1 /* $NetBSD: kern_clock.c,v 1.74 2001/01/17 18:21:41 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /*- 41 * Copyright (c) 1982, 1986, 1991, 1993 42 * The Regents of the University of California. All rights reserved. 43 * (c) UNIX System Laboratories, Inc. 44 * All or some portions of this file are derived from material licensed 45 * to the University of California by American Telephone and Telegraph 46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 47 * the permission of UNIX System Laboratories, Inc. 48 * 49 * Redistribution and use in source and binary forms, with or without 50 * modification, are permitted provided that the following conditions 51 * are met: 52 * 1. Redistributions of source code must retain the above copyright 53 * notice, this list of conditions and the following disclaimer. 54 * 2. Redistributions in binary form must reproduce the above copyright 55 * notice, this list of conditions and the following disclaimer in the 56 * documentation and/or other materials provided with the distribution. 57 * 3. All advertising materials mentioning features or use of this software 58 * must display the following acknowledgement: 59 * This product includes software developed by the University of 60 * California, Berkeley and its contributors. 61 * 4. Neither the name of the University nor the names of its contributors 62 * may be used to endorse or promote products derived from this software 63 * without specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 75 * SUCH DAMAGE. 76 * 77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 78 */ 79 80 #include "opt_ntp.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/dkstat.h> 85 #include <sys/callout.h> 86 #include <sys/kernel.h> 87 #include <sys/proc.h> 88 #include <sys/resourcevar.h> 89 #include <sys/signalvar.h> 90 #include <uvm/uvm_extern.h> 91 #include <sys/sysctl.h> 92 #include <sys/timex.h> 93 #include <sys/sched.h> 94 95 #include <machine/cpu.h> 96 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 97 #include <machine/intr.h> 98 #endif 99 100 #ifdef GPROF 101 #include <sys/gmon.h> 102 #endif 103 104 /* 105 * Clock handling routines. 106 * 107 * This code is written to operate with two timers that run independently of 108 * each other. The main clock, running hz times per second, is used to keep 109 * track of real time. The second timer handles kernel and user profiling, 110 * and does resource use estimation. If the second timer is programmable, 111 * it is randomized to avoid aliasing between the two clocks. For example, 112 * the randomization prevents an adversary from always giving up the cpu 113 * just before its quantum expires. Otherwise, it would never accumulate 114 * cpu ticks. The mean frequency of the second timer is stathz. 115 * 116 * If no second timer exists, stathz will be zero; in this case we drive 117 * profiling and statistics off the main clock. This WILL NOT be accurate; 118 * do not do it unless absolutely necessary. 119 * 120 * The statistics clock may (or may not) be run at a higher rate while 121 * profiling. This profile clock runs at profhz. We require that profhz 122 * be an integral multiple of stathz. 123 * 124 * If the statistics clock is running fast, it must be divided by the ratio 125 * profhz/stathz for statistics. (For profiling, every tick counts.) 126 */ 127 128 #ifdef NTP /* NTP phase-locked loop in kernel */ 129 /* 130 * Phase/frequency-lock loop (PLL/FLL) definitions 131 * 132 * The following variables are read and set by the ntp_adjtime() system 133 * call. 134 * 135 * time_state shows the state of the system clock, with values defined 136 * in the timex.h header file. 137 * 138 * time_status shows the status of the system clock, with bits defined 139 * in the timex.h header file. 140 * 141 * time_offset is used by the PLL/FLL to adjust the system time in small 142 * increments. 143 * 144 * time_constant determines the bandwidth or "stiffness" of the PLL. 145 * 146 * time_tolerance determines maximum frequency error or tolerance of the 147 * CPU clock oscillator and is a property of the architecture; however, 148 * in principle it could change as result of the presence of external 149 * discipline signals, for instance. 150 * 151 * time_precision is usually equal to the kernel tick variable; however, 152 * in cases where a precision clock counter or external clock is 153 * available, the resolution can be much less than this and depend on 154 * whether the external clock is working or not. 155 * 156 * time_maxerror is initialized by a ntp_adjtime() call and increased by 157 * the kernel once each second to reflect the maximum error bound 158 * growth. 159 * 160 * time_esterror is set and read by the ntp_adjtime() call, but 161 * otherwise not used by the kernel. 162 */ 163 int time_state = TIME_OK; /* clock state */ 164 int time_status = STA_UNSYNC; /* clock status bits */ 165 long time_offset = 0; /* time offset (us) */ 166 long time_constant = 0; /* pll time constant */ 167 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 168 long time_precision = 1; /* clock precision (us) */ 169 long time_maxerror = MAXPHASE; /* maximum error (us) */ 170 long time_esterror = MAXPHASE; /* estimated error (us) */ 171 172 /* 173 * The following variables establish the state of the PLL/FLL and the 174 * residual time and frequency offset of the local clock. The scale 175 * factors are defined in the timex.h header file. 176 * 177 * time_phase and time_freq are the phase increment and the frequency 178 * increment, respectively, of the kernel time variable. 179 * 180 * time_freq is set via ntp_adjtime() from a value stored in a file when 181 * the synchronization daemon is first started. Its value is retrieved 182 * via ntp_adjtime() and written to the file about once per hour by the 183 * daemon. 184 * 185 * time_adj is the adjustment added to the value of tick at each timer 186 * interrupt and is recomputed from time_phase and time_freq at each 187 * seconds rollover. 188 * 189 * time_reftime is the second's portion of the system time at the last 190 * call to ntp_adjtime(). It is used to adjust the time_freq variable 191 * and to increase the time_maxerror as the time since last update 192 * increases. 193 */ 194 long time_phase = 0; /* phase offset (scaled us) */ 195 long time_freq = 0; /* frequency offset (scaled ppm) */ 196 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 197 long time_reftime = 0; /* time at last adjustment (s) */ 198 199 #ifdef PPS_SYNC 200 /* 201 * The following variables are used only if the kernel PPS discipline 202 * code is configured (PPS_SYNC). The scale factors are defined in the 203 * timex.h header file. 204 * 205 * pps_time contains the time at each calibration interval, as read by 206 * microtime(). pps_count counts the seconds of the calibration 207 * interval, the duration of which is nominally pps_shift in powers of 208 * two. 209 * 210 * pps_offset is the time offset produced by the time median filter 211 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 212 * this filter. 213 * 214 * pps_freq is the frequency offset produced by the frequency median 215 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 216 * by this filter. 217 * 218 * pps_usec is latched from a high resolution counter or external clock 219 * at pps_time. Here we want the hardware counter contents only, not the 220 * contents plus the time_tv.usec as usual. 221 * 222 * pps_valid counts the number of seconds since the last PPS update. It 223 * is used as a watchdog timer to disable the PPS discipline should the 224 * PPS signal be lost. 225 * 226 * pps_glitch counts the number of seconds since the beginning of an 227 * offset burst more than tick/2 from current nominal offset. It is used 228 * mainly to suppress error bursts due to priority conflicts between the 229 * PPS interrupt and timer interrupt. 230 * 231 * pps_intcnt counts the calibration intervals for use in the interval- 232 * adaptation algorithm. It's just too complicated for words. 233 */ 234 struct timeval pps_time; /* kernel time at last interval */ 235 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 236 long pps_offset = 0; /* pps time offset (us) */ 237 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 238 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 239 long pps_freq = 0; /* frequency offset (scaled ppm) */ 240 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 241 long pps_usec = 0; /* microsec counter at last interval */ 242 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 243 int pps_glitch = 0; /* pps signal glitch counter */ 244 int pps_count = 0; /* calibration interval counter (s) */ 245 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 246 int pps_intcnt = 0; /* intervals at current duration */ 247 248 /* 249 * PPS signal quality monitors 250 * 251 * pps_jitcnt counts the seconds that have been discarded because the 252 * jitter measured by the time median filter exceeds the limit MAXTIME 253 * (100 us). 254 * 255 * pps_calcnt counts the frequency calibration intervals, which are 256 * variable from 4 s to 256 s. 257 * 258 * pps_errcnt counts the calibration intervals which have been discarded 259 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 260 * calibration interval jitter exceeds two ticks. 261 * 262 * pps_stbcnt counts the calibration intervals that have been discarded 263 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 264 */ 265 long pps_jitcnt = 0; /* jitter limit exceeded */ 266 long pps_calcnt = 0; /* calibration intervals */ 267 long pps_errcnt = 0; /* calibration errors */ 268 long pps_stbcnt = 0; /* stability limit exceeded */ 269 #endif /* PPS_SYNC */ 270 271 #ifdef EXT_CLOCK 272 /* 273 * External clock definitions 274 * 275 * The following definitions and declarations are used only if an 276 * external clock is configured on the system. 277 */ 278 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 279 280 /* 281 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 282 * interrupt and decremented once each second. 283 */ 284 int clock_count = 0; /* CPU clock counter */ 285 286 #ifdef HIGHBALL 287 /* 288 * The clock_offset and clock_cpu variables are used by the HIGHBALL 289 * interface. The clock_offset variable defines the offset between 290 * system time and the HIGBALL counters. The clock_cpu variable contains 291 * the offset between the system clock and the HIGHBALL clock for use in 292 * disciplining the kernel time variable. 293 */ 294 extern struct timeval clock_offset; /* Highball clock offset */ 295 long clock_cpu = 0; /* CPU clock adjust */ 296 #endif /* HIGHBALL */ 297 #endif /* EXT_CLOCK */ 298 #endif /* NTP */ 299 300 301 /* 302 * Bump a timeval by a small number of usec's. 303 */ 304 #define BUMPTIME(t, usec) { \ 305 volatile struct timeval *tp = (t); \ 306 long us; \ 307 \ 308 tp->tv_usec = us = tp->tv_usec + (usec); \ 309 if (us >= 1000000) { \ 310 tp->tv_usec = us - 1000000; \ 311 tp->tv_sec++; \ 312 } \ 313 } 314 315 int stathz; 316 int profhz; 317 int profprocs; 318 int softclock_running; /* 1 => softclock() is running */ 319 static int psdiv; /* prof => stat divider */ 320 int psratio; /* ratio: prof / stat */ 321 int tickfix, tickfixinterval; /* used if tick not really integral */ 322 #ifndef NTP 323 static int tickfixcnt; /* accumulated fractional error */ 324 #else 325 int fixtick; /* used by NTP for same */ 326 int shifthz; 327 #endif 328 329 /* 330 * We might want ldd to load the both words from time at once. 331 * To succeed we need to be quadword aligned. 332 * The sparc already does that, and that it has worked so far is a fluke. 333 */ 334 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t)))); 335 volatile struct timeval mono_time; 336 337 /* 338 * The callout mechanism is based on the work of Adam M. Costello and 339 * George Varghese, published in a technical report entitled "Redesigning 340 * the BSD Callout and Timer Facilities", and Justin Gibbs's subsequent 341 * integration into FreeBSD, modified for NetBSD by Jason R. Thorpe. 342 * 343 * The original work on the data structures used in this implementation 344 * was published by G. Varghese and A. Lauck in the paper "Hashed and 345 * Hierarchical Timing Wheels: Data Structures for the Efficient 346 * Implementation of a Timer Facility" in the Proceedings of the 11th 347 * ACM Annual Symposium on Operating System Principles, Austin, Texas, 348 * November 1987. 349 */ 350 struct callout_queue *callwheel; 351 int callwheelsize, callwheelbits, callwheelmask; 352 353 static struct callout *nextsoftcheck; /* next callout to be checked */ 354 355 #ifdef CALLWHEEL_STATS 356 int callwheel_collisions; /* number of hash collisions */ 357 int callwheel_maxlength; /* length of the longest hash chain */ 358 int *callwheel_sizes; /* per-bucket length count */ 359 u_int64_t callwheel_count; /* # callouts currently */ 360 u_int64_t callwheel_established; /* # callouts established */ 361 u_int64_t callwheel_fired; /* # callouts that fired */ 362 u_int64_t callwheel_disestablished; /* # callouts disestablished */ 363 u_int64_t callwheel_changed; /* # callouts changed */ 364 u_int64_t callwheel_softclocks; /* # times softclock() called */ 365 u_int64_t callwheel_softchecks; /* # checks per softclock() */ 366 u_int64_t callwheel_softempty; /* # empty buckets seen */ 367 #endif /* CALLWHEEL_STATS */ 368 369 /* 370 * This value indicates the number of consecutive callouts that 371 * will be checked before we allow interrupts to have a chance 372 * again. 373 */ 374 #ifndef MAX_SOFTCLOCK_STEPS 375 #define MAX_SOFTCLOCK_STEPS 100 376 #endif 377 378 struct simplelock callwheel_slock; 379 380 #define CALLWHEEL_LOCK(s) \ 381 do { \ 382 s = splclock(); \ 383 simple_lock(&callwheel_slock); \ 384 } while (0) 385 386 #define CALLWHEEL_UNLOCK(s) \ 387 do { \ 388 simple_unlock(&callwheel_slock); \ 389 splx(s); \ 390 } while (0) 391 392 static void callout_stop_locked(struct callout *); 393 394 /* 395 * These are both protected by callwheel_lock. 396 * XXX SHOULD BE STATIC!! 397 */ 398 u_int64_t hardclock_ticks, softclock_ticks; 399 400 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 401 void softclock(void *); 402 void *softclock_si; 403 #endif 404 405 /* 406 * Initialize clock frequencies and start both clocks running. 407 */ 408 void 409 initclocks(void) 410 { 411 int i; 412 413 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 414 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL); 415 if (softclock_si == NULL) 416 panic("initclocks: unable to register softclock intr"); 417 #endif 418 419 /* 420 * Set divisors to 1 (normal case) and let the machine-specific 421 * code do its bit. 422 */ 423 psdiv = 1; 424 cpu_initclocks(); 425 426 /* 427 * Compute profhz/stathz/rrticks, and fix profhz if needed. 428 */ 429 i = stathz ? stathz : hz; 430 if (profhz == 0) 431 profhz = i; 432 psratio = profhz / i; 433 rrticks = hz / 10; 434 435 #ifdef NTP 436 switch (hz) { 437 case 1: 438 shifthz = SHIFT_SCALE - 0; 439 break; 440 case 2: 441 shifthz = SHIFT_SCALE - 1; 442 break; 443 case 4: 444 shifthz = SHIFT_SCALE - 2; 445 break; 446 case 8: 447 shifthz = SHIFT_SCALE - 3; 448 break; 449 case 16: 450 shifthz = SHIFT_SCALE - 4; 451 break; 452 case 32: 453 shifthz = SHIFT_SCALE - 5; 454 break; 455 case 60: 456 case 64: 457 shifthz = SHIFT_SCALE - 6; 458 break; 459 case 96: 460 case 100: 461 case 128: 462 shifthz = SHIFT_SCALE - 7; 463 break; 464 case 256: 465 shifthz = SHIFT_SCALE - 8; 466 break; 467 case 512: 468 shifthz = SHIFT_SCALE - 9; 469 break; 470 case 1000: 471 case 1024: 472 shifthz = SHIFT_SCALE - 10; 473 break; 474 case 1200: 475 case 2048: 476 shifthz = SHIFT_SCALE - 11; 477 break; 478 case 4096: 479 shifthz = SHIFT_SCALE - 12; 480 break; 481 case 8192: 482 shifthz = SHIFT_SCALE - 13; 483 break; 484 case 16384: 485 shifthz = SHIFT_SCALE - 14; 486 break; 487 case 32768: 488 shifthz = SHIFT_SCALE - 15; 489 break; 490 case 65536: 491 shifthz = SHIFT_SCALE - 16; 492 break; 493 default: 494 panic("weird hz"); 495 } 496 if (fixtick == 0) { 497 /* 498 * Give MD code a chance to set this to a better 499 * value; but, if it doesn't, we should. 500 */ 501 fixtick = (1000000 - (hz*tick)); 502 } 503 #endif 504 } 505 506 /* 507 * The real-time timer, interrupting hz times per second. 508 */ 509 void 510 hardclock(struct clockframe *frame) 511 { 512 struct proc *p; 513 int delta; 514 extern int tickdelta; 515 extern long timedelta; 516 struct cpu_info *ci = curcpu(); 517 #ifdef NTP 518 int time_update; 519 int ltemp; 520 #endif 521 522 p = curproc; 523 if (p) { 524 struct pstats *pstats; 525 526 /* 527 * Run current process's virtual and profile time, as needed. 528 */ 529 pstats = p->p_stats; 530 if (CLKF_USERMODE(frame) && 531 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 532 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 533 psignal(p, SIGVTALRM); 534 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 535 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 536 psignal(p, SIGPROF); 537 } 538 539 /* 540 * If no separate statistics clock is available, run it from here. 541 */ 542 if (stathz == 0) 543 statclock(frame); 544 if ((--ci->ci_schedstate.spc_rrticks) <= 0) 545 roundrobin(ci); 546 547 #if defined(MULTIPROCESSOR) 548 /* 549 * If we are not the primary CPU, we're not allowed to do 550 * any more work. 551 */ 552 if (CPU_IS_PRIMARY(ci) == 0) 553 return; 554 #endif 555 556 /* 557 * Increment the time-of-day. The increment is normally just 558 * ``tick''. If the machine is one which has a clock frequency 559 * such that ``hz'' would not divide the second evenly into 560 * milliseconds, a periodic adjustment must be applied. Finally, 561 * if we are still adjusting the time (see adjtime()), 562 * ``tickdelta'' may also be added in. 563 */ 564 delta = tick; 565 566 #ifndef NTP 567 if (tickfix) { 568 tickfixcnt += tickfix; 569 if (tickfixcnt >= tickfixinterval) { 570 delta++; 571 tickfixcnt -= tickfixinterval; 572 } 573 } 574 #endif /* !NTP */ 575 /* Imprecise 4bsd adjtime() handling */ 576 if (timedelta != 0) { 577 delta += tickdelta; 578 timedelta -= tickdelta; 579 } 580 581 #ifdef notyet 582 microset(); 583 #endif 584 585 #ifndef NTP 586 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 587 #endif 588 BUMPTIME(&mono_time, delta); 589 590 #ifdef NTP 591 time_update = delta; 592 593 /* 594 * Compute the phase adjustment. If the low-order bits 595 * (time_phase) of the update overflow, bump the high-order bits 596 * (time_update). 597 */ 598 time_phase += time_adj; 599 if (time_phase <= -FINEUSEC) { 600 ltemp = -time_phase >> SHIFT_SCALE; 601 time_phase += ltemp << SHIFT_SCALE; 602 time_update -= ltemp; 603 } else if (time_phase >= FINEUSEC) { 604 ltemp = time_phase >> SHIFT_SCALE; 605 time_phase -= ltemp << SHIFT_SCALE; 606 time_update += ltemp; 607 } 608 609 #ifdef HIGHBALL 610 /* 611 * If the HIGHBALL board is installed, we need to adjust the 612 * external clock offset in order to close the hardware feedback 613 * loop. This will adjust the external clock phase and frequency 614 * in small amounts. The additional phase noise and frequency 615 * wander this causes should be minimal. We also need to 616 * discipline the kernel time variable, since the PLL is used to 617 * discipline the external clock. If the Highball board is not 618 * present, we discipline kernel time with the PLL as usual. We 619 * assume that the external clock phase adjustment (time_update) 620 * and kernel phase adjustment (clock_cpu) are less than the 621 * value of tick. 622 */ 623 clock_offset.tv_usec += time_update; 624 if (clock_offset.tv_usec >= 1000000) { 625 clock_offset.tv_sec++; 626 clock_offset.tv_usec -= 1000000; 627 } 628 if (clock_offset.tv_usec < 0) { 629 clock_offset.tv_sec--; 630 clock_offset.tv_usec += 1000000; 631 } 632 time.tv_usec += clock_cpu; 633 clock_cpu = 0; 634 #else 635 time.tv_usec += time_update; 636 #endif /* HIGHBALL */ 637 638 /* 639 * On rollover of the second the phase adjustment to be used for 640 * the next second is calculated. Also, the maximum error is 641 * increased by the tolerance. If the PPS frequency discipline 642 * code is present, the phase is increased to compensate for the 643 * CPU clock oscillator frequency error. 644 * 645 * On a 32-bit machine and given parameters in the timex.h 646 * header file, the maximum phase adjustment is +-512 ms and 647 * maximum frequency offset is a tad less than) +-512 ppm. On a 648 * 64-bit machine, you shouldn't need to ask. 649 */ 650 if (time.tv_usec >= 1000000) { 651 time.tv_usec -= 1000000; 652 time.tv_sec++; 653 time_maxerror += time_tolerance >> SHIFT_USEC; 654 655 /* 656 * Leap second processing. If in leap-insert state at 657 * the end of the day, the system clock is set back one 658 * second; if in leap-delete state, the system clock is 659 * set ahead one second. The microtime() routine or 660 * external clock driver will insure that reported time 661 * is always monotonic. The ugly divides should be 662 * replaced. 663 */ 664 switch (time_state) { 665 case TIME_OK: 666 if (time_status & STA_INS) 667 time_state = TIME_INS; 668 else if (time_status & STA_DEL) 669 time_state = TIME_DEL; 670 break; 671 672 case TIME_INS: 673 if (time.tv_sec % 86400 == 0) { 674 time.tv_sec--; 675 time_state = TIME_OOP; 676 } 677 break; 678 679 case TIME_DEL: 680 if ((time.tv_sec + 1) % 86400 == 0) { 681 time.tv_sec++; 682 time_state = TIME_WAIT; 683 } 684 break; 685 686 case TIME_OOP: 687 time_state = TIME_WAIT; 688 break; 689 690 case TIME_WAIT: 691 if (!(time_status & (STA_INS | STA_DEL))) 692 time_state = TIME_OK; 693 break; 694 } 695 696 /* 697 * Compute the phase adjustment for the next second. In 698 * PLL mode, the offset is reduced by a fixed factor 699 * times the time constant. In FLL mode the offset is 700 * used directly. In either mode, the maximum phase 701 * adjustment for each second is clamped so as to spread 702 * the adjustment over not more than the number of 703 * seconds between updates. 704 */ 705 if (time_offset < 0) { 706 ltemp = -time_offset; 707 if (!(time_status & STA_FLL)) 708 ltemp >>= SHIFT_KG + time_constant; 709 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 710 ltemp = (MAXPHASE / MINSEC) << 711 SHIFT_UPDATE; 712 time_offset += ltemp; 713 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 714 } else if (time_offset > 0) { 715 ltemp = time_offset; 716 if (!(time_status & STA_FLL)) 717 ltemp >>= SHIFT_KG + time_constant; 718 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 719 ltemp = (MAXPHASE / MINSEC) << 720 SHIFT_UPDATE; 721 time_offset -= ltemp; 722 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 723 } else 724 time_adj = 0; 725 726 /* 727 * Compute the frequency estimate and additional phase 728 * adjustment due to frequency error for the next 729 * second. When the PPS signal is engaged, gnaw on the 730 * watchdog counter and update the frequency computed by 731 * the pll and the PPS signal. 732 */ 733 #ifdef PPS_SYNC 734 pps_valid++; 735 if (pps_valid == PPS_VALID) { 736 pps_jitter = MAXTIME; 737 pps_stabil = MAXFREQ; 738 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 739 STA_PPSWANDER | STA_PPSERROR); 740 } 741 ltemp = time_freq + pps_freq; 742 #else 743 ltemp = time_freq; 744 #endif /* PPS_SYNC */ 745 746 if (ltemp < 0) 747 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 748 else 749 time_adj += ltemp >> (SHIFT_USEC - shifthz); 750 time_adj += (long)fixtick << shifthz; 751 752 /* 753 * When the CPU clock oscillator frequency is not a 754 * power of 2 in Hz, shifthz is only an approximate 755 * scale factor. 756 * 757 * To determine the adjustment, you can do the following: 758 * bc -q 759 * scale=24 760 * obase=2 761 * idealhz/realhz 762 * where `idealhz' is the next higher power of 2, and `realhz' 763 * is the actual value. You may need to factor this result 764 * into a sequence of 2 multipliers to get better precision. 765 * 766 * Likewise, the error can be calculated with (e.g. for 100Hz): 767 * bc -q 768 * scale=24 769 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz 770 * (and then multiply by 1000000 to get ppm). 771 */ 772 switch (hz) { 773 case 60: 774 /* A factor of 1.000100010001 gives about 15ppm 775 error. */ 776 if (time_adj < 0) { 777 time_adj -= (-time_adj >> 4); 778 time_adj -= (-time_adj >> 8); 779 } else { 780 time_adj += (time_adj >> 4); 781 time_adj += (time_adj >> 8); 782 } 783 break; 784 785 case 96: 786 /* A factor of 1.0101010101 gives about 244ppm error. */ 787 if (time_adj < 0) { 788 time_adj -= (-time_adj >> 2); 789 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 790 } else { 791 time_adj += (time_adj >> 2); 792 time_adj += (time_adj >> 4) + (time_adj >> 8); 793 } 794 break; 795 796 case 100: 797 /* A factor of 1.010001111010111 gives about 1ppm 798 error. */ 799 if (time_adj < 0) { 800 time_adj -= (-time_adj >> 2) + (-time_adj >> 5); 801 time_adj += (-time_adj >> 10); 802 } else { 803 time_adj += (time_adj >> 2) + (time_adj >> 5); 804 time_adj -= (time_adj >> 10); 805 } 806 break; 807 808 case 1000: 809 /* A factor of 1.000001100010100001 gives about 50ppm 810 error. */ 811 if (time_adj < 0) { 812 time_adj -= (-time_adj >> 6) + (-time_adj >> 11); 813 time_adj -= (-time_adj >> 7); 814 } else { 815 time_adj += (time_adj >> 6) + (time_adj >> 11); 816 time_adj += (time_adj >> 7); 817 } 818 break; 819 820 case 1200: 821 /* A factor of 1.1011010011100001 gives about 64ppm 822 error. */ 823 if (time_adj < 0) { 824 time_adj -= (-time_adj >> 1) + (-time_adj >> 6); 825 time_adj -= (-time_adj >> 3) + (-time_adj >> 10); 826 } else { 827 time_adj += (time_adj >> 1) + (time_adj >> 6); 828 time_adj += (time_adj >> 3) + (time_adj >> 10); 829 } 830 break; 831 } 832 833 #ifdef EXT_CLOCK 834 /* 835 * If an external clock is present, it is necessary to 836 * discipline the kernel time variable anyway, since not 837 * all system components use the microtime() interface. 838 * Here, the time offset between the external clock and 839 * kernel time variable is computed every so often. 840 */ 841 clock_count++; 842 if (clock_count > CLOCK_INTERVAL) { 843 clock_count = 0; 844 microtime(&clock_ext); 845 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 846 delta.tv_usec = clock_ext.tv_usec - 847 time.tv_usec; 848 if (delta.tv_usec < 0) 849 delta.tv_sec--; 850 if (delta.tv_usec >= 500000) { 851 delta.tv_usec -= 1000000; 852 delta.tv_sec++; 853 } 854 if (delta.tv_usec < -500000) { 855 delta.tv_usec += 1000000; 856 delta.tv_sec--; 857 } 858 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 859 delta.tv_usec > MAXPHASE) || 860 delta.tv_sec < -1 || (delta.tv_sec == -1 && 861 delta.tv_usec < -MAXPHASE)) { 862 time = clock_ext; 863 delta.tv_sec = 0; 864 delta.tv_usec = 0; 865 } 866 #ifdef HIGHBALL 867 clock_cpu = delta.tv_usec; 868 #else /* HIGHBALL */ 869 hardupdate(delta.tv_usec); 870 #endif /* HIGHBALL */ 871 } 872 #endif /* EXT_CLOCK */ 873 } 874 875 #endif /* NTP */ 876 877 /* 878 * Process callouts at a very low cpu priority, so we don't keep the 879 * relatively high clock interrupt priority any longer than necessary. 880 */ 881 simple_lock(&callwheel_slock); /* already at splclock() */ 882 hardclock_ticks++; 883 if (TAILQ_FIRST(&callwheel[hardclock_ticks & callwheelmask]) != NULL) { 884 simple_unlock(&callwheel_slock); 885 if (CLKF_BASEPRI(frame)) { 886 /* 887 * Save the overhead of a software interrupt; 888 * it will happen as soon as we return, so do 889 * it now. 890 * 891 * NOTE: If we're at ``base priority'', softclock() 892 * was not already running. 893 */ 894 spllowersoftclock(); 895 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE); 896 softclock(NULL); 897 KERNEL_UNLOCK(); 898 } else { 899 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 900 softintr_schedule(softclock_si); 901 #else 902 setsoftclock(); 903 #endif 904 } 905 return; 906 } else if (softclock_running == 0 && 907 (softclock_ticks + 1) == hardclock_ticks) { 908 softclock_ticks++; 909 } 910 simple_unlock(&callwheel_slock); 911 } 912 913 /* 914 * Software (low priority) clock interrupt. 915 * Run periodic events from timeout queue. 916 */ 917 /*ARGSUSED*/ 918 void 919 softclock(void *v) 920 { 921 struct callout_queue *bucket; 922 struct callout *c; 923 void (*func)(void *); 924 void *arg; 925 int s, idx; 926 int steps = 0; 927 928 CALLWHEEL_LOCK(s); 929 930 softclock_running = 1; 931 932 #ifdef CALLWHEEL_STATS 933 callwheel_softclocks++; 934 #endif 935 936 while (softclock_ticks != hardclock_ticks) { 937 softclock_ticks++; 938 idx = (int)(softclock_ticks & callwheelmask); 939 bucket = &callwheel[idx]; 940 c = TAILQ_FIRST(bucket); 941 #ifdef CALLWHEEL_STATS 942 if (c == NULL) 943 callwheel_softempty++; 944 #endif 945 while (c != NULL) { 946 #ifdef CALLWHEEL_STATS 947 callwheel_softchecks++; 948 #endif 949 if (c->c_time != softclock_ticks) { 950 c = TAILQ_NEXT(c, c_link); 951 if (++steps >= MAX_SOFTCLOCK_STEPS) { 952 nextsoftcheck = c; 953 /* Give interrupts a chance. */ 954 CALLWHEEL_UNLOCK(s); 955 CALLWHEEL_LOCK(s); 956 c = nextsoftcheck; 957 steps = 0; 958 } 959 } else { 960 nextsoftcheck = TAILQ_NEXT(c, c_link); 961 TAILQ_REMOVE(bucket, c, c_link); 962 #ifdef CALLWHEEL_STATS 963 callwheel_sizes[idx]--; 964 callwheel_fired++; 965 callwheel_count--; 966 #endif 967 func = c->c_func; 968 arg = c->c_arg; 969 c->c_func = NULL; 970 c->c_flags &= ~CALLOUT_PENDING; 971 CALLWHEEL_UNLOCK(s); 972 (*func)(arg); 973 CALLWHEEL_LOCK(s); 974 steps = 0; 975 c = nextsoftcheck; 976 } 977 } 978 } 979 nextsoftcheck = NULL; 980 softclock_running = 0; 981 CALLWHEEL_UNLOCK(s); 982 } 983 984 /* 985 * callout_setsize: 986 * 987 * Determine how many callwheels are necessary and 988 * set hash mask. Called from allocsys(). 989 */ 990 void 991 callout_setsize(void) 992 { 993 994 for (callwheelsize = 1; callwheelsize < ncallout; callwheelsize <<= 1) 995 /* loop */ ; 996 callwheelmask = callwheelsize - 1; 997 } 998 999 /* 1000 * callout_startup: 1001 * 1002 * Initialize the callwheel buckets. 1003 */ 1004 void 1005 callout_startup(void) 1006 { 1007 int i; 1008 1009 for (i = 0; i < callwheelsize; i++) 1010 TAILQ_INIT(&callwheel[i]); 1011 1012 simple_lock_init(&callwheel_slock); 1013 } 1014 1015 /* 1016 * callout_init: 1017 * 1018 * Initialize a callout structure so that it can be used 1019 * by callout_reset() and callout_stop(). 1020 */ 1021 void 1022 callout_init(struct callout *c) 1023 { 1024 1025 memset(c, 0, sizeof(*c)); 1026 } 1027 1028 /* 1029 * callout_reset: 1030 * 1031 * Establish or change a timeout. 1032 */ 1033 void 1034 callout_reset(struct callout *c, int ticks, void (*func)(void *), void *arg) 1035 { 1036 struct callout_queue *bucket; 1037 int s; 1038 1039 if (ticks <= 0) 1040 ticks = 1; 1041 1042 CALLWHEEL_LOCK(s); 1043 1044 /* 1045 * If this callout's timer is already running, cancel it 1046 * before we modify it. 1047 */ 1048 if (c->c_flags & CALLOUT_PENDING) { 1049 callout_stop_locked(c); /* Already locked */ 1050 #ifdef CALLWHEEL_STATS 1051 callwheel_changed++; 1052 #endif 1053 } 1054 1055 c->c_arg = arg; 1056 c->c_func = func; 1057 c->c_flags = CALLOUT_ACTIVE | CALLOUT_PENDING; 1058 c->c_time = hardclock_ticks + ticks; 1059 1060 bucket = &callwheel[c->c_time & callwheelmask]; 1061 1062 #ifdef CALLWHEEL_STATS 1063 if (TAILQ_FIRST(bucket) != NULL) 1064 callwheel_collisions++; 1065 #endif 1066 1067 TAILQ_INSERT_TAIL(bucket, c, c_link); 1068 1069 #ifdef CALLWHEEL_STATS 1070 callwheel_count++; 1071 callwheel_established++; 1072 if (++callwheel_sizes[c->c_time & callwheelmask] > callwheel_maxlength) 1073 callwheel_maxlength = 1074 callwheel_sizes[c->c_time & callwheelmask]; 1075 #endif 1076 1077 CALLWHEEL_UNLOCK(s); 1078 } 1079 1080 /* 1081 * callout_stop_locked: 1082 * 1083 * Disestablish a timeout. Callwheel is locked. 1084 */ 1085 static void 1086 callout_stop_locked(struct callout *c) 1087 { 1088 1089 /* 1090 * Don't attempt to delete a callout that's not on the queue. 1091 */ 1092 if ((c->c_flags & CALLOUT_PENDING) == 0) { 1093 c->c_flags &= ~CALLOUT_ACTIVE; 1094 return; 1095 } 1096 1097 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); 1098 1099 if (nextsoftcheck == c) 1100 nextsoftcheck = TAILQ_NEXT(c, c_link); 1101 1102 TAILQ_REMOVE(&callwheel[c->c_time & callwheelmask], c, c_link); 1103 #ifdef CALLWHEEL_STATS 1104 callwheel_count--; 1105 callwheel_disestablished++; 1106 callwheel_sizes[c->c_time & callwheelmask]--; 1107 #endif 1108 1109 c->c_func = NULL; 1110 } 1111 1112 /* 1113 * callout_stop: 1114 * 1115 * Disestablish a timeout. Callwheel is unlocked. This is 1116 * the standard entry point. 1117 */ 1118 void 1119 callout_stop(struct callout *c) 1120 { 1121 int s; 1122 1123 CALLWHEEL_LOCK(s); 1124 callout_stop_locked(c); 1125 CALLWHEEL_UNLOCK(s); 1126 } 1127 1128 #ifdef CALLWHEEL_STATS 1129 /* 1130 * callout_showstats: 1131 * 1132 * Display callout statistics. Call it from DDB. 1133 */ 1134 void 1135 callout_showstats(void) 1136 { 1137 u_int64_t curticks; 1138 int s; 1139 1140 s = splclock(); 1141 curticks = softclock_ticks; 1142 splx(s); 1143 1144 printf("Callwheel statistics:\n"); 1145 printf("\tCallouts currently queued: %llu\n", callwheel_count); 1146 printf("\tCallouts established: %llu\n", callwheel_established); 1147 printf("\tCallouts disestablished: %llu\n", callwheel_disestablished); 1148 if (callwheel_changed != 0) 1149 printf("\t\tOf those, %llu were changes\n", callwheel_changed); 1150 printf("\tCallouts that fired: %llu\n", callwheel_fired); 1151 printf("\tNumber of buckets: %d\n", callwheelsize); 1152 printf("\tNumber of hash collisions: %d\n", callwheel_collisions); 1153 printf("\tMaximum hash chain length: %d\n", callwheel_maxlength); 1154 printf("\tSoftclocks: %llu, Softchecks: %llu\n", 1155 callwheel_softclocks, callwheel_softchecks); 1156 printf("\t\tEmpty buckets seen: %llu\n", callwheel_softempty); 1157 } 1158 #endif 1159 1160 /* 1161 * Compute number of hz until specified time. Used to compute second 1162 * argument to callout_reset() from an absolute time. 1163 */ 1164 int 1165 hzto(struct timeval *tv) 1166 { 1167 unsigned long ticks; 1168 long sec, usec; 1169 int s; 1170 1171 /* 1172 * If the number of usecs in the whole seconds part of the time 1173 * difference fits in a long, then the total number of usecs will 1174 * fit in an unsigned long. Compute the total and convert it to 1175 * ticks, rounding up and adding 1 to allow for the current tick 1176 * to expire. Rounding also depends on unsigned long arithmetic 1177 * to avoid overflow. 1178 * 1179 * Otherwise, if the number of ticks in the whole seconds part of 1180 * the time difference fits in a long, then convert the parts to 1181 * ticks separately and add, using similar rounding methods and 1182 * overflow avoidance. This method would work in the previous 1183 * case, but it is slightly slower and assume that hz is integral. 1184 * 1185 * Otherwise, round the time difference down to the maximum 1186 * representable value. 1187 * 1188 * If ints are 32-bit, then the maximum value for any timeout in 1189 * 10ms ticks is 248 days. 1190 */ 1191 s = splclock(); 1192 sec = tv->tv_sec - time.tv_sec; 1193 usec = tv->tv_usec - time.tv_usec; 1194 splx(s); 1195 1196 if (usec < 0) { 1197 sec--; 1198 usec += 1000000; 1199 } 1200 1201 if (sec < 0 || (sec == 0 && usec <= 0)) { 1202 /* 1203 * Would expire now or in the past. Return 0 ticks. 1204 * This is different from the legacy hzto() interface, 1205 * and callers need to check for it. 1206 */ 1207 ticks = 0; 1208 } else if (sec <= (LONG_MAX / 1000000)) 1209 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1)) 1210 / tick) + 1; 1211 else if (sec <= (LONG_MAX / hz)) 1212 ticks = (sec * hz) + 1213 (((unsigned long)usec + (tick - 1)) / tick) + 1; 1214 else 1215 ticks = LONG_MAX; 1216 1217 if (ticks > INT_MAX) 1218 ticks = INT_MAX; 1219 1220 return ((int)ticks); 1221 } 1222 1223 /* 1224 * Start profiling on a process. 1225 * 1226 * Kernel profiling passes proc0 which never exits and hence 1227 * keeps the profile clock running constantly. 1228 */ 1229 void 1230 startprofclock(struct proc *p) 1231 { 1232 1233 if ((p->p_flag & P_PROFIL) == 0) { 1234 p->p_flag |= P_PROFIL; 1235 if (++profprocs == 1 && stathz != 0) 1236 psdiv = psratio; 1237 } 1238 } 1239 1240 /* 1241 * Stop profiling on a process. 1242 */ 1243 void 1244 stopprofclock(struct proc *p) 1245 { 1246 1247 if (p->p_flag & P_PROFIL) { 1248 p->p_flag &= ~P_PROFIL; 1249 if (--profprocs == 0 && stathz != 0) 1250 psdiv = 1; 1251 } 1252 } 1253 1254 /* 1255 * Statistics clock. Grab profile sample, and if divider reaches 0, 1256 * do process and kernel statistics. 1257 */ 1258 void 1259 statclock(struct clockframe *frame) 1260 { 1261 #ifdef GPROF 1262 struct gmonparam *g; 1263 intptr_t i; 1264 #endif 1265 struct cpu_info *ci = curcpu(); 1266 struct schedstate_percpu *spc = &ci->ci_schedstate; 1267 struct proc *p; 1268 1269 /* 1270 * Notice changes in divisor frequency, and adjust clock 1271 * frequency accordingly. 1272 */ 1273 if (spc->spc_psdiv != psdiv) { 1274 spc->spc_psdiv = psdiv; 1275 spc->spc_pscnt = psdiv; 1276 if (psdiv == 1) { 1277 setstatclockrate(stathz); 1278 } else { 1279 setstatclockrate(profhz); 1280 } 1281 } 1282 p = curproc; 1283 if (CLKF_USERMODE(frame)) { 1284 if (p->p_flag & P_PROFIL) 1285 addupc_intr(p, CLKF_PC(frame)); 1286 if (--spc->spc_pscnt > 0) 1287 return; 1288 /* 1289 * Came from user mode; CPU was in user state. 1290 * If this process is being profiled record the tick. 1291 */ 1292 p->p_uticks++; 1293 if (p->p_nice > NZERO) 1294 spc->spc_cp_time[CP_NICE]++; 1295 else 1296 spc->spc_cp_time[CP_USER]++; 1297 } else { 1298 #ifdef GPROF 1299 /* 1300 * Kernel statistics are just like addupc_intr, only easier. 1301 */ 1302 g = &_gmonparam; 1303 if (g->state == GMON_PROF_ON) { 1304 i = CLKF_PC(frame) - g->lowpc; 1305 if (i < g->textsize) { 1306 i /= HISTFRACTION * sizeof(*g->kcount); 1307 g->kcount[i]++; 1308 } 1309 } 1310 #endif 1311 #ifdef PROC_PC 1312 if (p && p->p_flag & P_PROFIL) 1313 addupc_intr(p, PROC_PC(p)); 1314 #endif 1315 if (--spc->spc_pscnt > 0) 1316 return; 1317 /* 1318 * Came from kernel mode, so we were: 1319 * - handling an interrupt, 1320 * - doing syscall or trap work on behalf of the current 1321 * user process, or 1322 * - spinning in the idle loop. 1323 * Whichever it is, charge the time as appropriate. 1324 * Note that we charge interrupts to the current process, 1325 * regardless of whether they are ``for'' that process, 1326 * so that we know how much of its real time was spent 1327 * in ``non-process'' (i.e., interrupt) work. 1328 */ 1329 if (CLKF_INTR(frame)) { 1330 if (p != NULL) 1331 p->p_iticks++; 1332 spc->spc_cp_time[CP_INTR]++; 1333 } else if (p != NULL) { 1334 p->p_sticks++; 1335 spc->spc_cp_time[CP_SYS]++; 1336 } else 1337 spc->spc_cp_time[CP_IDLE]++; 1338 } 1339 spc->spc_pscnt = psdiv; 1340 1341 if (p != NULL) { 1342 ++p->p_cpticks; 1343 /* 1344 * If no separate schedclock is provided, call it here 1345 * at ~~12-25 Hz, ~~16 Hz is best 1346 */ 1347 if (schedhz == 0) 1348 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0) 1349 schedclock(p); 1350 } 1351 } 1352 1353 1354 #ifdef NTP /* NTP phase-locked loop in kernel */ 1355 1356 /* 1357 * hardupdate() - local clock update 1358 * 1359 * This routine is called by ntp_adjtime() to update the local clock 1360 * phase and frequency. The implementation is of an adaptive-parameter, 1361 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1362 * time and frequency offset estimates for each call. If the kernel PPS 1363 * discipline code is configured (PPS_SYNC), the PPS signal itself 1364 * determines the new time offset, instead of the calling argument. 1365 * Presumably, calls to ntp_adjtime() occur only when the caller 1366 * believes the local clock is valid within some bound (+-128 ms with 1367 * NTP). If the caller's time is far different than the PPS time, an 1368 * argument will ensue, and it's not clear who will lose. 1369 * 1370 * For uncompensated quartz crystal oscillatores and nominal update 1371 * intervals less than 1024 s, operation should be in phase-lock mode 1372 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1373 * intervals greater than thiss, operation should be in frequency-lock 1374 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1375 * 1376 * Note: splclock() is in effect. 1377 */ 1378 void 1379 hardupdate(long offset) 1380 { 1381 long ltemp, mtemp; 1382 1383 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1384 return; 1385 ltemp = offset; 1386 #ifdef PPS_SYNC 1387 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1388 ltemp = pps_offset; 1389 #endif /* PPS_SYNC */ 1390 1391 /* 1392 * Scale the phase adjustment and clamp to the operating range. 1393 */ 1394 if (ltemp > MAXPHASE) 1395 time_offset = MAXPHASE << SHIFT_UPDATE; 1396 else if (ltemp < -MAXPHASE) 1397 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1398 else 1399 time_offset = ltemp << SHIFT_UPDATE; 1400 1401 /* 1402 * Select whether the frequency is to be controlled and in which 1403 * mode (PLL or FLL). Clamp to the operating range. Ugly 1404 * multiply/divide should be replaced someday. 1405 */ 1406 if (time_status & STA_FREQHOLD || time_reftime == 0) 1407 time_reftime = time.tv_sec; 1408 mtemp = time.tv_sec - time_reftime; 1409 time_reftime = time.tv_sec; 1410 if (time_status & STA_FLL) { 1411 if (mtemp >= MINSEC) { 1412 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1413 SHIFT_UPDATE)); 1414 if (ltemp < 0) 1415 time_freq -= -ltemp >> SHIFT_KH; 1416 else 1417 time_freq += ltemp >> SHIFT_KH; 1418 } 1419 } else { 1420 if (mtemp < MAXSEC) { 1421 ltemp *= mtemp; 1422 if (ltemp < 0) 1423 time_freq -= -ltemp >> (time_constant + 1424 time_constant + SHIFT_KF - 1425 SHIFT_USEC); 1426 else 1427 time_freq += ltemp >> (time_constant + 1428 time_constant + SHIFT_KF - 1429 SHIFT_USEC); 1430 } 1431 } 1432 if (time_freq > time_tolerance) 1433 time_freq = time_tolerance; 1434 else if (time_freq < -time_tolerance) 1435 time_freq = -time_tolerance; 1436 } 1437 1438 #ifdef PPS_SYNC 1439 /* 1440 * hardpps() - discipline CPU clock oscillator to external PPS signal 1441 * 1442 * This routine is called at each PPS interrupt in order to discipline 1443 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1444 * and leaves it in a handy spot for the hardclock() routine. It 1445 * integrates successive PPS phase differences and calculates the 1446 * frequency offset. This is used in hardclock() to discipline the CPU 1447 * clock oscillator so that intrinsic frequency error is cancelled out. 1448 * The code requires the caller to capture the time and hardware counter 1449 * value at the on-time PPS signal transition. 1450 * 1451 * Note that, on some Unix systems, this routine runs at an interrupt 1452 * priority level higher than the timer interrupt routine hardclock(). 1453 * Therefore, the variables used are distinct from the hardclock() 1454 * variables, except for certain exceptions: The PPS frequency pps_freq 1455 * and phase pps_offset variables are determined by this routine and 1456 * updated atomically. The time_tolerance variable can be considered a 1457 * constant, since it is infrequently changed, and then only when the 1458 * PPS signal is disabled. The watchdog counter pps_valid is updated 1459 * once per second by hardclock() and is atomically cleared in this 1460 * routine. 1461 */ 1462 void 1463 hardpps(struct timeval *tvp, /* time at PPS */ 1464 long usec /* hardware counter at PPS */) 1465 { 1466 long u_usec, v_usec, bigtick; 1467 long cal_sec, cal_usec; 1468 1469 /* 1470 * An occasional glitch can be produced when the PPS interrupt 1471 * occurs in the hardclock() routine before the time variable is 1472 * updated. Here the offset is discarded when the difference 1473 * between it and the last one is greater than tick/2, but not 1474 * if the interval since the first discard exceeds 30 s. 1475 */ 1476 time_status |= STA_PPSSIGNAL; 1477 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1478 pps_valid = 0; 1479 u_usec = -tvp->tv_usec; 1480 if (u_usec < -500000) 1481 u_usec += 1000000; 1482 v_usec = pps_offset - u_usec; 1483 if (v_usec < 0) 1484 v_usec = -v_usec; 1485 if (v_usec > (tick >> 1)) { 1486 if (pps_glitch > MAXGLITCH) { 1487 pps_glitch = 0; 1488 pps_tf[2] = u_usec; 1489 pps_tf[1] = u_usec; 1490 } else { 1491 pps_glitch++; 1492 u_usec = pps_offset; 1493 } 1494 } else 1495 pps_glitch = 0; 1496 1497 /* 1498 * A three-stage median filter is used to help deglitch the pps 1499 * time. The median sample becomes the time offset estimate; the 1500 * difference between the other two samples becomes the time 1501 * dispersion (jitter) estimate. 1502 */ 1503 pps_tf[2] = pps_tf[1]; 1504 pps_tf[1] = pps_tf[0]; 1505 pps_tf[0] = u_usec; 1506 if (pps_tf[0] > pps_tf[1]) { 1507 if (pps_tf[1] > pps_tf[2]) { 1508 pps_offset = pps_tf[1]; /* 0 1 2 */ 1509 v_usec = pps_tf[0] - pps_tf[2]; 1510 } else if (pps_tf[2] > pps_tf[0]) { 1511 pps_offset = pps_tf[0]; /* 2 0 1 */ 1512 v_usec = pps_tf[2] - pps_tf[1]; 1513 } else { 1514 pps_offset = pps_tf[2]; /* 0 2 1 */ 1515 v_usec = pps_tf[0] - pps_tf[1]; 1516 } 1517 } else { 1518 if (pps_tf[1] < pps_tf[2]) { 1519 pps_offset = pps_tf[1]; /* 2 1 0 */ 1520 v_usec = pps_tf[2] - pps_tf[0]; 1521 } else if (pps_tf[2] < pps_tf[0]) { 1522 pps_offset = pps_tf[0]; /* 1 0 2 */ 1523 v_usec = pps_tf[1] - pps_tf[2]; 1524 } else { 1525 pps_offset = pps_tf[2]; /* 1 2 0 */ 1526 v_usec = pps_tf[1] - pps_tf[0]; 1527 } 1528 } 1529 if (v_usec > MAXTIME) 1530 pps_jitcnt++; 1531 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1532 if (v_usec < 0) 1533 pps_jitter -= -v_usec >> PPS_AVG; 1534 else 1535 pps_jitter += v_usec >> PPS_AVG; 1536 if (pps_jitter > (MAXTIME >> 1)) 1537 time_status |= STA_PPSJITTER; 1538 1539 /* 1540 * During the calibration interval adjust the starting time when 1541 * the tick overflows. At the end of the interval compute the 1542 * duration of the interval and the difference of the hardware 1543 * counters at the beginning and end of the interval. This code 1544 * is deliciously complicated by the fact valid differences may 1545 * exceed the value of tick when using long calibration 1546 * intervals and small ticks. Note that the counter can be 1547 * greater than tick if caught at just the wrong instant, but 1548 * the values returned and used here are correct. 1549 */ 1550 bigtick = (long)tick << SHIFT_USEC; 1551 pps_usec -= pps_freq; 1552 if (pps_usec >= bigtick) 1553 pps_usec -= bigtick; 1554 if (pps_usec < 0) 1555 pps_usec += bigtick; 1556 pps_time.tv_sec++; 1557 pps_count++; 1558 if (pps_count < (1 << pps_shift)) 1559 return; 1560 pps_count = 0; 1561 pps_calcnt++; 1562 u_usec = usec << SHIFT_USEC; 1563 v_usec = pps_usec - u_usec; 1564 if (v_usec >= bigtick >> 1) 1565 v_usec -= bigtick; 1566 if (v_usec < -(bigtick >> 1)) 1567 v_usec += bigtick; 1568 if (v_usec < 0) 1569 v_usec = -(-v_usec >> pps_shift); 1570 else 1571 v_usec = v_usec >> pps_shift; 1572 pps_usec = u_usec; 1573 cal_sec = tvp->tv_sec; 1574 cal_usec = tvp->tv_usec; 1575 cal_sec -= pps_time.tv_sec; 1576 cal_usec -= pps_time.tv_usec; 1577 if (cal_usec < 0) { 1578 cal_usec += 1000000; 1579 cal_sec--; 1580 } 1581 pps_time = *tvp; 1582 1583 /* 1584 * Check for lost interrupts, noise, excessive jitter and 1585 * excessive frequency error. The number of timer ticks during 1586 * the interval may vary +-1 tick. Add to this a margin of one 1587 * tick for the PPS signal jitter and maximum frequency 1588 * deviation. If the limits are exceeded, the calibration 1589 * interval is reset to the minimum and we start over. 1590 */ 1591 u_usec = (long)tick << 1; 1592 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1593 || (cal_sec == 0 && cal_usec < u_usec)) 1594 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1595 pps_errcnt++; 1596 pps_shift = PPS_SHIFT; 1597 pps_intcnt = 0; 1598 time_status |= STA_PPSERROR; 1599 return; 1600 } 1601 1602 /* 1603 * A three-stage median filter is used to help deglitch the pps 1604 * frequency. The median sample becomes the frequency offset 1605 * estimate; the difference between the other two samples 1606 * becomes the frequency dispersion (stability) estimate. 1607 */ 1608 pps_ff[2] = pps_ff[1]; 1609 pps_ff[1] = pps_ff[0]; 1610 pps_ff[0] = v_usec; 1611 if (pps_ff[0] > pps_ff[1]) { 1612 if (pps_ff[1] > pps_ff[2]) { 1613 u_usec = pps_ff[1]; /* 0 1 2 */ 1614 v_usec = pps_ff[0] - pps_ff[2]; 1615 } else if (pps_ff[2] > pps_ff[0]) { 1616 u_usec = pps_ff[0]; /* 2 0 1 */ 1617 v_usec = pps_ff[2] - pps_ff[1]; 1618 } else { 1619 u_usec = pps_ff[2]; /* 0 2 1 */ 1620 v_usec = pps_ff[0] - pps_ff[1]; 1621 } 1622 } else { 1623 if (pps_ff[1] < pps_ff[2]) { 1624 u_usec = pps_ff[1]; /* 2 1 0 */ 1625 v_usec = pps_ff[2] - pps_ff[0]; 1626 } else if (pps_ff[2] < pps_ff[0]) { 1627 u_usec = pps_ff[0]; /* 1 0 2 */ 1628 v_usec = pps_ff[1] - pps_ff[2]; 1629 } else { 1630 u_usec = pps_ff[2]; /* 1 2 0 */ 1631 v_usec = pps_ff[1] - pps_ff[0]; 1632 } 1633 } 1634 1635 /* 1636 * Here the frequency dispersion (stability) is updated. If it 1637 * is less than one-fourth the maximum (MAXFREQ), the frequency 1638 * offset is updated as well, but clamped to the tolerance. It 1639 * will be processed later by the hardclock() routine. 1640 */ 1641 v_usec = (v_usec >> 1) - pps_stabil; 1642 if (v_usec < 0) 1643 pps_stabil -= -v_usec >> PPS_AVG; 1644 else 1645 pps_stabil += v_usec >> PPS_AVG; 1646 if (pps_stabil > MAXFREQ >> 2) { 1647 pps_stbcnt++; 1648 time_status |= STA_PPSWANDER; 1649 return; 1650 } 1651 if (time_status & STA_PPSFREQ) { 1652 if (u_usec < 0) { 1653 pps_freq -= -u_usec >> PPS_AVG; 1654 if (pps_freq < -time_tolerance) 1655 pps_freq = -time_tolerance; 1656 u_usec = -u_usec; 1657 } else { 1658 pps_freq += u_usec >> PPS_AVG; 1659 if (pps_freq > time_tolerance) 1660 pps_freq = time_tolerance; 1661 } 1662 } 1663 1664 /* 1665 * Here the calibration interval is adjusted. If the maximum 1666 * time difference is greater than tick / 4, reduce the interval 1667 * by half. If this is not the case for four consecutive 1668 * intervals, double the interval. 1669 */ 1670 if (u_usec << pps_shift > bigtick >> 2) { 1671 pps_intcnt = 0; 1672 if (pps_shift > PPS_SHIFT) 1673 pps_shift--; 1674 } else if (pps_intcnt >= 4) { 1675 pps_intcnt = 0; 1676 if (pps_shift < PPS_SHIFTMAX) 1677 pps_shift++; 1678 } else 1679 pps_intcnt++; 1680 } 1681 #endif /* PPS_SYNC */ 1682 #endif /* NTP */ 1683 1684 /* 1685 * Return information about system clocks. 1686 */ 1687 int 1688 sysctl_clockrate(void *where, size_t *sizep) 1689 { 1690 struct clockinfo clkinfo; 1691 1692 /* 1693 * Construct clockinfo structure. 1694 */ 1695 clkinfo.tick = tick; 1696 clkinfo.tickadj = tickadj; 1697 clkinfo.hz = hz; 1698 clkinfo.profhz = profhz; 1699 clkinfo.stathz = stathz ? stathz : hz; 1700 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1701 } 1702