1 /* $NetBSD: kern_clock.c,v 1.77 2001/09/13 05:22:17 enami Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /*- 41 * Copyright (c) 1982, 1986, 1991, 1993 42 * The Regents of the University of California. All rights reserved. 43 * (c) UNIX System Laboratories, Inc. 44 * All or some portions of this file are derived from material licensed 45 * to the University of California by American Telephone and Telegraph 46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 47 * the permission of UNIX System Laboratories, Inc. 48 * 49 * Redistribution and use in source and binary forms, with or without 50 * modification, are permitted provided that the following conditions 51 * are met: 52 * 1. Redistributions of source code must retain the above copyright 53 * notice, this list of conditions and the following disclaimer. 54 * 2. Redistributions in binary form must reproduce the above copyright 55 * notice, this list of conditions and the following disclaimer in the 56 * documentation and/or other materials provided with the distribution. 57 * 3. All advertising materials mentioning features or use of this software 58 * must display the following acknowledgement: 59 * This product includes software developed by the University of 60 * California, Berkeley and its contributors. 61 * 4. Neither the name of the University nor the names of its contributors 62 * may be used to endorse or promote products derived from this software 63 * without specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 75 * SUCH DAMAGE. 76 * 77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 78 */ 79 80 #include "opt_callout.h" 81 #include "opt_ntp.h" 82 83 #include <sys/param.h> 84 #include <sys/systm.h> 85 #include <sys/dkstat.h> 86 #include <sys/callout.h> 87 #include <sys/kernel.h> 88 #include <sys/proc.h> 89 #include <sys/resourcevar.h> 90 #include <sys/signalvar.h> 91 #include <uvm/uvm_extern.h> 92 #include <sys/sysctl.h> 93 #include <sys/timex.h> 94 #include <sys/sched.h> 95 #ifdef CALLWHEEL_STATS 96 #include <sys/device.h> 97 #endif 98 99 #include <machine/cpu.h> 100 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 101 #include <machine/intr.h> 102 #endif 103 104 #ifdef GPROF 105 #include <sys/gmon.h> 106 #endif 107 108 /* 109 * Clock handling routines. 110 * 111 * This code is written to operate with two timers that run independently of 112 * each other. The main clock, running hz times per second, is used to keep 113 * track of real time. The second timer handles kernel and user profiling, 114 * and does resource use estimation. If the second timer is programmable, 115 * it is randomized to avoid aliasing between the two clocks. For example, 116 * the randomization prevents an adversary from always giving up the cpu 117 * just before its quantum expires. Otherwise, it would never accumulate 118 * cpu ticks. The mean frequency of the second timer is stathz. 119 * 120 * If no second timer exists, stathz will be zero; in this case we drive 121 * profiling and statistics off the main clock. This WILL NOT be accurate; 122 * do not do it unless absolutely necessary. 123 * 124 * The statistics clock may (or may not) be run at a higher rate while 125 * profiling. This profile clock runs at profhz. We require that profhz 126 * be an integral multiple of stathz. 127 * 128 * If the statistics clock is running fast, it must be divided by the ratio 129 * profhz/stathz for statistics. (For profiling, every tick counts.) 130 */ 131 132 #ifdef NTP /* NTP phase-locked loop in kernel */ 133 /* 134 * Phase/frequency-lock loop (PLL/FLL) definitions 135 * 136 * The following variables are read and set by the ntp_adjtime() system 137 * call. 138 * 139 * time_state shows the state of the system clock, with values defined 140 * in the timex.h header file. 141 * 142 * time_status shows the status of the system clock, with bits defined 143 * in the timex.h header file. 144 * 145 * time_offset is used by the PLL/FLL to adjust the system time in small 146 * increments. 147 * 148 * time_constant determines the bandwidth or "stiffness" of the PLL. 149 * 150 * time_tolerance determines maximum frequency error or tolerance of the 151 * CPU clock oscillator and is a property of the architecture; however, 152 * in principle it could change as result of the presence of external 153 * discipline signals, for instance. 154 * 155 * time_precision is usually equal to the kernel tick variable; however, 156 * in cases where a precision clock counter or external clock is 157 * available, the resolution can be much less than this and depend on 158 * whether the external clock is working or not. 159 * 160 * time_maxerror is initialized by a ntp_adjtime() call and increased by 161 * the kernel once each second to reflect the maximum error bound 162 * growth. 163 * 164 * time_esterror is set and read by the ntp_adjtime() call, but 165 * otherwise not used by the kernel. 166 */ 167 int time_state = TIME_OK; /* clock state */ 168 int time_status = STA_UNSYNC; /* clock status bits */ 169 long time_offset = 0; /* time offset (us) */ 170 long time_constant = 0; /* pll time constant */ 171 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 172 long time_precision = 1; /* clock precision (us) */ 173 long time_maxerror = MAXPHASE; /* maximum error (us) */ 174 long time_esterror = MAXPHASE; /* estimated error (us) */ 175 176 /* 177 * The following variables establish the state of the PLL/FLL and the 178 * residual time and frequency offset of the local clock. The scale 179 * factors are defined in the timex.h header file. 180 * 181 * time_phase and time_freq are the phase increment and the frequency 182 * increment, respectively, of the kernel time variable. 183 * 184 * time_freq is set via ntp_adjtime() from a value stored in a file when 185 * the synchronization daemon is first started. Its value is retrieved 186 * via ntp_adjtime() and written to the file about once per hour by the 187 * daemon. 188 * 189 * time_adj is the adjustment added to the value of tick at each timer 190 * interrupt and is recomputed from time_phase and time_freq at each 191 * seconds rollover. 192 * 193 * time_reftime is the second's portion of the system time at the last 194 * call to ntp_adjtime(). It is used to adjust the time_freq variable 195 * and to increase the time_maxerror as the time since last update 196 * increases. 197 */ 198 long time_phase = 0; /* phase offset (scaled us) */ 199 long time_freq = 0; /* frequency offset (scaled ppm) */ 200 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 201 long time_reftime = 0; /* time at last adjustment (s) */ 202 203 #ifdef PPS_SYNC 204 /* 205 * The following variables are used only if the kernel PPS discipline 206 * code is configured (PPS_SYNC). The scale factors are defined in the 207 * timex.h header file. 208 * 209 * pps_time contains the time at each calibration interval, as read by 210 * microtime(). pps_count counts the seconds of the calibration 211 * interval, the duration of which is nominally pps_shift in powers of 212 * two. 213 * 214 * pps_offset is the time offset produced by the time median filter 215 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 216 * this filter. 217 * 218 * pps_freq is the frequency offset produced by the frequency median 219 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 220 * by this filter. 221 * 222 * pps_usec is latched from a high resolution counter or external clock 223 * at pps_time. Here we want the hardware counter contents only, not the 224 * contents plus the time_tv.usec as usual. 225 * 226 * pps_valid counts the number of seconds since the last PPS update. It 227 * is used as a watchdog timer to disable the PPS discipline should the 228 * PPS signal be lost. 229 * 230 * pps_glitch counts the number of seconds since the beginning of an 231 * offset burst more than tick/2 from current nominal offset. It is used 232 * mainly to suppress error bursts due to priority conflicts between the 233 * PPS interrupt and timer interrupt. 234 * 235 * pps_intcnt counts the calibration intervals for use in the interval- 236 * adaptation algorithm. It's just too complicated for words. 237 */ 238 struct timeval pps_time; /* kernel time at last interval */ 239 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 240 long pps_offset = 0; /* pps time offset (us) */ 241 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 242 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 243 long pps_freq = 0; /* frequency offset (scaled ppm) */ 244 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 245 long pps_usec = 0; /* microsec counter at last interval */ 246 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 247 int pps_glitch = 0; /* pps signal glitch counter */ 248 int pps_count = 0; /* calibration interval counter (s) */ 249 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 250 int pps_intcnt = 0; /* intervals at current duration */ 251 252 /* 253 * PPS signal quality monitors 254 * 255 * pps_jitcnt counts the seconds that have been discarded because the 256 * jitter measured by the time median filter exceeds the limit MAXTIME 257 * (100 us). 258 * 259 * pps_calcnt counts the frequency calibration intervals, which are 260 * variable from 4 s to 256 s. 261 * 262 * pps_errcnt counts the calibration intervals which have been discarded 263 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 264 * calibration interval jitter exceeds two ticks. 265 * 266 * pps_stbcnt counts the calibration intervals that have been discarded 267 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 268 */ 269 long pps_jitcnt = 0; /* jitter limit exceeded */ 270 long pps_calcnt = 0; /* calibration intervals */ 271 long pps_errcnt = 0; /* calibration errors */ 272 long pps_stbcnt = 0; /* stability limit exceeded */ 273 #endif /* PPS_SYNC */ 274 275 #ifdef EXT_CLOCK 276 /* 277 * External clock definitions 278 * 279 * The following definitions and declarations are used only if an 280 * external clock is configured on the system. 281 */ 282 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 283 284 /* 285 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 286 * interrupt and decremented once each second. 287 */ 288 int clock_count = 0; /* CPU clock counter */ 289 290 #ifdef HIGHBALL 291 /* 292 * The clock_offset and clock_cpu variables are used by the HIGHBALL 293 * interface. The clock_offset variable defines the offset between 294 * system time and the HIGBALL counters. The clock_cpu variable contains 295 * the offset between the system clock and the HIGHBALL clock for use in 296 * disciplining the kernel time variable. 297 */ 298 extern struct timeval clock_offset; /* Highball clock offset */ 299 long clock_cpu = 0; /* CPU clock adjust */ 300 #endif /* HIGHBALL */ 301 #endif /* EXT_CLOCK */ 302 #endif /* NTP */ 303 304 305 /* 306 * Bump a timeval by a small number of usec's. 307 */ 308 #define BUMPTIME(t, usec) { \ 309 volatile struct timeval *tp = (t); \ 310 long us; \ 311 \ 312 tp->tv_usec = us = tp->tv_usec + (usec); \ 313 if (us >= 1000000) { \ 314 tp->tv_usec = us - 1000000; \ 315 tp->tv_sec++; \ 316 } \ 317 } 318 319 int stathz; 320 int profhz; 321 int schedhz; 322 int profprocs; 323 int softclock_running; /* 1 => softclock() is running */ 324 static int psdiv; /* prof => stat divider */ 325 int psratio; /* ratio: prof / stat */ 326 int tickfix, tickfixinterval; /* used if tick not really integral */ 327 #ifndef NTP 328 static int tickfixcnt; /* accumulated fractional error */ 329 #else 330 int fixtick; /* used by NTP for same */ 331 int shifthz; 332 #endif 333 334 /* 335 * We might want ldd to load the both words from time at once. 336 * To succeed we need to be quadword aligned. 337 * The sparc already does that, and that it has worked so far is a fluke. 338 */ 339 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t)))); 340 volatile struct timeval mono_time; 341 342 /* 343 * The callout mechanism is based on the work of Adam M. Costello and 344 * George Varghese, published in a technical report entitled "Redesigning 345 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent 346 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe. 347 * 348 * The original work on the data structures used in this implementation 349 * was published by G. Varghese and A. Lauck in the paper "Hashed and 350 * Hierarchical Timing Wheels: Data Structures for the Efficient 351 * Implementation of a Timer Facility" in the Proceedings of the 11th 352 * ACM Annual Symposium on Operating System Principles, Austin, Texas, 353 * November 1987. 354 */ 355 struct callout_queue *callwheel; 356 int callwheelsize, callwheelbits, callwheelmask; 357 358 static struct callout *nextsoftcheck; /* next callout to be checked */ 359 360 #ifdef CALLWHEEL_STATS 361 int *callwheel_sizes; /* per-bucket length count */ 362 struct evcnt callwheel_collisions; /* number of hash collisions */ 363 struct evcnt callwheel_maxlength; /* length of the longest hash chain */ 364 struct evcnt callwheel_count; /* # callouts currently */ 365 struct evcnt callwheel_established; /* # callouts established */ 366 struct evcnt callwheel_fired; /* # callouts that fired */ 367 struct evcnt callwheel_disestablished; /* # callouts disestablished */ 368 struct evcnt callwheel_changed; /* # callouts changed */ 369 struct evcnt callwheel_softclocks; /* # times softclock() called */ 370 struct evcnt callwheel_softchecks; /* # checks per softclock() */ 371 struct evcnt callwheel_softempty; /* # empty buckets seen */ 372 struct evcnt callwheel_hintworked; /* # times hint saved scan */ 373 #endif /* CALLWHEEL_STATS */ 374 375 /* 376 * This value indicates the number of consecutive callouts that 377 * will be checked before we allow interrupts to have a chance 378 * again. 379 */ 380 #ifndef MAX_SOFTCLOCK_STEPS 381 #define MAX_SOFTCLOCK_STEPS 100 382 #endif 383 384 struct simplelock callwheel_slock; 385 386 #define CALLWHEEL_LOCK(s) \ 387 do { \ 388 s = splclock(); \ 389 simple_lock(&callwheel_slock); \ 390 } while (0) 391 392 #define CALLWHEEL_UNLOCK(s) \ 393 do { \ 394 simple_unlock(&callwheel_slock); \ 395 splx(s); \ 396 } while (0) 397 398 static void callout_stop_locked(struct callout *); 399 400 /* 401 * These are both protected by callwheel_lock. 402 * XXX SHOULD BE STATIC!! 403 */ 404 u_int64_t hardclock_ticks, softclock_ticks; 405 406 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 407 void softclock(void *); 408 void *softclock_si; 409 #endif 410 411 /* 412 * Initialize clock frequencies and start both clocks running. 413 */ 414 void 415 initclocks(void) 416 { 417 int i; 418 419 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 420 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL); 421 if (softclock_si == NULL) 422 panic("initclocks: unable to register softclock intr"); 423 #endif 424 425 /* 426 * Set divisors to 1 (normal case) and let the machine-specific 427 * code do its bit. 428 */ 429 psdiv = 1; 430 cpu_initclocks(); 431 432 /* 433 * Compute profhz/stathz/rrticks, and fix profhz if needed. 434 */ 435 i = stathz ? stathz : hz; 436 if (profhz == 0) 437 profhz = i; 438 psratio = profhz / i; 439 rrticks = hz / 10; 440 441 #ifdef NTP 442 switch (hz) { 443 case 1: 444 shifthz = SHIFT_SCALE - 0; 445 break; 446 case 2: 447 shifthz = SHIFT_SCALE - 1; 448 break; 449 case 4: 450 shifthz = SHIFT_SCALE - 2; 451 break; 452 case 8: 453 shifthz = SHIFT_SCALE - 3; 454 break; 455 case 16: 456 shifthz = SHIFT_SCALE - 4; 457 break; 458 case 32: 459 shifthz = SHIFT_SCALE - 5; 460 break; 461 case 60: 462 case 64: 463 shifthz = SHIFT_SCALE - 6; 464 break; 465 case 96: 466 case 100: 467 case 128: 468 shifthz = SHIFT_SCALE - 7; 469 break; 470 case 256: 471 shifthz = SHIFT_SCALE - 8; 472 break; 473 case 512: 474 shifthz = SHIFT_SCALE - 9; 475 break; 476 case 1000: 477 case 1024: 478 shifthz = SHIFT_SCALE - 10; 479 break; 480 case 1200: 481 case 2048: 482 shifthz = SHIFT_SCALE - 11; 483 break; 484 case 4096: 485 shifthz = SHIFT_SCALE - 12; 486 break; 487 case 8192: 488 shifthz = SHIFT_SCALE - 13; 489 break; 490 case 16384: 491 shifthz = SHIFT_SCALE - 14; 492 break; 493 case 32768: 494 shifthz = SHIFT_SCALE - 15; 495 break; 496 case 65536: 497 shifthz = SHIFT_SCALE - 16; 498 break; 499 default: 500 panic("weird hz"); 501 } 502 if (fixtick == 0) { 503 /* 504 * Give MD code a chance to set this to a better 505 * value; but, if it doesn't, we should. 506 */ 507 fixtick = (1000000 - (hz*tick)); 508 } 509 #endif 510 } 511 512 /* 513 * The real-time timer, interrupting hz times per second. 514 */ 515 void 516 hardclock(struct clockframe *frame) 517 { 518 struct proc *p; 519 int delta; 520 extern int tickdelta; 521 extern long timedelta; 522 struct cpu_info *ci = curcpu(); 523 #ifdef NTP 524 int time_update; 525 int ltemp; 526 #endif 527 528 p = curproc; 529 if (p) { 530 struct pstats *pstats; 531 532 /* 533 * Run current process's virtual and profile time, as needed. 534 */ 535 pstats = p->p_stats; 536 if (CLKF_USERMODE(frame) && 537 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 538 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 539 psignal(p, SIGVTALRM); 540 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 541 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 542 psignal(p, SIGPROF); 543 } 544 545 /* 546 * If no separate statistics clock is available, run it from here. 547 */ 548 if (stathz == 0) 549 statclock(frame); 550 if ((--ci->ci_schedstate.spc_rrticks) <= 0) 551 roundrobin(ci); 552 553 #if defined(MULTIPROCESSOR) 554 /* 555 * If we are not the primary CPU, we're not allowed to do 556 * any more work. 557 */ 558 if (CPU_IS_PRIMARY(ci) == 0) 559 return; 560 #endif 561 562 /* 563 * Increment the time-of-day. The increment is normally just 564 * ``tick''. If the machine is one which has a clock frequency 565 * such that ``hz'' would not divide the second evenly into 566 * milliseconds, a periodic adjustment must be applied. Finally, 567 * if we are still adjusting the time (see adjtime()), 568 * ``tickdelta'' may also be added in. 569 */ 570 delta = tick; 571 572 #ifndef NTP 573 if (tickfix) { 574 tickfixcnt += tickfix; 575 if (tickfixcnt >= tickfixinterval) { 576 delta++; 577 tickfixcnt -= tickfixinterval; 578 } 579 } 580 #endif /* !NTP */ 581 /* Imprecise 4bsd adjtime() handling */ 582 if (timedelta != 0) { 583 delta += tickdelta; 584 timedelta -= tickdelta; 585 } 586 587 #ifdef notyet 588 microset(); 589 #endif 590 591 #ifndef NTP 592 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 593 #endif 594 BUMPTIME(&mono_time, delta); 595 596 #ifdef NTP 597 time_update = delta; 598 599 /* 600 * Compute the phase adjustment. If the low-order bits 601 * (time_phase) of the update overflow, bump the high-order bits 602 * (time_update). 603 */ 604 time_phase += time_adj; 605 if (time_phase <= -FINEUSEC) { 606 ltemp = -time_phase >> SHIFT_SCALE; 607 time_phase += ltemp << SHIFT_SCALE; 608 time_update -= ltemp; 609 } else if (time_phase >= FINEUSEC) { 610 ltemp = time_phase >> SHIFT_SCALE; 611 time_phase -= ltemp << SHIFT_SCALE; 612 time_update += ltemp; 613 } 614 615 #ifdef HIGHBALL 616 /* 617 * If the HIGHBALL board is installed, we need to adjust the 618 * external clock offset in order to close the hardware feedback 619 * loop. This will adjust the external clock phase and frequency 620 * in small amounts. The additional phase noise and frequency 621 * wander this causes should be minimal. We also need to 622 * discipline the kernel time variable, since the PLL is used to 623 * discipline the external clock. If the Highball board is not 624 * present, we discipline kernel time with the PLL as usual. We 625 * assume that the external clock phase adjustment (time_update) 626 * and kernel phase adjustment (clock_cpu) are less than the 627 * value of tick. 628 */ 629 clock_offset.tv_usec += time_update; 630 if (clock_offset.tv_usec >= 1000000) { 631 clock_offset.tv_sec++; 632 clock_offset.tv_usec -= 1000000; 633 } 634 if (clock_offset.tv_usec < 0) { 635 clock_offset.tv_sec--; 636 clock_offset.tv_usec += 1000000; 637 } 638 time.tv_usec += clock_cpu; 639 clock_cpu = 0; 640 #else 641 time.tv_usec += time_update; 642 #endif /* HIGHBALL */ 643 644 /* 645 * On rollover of the second the phase adjustment to be used for 646 * the next second is calculated. Also, the maximum error is 647 * increased by the tolerance. If the PPS frequency discipline 648 * code is present, the phase is increased to compensate for the 649 * CPU clock oscillator frequency error. 650 * 651 * On a 32-bit machine and given parameters in the timex.h 652 * header file, the maximum phase adjustment is +-512 ms and 653 * maximum frequency offset is a tad less than) +-512 ppm. On a 654 * 64-bit machine, you shouldn't need to ask. 655 */ 656 if (time.tv_usec >= 1000000) { 657 time.tv_usec -= 1000000; 658 time.tv_sec++; 659 time_maxerror += time_tolerance >> SHIFT_USEC; 660 661 /* 662 * Leap second processing. If in leap-insert state at 663 * the end of the day, the system clock is set back one 664 * second; if in leap-delete state, the system clock is 665 * set ahead one second. The microtime() routine or 666 * external clock driver will insure that reported time 667 * is always monotonic. The ugly divides should be 668 * replaced. 669 */ 670 switch (time_state) { 671 case TIME_OK: 672 if (time_status & STA_INS) 673 time_state = TIME_INS; 674 else if (time_status & STA_DEL) 675 time_state = TIME_DEL; 676 break; 677 678 case TIME_INS: 679 if (time.tv_sec % 86400 == 0) { 680 time.tv_sec--; 681 time_state = TIME_OOP; 682 } 683 break; 684 685 case TIME_DEL: 686 if ((time.tv_sec + 1) % 86400 == 0) { 687 time.tv_sec++; 688 time_state = TIME_WAIT; 689 } 690 break; 691 692 case TIME_OOP: 693 time_state = TIME_WAIT; 694 break; 695 696 case TIME_WAIT: 697 if (!(time_status & (STA_INS | STA_DEL))) 698 time_state = TIME_OK; 699 break; 700 } 701 702 /* 703 * Compute the phase adjustment for the next second. In 704 * PLL mode, the offset is reduced by a fixed factor 705 * times the time constant. In FLL mode the offset is 706 * used directly. In either mode, the maximum phase 707 * adjustment for each second is clamped so as to spread 708 * the adjustment over not more than the number of 709 * seconds between updates. 710 */ 711 if (time_offset < 0) { 712 ltemp = -time_offset; 713 if (!(time_status & STA_FLL)) 714 ltemp >>= SHIFT_KG + time_constant; 715 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 716 ltemp = (MAXPHASE / MINSEC) << 717 SHIFT_UPDATE; 718 time_offset += ltemp; 719 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 720 } else if (time_offset > 0) { 721 ltemp = time_offset; 722 if (!(time_status & STA_FLL)) 723 ltemp >>= SHIFT_KG + time_constant; 724 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 725 ltemp = (MAXPHASE / MINSEC) << 726 SHIFT_UPDATE; 727 time_offset -= ltemp; 728 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 729 } else 730 time_adj = 0; 731 732 /* 733 * Compute the frequency estimate and additional phase 734 * adjustment due to frequency error for the next 735 * second. When the PPS signal is engaged, gnaw on the 736 * watchdog counter and update the frequency computed by 737 * the pll and the PPS signal. 738 */ 739 #ifdef PPS_SYNC 740 pps_valid++; 741 if (pps_valid == PPS_VALID) { 742 pps_jitter = MAXTIME; 743 pps_stabil = MAXFREQ; 744 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 745 STA_PPSWANDER | STA_PPSERROR); 746 } 747 ltemp = time_freq + pps_freq; 748 #else 749 ltemp = time_freq; 750 #endif /* PPS_SYNC */ 751 752 if (ltemp < 0) 753 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 754 else 755 time_adj += ltemp >> (SHIFT_USEC - shifthz); 756 time_adj += (long)fixtick << shifthz; 757 758 /* 759 * When the CPU clock oscillator frequency is not a 760 * power of 2 in Hz, shifthz is only an approximate 761 * scale factor. 762 * 763 * To determine the adjustment, you can do the following: 764 * bc -q 765 * scale=24 766 * obase=2 767 * idealhz/realhz 768 * where `idealhz' is the next higher power of 2, and `realhz' 769 * is the actual value. You may need to factor this result 770 * into a sequence of 2 multipliers to get better precision. 771 * 772 * Likewise, the error can be calculated with (e.g. for 100Hz): 773 * bc -q 774 * scale=24 775 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz 776 * (and then multiply by 1000000 to get ppm). 777 */ 778 switch (hz) { 779 case 60: 780 /* A factor of 1.000100010001 gives about 15ppm 781 error. */ 782 if (time_adj < 0) { 783 time_adj -= (-time_adj >> 4); 784 time_adj -= (-time_adj >> 8); 785 } else { 786 time_adj += (time_adj >> 4); 787 time_adj += (time_adj >> 8); 788 } 789 break; 790 791 case 96: 792 /* A factor of 1.0101010101 gives about 244ppm error. */ 793 if (time_adj < 0) { 794 time_adj -= (-time_adj >> 2); 795 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 796 } else { 797 time_adj += (time_adj >> 2); 798 time_adj += (time_adj >> 4) + (time_adj >> 8); 799 } 800 break; 801 802 case 100: 803 /* A factor of 1.010001111010111 gives about 1ppm 804 error. */ 805 if (time_adj < 0) { 806 time_adj -= (-time_adj >> 2) + (-time_adj >> 5); 807 time_adj += (-time_adj >> 10); 808 } else { 809 time_adj += (time_adj >> 2) + (time_adj >> 5); 810 time_adj -= (time_adj >> 10); 811 } 812 break; 813 814 case 1000: 815 /* A factor of 1.000001100010100001 gives about 50ppm 816 error. */ 817 if (time_adj < 0) { 818 time_adj -= (-time_adj >> 6) + (-time_adj >> 11); 819 time_adj -= (-time_adj >> 7); 820 } else { 821 time_adj += (time_adj >> 6) + (time_adj >> 11); 822 time_adj += (time_adj >> 7); 823 } 824 break; 825 826 case 1200: 827 /* A factor of 1.1011010011100001 gives about 64ppm 828 error. */ 829 if (time_adj < 0) { 830 time_adj -= (-time_adj >> 1) + (-time_adj >> 6); 831 time_adj -= (-time_adj >> 3) + (-time_adj >> 10); 832 } else { 833 time_adj += (time_adj >> 1) + (time_adj >> 6); 834 time_adj += (time_adj >> 3) + (time_adj >> 10); 835 } 836 break; 837 } 838 839 #ifdef EXT_CLOCK 840 /* 841 * If an external clock is present, it is necessary to 842 * discipline the kernel time variable anyway, since not 843 * all system components use the microtime() interface. 844 * Here, the time offset between the external clock and 845 * kernel time variable is computed every so often. 846 */ 847 clock_count++; 848 if (clock_count > CLOCK_INTERVAL) { 849 clock_count = 0; 850 microtime(&clock_ext); 851 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 852 delta.tv_usec = clock_ext.tv_usec - 853 time.tv_usec; 854 if (delta.tv_usec < 0) 855 delta.tv_sec--; 856 if (delta.tv_usec >= 500000) { 857 delta.tv_usec -= 1000000; 858 delta.tv_sec++; 859 } 860 if (delta.tv_usec < -500000) { 861 delta.tv_usec += 1000000; 862 delta.tv_sec--; 863 } 864 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 865 delta.tv_usec > MAXPHASE) || 866 delta.tv_sec < -1 || (delta.tv_sec == -1 && 867 delta.tv_usec < -MAXPHASE)) { 868 time = clock_ext; 869 delta.tv_sec = 0; 870 delta.tv_usec = 0; 871 } 872 #ifdef HIGHBALL 873 clock_cpu = delta.tv_usec; 874 #else /* HIGHBALL */ 875 hardupdate(delta.tv_usec); 876 #endif /* HIGHBALL */ 877 } 878 #endif /* EXT_CLOCK */ 879 } 880 881 #endif /* NTP */ 882 883 /* 884 * Process callouts at a very low cpu priority, so we don't keep the 885 * relatively high clock interrupt priority any longer than necessary. 886 */ 887 simple_lock(&callwheel_slock); /* already at splclock() */ 888 hardclock_ticks++; 889 if (! TAILQ_EMPTY(&callwheel[hardclock_ticks & callwheelmask].cq_q)) { 890 simple_unlock(&callwheel_slock); 891 if (CLKF_BASEPRI(frame)) { 892 /* 893 * Save the overhead of a software interrupt; 894 * it will happen as soon as we return, so do 895 * it now. 896 * 897 * NOTE: If we're at ``base priority'', softclock() 898 * was not already running. 899 */ 900 spllowersoftclock(); 901 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE); 902 softclock(NULL); 903 KERNEL_UNLOCK(); 904 } else { 905 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 906 softintr_schedule(softclock_si); 907 #else 908 setsoftclock(); 909 #endif 910 } 911 return; 912 } else if (softclock_running == 0 && 913 (softclock_ticks + 1) == hardclock_ticks) { 914 softclock_ticks++; 915 } 916 simple_unlock(&callwheel_slock); 917 } 918 919 /* 920 * Software (low priority) clock interrupt. 921 * Run periodic events from timeout queue. 922 */ 923 /*ARGSUSED*/ 924 void 925 softclock(void *v) 926 { 927 struct callout_queue *bucket; 928 struct callout *c; 929 void (*func)(void *); 930 void *arg; 931 int s, idx; 932 int steps = 0; 933 934 CALLWHEEL_LOCK(s); 935 936 softclock_running = 1; 937 938 #ifdef CALLWHEEL_STATS 939 callwheel_softclocks.ev_count++; 940 #endif 941 942 while (softclock_ticks != hardclock_ticks) { 943 softclock_ticks++; 944 idx = (int)(softclock_ticks & callwheelmask); 945 bucket = &callwheel[idx]; 946 c = TAILQ_FIRST(&bucket->cq_q); 947 if (c == NULL) { 948 #ifdef CALLWHEEL_STATS 949 callwheel_softempty.ev_count++; 950 #endif 951 continue; 952 } 953 if (softclock_ticks < bucket->cq_hint) { 954 #ifdef CALLWHEEL_STATS 955 callwheel_hintworked.ev_count++; 956 #endif 957 continue; 958 } 959 bucket->cq_hint = UQUAD_MAX; 960 while (c != NULL) { 961 #ifdef CALLWHEEL_STATS 962 callwheel_softchecks.ev_count++; 963 #endif 964 if (c->c_time != softclock_ticks) { 965 if (c->c_time < bucket->cq_hint) 966 bucket->cq_hint = c->c_time; 967 c = TAILQ_NEXT(c, c_link); 968 if (++steps >= MAX_SOFTCLOCK_STEPS) { 969 nextsoftcheck = c; 970 /* Give interrupts a chance. */ 971 CALLWHEEL_UNLOCK(s); 972 CALLWHEEL_LOCK(s); 973 c = nextsoftcheck; 974 steps = 0; 975 } 976 } else { 977 nextsoftcheck = TAILQ_NEXT(c, c_link); 978 TAILQ_REMOVE(&bucket->cq_q, c, c_link); 979 #ifdef CALLWHEEL_STATS 980 callwheel_sizes[idx]--; 981 callwheel_fired.ev_count++; 982 callwheel_count.ev_count--; 983 #endif 984 func = c->c_func; 985 arg = c->c_arg; 986 c->c_func = NULL; 987 c->c_flags &= ~CALLOUT_PENDING; 988 CALLWHEEL_UNLOCK(s); 989 (*func)(arg); 990 CALLWHEEL_LOCK(s); 991 steps = 0; 992 c = nextsoftcheck; 993 } 994 } 995 if (TAILQ_EMPTY(&bucket->cq_q)) 996 bucket->cq_hint = UQUAD_MAX; 997 } 998 nextsoftcheck = NULL; 999 softclock_running = 0; 1000 CALLWHEEL_UNLOCK(s); 1001 } 1002 1003 /* 1004 * callout_setsize: 1005 * 1006 * Determine how many callwheels are necessary and 1007 * set hash mask. Called from allocsys(). 1008 */ 1009 void 1010 callout_setsize(void) 1011 { 1012 1013 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1) 1014 /* loop */ ; 1015 callwheelmask = callwheelsize - 1; 1016 } 1017 1018 /* 1019 * callout_startup: 1020 * 1021 * Initialize the callwheel buckets. 1022 */ 1023 void 1024 callout_startup(void) 1025 { 1026 int i; 1027 1028 for (i = 0; i < callwheelsize; i++) { 1029 callwheel[i].cq_hint = UQUAD_MAX; 1030 TAILQ_INIT(&callwheel[i].cq_q); 1031 } 1032 1033 simple_lock_init(&callwheel_slock); 1034 1035 #ifdef CALLWHEEL_STATS 1036 evcnt_attach_dynamic(&callwheel_collisions, EVCNT_TYPE_MISC, 1037 NULL, "callwheel", "collisions"); 1038 evcnt_attach_dynamic(&callwheel_maxlength, EVCNT_TYPE_MISC, 1039 NULL, "callwheel", "maxlength"); 1040 evcnt_attach_dynamic(&callwheel_count, EVCNT_TYPE_MISC, 1041 NULL, "callwheel", "count"); 1042 evcnt_attach_dynamic(&callwheel_established, EVCNT_TYPE_MISC, 1043 NULL, "callwheel", "established"); 1044 evcnt_attach_dynamic(&callwheel_fired, EVCNT_TYPE_MISC, 1045 NULL, "callwheel", "fired"); 1046 evcnt_attach_dynamic(&callwheel_disestablished, EVCNT_TYPE_MISC, 1047 NULL, "callwheel", "disestablished"); 1048 evcnt_attach_dynamic(&callwheel_changed, EVCNT_TYPE_MISC, 1049 NULL, "callwheel", "changed"); 1050 evcnt_attach_dynamic(&callwheel_softclocks, EVCNT_TYPE_MISC, 1051 NULL, "callwheel", "softclocks"); 1052 evcnt_attach_dynamic(&callwheel_softempty, EVCNT_TYPE_MISC, 1053 NULL, "callwheel", "softempty"); 1054 evcnt_attach_dynamic(&callwheel_hintworked, EVCNT_TYPE_MISC, 1055 NULL, "callwheel", "hintworked"); 1056 #endif /* CALLWHEEL_STATS */ 1057 } 1058 1059 /* 1060 * callout_init: 1061 * 1062 * Initialize a callout structure so that it can be used 1063 * by callout_reset() and callout_stop(). 1064 */ 1065 void 1066 callout_init(struct callout *c) 1067 { 1068 1069 memset(c, 0, sizeof(*c)); 1070 } 1071 1072 /* 1073 * callout_reset: 1074 * 1075 * Establish or change a timeout. 1076 */ 1077 void 1078 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg) 1079 { 1080 struct callout_queue *bucket; 1081 int s; 1082 1083 if (ticks <= 0) 1084 ticks = 1; 1085 1086 CALLWHEEL_LOCK(s); 1087 1088 /* 1089 * If this callout's timer is already running, cancel it 1090 * before we modify it. 1091 */ 1092 if (c->c_flags & CALLOUT_PENDING) { 1093 callout_stop_locked(c); /* Already locked */ 1094 #ifdef CALLWHEEL_STATS 1095 callwheel_changed.ev_count++; 1096 #endif 1097 } 1098 1099 c->c_arg = arg; 1100 c->c_func = func; 1101 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING; 1102 c->c_time = hardclock_ticks + ticks; 1103 1104 bucket = &callwheel[c->c_time & callwheelmask]; 1105 1106 #ifdef CALLWHEEL_STATS 1107 if (! TAILQ_EMPTY(&bucket->cq_q)) 1108 callwheel_collisions.ev_count++; 1109 #endif 1110 1111 TAILQ_INSERT_TAIL(&bucket->cq_q, c, c_link); 1112 if (c->c_time < bucket->cq_hint) 1113 bucket->cq_hint = c->c_time; 1114 1115 #ifdef CALLWHEEL_STATS 1116 callwheel_count.ev_count++; 1117 callwheel_established.ev_count++; 1118 if (++callwheel_sizes[c->c_time & callwheelmask] > 1119 callwheel_maxlength.ev_count) 1120 callwheel_maxlength.ev_count = 1121 callwheel_sizes[c->c_time & callwheelmask]; 1122 #endif 1123 1124 CALLWHEEL_UNLOCK(s); 1125 } 1126 1127 /* 1128 * callout_stop_locked: 1129 * 1130 * Disestablish a timeout. Callwheel is locked. 1131 */ 1132 static void 1133 callout_stop_locked(struct callout *c) 1134 { 1135 struct callout_queue *bucket; 1136 1137 /* 1138 * Don't attempt to delete a callout that's not on the queue. 1139 */ 1140 if ((c->c_flags & CALLOUT_PENDING) == 0) { 1141 c->c_flags &= ~CALLOUT_ACTIVE; 1142 return; 1143 } 1144 1145 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); 1146 1147 if (nextsoftcheck == c) 1148 nextsoftcheck = TAILQ_NEXT(c, c_link); 1149 1150 bucket = &callwheel[c->c_time & callwheelmask]; 1151 TAILQ_REMOVE(&bucket->cq_q, c, c_link); 1152 if (TAILQ_EMPTY(&bucket->cq_q)) 1153 bucket->cq_hint = UQUAD_MAX; 1154 #ifdef CALLWHEEL_STATS 1155 callwheel_count.ev_count--; 1156 callwheel_disestablished.ev_count++; 1157 callwheel_sizes[c->c_time & callwheelmask]--; 1158 #endif 1159 1160 c->c_func = NULL; 1161 } 1162 1163 /* 1164 * callout_stop: 1165 * 1166 * Disestablish a timeout. Callwheel is unlocked. This is 1167 * the standard entry point. 1168 */ 1169 void 1170 callout_stop(struct callout *c) 1171 { 1172 int s; 1173 1174 CALLWHEEL_LOCK(s); 1175 callout_stop_locked(c); 1176 CALLWHEEL_UNLOCK(s); 1177 } 1178 1179 #ifdef CALLWHEEL_STATS 1180 /* 1181 * callout_showstats: 1182 * 1183 * Display callout statistics. Call it from DDB. 1184 */ 1185 void 1186 callout_showstats(void) 1187 { 1188 u_int64_t curticks; 1189 int s; 1190 1191 s = splclock(); 1192 curticks = softclock_ticks; 1193 splx(s); 1194 1195 printf("Callwheel statistics:\n"); 1196 printf("\tCallouts currently queued: %llu\n", 1197 (long long) callwheel_count.ev_count); 1198 printf("\tCallouts established: %llu\n", 1199 (long long) callwheel_established.ev_count); 1200 printf("\tCallouts disestablished: %llu\n", 1201 (long long) callwheel_disestablished.ev_count); 1202 if (callwheel_changed.ev_count != 0) 1203 printf("\t\tOf those, %llu were changes\n", 1204 (long long) callwheel_changed.ev_count); 1205 printf("\tCallouts that fired: %llu\n", 1206 (long long) callwheel_fired.ev_count); 1207 printf("\tNumber of buckets: %d\n", callwheelsize); 1208 printf("\tNumber of hash collisions: %llu\n", 1209 (long long) callwheel_collisions.ev_count); 1210 printf("\tMaximum hash chain length: %llu\n", 1211 (long long) callwheel_maxlength.ev_count); 1212 printf("\tSoftclocks: %llu, Softchecks: %llu\n", 1213 (long long) callwheel_softclocks.ev_count, 1214 (long long) callwheel_softchecks.ev_count); 1215 printf("\t\tEmpty buckets seen: %llu\n", 1216 (long long) callwheel_softempty.ev_count); 1217 printf("\t\tTimes hint saved scan: %llu\n", 1218 (long long) callwheel_hintworked.ev_count); 1219 } 1220 #endif 1221 1222 /* 1223 * Compute number of hz until specified time. Used to compute second 1224 * argument to callout_reset() from an absolute time. 1225 */ 1226 int 1227 hzto(struct timeval *tv) 1228 { 1229 unsigned long ticks; 1230 long sec, usec; 1231 int s; 1232 1233 /* 1234 * If the number of usecs in the whole seconds part of the time 1235 * difference fits in a long, then the total number of usecs will 1236 * fit in an unsigned long. Compute the total and convert it to 1237 * ticks, rounding up and adding 1 to allow for the current tick 1238 * to expire. Rounding also depends on unsigned long arithmetic 1239 * to avoid overflow. 1240 * 1241 * Otherwise, if the number of ticks in the whole seconds part of 1242 * the time difference fits in a long, then convert the parts to 1243 * ticks separately and add, using similar rounding methods and 1244 * overflow avoidance. This method would work in the previous 1245 * case, but it is slightly slower and assume that hz is integral. 1246 * 1247 * Otherwise, round the time difference down to the maximum 1248 * representable value. 1249 * 1250 * If ints are 32-bit, then the maximum value for any timeout in 1251 * 10ms ticks is 248 days. 1252 */ 1253 s = splclock(); 1254 sec = tv->tv_sec - time.tv_sec; 1255 usec = tv->tv_usec - time.tv_usec; 1256 splx(s); 1257 1258 if (usec < 0) { 1259 sec--; 1260 usec += 1000000; 1261 } 1262 1263 if (sec < 0 || (sec == 0 && usec <= 0)) { 1264 /* 1265 * Would expire now or in the past. Return 0 ticks. 1266 * This is different from the legacy hzto() interface, 1267 * and callers need to check for it. 1268 */ 1269 ticks = 0; 1270 } else if (sec <= (LONG_MAX / 1000000)) 1271 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1)) 1272 / tick) + 1; 1273 else if (sec <= (LONG_MAX / hz)) 1274 ticks = (sec * hz) + 1275 (((unsigned long)usec + (tick - 1)) / tick) + 1; 1276 else 1277 ticks = LONG_MAX; 1278 1279 if (ticks > INT_MAX) 1280 ticks = INT_MAX; 1281 1282 return ((int)ticks); 1283 } 1284 1285 /* 1286 * Start profiling on a process. 1287 * 1288 * Kernel profiling passes proc0 which never exits and hence 1289 * keeps the profile clock running constantly. 1290 */ 1291 void 1292 startprofclock(struct proc *p) 1293 { 1294 1295 if ((p->p_flag & P_PROFIL) == 0) { 1296 p->p_flag |= P_PROFIL; 1297 if (++profprocs == 1 && stathz != 0) 1298 psdiv = psratio; 1299 } 1300 } 1301 1302 /* 1303 * Stop profiling on a process. 1304 */ 1305 void 1306 stopprofclock(struct proc *p) 1307 { 1308 1309 if (p->p_flag & P_PROFIL) { 1310 p->p_flag &= ~P_PROFIL; 1311 if (--profprocs == 0 && stathz != 0) 1312 psdiv = 1; 1313 } 1314 } 1315 1316 /* 1317 * Statistics clock. Grab profile sample, and if divider reaches 0, 1318 * do process and kernel statistics. 1319 */ 1320 void 1321 statclock(struct clockframe *frame) 1322 { 1323 #ifdef GPROF 1324 struct gmonparam *g; 1325 intptr_t i; 1326 #endif 1327 struct cpu_info *ci = curcpu(); 1328 struct schedstate_percpu *spc = &ci->ci_schedstate; 1329 struct proc *p; 1330 1331 /* 1332 * Notice changes in divisor frequency, and adjust clock 1333 * frequency accordingly. 1334 */ 1335 if (spc->spc_psdiv != psdiv) { 1336 spc->spc_psdiv = psdiv; 1337 spc->spc_pscnt = psdiv; 1338 if (psdiv == 1) { 1339 setstatclockrate(stathz); 1340 } else { 1341 setstatclockrate(profhz); 1342 } 1343 } 1344 p = curproc; 1345 if (CLKF_USERMODE(frame)) { 1346 if (p->p_flag & P_PROFIL) 1347 addupc_intr(p, CLKF_PC(frame)); 1348 if (--spc->spc_pscnt > 0) 1349 return; 1350 /* 1351 * Came from user mode; CPU was in user state. 1352 * If this process is being profiled record the tick. 1353 */ 1354 p->p_uticks++; 1355 if (p->p_nice > NZERO) 1356 spc->spc_cp_time[CP_NICE]++; 1357 else 1358 spc->spc_cp_time[CP_USER]++; 1359 } else { 1360 #ifdef GPROF 1361 /* 1362 * Kernel statistics are just like addupc_intr, only easier. 1363 */ 1364 g = &_gmonparam; 1365 if (g->state == GMON_PROF_ON) { 1366 i = CLKF_PC(frame) - g->lowpc; 1367 if (i < g->textsize) { 1368 i /= HISTFRACTION * sizeof(*g->kcount); 1369 g->kcount[i]++; 1370 } 1371 } 1372 #endif 1373 #ifdef PROC_PC 1374 if (p && p->p_flag & P_PROFIL) 1375 addupc_intr(p, PROC_PC(p)); 1376 #endif 1377 if (--spc->spc_pscnt > 0) 1378 return; 1379 /* 1380 * Came from kernel mode, so we were: 1381 * - handling an interrupt, 1382 * - doing syscall or trap work on behalf of the current 1383 * user process, or 1384 * - spinning in the idle loop. 1385 * Whichever it is, charge the time as appropriate. 1386 * Note that we charge interrupts to the current process, 1387 * regardless of whether they are ``for'' that process, 1388 * so that we know how much of its real time was spent 1389 * in ``non-process'' (i.e., interrupt) work. 1390 */ 1391 if (CLKF_INTR(frame)) { 1392 if (p != NULL) 1393 p->p_iticks++; 1394 spc->spc_cp_time[CP_INTR]++; 1395 } else if (p != NULL) { 1396 p->p_sticks++; 1397 spc->spc_cp_time[CP_SYS]++; 1398 } else 1399 spc->spc_cp_time[CP_IDLE]++; 1400 } 1401 spc->spc_pscnt = psdiv; 1402 1403 if (p != NULL) { 1404 ++p->p_cpticks; 1405 /* 1406 * If no separate schedclock is provided, call it here 1407 * at ~~12-25 Hz, ~~16 Hz is best 1408 */ 1409 if (schedhz == 0) 1410 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0) 1411 schedclock(p); 1412 } 1413 } 1414 1415 1416 #ifdef NTP /* NTP phase-locked loop in kernel */ 1417 1418 /* 1419 * hardupdate() - local clock update 1420 * 1421 * This routine is called by ntp_adjtime() to update the local clock 1422 * phase and frequency. The implementation is of an adaptive-parameter, 1423 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1424 * time and frequency offset estimates for each call. If the kernel PPS 1425 * discipline code is configured (PPS_SYNC), the PPS signal itself 1426 * determines the new time offset, instead of the calling argument. 1427 * Presumably, calls to ntp_adjtime() occur only when the caller 1428 * believes the local clock is valid within some bound (+-128 ms with 1429 * NTP). If the caller's time is far different than the PPS time, an 1430 * argument will ensue, and it's not clear who will lose. 1431 * 1432 * For uncompensated quartz crystal oscillatores and nominal update 1433 * intervals less than 1024 s, operation should be in phase-lock mode 1434 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1435 * intervals greater than thiss, operation should be in frequency-lock 1436 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1437 * 1438 * Note: splclock() is in effect. 1439 */ 1440 void 1441 hardupdate(long offset) 1442 { 1443 long ltemp, mtemp; 1444 1445 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1446 return; 1447 ltemp = offset; 1448 #ifdef PPS_SYNC 1449 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1450 ltemp = pps_offset; 1451 #endif /* PPS_SYNC */ 1452 1453 /* 1454 * Scale the phase adjustment and clamp to the operating range. 1455 */ 1456 if (ltemp > MAXPHASE) 1457 time_offset = MAXPHASE << SHIFT_UPDATE; 1458 else if (ltemp < -MAXPHASE) 1459 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1460 else 1461 time_offset = ltemp << SHIFT_UPDATE; 1462 1463 /* 1464 * Select whether the frequency is to be controlled and in which 1465 * mode (PLL or FLL). Clamp to the operating range. Ugly 1466 * multiply/divide should be replaced someday. 1467 */ 1468 if (time_status & STA_FREQHOLD || time_reftime == 0) 1469 time_reftime = time.tv_sec; 1470 mtemp = time.tv_sec - time_reftime; 1471 time_reftime = time.tv_sec; 1472 if (time_status & STA_FLL) { 1473 if (mtemp >= MINSEC) { 1474 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1475 SHIFT_UPDATE)); 1476 if (ltemp < 0) 1477 time_freq -= -ltemp >> SHIFT_KH; 1478 else 1479 time_freq += ltemp >> SHIFT_KH; 1480 } 1481 } else { 1482 if (mtemp < MAXSEC) { 1483 ltemp *= mtemp; 1484 if (ltemp < 0) 1485 time_freq -= -ltemp >> (time_constant + 1486 time_constant + SHIFT_KF - 1487 SHIFT_USEC); 1488 else 1489 time_freq += ltemp >> (time_constant + 1490 time_constant + SHIFT_KF - 1491 SHIFT_USEC); 1492 } 1493 } 1494 if (time_freq > time_tolerance) 1495 time_freq = time_tolerance; 1496 else if (time_freq < -time_tolerance) 1497 time_freq = -time_tolerance; 1498 } 1499 1500 #ifdef PPS_SYNC 1501 /* 1502 * hardpps() - discipline CPU clock oscillator to external PPS signal 1503 * 1504 * This routine is called at each PPS interrupt in order to discipline 1505 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1506 * and leaves it in a handy spot for the hardclock() routine. It 1507 * integrates successive PPS phase differences and calculates the 1508 * frequency offset. This is used in hardclock() to discipline the CPU 1509 * clock oscillator so that intrinsic frequency error is cancelled out. 1510 * The code requires the caller to capture the time and hardware counter 1511 * value at the on-time PPS signal transition. 1512 * 1513 * Note that, on some Unix systems, this routine runs at an interrupt 1514 * priority level higher than the timer interrupt routine hardclock(). 1515 * Therefore, the variables used are distinct from the hardclock() 1516 * variables, except for certain exceptions: The PPS frequency pps_freq 1517 * and phase pps_offset variables are determined by this routine and 1518 * updated atomically. The time_tolerance variable can be considered a 1519 * constant, since it is infrequently changed, and then only when the 1520 * PPS signal is disabled. The watchdog counter pps_valid is updated 1521 * once per second by hardclock() and is atomically cleared in this 1522 * routine. 1523 */ 1524 void 1525 hardpps(struct timeval *tvp, /* time at PPS */ 1526 long usec /* hardware counter at PPS */) 1527 { 1528 long u_usec, v_usec, bigtick; 1529 long cal_sec, cal_usec; 1530 1531 /* 1532 * An occasional glitch can be produced when the PPS interrupt 1533 * occurs in the hardclock() routine before the time variable is 1534 * updated. Here the offset is discarded when the difference 1535 * between it and the last one is greater than tick/2, but not 1536 * if the interval since the first discard exceeds 30 s. 1537 */ 1538 time_status |= STA_PPSSIGNAL; 1539 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1540 pps_valid = 0; 1541 u_usec = -tvp->tv_usec; 1542 if (u_usec < -500000) 1543 u_usec += 1000000; 1544 v_usec = pps_offset - u_usec; 1545 if (v_usec < 0) 1546 v_usec = -v_usec; 1547 if (v_usec > (tick >> 1)) { 1548 if (pps_glitch > MAXGLITCH) { 1549 pps_glitch = 0; 1550 pps_tf[2] = u_usec; 1551 pps_tf[1] = u_usec; 1552 } else { 1553 pps_glitch++; 1554 u_usec = pps_offset; 1555 } 1556 } else 1557 pps_glitch = 0; 1558 1559 /* 1560 * A three-stage median filter is used to help deglitch the pps 1561 * time. The median sample becomes the time offset estimate; the 1562 * difference between the other two samples becomes the time 1563 * dispersion (jitter) estimate. 1564 */ 1565 pps_tf[2] = pps_tf[1]; 1566 pps_tf[1] = pps_tf[0]; 1567 pps_tf[0] = u_usec; 1568 if (pps_tf[0] > pps_tf[1]) { 1569 if (pps_tf[1] > pps_tf[2]) { 1570 pps_offset = pps_tf[1]; /* 0 1 2 */ 1571 v_usec = pps_tf[0] - pps_tf[2]; 1572 } else if (pps_tf[2] > pps_tf[0]) { 1573 pps_offset = pps_tf[0]; /* 2 0 1 */ 1574 v_usec = pps_tf[2] - pps_tf[1]; 1575 } else { 1576 pps_offset = pps_tf[2]; /* 0 2 1 */ 1577 v_usec = pps_tf[0] - pps_tf[1]; 1578 } 1579 } else { 1580 if (pps_tf[1] < pps_tf[2]) { 1581 pps_offset = pps_tf[1]; /* 2 1 0 */ 1582 v_usec = pps_tf[2] - pps_tf[0]; 1583 } else if (pps_tf[2] < pps_tf[0]) { 1584 pps_offset = pps_tf[0]; /* 1 0 2 */ 1585 v_usec = pps_tf[1] - pps_tf[2]; 1586 } else { 1587 pps_offset = pps_tf[2]; /* 1 2 0 */ 1588 v_usec = pps_tf[1] - pps_tf[0]; 1589 } 1590 } 1591 if (v_usec > MAXTIME) 1592 pps_jitcnt++; 1593 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1594 if (v_usec < 0) 1595 pps_jitter -= -v_usec >> PPS_AVG; 1596 else 1597 pps_jitter += v_usec >> PPS_AVG; 1598 if (pps_jitter > (MAXTIME >> 1)) 1599 time_status |= STA_PPSJITTER; 1600 1601 /* 1602 * During the calibration interval adjust the starting time when 1603 * the tick overflows. At the end of the interval compute the 1604 * duration of the interval and the difference of the hardware 1605 * counters at the beginning and end of the interval. This code 1606 * is deliciously complicated by the fact valid differences may 1607 * exceed the value of tick when using long calibration 1608 * intervals and small ticks. Note that the counter can be 1609 * greater than tick if caught at just the wrong instant, but 1610 * the values returned and used here are correct. 1611 */ 1612 bigtick = (long)tick << SHIFT_USEC; 1613 pps_usec -= pps_freq; 1614 if (pps_usec >= bigtick) 1615 pps_usec -= bigtick; 1616 if (pps_usec < 0) 1617 pps_usec += bigtick; 1618 pps_time.tv_sec++; 1619 pps_count++; 1620 if (pps_count < (1 << pps_shift)) 1621 return; 1622 pps_count = 0; 1623 pps_calcnt++; 1624 u_usec = usec << SHIFT_USEC; 1625 v_usec = pps_usec - u_usec; 1626 if (v_usec >= bigtick >> 1) 1627 v_usec -= bigtick; 1628 if (v_usec < -(bigtick >> 1)) 1629 v_usec += bigtick; 1630 if (v_usec < 0) 1631 v_usec = -(-v_usec >> pps_shift); 1632 else 1633 v_usec = v_usec >> pps_shift; 1634 pps_usec = u_usec; 1635 cal_sec = tvp->tv_sec; 1636 cal_usec = tvp->tv_usec; 1637 cal_sec -= pps_time.tv_sec; 1638 cal_usec -= pps_time.tv_usec; 1639 if (cal_usec < 0) { 1640 cal_usec += 1000000; 1641 cal_sec--; 1642 } 1643 pps_time = *tvp; 1644 1645 /* 1646 * Check for lost interrupts, noise, excessive jitter and 1647 * excessive frequency error. The number of timer ticks during 1648 * the interval may vary +-1 tick. Add to this a margin of one 1649 * tick for the PPS signal jitter and maximum frequency 1650 * deviation. If the limits are exceeded, the calibration 1651 * interval is reset to the minimum and we start over. 1652 */ 1653 u_usec = (long)tick << 1; 1654 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1655 || (cal_sec == 0 && cal_usec < u_usec)) 1656 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1657 pps_errcnt++; 1658 pps_shift = PPS_SHIFT; 1659 pps_intcnt = 0; 1660 time_status |= STA_PPSERROR; 1661 return; 1662 } 1663 1664 /* 1665 * A three-stage median filter is used to help deglitch the pps 1666 * frequency. The median sample becomes the frequency offset 1667 * estimate; the difference between the other two samples 1668 * becomes the frequency dispersion (stability) estimate. 1669 */ 1670 pps_ff[2] = pps_ff[1]; 1671 pps_ff[1] = pps_ff[0]; 1672 pps_ff[0] = v_usec; 1673 if (pps_ff[0] > pps_ff[1]) { 1674 if (pps_ff[1] > pps_ff[2]) { 1675 u_usec = pps_ff[1]; /* 0 1 2 */ 1676 v_usec = pps_ff[0] - pps_ff[2]; 1677 } else if (pps_ff[2] > pps_ff[0]) { 1678 u_usec = pps_ff[0]; /* 2 0 1 */ 1679 v_usec = pps_ff[2] - pps_ff[1]; 1680 } else { 1681 u_usec = pps_ff[2]; /* 0 2 1 */ 1682 v_usec = pps_ff[0] - pps_ff[1]; 1683 } 1684 } else { 1685 if (pps_ff[1] < pps_ff[2]) { 1686 u_usec = pps_ff[1]; /* 2 1 0 */ 1687 v_usec = pps_ff[2] - pps_ff[0]; 1688 } else if (pps_ff[2] < pps_ff[0]) { 1689 u_usec = pps_ff[0]; /* 1 0 2 */ 1690 v_usec = pps_ff[1] - pps_ff[2]; 1691 } else { 1692 u_usec = pps_ff[2]; /* 1 2 0 */ 1693 v_usec = pps_ff[1] - pps_ff[0]; 1694 } 1695 } 1696 1697 /* 1698 * Here the frequency dispersion (stability) is updated. If it 1699 * is less than one-fourth the maximum (MAXFREQ), the frequency 1700 * offset is updated as well, but clamped to the tolerance. It 1701 * will be processed later by the hardclock() routine. 1702 */ 1703 v_usec = (v_usec >> 1) - pps_stabil; 1704 if (v_usec < 0) 1705 pps_stabil -= -v_usec >> PPS_AVG; 1706 else 1707 pps_stabil += v_usec >> PPS_AVG; 1708 if (pps_stabil > MAXFREQ >> 2) { 1709 pps_stbcnt++; 1710 time_status |= STA_PPSWANDER; 1711 return; 1712 } 1713 if (time_status & STA_PPSFREQ) { 1714 if (u_usec < 0) { 1715 pps_freq -= -u_usec >> PPS_AVG; 1716 if (pps_freq < -time_tolerance) 1717 pps_freq = -time_tolerance; 1718 u_usec = -u_usec; 1719 } else { 1720 pps_freq += u_usec >> PPS_AVG; 1721 if (pps_freq > time_tolerance) 1722 pps_freq = time_tolerance; 1723 } 1724 } 1725 1726 /* 1727 * Here the calibration interval is adjusted. If the maximum 1728 * time difference is greater than tick / 4, reduce the interval 1729 * by half. If this is not the case for four consecutive 1730 * intervals, double the interval. 1731 */ 1732 if (u_usec << pps_shift > bigtick >> 2) { 1733 pps_intcnt = 0; 1734 if (pps_shift > PPS_SHIFT) 1735 pps_shift--; 1736 } else if (pps_intcnt >= 4) { 1737 pps_intcnt = 0; 1738 if (pps_shift < PPS_SHIFTMAX) 1739 pps_shift++; 1740 } else 1741 pps_intcnt++; 1742 } 1743 #endif /* PPS_SYNC */ 1744 #endif /* NTP */ 1745 1746 /* 1747 * Return information about system clocks. 1748 */ 1749 int 1750 sysctl_clockrate(void *where, size_t *sizep) 1751 { 1752 struct clockinfo clkinfo; 1753 1754 /* 1755 * Construct clockinfo structure. 1756 */ 1757 clkinfo.tick = tick; 1758 clkinfo.tickadj = tickadj; 1759 clkinfo.hz = hz; 1760 clkinfo.profhz = profhz; 1761 clkinfo.stathz = stathz ? stathz : hz; 1762 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1763 } 1764