPS frequency discipline
490 	 * code is present, the phase is increased to compensate for the
491 	 * CPU clock oscillator frequency error.
492 	 *
493  	 * On a 32-bit machine and given parameters in the timex.h
494 	 * header file, the maximum phase adjustment is +-512 ms and
495 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
496 	 * 64-bit machine, you shouldn't need to ask.
497 	 */
498 	if (time.tv_usec >= 1000000) {
499 		time.tv_usec -= 1000000;
500 		time.tv_sec++;
501 		time_maxerror += time_tolerance >> SHIFT_USEC;
502 
503 		/*
504 		 * Leap second processing. If in leap-insert state at
505 		 * the end of the day, the system clock is set back one
506 		 * second; if in leap-delete state, the system clock is
507 		 * set ahead one second. The microtime() routine or
508 		 * external clock driver will insure that reported time
509 		 * is always monotonic. The ugly divides should be
510 		 * replaced.
511 		 */
512 		switch (time_state) {
513 		case TIME_OK:
514 			if (time_status & STA_INS)
515 				time_state = TIME_INS;
516 			else if (time_status & STA_DEL)
517 				time_state = TIME_DEL;
518 			break;
519 
520 		case TIME_INS:
521 			if (time.tv_sec % 86400 == 0) {
522 				time.tv_sec--;
523 				time_state = TIME_OOP;
524 			}
525 			break;
526 
527 		case TIME_DEL:
528 			if ((time.tv_sec + 1) % 86400 == 0) {
529 				time.tv_sec++;
530 				time_state = TIME_WAIT;
531 			}
532 			break;
533 
534 		case TIME_OOP:
535 			time_state = TIME_WAIT;
536 			break;
537 
538 		case TIME_WAIT:
539 			if (!(time_status & (STA_INS | STA_DEL)))
540 				time_state = TIME_OK;
541 			break;
542 		}
543 
544 		/*
545 		 * Compute the phase adjustment for the next second. In
546 		 * PLL mode, the offset is reduced by a fixed factor
547 		 * times the time constant. In FLL mode the offset is
548 		 * used directly. In either mode, the maximum phase
549 		 * adjustment for each second is clamped so as to spread
550 		 * the adjustment over not more than the number of
551 		 * seconds between updates.
552 		 */
553 		if (time_offset < 0) {
554 			ltemp = -time_offset;
555 			if (!(time_status & STA_FLL))
556 				ltemp >>= SHIFT_KG + time_constant;
557 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
558 				ltemp = (MAXPHASE / MINSEC) <<
559 				    SHIFT_UPDATE;
560 			time_offset += ltemp;
561 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
562 		} else if (time_offset > 0) {
563 			ltemp = time_offset;
564 			if (!(time_status & STA_FLL))
565 				ltemp >>= SHIFT_KG + time_constant;
566 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
567 				ltemp = (MAXPHASE / MINSEC) <<
568 				    SHIFT_UPDATE;
569 			time_offset -= ltemp;
570 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
571 		} else
572 			time_adj = 0;
573 
574 		/*
575 		 * Compute the frequency estimate and additional phase
576 		 * adjustment due to frequency error for the next
577 		 * second. When the PPS signal is engaged, gnaw on the
578 		 * watchdog counter and update the frequency computed by
579 		 * the pll and the PPS signal.
580 		 */
581 #ifdef PPS_SYNC
582 		pps_valid++;
583 		if (pps_valid == PPS_VALID) {
584 			pps_jitter = MAXTIME;
585 			pps_stabil = MAXFREQ;
586 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
587 			    STA_PPSWANDER | STA_PPSERROR);
588 		}
589 		ltemp = time_freq + pps_freq;
590 #else
591 		ltemp = time_freq;
592 #endif /* PPS_SYNC */
593 
594 		if (ltemp < 0)
595 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
596 		else
597 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
598 		time_adj += (long)fixtick << shifthz;
599 
600 		/*
601 		 * When the CPU clock oscillator frequency is not a
602 		 * power of 2 in Hz, shifthz is only an approximate
603 		 * scale factor.
604 		 */
605 		switch (hz) {
606 		case 96:
607 		case 100:
608 			/*
609 			 * In the following code the overall gain is increased
610 			 * by a factor of 1.25, which results in a residual
611 			 * error less than 3 percent.
612 			 */
613 			if (time_adj < 0)
614 				time_adj -= -time_adj >> 2;
615 			else
616 				time_adj += time_adj >> 2;
617 			break;
618 		case 60:
619 			/*
620 			 * 60 Hz m68k and vaxes have a PLL gain factor of of
621 			 * 60/64 (15/16) of what it should be.  In the following code
622 			 * the overall gain is increased by a factor of 1.0625,
623 			 * (17/16) which results in a residual error of just less
624 			 * than 0.4 percent.
625 			 */
626 			if (time_adj < 0)
627 				time_adj -= -time_adj >> 4;
628 			else
629 				time_adj += time_adj >> 4;
630 			break;
631 		}
632 
633 #ifdef EXT_CLOCK
634 		/*
635 		 * If an external clock is present, it is necessary to
636 		 * discipline the kernel time variable anyway, since not
637 		 * all system components use the microtime() interface.
638 		 * Here, the time offset between the external clock and
639 		 * kernel time variable is computed every so often.
640 		 */
641 		clock_count++;
642 		if (clock_count > CLOCK_INTERVAL) {
643 			clock_count = 0;
644 			microtime(&clock_ext);
645 			delta.tv_sec = clock_ext.tv_sec - time.tv_sec;
646 			delta.tv_usec = clock_ext.tv_usec -
647 			    time.tv_usec;
648 			if (delta.tv_usec < 0)
649 				delta.tv_sec--;
650 			if (delta.tv_usec >= 500000) {
651 				delta.tv_usec -= 1000000;
652 				delta.tv_sec++;
653 			}
654 			if (delta.tv_usec < -500000) {
655 				delta.tv_usec += 1000000;
656 				delta.tv_sec--;
657 			}
658 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
659 			    delta.tv_usec > MAXPHASE) ||
660 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
661 			    delta.tv_usec < -MAXPHASE)) {
662 				time = clock_ext;
663 				delta.tv_sec = 0;
664 				delta.tv_usec = 0;
665 			}
666 #ifdef HIGHBALL
667 			clock_cpu = delta.tv_usec;
668 #else /* HIGHBALL */
669 			hardupdate(delta.tv_usec);
670 #endif /* HIGHBALL */
671 		}
672 #endif /* EXT_CLOCK */
673 	}
674 
675 #endif /* NTP */
676 
677 	/*
678 	 * Process callouts at a very low cpu priority, so we don't keep the
679 	 * relatively high clock interrupt priority any longer than necessary.
680 	 */
681 	if (needsoft) {
682 		if (CLKF_BASEPRI(frame)) {
683 			/*
684 			 * Save the overhead of a software interrupt;
685 			 * it will happen as soon as we return, so do it now.
686 			 */
687 			(void)splsoftclock();
688 			softclock();
689 		} else
690 			setsoftclock();
691 	}
692 }
693 
694 /*
695  * Software (low priority) clock interrupt.
696  * Run periodic events from timeout queue.
697  */
698 /*ARGSUSED*/
699 void
700 softclock()
701 {
702 	register struct callout *c;
703 	register void *arg;
704 	register void (*func) __P((void *));
705 	register int s;
706 
707 	s = splhigh();
708 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
709 		func = c->c_func;
710 		arg = c->c_arg;
711 		calltodo.c_next = c->c_next;
712 		c->c_next = callfree;
713 		callfree = c;
714 		splx(s);
715 		(*func)(arg);
716 		(void) splhigh();
717 	}
718 	splx(s);
719 }
720 
721 /*
722  * timeout --
723  *	Execute a function after a specified length of time.
724  *
725  * untimeout --
726  *	Cancel previous timeout function call.
727  *
728  *	See AT&T BCI Driver Reference Manual for specification.  This
729  *	implementation differs from that one in that no identification
730  *	value is returned from timeout, rather, the original arguments
731  *	to timeout are used to identify entries for untimeout.
732  */
733 void
734 timeout(ftn, arg, ticks)
735 	void (*ftn) __P((void *));
736 	void *arg;
737 	register int ticks;
738 {
739 	register struct callout *new, *p, *t;
740 	register int s;
741 
742 	if (ticks <= 0)
743 		ticks = 1;
744 
745 	/* Lock out the clock. */
746 	s = splhigh();
747 
748 	/* Fill in the next free callout structure. */
749 	if (callfree == NULL)
750 		panic("timeout table full");
751 	new = callfree;
752 	callfree = new->c_next;
753 	new->c_arg = arg;
754 	new->c_func = ftn;
755 
756 	/*
757 	 * The time for each event is stored as a difference from the time
758 	 * of the previous event on the queue.  Walk the queue, correcting
759 	 * the ticks argument for queue entries passed.  Correct the ticks
760 	 * value for the queue entry immediately after the insertion point
761 	 * as well.  Watch out for negative c_time values; these represent
762 	 * overdue events.
763 	 */
764 	for (p = &calltodo;
765 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
766 		if (t->c_time > 0)
767 			ticks -= t->c_time;
768 	new->c_time = ticks;
769 	if (t != NULL)
770 		t->c_time -= ticks;
771 
772 	/* Insert the new entry into the queue. */
773 	p->c_next = new;
774 	new->c_next = t;
775 	splx(s);
776 }
777 
778 void
779 untimeout(ftn, arg)
780 	void (*ftn) __P((void *));
781 	void *arg;
782 {
783 	register struct callout *p, *t;
784 	register int s;
785 
786 	s = splhigh();
787 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
788 		if (t->c_func == ftn && t->c_arg == arg) {
789 			/* Increment next entry's tick count. */
790 			if (t->c_next && t->c_time > 0)
791 				t->c_next->c_time += t->c_time;
792 
793 			/* Move entry from callout queue to callfree queue. */
794 			p->c_next = t->c_next;
795 			t->c_next = callfree;
796 			callfree = t;
797 			break;
798 		}
799 	splx(s);
800 }
801 
802 /*
803  * Compute number of hz until specified time.  Used to
804  * compute third argument to timeout() from an absolute time.
805  */
806 int
807 hzto(tv)
808 	struct timeval *tv;
809 {
810 	register long ticks, sec;
811 	int s;
812 
813 	/*
814 	 * If number of microseconds will fit in 32 bit arithmetic,
815 	 * then compute number of microseconds to time and scale to
816 	 * ticks.  Otherwise just compute number of hz in time, rounding
817 	 * times greater than representible to maximum value.  (We must
818 	 * compute in microseconds, because hz can be greater than 1000,
819 	 * and thus tick can be less than one millisecond).
820 	 *
821 	 * Delta times less than 14 hours can be computed ``exactly''.
822 	 * (Note that if hz would yeild a non-integral number of us per
823 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
824 	 * than they should be.)  Maximum value for any timeout in 10ms
825 	 * ticks is 250 days.
826 	 */
827 	s = splclock();
828 	sec = tv->tv_sec - time.tv_sec;
829 	if (sec <= 0x7fffffff / 1000000 - 1)
830 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
831 			(tv->tv_usec - time.tv_usec)) / tick;
832 	else if (sec <= 0x7fffffff / hz)
833 		ticks = sec * hz;
834 	else
835 		ticks = 0x7fffffff;
836 	splx(s);
837 	return (ticks);
838 }
839 
840 /*
841  * Start profiling on a process.
842  *
843  * Kernel profiling passes proc0 which never exits and hence
844  * keeps the profile clock running constantly.
845  */
846 void
847 startprofclock(p)
848 	register struct proc *p;
849 {
850 	int s;
851 
852 	if ((p->p_flag & P_PROFIL) == 0) {
853 		p->p_flag |= P_PROFIL;
854 		if (++profprocs == 1 && stathz != 0) {
855 			s = splstatclock();
856 			psdiv = pscnt = psratio;
857 			setstatclockrate(profhz);
858 			splx(s);
859 		}
860 	}
861 }
862 
863 /*
864  * Stop profiling on a process.
865  */
866 void
867 stopprofclock(p)
868 	register struct proc *p;
869 {
870 	int s;
871 
872 	if (p->p_flag & P_PROFIL) {
873 		p->p_flag &= ~P_PROFIL;
874 		if (--profprocs == 0 && stathz != 0) {
875 			s = splstatclock();
876 			psdiv = pscnt = 1;
877 			setstatclockrate(stathz);
878 			splx(s);
879 		}
880 	}
881 }
882 
883 /*
884  * Statistics clock.  Grab profile sample, and if divider reaches 0,
885  * do process and kernel statistics.
886  */
887 void
888 statclock(frame)
889 	register struct clockframe *frame;
890 {
891 #ifdef GPROF
892 	register struct gmonparam *g;
893 	register int i;
894 #endif
895 	register struct proc *p;
896 
897 	if (CLKF_USERMODE(frame)) {
898 		p = curproc;
899 		if (p->p_flag & P_PROFIL)
900 			addupc_intr(p, CLKF_PC(frame), 1);
901 		if (--pscnt > 0)
902 			return;
903 		/*
904 		 * Came from user mode; CPU was in user state.
905 		 * If this process is being profiled record the tick.
906 		 */
907 		p->p_uticks++;
908 		if (p->p_nice > NZERO)
909 			cp_time[CP_NICE]++;
910 		else
911 			cp_time[CP_USER]++;
912 	} else {
913 #ifdef GPROF
914 		/*
915 		 * Kernel statistics are just like addupc_intr, only easier.
916 		 */
917 		g = &_gmonparam;
918 		if (g->state == GMON_PROF_ON) {
919 			i = CLKF_PC(frame) - g->lowpc;
920 			if (i < g->textsize) {
921 				i /= HISTFRACTION * sizeof(*g->kcount);
922 				g->kcount[i]++;
923 			}
924 		}
925 #endif
926 		if (--pscnt > 0)
927 			return;
928 		/*
929 		 * Came from kernel mode, so we were:
930 		 * - handling an interrupt,
931 		 * - doing syscall or trap work on behalf of the current
932 		 *   user process, or
933 		 * - spinning in the idle loop.
934 		 * Whichever it is, charge the time as appropriate.
935 		 * Note that we charge interrupts to the current process,
936 		 * regardless of whether they are ``for'' that process,
937 		 * so that we know how much of its real time was spent
938 		 * in ``non-process'' (i.e., interrupt) work.
939 		 */
940 		p = curproc;
941 		if (CLKF_INTR(frame)) {
942 			if (p != NULL)
943 				p->p_iticks++;
944 			cp_time[CP_INTR]++;
945 		} else if (p != NULL) {
946 			p->p_sticks++;
947 			cp_time[CP_SYS]++;
948 		} else
949 			cp_time[CP_IDLE]++;
950 	}
951 	pscnt = psdiv;
952 
953 	/*
954 	 * We adjust the priority of the current process.  The priority of
955 	 * a process gets worse as it accumulates CPU time.  The cpu usage
956 	 * estimator (p_estcpu) is increased here.  The formula for computing
957 	 * priorities (in kern_synch.c) will compute a different value each
958 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
959 	 * quite quickly when the process is running (linearly), and decays
960 	 * away exponentially, at a rate which is proportionally slower when
961 	 * the system is busy.  The basic principal is that the system will
962 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
963 	 * seconds.  This causes the system to favor processes which haven't
964 	 * run much recently, and to round-robin among other processes.
965 	 */
966 	if (p != NULL) {
967 		p->p_cpticks++;
968 		if (++p->p_estcpu == 0)
969 			p->p_estcpu--;
970 		if ((p->p_estcpu & 3) == 0) {
971 			resetpriority(p);
972 			if (p->p_priority >= PUSER)
973 				p->p_priority = p->p_usrpri;
974 		}
975 	}
976 }
977 
978 
979 #ifdef NTP	/* NTP phase-locked loop in kernel */
980 
981 /*
982  * hardupdate() - local clock update
983  *
984  * This routine is called by ntp_adjtime() to update the local clock
985  * phase and frequency. The implementation is of an adaptive-parameter,
986  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
987  * time and frequency offset estimates for each call. If the kernel PPS
988  * discipline code is configured (PPS_SYNC), the PPS signal itself
989  * determines the new time offset, instead of the calling argument.
990  * Presumably, calls to ntp_adjtime() occur only when the caller
991  * believes the local clock is valid within some bound (+-128 ms with
992  * NTP). If the caller's time is far different than the PPS time, an
993  * argument will ensue, and it's not clear who will lose.
994  *
995  * For uncompensated quartz crystal oscillatores and nominal update
996  * intervals less than 1024 s, operation should be in phase-lock mode
997  * (STA_FLL = 0), where the loop is disciplined to phase. For update
998  * intervals greater than thiss, operation should be in frequency-lock
999  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1000  *
1001  * Note: splclock() is in effect.
1002  */
1003 void
1004 hardupdate(offset)
1005 	long offset;
1006 {
1007 	long ltemp, mtemp;
1008 
1009 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1010 		return;
1011 	ltemp = offset;
1012 #ifdef PPS_SYNC
1013 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
1014 		ltemp = pps_offset;
1015 #endif /* PPS_SYNC */
1016 
1017 	/*
1018 	 * Scale the phase adjustment and clamp to the operating range.
1019 	 */
1020 	if (ltemp > MAXPHASE)
1021 		time_offset = MAXPHASE << SHIFT_UPDATE;
1022 	else if (ltemp < -MAXPHASE)
1023 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
1024 	else
1025 		time_offset = ltemp << SHIFT_UPDATE;
1026 
1027 	/*
1028 	 * Select whether the frequency is to be controlled and in which
1029 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1030 	 * multiply/divide should be replaced someday.
1031 	 */
1032 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1033 		time_reftime = time.tv_sec;
1034 	mtemp = time.tv_sec - time_reftime;
1035 	time_reftime = time.tv_sec;
1036 	if (time_status & STA_FLL) {
1037 		if (mtemp >= MINSEC) {
1038 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1039 			    SHIFT_UPDATE));
1040 			if (ltemp < 0)
1041 				time_freq -= -ltemp >> SHIFT_KH;
1042 			else
1043 				time_freq += ltemp >> SHIFT_KH;
1044 		}
1045 	} else {
1046 		if (mtemp < MAXSEC) {
1047 			ltemp *= mtemp;
1048 			if (ltemp < 0)
1049 				time_freq -= -ltemp >> (time_constant +
1050 				    time_constant + SHIFT_KF -
1051 				    SHIFT_USEC);
1052 			else
1053 				time_freq += ltemp >> (time_constant +
1054 				    time_constant + SHIFT_KF -
1055 				    SHIFT_USEC);
1056 		}
1057 	}
1058 	if (time_freq > time_tolerance)
1059 		time_freq = time_tolerance;
1060 	else if (time_freq < -time_tolerance)
1061 		time_freq = -time_tolerance;
1062 }
1063 
1064 #ifdef PPS_SYNC
1065 /*
1066  * hardpps() - discipline CPU clock oscillator to external PPS signal
1067  *
1068  * This routine is called at each PPS interrupt in order to discipline
1069  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1070  * and leaves it in a handy spot for the hardclock() routine. It
1071  * integrates successive PPS phase differences and calculates the
1072  * frequency offset. This is used in hardclock() to discipline the CPU
1073  * clock oscillator so that intrinsic frequency error is cancelled out.
1074  * The code requires the caller to capture the time and hardware counter
1075  * value at the on-time PPS signal transition.
1076  *
1077  * Note that, on some Unix systems, this routine runs at an interrupt
1078  * priority level higher than the timer interrupt routine hardclock().
1079  * Therefore, the variables used are distinct from the hardclock()
1080  * variables, except for certain exceptions: The PPS frequency pps_freq
1081  * and phase pps_offset variables are determined by this routine and
1082  * updated atomically. The time_tolerance variable can be considered a
1083  * constant, since it is infrequently changed, and then only when the
1084  * PPS signal is disabled. The watchdog counter pps_valid is updated
1085  * once per second by hardclock() and is atomically cleared in this
1086  * routine.
1087  */
1088 void
1089 hardpps(tvp, usec)
1090 	struct timeval *tvp;		/* time at PPS */
1091 	long usec;			/* hardware counter at PPS */
1092 {
1093 	long u_usec, v_usec, bigtick;
1094 	long cal_sec, cal_usec;
1095 
1096 	/*
1097 	 * An occasional glitch can be produced when the PPS interrupt
1098 	 * occurs in the hardclock() routine before the time variable is
1099 	 * updated. Here the offset is discarded when the difference
1100 	 * between it and the last one is greater than tick/2, but not
1101 	 * if the interval since the first discard exceeds 30 s.
1102 	 */
1103 	time_status |= STA_PPSSIGNAL;
1104 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1105 	pps_valid = 0;
1106 	u_usec = -tvp->tv_usec;
1107 	if (u_usec < -500000)
1108 		u_usec += 1000000;
1109 	v_usec = pps_offset - u_usec;
1110 	if (v_usec < 0)
1111 		v_usec = -v_usec;
1112 	if (v_usec > (tick >> 1)) {
1113 		if (pps_glitch > MAXGLITCH) {
1114 			pps_glitch = 0;
1115 			pps_tf[2] = u_usec;
1116 			pps_tf[1] = u_usec;
1117 		} else {
1118 			pps_glitch++;
1119 			u_usec = pps_offset;
1120 		}
1121 	} else
1122 		pps_glitch = 0;
1123 
1124 	/*
1125 	 * A three-stage median filter is used to help deglitch the pps
1126 	 * time. The median sample becomes the time offset estimate; the
1127 	 * difference between the other two samples becomes the time
1128 	 * dispersion (jitter) estimate.
1129 	 */
1130 	pps_tf[2] = pps_tf[1];
1131 	pps_tf[1] = pps_tf[0];
1132 	pps_tf[0] = u_usec;
1133 	if (pps_tf[0] > pps_tf[1]) {
1134 		if (pps_tf[1] > pps_tf[2]) {
1135 			pps_offset = pps_tf[1];		/* 0 1 2 */
1136 			v_usec = pps_tf[0] - pps_tf[2];
1137 		} else if (pps_tf[2] > pps_tf[0]) {
1138 			pps_offset = pps_tf[0];		/* 2 0 1 */
1139 			v_usec = pps_tf[2] - pps_tf[1];
1140 		} else {
1141 			pps_offset = pps_tf[2];		/* 0 2 1 */
1142 			v_usec = pps_tf[0] - pps_tf[1];
1143 		}
1144 	} else {
1145 		if (pps_tf[1] < pps_tf[2]) {
1146 			pps_offset = pps_tf[1];		/* 2 1 0 */
1147 			v_usec = pps_tf[2] - pps_tf[0];
1148 		} else  if (pps_tf[2] < pps_tf[0]) {
1149 			pps_offset = pps_tf[0];		/* 1 0 2 */
1150 			v_usec = pps_tf[1] - pps_tf[2];
1151 		} else {
1152 			pps_offset = pps_tf[2];		/* 1 2 0 */
1153 			v_usec = pps_tf[1] - pps_tf[0];
1154 		}
1155 	}
1156 	if (v_usec > MAXTIME)
1157 		pps_jitcnt++;
1158 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1159 	if (v_usec < 0)
1160 		pps_jitter -= -v_usec >> PPS_AVG;
1161 	else
1162 		pps_jitter += v_usec >> PPS_AVG;
1163 	if (pps_jitter > (MAXTIME >> 1))
1164 		time_status |= STA_PPSJITTER;
1165 
1166 	/*
1167 	 * During the calibration interval adjust the starting time when
1168 	 * the tick overflows. At the end of the interval compute the
1169 	 * duration of the interval and the difference of the hardware
1170 	 * counters at the beginning and end of the interval. This code
1171 	 * is deliciously complicated by the fact valid differences may
1172 	 * exceed the value of tick when using long calibration
1173 	 * intervals and small ticks. Note that the counter can be
1174 	 * greater than tick if caught at just the wrong instant, but
1175 	 * the values returned and used here are correct.
1176 	 */
1177 	bigtick = (long)tick << SHIFT_USEC;
1178 	pps_usec -= pps_freq;
1179 	if (pps_usec >= bigtick)
1180 		pps_usec -= bigtick;
1181 	if (pps_usec < 0)
1182 		pps_usec += bigtick;
1183 	pps_time.tv_sec++;
1184 	pps_count++;
1185 	if (pps_count < (1 << pps_shift))
1186 		return;
1187 	pps_count = 0;
1188 	pps_calcnt++;
1189 	u_usec = usec << SHIFT_USEC;
1190 	v_usec = pps_usec - u_usec;
1191 	if (v_usec >= bigtick >> 1)
1192 		v_usec -= bigtick;
1193 	if (v_usec < -(bigtick >> 1))
1194 		v_usec += bigtick;
1195 	if (v_usec < 0)
1196 		v_usec = -(-v_usec >> pps_shift);
1197 	else
1198 		v_usec = v_usec >> pps_shift;
1199 	pps_usec = u_usec;
1200 	cal_sec = tvp->tv_sec;
1201 	cal_usec = tvp->tv_usec;
1202 	cal_sec -= pps_time.tv_sec;
1203 	cal_usec -= pps_time.tv_usec;
1204 	if (cal_usec < 0) {
1205 		cal_usec += 1000000;
1206 		cal_sec--;
1207 	}
1208 	pps_time = *tvp;
1209 
1210 	/*
1211 	 * Check for lost interrupts, noise, excessive jitter and
1212 	 * excessive frequency error. The number of timer ticks during
1213 	 * the interval may vary +-1 tick. Add to this a margin of one
1214 	 * tick for the PPS signal jitter and maximum frequency
1215 	 * deviation. If the limits are exceeded, the calibration
1216 	 * interval is reset to the minimum and we start over.
1217 	 */
1218 	u_usec = (long)tick << 1;
1219 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1220 	    || (cal_sec == 0 && cal_usec < u_usec))
1221 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1222 		pps_errcnt++;
1223 		pps_shift = PPS_SHIFT;
1224 		pps_intcnt = 0;
1225 		time_status |= STA_PPSERROR;
1226 		return;
1227 	}
1228 
1229 	/*
1230 	 * A three-stage median filter is used to help deglitch the pps
1231 	 * frequency. The median sample becomes the frequency offset
1232 	 * estimate; the difference between the other two samples
1233 	 * becomes the frequency dispersion (stability) estimate.
1234 	 */
1235 	pps_ff[2] = pps_ff[1];
1236 	pps_ff[1] = pps_ff[0];
1237 	pps_ff[0] = v_usec;
1238 	if (pps_ff[0] > pps_ff[1]) {
1239 		if (pps_ff[1] > pps_ff[2]) {
1240 			u_usec = pps_ff[1];		/* 0 1 2 */
1241 			v_usec = pps_ff[0] - pps_ff[2];
1242 		} else if (pps_ff[2] > pps_ff[0]) {
1243 			u_usec = pps_ff[0];		/* 2 0 1 */
1244 			v_usec = pps_ff[2] - pps_ff[1];
1245 		} else {
1246 			u_usec = pps_ff[2];		/* 0 2 1 */
1247 			v_usec = pps_ff[0] - pps_ff[1];
1248 		}
1249 	} else {
1250 		if (pps_ff[1] < pps_ff[2]) {
1251 			u_usec = pps_ff[1];		/* 2 1 0 */
1252 			v_usec = pps_ff[2] - pps_ff[0];
1253 		} else  if (pps_ff[2] < pps_ff[0]) {
1254 			u_usec = pps_ff[0];		/* 1 0 2 */
1255 			v_usec = pps_ff[1] - pps_ff[2];
1256 		} else {
1257 			u_usec = pps_ff[2];		/* 1 2 0 */
1258 			v_usec = pps_ff[1] - pps_ff[0];
1259 		}
1260 	}
1261 
1262 	/*
1263 	 * Here the frequency dispersion (stability) is updated. If it
1264 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1265 	 * offset is updated as well, but clamped to the tolerance. It
1266 	 * will be processed later by the hardclock() routine.
1267 	 */
1268 	v_usec = (v_usec >> 1) - pps_stabil;
1269 	if (v_usec < 0)
1270 		pps_stabil -= -v_usec >> PPS_AVG;
1271 	else
1272 		pps_stabil += v_usec >> PPS_AVG;
1273 	if (pps_stabil > MAXFREQ >> 2) {
1274 		pps_stbcnt++;
1275 		time_status |= STA_PPSWANDER;
1276 		return;
1277 	}
1278 	if (time_status & STA_PPSFREQ) {
1279 		if (u_usec < 0) {
1280 			pps_freq -= -u_usec >> PPS_AVG;
1281 			if (pps_freq < -time_tolerance)
1282 				pps_freq = -time_tolerance;
1283 			u_usec = -u_usec;
1284 		} else {
1285 			pps_freq += u_usec >> PPS_AVG;
1286 			if (pps_freq > time_tolerance)
1287 				pps_freq = time_tolerance;
1288 		}
1289 	}
1290 
1291 	/*
1292 	 * Here the calibration interval is adjusted. If the maximum
1293 	 * time difference is greater than tick / 4, reduce the interval
1294 	 * by half. If this is not the case for four consecutive
1295 	 * intervals, double the interval.
1296 	 */
1297 	if (u_usec << pps_shift > bigtick >> 2) {
1298 		pps_intcnt = 0;
1299 		if (pps_shift > PPS_SHIFT)
1300 			pps_shift--;
1301 	} else if (pps_intcnt >= 4) {
1302 		pps_intcnt = 0;
1303 		if (pps_shift < PPS_SHIFTMAX)
1304 			pps_shift++;
1305 	} else
1306 		pps_intcnt++;
1307 }
1308 #endif /* PPS_SYNC */
1309 #endif /* NTP  */
1310 
1311 
1312 /*
1313  * Return information about system clocks.
1314  */
1315 int
1316 sysctl_clockrate(where, sizep)
1317 	register char *where;
1318 	size_t *sizep;
1319 {
1320 	struct clockinfo clkinfo;
1321 
1322 	/*
1323 	 * Construct clockinfo structure.
1324 	 */
1325 	clkinfo.tick = tick;
1326 	clkinfo.tickadj = tickadj;
1327 	clkinfo.hz = hz;
1328 	clkinfo.profhz = profhz;
1329 	clkinfo.stathz = stathz ? stathz : hz;
1330 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1331 }
1332 
1333