1 /* $NetBSD: kern_clock.c,v 1.86 2003/06/23 11:02:04 martin Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /*- 41 * Copyright (c) 1982, 1986, 1991, 1993 42 * The Regents of the University of California. All rights reserved. 43 * (c) UNIX System Laboratories, Inc. 44 * All or some portions of this file are derived from material licensed 45 * to the University of California by American Telephone and Telegraph 46 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 47 * the permission of UNIX System Laboratories, Inc. 48 * 49 * Redistribution and use in source and binary forms, with or without 50 * modification, are permitted provided that the following conditions 51 * are met: 52 * 1. Redistributions of source code must retain the above copyright 53 * notice, this list of conditions and the following disclaimer. 54 * 2. Redistributions in binary form must reproduce the above copyright 55 * notice, this list of conditions and the following disclaimer in the 56 * documentation and/or other materials provided with the distribution. 57 * 3. All advertising materials mentioning features or use of this software 58 * must display the following acknowledgement: 59 * This product includes software developed by the University of 60 * California, Berkeley and its contributors. 61 * 4. Neither the name of the University nor the names of its contributors 62 * may be used to endorse or promote products derived from this software 63 * without specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 69 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 75 * SUCH DAMAGE. 76 * 77 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 78 */ 79 80 #include <sys/cdefs.h> 81 __KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.86 2003/06/23 11:02:04 martin Exp $"); 82 83 #include "opt_ntp.h" 84 #include "opt_multiprocessor.h" 85 #include "opt_perfctrs.h" 86 87 #include <sys/param.h> 88 #include <sys/systm.h> 89 #include <sys/callout.h> 90 #include <sys/kernel.h> 91 #include <sys/proc.h> 92 #include <sys/resourcevar.h> 93 #include <sys/signalvar.h> 94 #include <sys/sysctl.h> 95 #include <sys/timex.h> 96 #include <sys/sched.h> 97 #include <sys/time.h> 98 99 #include <machine/cpu.h> 100 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 101 #include <machine/intr.h> 102 #endif 103 104 #ifdef GPROF 105 #include <sys/gmon.h> 106 #endif 107 108 /* 109 * Clock handling routines. 110 * 111 * This code is written to operate with two timers that run independently of 112 * each other. The main clock, running hz times per second, is used to keep 113 * track of real time. The second timer handles kernel and user profiling, 114 * and does resource use estimation. If the second timer is programmable, 115 * it is randomized to avoid aliasing between the two clocks. For example, 116 * the randomization prevents an adversary from always giving up the cpu 117 * just before its quantum expires. Otherwise, it would never accumulate 118 * cpu ticks. The mean frequency of the second timer is stathz. 119 * 120 * If no second timer exists, stathz will be zero; in this case we drive 121 * profiling and statistics off the main clock. This WILL NOT be accurate; 122 * do not do it unless absolutely necessary. 123 * 124 * The statistics clock may (or may not) be run at a higher rate while 125 * profiling. This profile clock runs at profhz. We require that profhz 126 * be an integral multiple of stathz. 127 * 128 * If the statistics clock is running fast, it must be divided by the ratio 129 * profhz/stathz for statistics. (For profiling, every tick counts.) 130 */ 131 132 #ifdef NTP /* NTP phase-locked loop in kernel */ 133 /* 134 * Phase/frequency-lock loop (PLL/FLL) definitions 135 * 136 * The following variables are read and set by the ntp_adjtime() system 137 * call. 138 * 139 * time_state shows the state of the system clock, with values defined 140 * in the timex.h header file. 141 * 142 * time_status shows the status of the system clock, with bits defined 143 * in the timex.h header file. 144 * 145 * time_offset is used by the PLL/FLL to adjust the system time in small 146 * increments. 147 * 148 * time_constant determines the bandwidth or "stiffness" of the PLL. 149 * 150 * time_tolerance determines maximum frequency error or tolerance of the 151 * CPU clock oscillator and is a property of the architecture; however, 152 * in principle it could change as result of the presence of external 153 * discipline signals, for instance. 154 * 155 * time_precision is usually equal to the kernel tick variable; however, 156 * in cases where a precision clock counter or external clock is 157 * available, the resolution can be much less than this and depend on 158 * whether the external clock is working or not. 159 * 160 * time_maxerror is initialized by a ntp_adjtime() call and increased by 161 * the kernel once each second to reflect the maximum error bound 162 * growth. 163 * 164 * time_esterror is set and read by the ntp_adjtime() call, but 165 * otherwise not used by the kernel. 166 */ 167 int time_state = TIME_OK; /* clock state */ 168 int time_status = STA_UNSYNC; /* clock status bits */ 169 long time_offset = 0; /* time offset (us) */ 170 long time_constant = 0; /* pll time constant */ 171 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 172 long time_precision = 1; /* clock precision (us) */ 173 long time_maxerror = MAXPHASE; /* maximum error (us) */ 174 long time_esterror = MAXPHASE; /* estimated error (us) */ 175 176 /* 177 * The following variables establish the state of the PLL/FLL and the 178 * residual time and frequency offset of the local clock. The scale 179 * factors are defined in the timex.h header file. 180 * 181 * time_phase and time_freq are the phase increment and the frequency 182 * increment, respectively, of the kernel time variable. 183 * 184 * time_freq is set via ntp_adjtime() from a value stored in a file when 185 * the synchronization daemon is first started. Its value is retrieved 186 * via ntp_adjtime() and written to the file about once per hour by the 187 * daemon. 188 * 189 * time_adj is the adjustment added to the value of tick at each timer 190 * interrupt and is recomputed from time_phase and time_freq at each 191 * seconds rollover. 192 * 193 * time_reftime is the second's portion of the system time at the last 194 * call to ntp_adjtime(). It is used to adjust the time_freq variable 195 * and to increase the time_maxerror as the time since last update 196 * increases. 197 */ 198 long time_phase = 0; /* phase offset (scaled us) */ 199 long time_freq = 0; /* frequency offset (scaled ppm) */ 200 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 201 long time_reftime = 0; /* time at last adjustment (s) */ 202 203 #ifdef PPS_SYNC 204 /* 205 * The following variables are used only if the kernel PPS discipline 206 * code is configured (PPS_SYNC). The scale factors are defined in the 207 * timex.h header file. 208 * 209 * pps_time contains the time at each calibration interval, as read by 210 * microtime(). pps_count counts the seconds of the calibration 211 * interval, the duration of which is nominally pps_shift in powers of 212 * two. 213 * 214 * pps_offset is the time offset produced by the time median filter 215 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 216 * this filter. 217 * 218 * pps_freq is the frequency offset produced by the frequency median 219 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 220 * by this filter. 221 * 222 * pps_usec is latched from a high resolution counter or external clock 223 * at pps_time. Here we want the hardware counter contents only, not the 224 * contents plus the time_tv.usec as usual. 225 * 226 * pps_valid counts the number of seconds since the last PPS update. It 227 * is used as a watchdog timer to disable the PPS discipline should the 228 * PPS signal be lost. 229 * 230 * pps_glitch counts the number of seconds since the beginning of an 231 * offset burst more than tick/2 from current nominal offset. It is used 232 * mainly to suppress error bursts due to priority conflicts between the 233 * PPS interrupt and timer interrupt. 234 * 235 * pps_intcnt counts the calibration intervals for use in the interval- 236 * adaptation algorithm. It's just too complicated for words. 237 */ 238 struct timeval pps_time; /* kernel time at last interval */ 239 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 240 long pps_offset = 0; /* pps time offset (us) */ 241 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 242 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 243 long pps_freq = 0; /* frequency offset (scaled ppm) */ 244 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 245 long pps_usec = 0; /* microsec counter at last interval */ 246 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 247 int pps_glitch = 0; /* pps signal glitch counter */ 248 int pps_count = 0; /* calibration interval counter (s) */ 249 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 250 int pps_intcnt = 0; /* intervals at current duration */ 251 252 /* 253 * PPS signal quality monitors 254 * 255 * pps_jitcnt counts the seconds that have been discarded because the 256 * jitter measured by the time median filter exceeds the limit MAXTIME 257 * (100 us). 258 * 259 * pps_calcnt counts the frequency calibration intervals, which are 260 * variable from 4 s to 256 s. 261 * 262 * pps_errcnt counts the calibration intervals which have been discarded 263 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 264 * calibration interval jitter exceeds two ticks. 265 * 266 * pps_stbcnt counts the calibration intervals that have been discarded 267 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 268 */ 269 long pps_jitcnt = 0; /* jitter limit exceeded */ 270 long pps_calcnt = 0; /* calibration intervals */ 271 long pps_errcnt = 0; /* calibration errors */ 272 long pps_stbcnt = 0; /* stability limit exceeded */ 273 #endif /* PPS_SYNC */ 274 275 #ifdef EXT_CLOCK 276 /* 277 * External clock definitions 278 * 279 * The following definitions and declarations are used only if an 280 * external clock is configured on the system. 281 */ 282 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 283 284 /* 285 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 286 * interrupt and decremented once each second. 287 */ 288 int clock_count = 0; /* CPU clock counter */ 289 290 #ifdef HIGHBALL 291 /* 292 * The clock_offset and clock_cpu variables are used by the HIGHBALL 293 * interface. The clock_offset variable defines the offset between 294 * system time and the HIGBALL counters. The clock_cpu variable contains 295 * the offset between the system clock and the HIGHBALL clock for use in 296 * disciplining the kernel time variable. 297 */ 298 extern struct timeval clock_offset; /* Highball clock offset */ 299 long clock_cpu = 0; /* CPU clock adjust */ 300 #endif /* HIGHBALL */ 301 #endif /* EXT_CLOCK */ 302 #endif /* NTP */ 303 304 305 /* 306 * Bump a timeval by a small number of usec's. 307 */ 308 #define BUMPTIME(t, usec) { \ 309 volatile struct timeval *tp = (t); \ 310 long us; \ 311 \ 312 tp->tv_usec = us = tp->tv_usec + (usec); \ 313 if (us >= 1000000) { \ 314 tp->tv_usec = us - 1000000; \ 315 tp->tv_sec++; \ 316 } \ 317 } 318 319 int stathz; 320 int profhz; 321 int profsrc; 322 int schedhz; 323 int profprocs; 324 int hardclock_ticks; 325 static int psdiv; /* prof => stat divider */ 326 int psratio; /* ratio: prof / stat */ 327 int tickfix, tickfixinterval; /* used if tick not really integral */ 328 #ifndef NTP 329 static int tickfixcnt; /* accumulated fractional error */ 330 #else 331 int fixtick; /* used by NTP for same */ 332 int shifthz; 333 #endif 334 335 /* 336 * We might want ldd to load the both words from time at once. 337 * To succeed we need to be quadword aligned. 338 * The sparc already does that, and that it has worked so far is a fluke. 339 */ 340 volatile struct timeval time __attribute__((__aligned__(__alignof__(quad_t)))); 341 volatile struct timeval mono_time; 342 343 void *softclock_si; 344 345 /* 346 * Initialize clock frequencies and start both clocks running. 347 */ 348 void 349 initclocks(void) 350 { 351 int i; 352 353 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 354 softclock_si = softintr_establish(IPL_SOFTCLOCK, softclock, NULL); 355 if (softclock_si == NULL) 356 panic("initclocks: unable to register softclock intr"); 357 #endif 358 359 /* 360 * Set divisors to 1 (normal case) and let the machine-specific 361 * code do its bit. 362 */ 363 psdiv = 1; 364 cpu_initclocks(); 365 366 /* 367 * Compute profhz/stathz/rrticks, and fix profhz if needed. 368 */ 369 i = stathz ? stathz : hz; 370 if (profhz == 0) 371 profhz = i; 372 psratio = profhz / i; 373 rrticks = hz / 10; 374 375 #ifdef NTP 376 switch (hz) { 377 case 1: 378 shifthz = SHIFT_SCALE - 0; 379 break; 380 case 2: 381 shifthz = SHIFT_SCALE - 1; 382 break; 383 case 4: 384 shifthz = SHIFT_SCALE - 2; 385 break; 386 case 8: 387 shifthz = SHIFT_SCALE - 3; 388 break; 389 case 16: 390 shifthz = SHIFT_SCALE - 4; 391 break; 392 case 32: 393 shifthz = SHIFT_SCALE - 5; 394 break; 395 case 60: 396 case 64: 397 shifthz = SHIFT_SCALE - 6; 398 break; 399 case 96: 400 case 100: 401 case 128: 402 shifthz = SHIFT_SCALE - 7; 403 break; 404 case 256: 405 shifthz = SHIFT_SCALE - 8; 406 break; 407 case 512: 408 shifthz = SHIFT_SCALE - 9; 409 break; 410 case 1000: 411 case 1024: 412 shifthz = SHIFT_SCALE - 10; 413 break; 414 case 1200: 415 case 2048: 416 shifthz = SHIFT_SCALE - 11; 417 break; 418 case 4096: 419 shifthz = SHIFT_SCALE - 12; 420 break; 421 case 8192: 422 shifthz = SHIFT_SCALE - 13; 423 break; 424 case 16384: 425 shifthz = SHIFT_SCALE - 14; 426 break; 427 case 32768: 428 shifthz = SHIFT_SCALE - 15; 429 break; 430 case 65536: 431 shifthz = SHIFT_SCALE - 16; 432 break; 433 default: 434 panic("weird hz"); 435 } 436 if (fixtick == 0) { 437 /* 438 * Give MD code a chance to set this to a better 439 * value; but, if it doesn't, we should. 440 */ 441 fixtick = (1000000 - (hz*tick)); 442 } 443 #endif 444 } 445 446 /* 447 * The real-time timer, interrupting hz times per second. 448 */ 449 void 450 hardclock(struct clockframe *frame) 451 { 452 struct lwp *l; 453 struct proc *p; 454 int delta; 455 extern int tickdelta; 456 extern long timedelta; 457 struct cpu_info *ci = curcpu(); 458 struct ptimer *pt; 459 #ifdef NTP 460 int time_update; 461 int ltemp; 462 #endif 463 464 l = curlwp; 465 if (l) { 466 p = l->l_proc; 467 /* 468 * Run current process's virtual and profile time, as needed. 469 */ 470 if (CLKF_USERMODE(frame) && p->p_timers && 471 (pt = LIST_FIRST(&p->p_timers->pts_virtual)) != NULL) 472 if (itimerdecr(pt, tick) == 0) 473 itimerfire(pt); 474 if (p->p_timers && 475 (pt = LIST_FIRST(&p->p_timers->pts_prof)) != NULL) 476 if (itimerdecr(pt, tick) == 0) 477 itimerfire(pt); 478 } 479 480 /* 481 * If no separate statistics clock is available, run it from here. 482 */ 483 if (stathz == 0) 484 statclock(frame); 485 if ((--ci->ci_schedstate.spc_rrticks) <= 0) 486 roundrobin(ci); 487 488 #if defined(MULTIPROCESSOR) 489 /* 490 * If we are not the primary CPU, we're not allowed to do 491 * any more work. 492 */ 493 if (CPU_IS_PRIMARY(ci) == 0) 494 return; 495 #endif 496 497 /* 498 * Increment the time-of-day. The increment is normally just 499 * ``tick''. If the machine is one which has a clock frequency 500 * such that ``hz'' would not divide the second evenly into 501 * milliseconds, a periodic adjustment must be applied. Finally, 502 * if we are still adjusting the time (see adjtime()), 503 * ``tickdelta'' may also be added in. 504 */ 505 hardclock_ticks++; 506 delta = tick; 507 508 #ifndef NTP 509 if (tickfix) { 510 tickfixcnt += tickfix; 511 if (tickfixcnt >= tickfixinterval) { 512 delta++; 513 tickfixcnt -= tickfixinterval; 514 } 515 } 516 #endif /* !NTP */ 517 /* Imprecise 4bsd adjtime() handling */ 518 if (timedelta != 0) { 519 delta += tickdelta; 520 timedelta -= tickdelta; 521 } 522 523 #ifdef notyet 524 microset(); 525 #endif 526 527 #ifndef NTP 528 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 529 #endif 530 BUMPTIME(&mono_time, delta); 531 532 #ifdef NTP 533 time_update = delta; 534 535 /* 536 * Compute the phase adjustment. If the low-order bits 537 * (time_phase) of the update overflow, bump the high-order bits 538 * (time_update). 539 */ 540 time_phase += time_adj; 541 if (time_phase <= -FINEUSEC) { 542 ltemp = -time_phase >> SHIFT_SCALE; 543 time_phase += ltemp << SHIFT_SCALE; 544 time_update -= ltemp; 545 } else if (time_phase >= FINEUSEC) { 546 ltemp = time_phase >> SHIFT_SCALE; 547 time_phase -= ltemp << SHIFT_SCALE; 548 time_update += ltemp; 549 } 550 551 #ifdef HIGHBALL 552 /* 553 * If the HIGHBALL board is installed, we need to adjust the 554 * external clock offset in order to close the hardware feedback 555 * loop. This will adjust the external clock phase and frequency 556 * in small amounts. The additional phase noise and frequency 557 * wander this causes should be minimal. We also need to 558 * discipline the kernel time variable, since the PLL is used to 559 * discipline the external clock. If the Highball board is not 560 * present, we discipline kernel time with the PLL as usual. We 561 * assume that the external clock phase adjustment (time_update) 562 * and kernel phase adjustment (clock_cpu) are less than the 563 * value of tick. 564 */ 565 clock_offset.tv_usec += time_update; 566 if (clock_offset.tv_usec >= 1000000) { 567 clock_offset.tv_sec++; 568 clock_offset.tv_usec -= 1000000; 569 } 570 if (clock_offset.tv_usec < 0) { 571 clock_offset.tv_sec--; 572 clock_offset.tv_usec += 1000000; 573 } 574 time.tv_usec += clock_cpu; 575 clock_cpu = 0; 576 #else 577 time.tv_usec += time_update; 578 #endif /* HIGHBALL */ 579 580 /* 581 * On rollover of the second the phase adjustment to be used for 582 * the next second is calculated. Also, the maximum error is 583 * increased by the tolerance. If the PPS frequency discipline 584 * code is present, the phase is increased to compensate for the 585 * CPU clock oscillator frequency error. 586 * 587 * On a 32-bit machine and given parameters in the timex.h 588 * header file, the maximum phase adjustment is +-512 ms and 589 * maximum frequency offset is a tad less than) +-512 ppm. On a 590 * 64-bit machine, you shouldn't need to ask. 591 */ 592 if (time.tv_usec >= 1000000) { 593 time.tv_usec -= 1000000; 594 time.tv_sec++; 595 time_maxerror += time_tolerance >> SHIFT_USEC; 596 597 /* 598 * Leap second processing. If in leap-insert state at 599 * the end of the day, the system clock is set back one 600 * second; if in leap-delete state, the system clock is 601 * set ahead one second. The microtime() routine or 602 * external clock driver will insure that reported time 603 * is always monotonic. The ugly divides should be 604 * replaced. 605 */ 606 switch (time_state) { 607 case TIME_OK: 608 if (time_status & STA_INS) 609 time_state = TIME_INS; 610 else if (time_status & STA_DEL) 611 time_state = TIME_DEL; 612 break; 613 614 case TIME_INS: 615 if (time.tv_sec % 86400 == 0) { 616 time.tv_sec--; 617 time_state = TIME_OOP; 618 } 619 break; 620 621 case TIME_DEL: 622 if ((time.tv_sec + 1) % 86400 == 0) { 623 time.tv_sec++; 624 time_state = TIME_WAIT; 625 } 626 break; 627 628 case TIME_OOP: 629 time_state = TIME_WAIT; 630 break; 631 632 case TIME_WAIT: 633 if (!(time_status & (STA_INS | STA_DEL))) 634 time_state = TIME_OK; 635 break; 636 } 637 638 /* 639 * Compute the phase adjustment for the next second. In 640 * PLL mode, the offset is reduced by a fixed factor 641 * times the time constant. In FLL mode the offset is 642 * used directly. In either mode, the maximum phase 643 * adjustment for each second is clamped so as to spread 644 * the adjustment over not more than the number of 645 * seconds between updates. 646 */ 647 if (time_offset < 0) { 648 ltemp = -time_offset; 649 if (!(time_status & STA_FLL)) 650 ltemp >>= SHIFT_KG + time_constant; 651 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 652 ltemp = (MAXPHASE / MINSEC) << 653 SHIFT_UPDATE; 654 time_offset += ltemp; 655 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 656 } else if (time_offset > 0) { 657 ltemp = time_offset; 658 if (!(time_status & STA_FLL)) 659 ltemp >>= SHIFT_KG + time_constant; 660 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 661 ltemp = (MAXPHASE / MINSEC) << 662 SHIFT_UPDATE; 663 time_offset -= ltemp; 664 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 665 } else 666 time_adj = 0; 667 668 /* 669 * Compute the frequency estimate and additional phase 670 * adjustment due to frequency error for the next 671 * second. When the PPS signal is engaged, gnaw on the 672 * watchdog counter and update the frequency computed by 673 * the pll and the PPS signal. 674 */ 675 #ifdef PPS_SYNC 676 pps_valid++; 677 if (pps_valid == PPS_VALID) { 678 pps_jitter = MAXTIME; 679 pps_stabil = MAXFREQ; 680 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 681 STA_PPSWANDER | STA_PPSERROR); 682 } 683 ltemp = time_freq + pps_freq; 684 #else 685 ltemp = time_freq; 686 #endif /* PPS_SYNC */ 687 688 if (ltemp < 0) 689 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 690 else 691 time_adj += ltemp >> (SHIFT_USEC - shifthz); 692 time_adj += (long)fixtick << shifthz; 693 694 /* 695 * When the CPU clock oscillator frequency is not a 696 * power of 2 in Hz, shifthz is only an approximate 697 * scale factor. 698 * 699 * To determine the adjustment, you can do the following: 700 * bc -q 701 * scale=24 702 * obase=2 703 * idealhz/realhz 704 * where `idealhz' is the next higher power of 2, and `realhz' 705 * is the actual value. You may need to factor this result 706 * into a sequence of 2 multipliers to get better precision. 707 * 708 * Likewise, the error can be calculated with (e.g. for 100Hz): 709 * bc -q 710 * scale=24 711 * ((1+2^-2+2^-5)*(1-2^-10)*realhz-idealhz)/idealhz 712 * (and then multiply by 1000000 to get ppm). 713 */ 714 switch (hz) { 715 case 60: 716 /* A factor of 1.000100010001 gives about 15ppm 717 error. */ 718 if (time_adj < 0) { 719 time_adj -= (-time_adj >> 4); 720 time_adj -= (-time_adj >> 8); 721 } else { 722 time_adj += (time_adj >> 4); 723 time_adj += (time_adj >> 8); 724 } 725 break; 726 727 case 96: 728 /* A factor of 1.0101010101 gives about 244ppm error. */ 729 if (time_adj < 0) { 730 time_adj -= (-time_adj >> 2); 731 time_adj -= (-time_adj >> 4) + (-time_adj >> 8); 732 } else { 733 time_adj += (time_adj >> 2); 734 time_adj += (time_adj >> 4) + (time_adj >> 8); 735 } 736 break; 737 738 case 100: 739 /* A factor of 1.010001111010111 gives about 1ppm 740 error. */ 741 if (time_adj < 0) { 742 time_adj -= (-time_adj >> 2) + (-time_adj >> 5); 743 time_adj += (-time_adj >> 10); 744 } else { 745 time_adj += (time_adj >> 2) + (time_adj >> 5); 746 time_adj -= (time_adj >> 10); 747 } 748 break; 749 750 case 1000: 751 /* A factor of 1.000001100010100001 gives about 50ppm 752 error. */ 753 if (time_adj < 0) { 754 time_adj -= (-time_adj >> 6) + (-time_adj >> 11); 755 time_adj -= (-time_adj >> 7); 756 } else { 757 time_adj += (time_adj >> 6) + (time_adj >> 11); 758 time_adj += (time_adj >> 7); 759 } 760 break; 761 762 case 1200: 763 /* A factor of 1.1011010011100001 gives about 64ppm 764 error. */ 765 if (time_adj < 0) { 766 time_adj -= (-time_adj >> 1) + (-time_adj >> 6); 767 time_adj -= (-time_adj >> 3) + (-time_adj >> 10); 768 } else { 769 time_adj += (time_adj >> 1) + (time_adj >> 6); 770 time_adj += (time_adj >> 3) + (time_adj >> 10); 771 } 772 break; 773 } 774 775 #ifdef EXT_CLOCK 776 /* 777 * If an external clock is present, it is necessary to 778 * discipline the kernel time variable anyway, since not 779 * all system components use the microtime() interface. 780 * Here, the time offset between the external clock and 781 * kernel time variable is computed every so often. 782 */ 783 clock_count++; 784 if (clock_count > CLOCK_INTERVAL) { 785 clock_count = 0; 786 microtime(&clock_ext); 787 delta.tv_sec = clock_ext.tv_sec - time.tv_sec; 788 delta.tv_usec = clock_ext.tv_usec - 789 time.tv_usec; 790 if (delta.tv_usec < 0) 791 delta.tv_sec--; 792 if (delta.tv_usec >= 500000) { 793 delta.tv_usec -= 1000000; 794 delta.tv_sec++; 795 } 796 if (delta.tv_usec < -500000) { 797 delta.tv_usec += 1000000; 798 delta.tv_sec--; 799 } 800 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 801 delta.tv_usec > MAXPHASE) || 802 delta.tv_sec < -1 || (delta.tv_sec == -1 && 803 delta.tv_usec < -MAXPHASE)) { 804 time = clock_ext; 805 delta.tv_sec = 0; 806 delta.tv_usec = 0; 807 } 808 #ifdef HIGHBALL 809 clock_cpu = delta.tv_usec; 810 #else /* HIGHBALL */ 811 hardupdate(delta.tv_usec); 812 #endif /* HIGHBALL */ 813 } 814 #endif /* EXT_CLOCK */ 815 } 816 817 #endif /* NTP */ 818 819 /* 820 * Update real-time timeout queue. 821 * Process callouts at a very low cpu priority, so we don't keep the 822 * relatively high clock interrupt priority any longer than necessary. 823 */ 824 if (callout_hardclock()) { 825 if (CLKF_BASEPRI(frame)) { 826 /* 827 * Save the overhead of a software interrupt; 828 * it will happen as soon as we return, so do 829 * it now. 830 */ 831 spllowersoftclock(); 832 KERNEL_LOCK(LK_CANRECURSE|LK_EXCLUSIVE); 833 softclock(NULL); 834 KERNEL_UNLOCK(); 835 } else { 836 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 837 softintr_schedule(softclock_si); 838 #else 839 setsoftclock(); 840 #endif 841 } 842 } 843 } 844 845 /* 846 * Compute number of hz until specified time. Used to compute second 847 * argument to callout_reset() from an absolute time. 848 */ 849 int 850 hzto(struct timeval *tv) 851 { 852 unsigned long ticks; 853 long sec, usec; 854 int s; 855 856 /* 857 * If the number of usecs in the whole seconds part of the time 858 * difference fits in a long, then the total number of usecs will 859 * fit in an unsigned long. Compute the total and convert it to 860 * ticks, rounding up and adding 1 to allow for the current tick 861 * to expire. Rounding also depends on unsigned long arithmetic 862 * to avoid overflow. 863 * 864 * Otherwise, if the number of ticks in the whole seconds part of 865 * the time difference fits in a long, then convert the parts to 866 * ticks separately and add, using similar rounding methods and 867 * overflow avoidance. This method would work in the previous 868 * case, but it is slightly slower and assume that hz is integral. 869 * 870 * Otherwise, round the time difference down to the maximum 871 * representable value. 872 * 873 * If ints are 32-bit, then the maximum value for any timeout in 874 * 10ms ticks is 248 days. 875 */ 876 s = splclock(); 877 sec = tv->tv_sec - time.tv_sec; 878 usec = tv->tv_usec - time.tv_usec; 879 splx(s); 880 881 if (usec < 0) { 882 sec--; 883 usec += 1000000; 884 } 885 886 if (sec < 0 || (sec == 0 && usec <= 0)) { 887 /* 888 * Would expire now or in the past. Return 0 ticks. 889 * This is different from the legacy hzto() interface, 890 * and callers need to check for it. 891 */ 892 ticks = 0; 893 } else if (sec <= (LONG_MAX / 1000000)) 894 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1)) 895 / tick) + 1; 896 else if (sec <= (LONG_MAX / hz)) 897 ticks = (sec * hz) + 898 (((unsigned long)usec + (tick - 1)) / tick) + 1; 899 else 900 ticks = LONG_MAX; 901 902 if (ticks > INT_MAX) 903 ticks = INT_MAX; 904 905 return ((int)ticks); 906 } 907 908 /* 909 * Start profiling on a process. 910 * 911 * Kernel profiling passes proc0 which never exits and hence 912 * keeps the profile clock running constantly. 913 */ 914 void 915 startprofclock(struct proc *p) 916 { 917 918 if ((p->p_flag & P_PROFIL) == 0) { 919 p->p_flag |= P_PROFIL; 920 /* 921 * This is only necessary if using the clock as the 922 * profiling source. 923 */ 924 if (++profprocs == 1 && stathz != 0) 925 psdiv = psratio; 926 } 927 } 928 929 /* 930 * Stop profiling on a process. 931 */ 932 void 933 stopprofclock(struct proc *p) 934 { 935 936 if (p->p_flag & P_PROFIL) { 937 p->p_flag &= ~P_PROFIL; 938 /* 939 * This is only necessary if using the clock as the 940 * profiling source. 941 */ 942 if (--profprocs == 0 && stathz != 0) 943 psdiv = 1; 944 } 945 } 946 947 #if defined(PERFCTRS) 948 /* 949 * Independent profiling "tick" in case we're using a separate 950 * clock or profiling event source. Currently, that's just 951 * performance counters--hence the wrapper. 952 */ 953 void 954 proftick(struct clockframe *frame) 955 { 956 #ifdef GPROF 957 struct gmonparam *g; 958 intptr_t i; 959 #endif 960 struct proc *p; 961 962 p = curproc; 963 if (CLKF_USERMODE(frame)) { 964 if (p->p_flag & P_PROFIL) 965 addupc_intr(p, CLKF_PC(frame)); 966 } else { 967 #ifdef GPROF 968 g = &_gmonparam; 969 if (g->state == GMON_PROF_ON) { 970 i = CLKF_PC(frame) - g->lowpc; 971 if (i < g->textsize) { 972 i /= HISTFRACTION * sizeof(*g->kcount); 973 g->kcount[i]++; 974 } 975 } 976 #endif 977 #ifdef PROC_PC 978 if (p && p->p_flag & P_PROFIL) 979 addupc_intr(p, PROC_PC(p)); 980 #endif 981 } 982 } 983 #endif 984 985 /* 986 * Statistics clock. Grab profile sample, and if divider reaches 0, 987 * do process and kernel statistics. 988 */ 989 void 990 statclock(struct clockframe *frame) 991 { 992 #ifdef GPROF 993 struct gmonparam *g; 994 intptr_t i; 995 #endif 996 struct cpu_info *ci = curcpu(); 997 struct schedstate_percpu *spc = &ci->ci_schedstate; 998 struct lwp *l; 999 struct proc *p; 1000 1001 /* 1002 * Notice changes in divisor frequency, and adjust clock 1003 * frequency accordingly. 1004 */ 1005 if (spc->spc_psdiv != psdiv) { 1006 spc->spc_psdiv = psdiv; 1007 spc->spc_pscnt = psdiv; 1008 if (psdiv == 1) { 1009 setstatclockrate(stathz); 1010 } else { 1011 setstatclockrate(profhz); 1012 } 1013 } 1014 l = curlwp; 1015 p = (l ? l->l_proc : 0); 1016 if (CLKF_USERMODE(frame)) { 1017 if (p->p_flag & P_PROFIL && profsrc == PROFSRC_CLOCK) 1018 addupc_intr(p, CLKF_PC(frame)); 1019 if (--spc->spc_pscnt > 0) 1020 return; 1021 /* 1022 * Came from user mode; CPU was in user state. 1023 * If this process is being profiled record the tick. 1024 */ 1025 p->p_uticks++; 1026 if (p->p_nice > NZERO) 1027 spc->spc_cp_time[CP_NICE]++; 1028 else 1029 spc->spc_cp_time[CP_USER]++; 1030 } else { 1031 #ifdef GPROF 1032 /* 1033 * Kernel statistics are just like addupc_intr, only easier. 1034 */ 1035 g = &_gmonparam; 1036 if (profsrc == PROFSRC_CLOCK && g->state == GMON_PROF_ON) { 1037 i = CLKF_PC(frame) - g->lowpc; 1038 if (i < g->textsize) { 1039 i /= HISTFRACTION * sizeof(*g->kcount); 1040 g->kcount[i]++; 1041 } 1042 } 1043 #endif 1044 #ifdef LWP_PC 1045 if (p && profsrc == PROFSRC_CLOCK && p->p_flag & P_PROFIL) 1046 addupc_intr(p, LWP_PC(l)); 1047 #endif 1048 if (--spc->spc_pscnt > 0) 1049 return; 1050 /* 1051 * Came from kernel mode, so we were: 1052 * - handling an interrupt, 1053 * - doing syscall or trap work on behalf of the current 1054 * user process, or 1055 * - spinning in the idle loop. 1056 * Whichever it is, charge the time as appropriate. 1057 * Note that we charge interrupts to the current process, 1058 * regardless of whether they are ``for'' that process, 1059 * so that we know how much of its real time was spent 1060 * in ``non-process'' (i.e., interrupt) work. 1061 */ 1062 if (CLKF_INTR(frame)) { 1063 if (p != NULL) 1064 p->p_iticks++; 1065 spc->spc_cp_time[CP_INTR]++; 1066 } else if (p != NULL) { 1067 p->p_sticks++; 1068 spc->spc_cp_time[CP_SYS]++; 1069 } else 1070 spc->spc_cp_time[CP_IDLE]++; 1071 } 1072 spc->spc_pscnt = psdiv; 1073 1074 if (l != NULL) { 1075 ++p->p_cpticks; 1076 /* 1077 * If no separate schedclock is provided, call it here 1078 * at ~~12-25 Hz, ~~16 Hz is best 1079 */ 1080 if (schedhz == 0) 1081 if ((++ci->ci_schedstate.spc_schedticks & 3) == 0) 1082 schedclock(l); 1083 } 1084 } 1085 1086 1087 #ifdef NTP /* NTP phase-locked loop in kernel */ 1088 1089 /* 1090 * hardupdate() - local clock update 1091 * 1092 * This routine is called by ntp_adjtime() to update the local clock 1093 * phase and frequency. The implementation is of an adaptive-parameter, 1094 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1095 * time and frequency offset estimates for each call. If the kernel PPS 1096 * discipline code is configured (PPS_SYNC), the PPS signal itself 1097 * determines the new time offset, instead of the calling argument. 1098 * Presumably, calls to ntp_adjtime() occur only when the caller 1099 * believes the local clock is valid within some bound (+-128 ms with 1100 * NTP). If the caller's time is far different than the PPS time, an 1101 * argument will ensue, and it's not clear who will lose. 1102 * 1103 * For uncompensated quartz crystal oscillatores and nominal update 1104 * intervals less than 1024 s, operation should be in phase-lock mode 1105 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1106 * intervals greater than thiss, operation should be in frequency-lock 1107 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1108 * 1109 * Note: splclock() is in effect. 1110 */ 1111 void 1112 hardupdate(long offset) 1113 { 1114 long ltemp, mtemp; 1115 1116 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1117 return; 1118 ltemp = offset; 1119 #ifdef PPS_SYNC 1120 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1121 ltemp = pps_offset; 1122 #endif /* PPS_SYNC */ 1123 1124 /* 1125 * Scale the phase adjustment and clamp to the operating range. 1126 */ 1127 if (ltemp > MAXPHASE) 1128 time_offset = MAXPHASE << SHIFT_UPDATE; 1129 else if (ltemp < -MAXPHASE) 1130 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1131 else 1132 time_offset = ltemp << SHIFT_UPDATE; 1133 1134 /* 1135 * Select whether the frequency is to be controlled and in which 1136 * mode (PLL or FLL). Clamp to the operating range. Ugly 1137 * multiply/divide should be replaced someday. 1138 */ 1139 if (time_status & STA_FREQHOLD || time_reftime == 0) 1140 time_reftime = time.tv_sec; 1141 mtemp = time.tv_sec - time_reftime; 1142 time_reftime = time.tv_sec; 1143 if (time_status & STA_FLL) { 1144 if (mtemp >= MINSEC) { 1145 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1146 SHIFT_UPDATE)); 1147 if (ltemp < 0) 1148 time_freq -= -ltemp >> SHIFT_KH; 1149 else 1150 time_freq += ltemp >> SHIFT_KH; 1151 } 1152 } else { 1153 if (mtemp < MAXSEC) { 1154 ltemp *= mtemp; 1155 if (ltemp < 0) 1156 time_freq -= -ltemp >> (time_constant + 1157 time_constant + SHIFT_KF - 1158 SHIFT_USEC); 1159 else 1160 time_freq += ltemp >> (time_constant + 1161 time_constant + SHIFT_KF - 1162 SHIFT_USEC); 1163 } 1164 } 1165 if (time_freq > time_tolerance) 1166 time_freq = time_tolerance; 1167 else if (time_freq < -time_tolerance) 1168 time_freq = -time_tolerance; 1169 } 1170 1171 #ifdef PPS_SYNC 1172 /* 1173 * hardpps() - discipline CPU clock oscillator to external PPS signal 1174 * 1175 * This routine is called at each PPS interrupt in order to discipline 1176 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1177 * and leaves it in a handy spot for the hardclock() routine. It 1178 * integrates successive PPS phase differences and calculates the 1179 * frequency offset. This is used in hardclock() to discipline the CPU 1180 * clock oscillator so that intrinsic frequency error is cancelled out. 1181 * The code requires the caller to capture the time and hardware counter 1182 * value at the on-time PPS signal transition. 1183 * 1184 * Note that, on some Unix systems, this routine runs at an interrupt 1185 * priority level higher than the timer interrupt routine hardclock(). 1186 * Therefore, the variables used are distinct from the hardclock() 1187 * variables, except for certain exceptions: The PPS frequency pps_freq 1188 * and phase pps_offset variables are determined by this routine and 1189 * updated atomically. The time_tolerance variable can be considered a 1190 * constant, since it is infrequently changed, and then only when the 1191 * PPS signal is disabled. The watchdog counter pps_valid is updated 1192 * once per second by hardclock() and is atomically cleared in this 1193 * routine. 1194 */ 1195 void 1196 hardpps(struct timeval *tvp, /* time at PPS */ 1197 long usec /* hardware counter at PPS */) 1198 { 1199 long u_usec, v_usec, bigtick; 1200 long cal_sec, cal_usec; 1201 1202 /* 1203 * An occasional glitch can be produced when the PPS interrupt 1204 * occurs in the hardclock() routine before the time variable is 1205 * updated. Here the offset is discarded when the difference 1206 * between it and the last one is greater than tick/2, but not 1207 * if the interval since the first discard exceeds 30 s. 1208 */ 1209 time_status |= STA_PPSSIGNAL; 1210 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1211 pps_valid = 0; 1212 u_usec = -tvp->tv_usec; 1213 if (u_usec < -500000) 1214 u_usec += 1000000; 1215 v_usec = pps_offset - u_usec; 1216 if (v_usec < 0) 1217 v_usec = -v_usec; 1218 if (v_usec > (tick >> 1)) { 1219 if (pps_glitch > MAXGLITCH) { 1220 pps_glitch = 0; 1221 pps_tf[2] = u_usec; 1222 pps_tf[1] = u_usec; 1223 } else { 1224 pps_glitch++; 1225 u_usec = pps_offset; 1226 } 1227 } else 1228 pps_glitch = 0; 1229 1230 /* 1231 * A three-stage median filter is used to help deglitch the pps 1232 * time. The median sample becomes the time offset estimate; the 1233 * difference between the other two samples becomes the time 1234 * dispersion (jitter) estimate. 1235 */ 1236 pps_tf[2] = pps_tf[1]; 1237 pps_tf[1] = pps_tf[0]; 1238 pps_tf[0] = u_usec; 1239 if (pps_tf[0] > pps_tf[1]) { 1240 if (pps_tf[1] > pps_tf[2]) { 1241 pps_offset = pps_tf[1]; /* 0 1 2 */ 1242 v_usec = pps_tf[0] - pps_tf[2]; 1243 } else if (pps_tf[2] > pps_tf[0]) { 1244 pps_offset = pps_tf[0]; /* 2 0 1 */ 1245 v_usec = pps_tf[2] - pps_tf[1]; 1246 } else { 1247 pps_offset = pps_tf[2]; /* 0 2 1 */ 1248 v_usec = pps_tf[0] - pps_tf[1]; 1249 } 1250 } else { 1251 if (pps_tf[1] < pps_tf[2]) { 1252 pps_offset = pps_tf[1]; /* 2 1 0 */ 1253 v_usec = pps_tf[2] - pps_tf[0]; 1254 } else if (pps_tf[2] < pps_tf[0]) { 1255 pps_offset = pps_tf[0]; /* 1 0 2 */ 1256 v_usec = pps_tf[1] - pps_tf[2]; 1257 } else { 1258 pps_offset = pps_tf[2]; /* 1 2 0 */ 1259 v_usec = pps_tf[1] - pps_tf[0]; 1260 } 1261 } 1262 if (v_usec > MAXTIME) 1263 pps_jitcnt++; 1264 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1265 if (v_usec < 0) 1266 pps_jitter -= -v_usec >> PPS_AVG; 1267 else 1268 pps_jitter += v_usec >> PPS_AVG; 1269 if (pps_jitter > (MAXTIME >> 1)) 1270 time_status |= STA_PPSJITTER; 1271 1272 /* 1273 * During the calibration interval adjust the starting time when 1274 * the tick overflows. At the end of the interval compute the 1275 * duration of the interval and the difference of the hardware 1276 * counters at the beginning and end of the interval. This code 1277 * is deliciously complicated by the fact valid differences may 1278 * exceed the value of tick when using long calibration 1279 * intervals and small ticks. Note that the counter can be 1280 * greater than tick if caught at just the wrong instant, but 1281 * the values returned and used here are correct. 1282 */ 1283 bigtick = (long)tick << SHIFT_USEC; 1284 pps_usec -= pps_freq; 1285 if (pps_usec >= bigtick) 1286 pps_usec -= bigtick; 1287 if (pps_usec < 0) 1288 pps_usec += bigtick; 1289 pps_time.tv_sec++; 1290 pps_count++; 1291 if (pps_count < (1 << pps_shift)) 1292 return; 1293 pps_count = 0; 1294 pps_calcnt++; 1295 u_usec = usec << SHIFT_USEC; 1296 v_usec = pps_usec - u_usec; 1297 if (v_usec >= bigtick >> 1) 1298 v_usec -= bigtick; 1299 if (v_usec < -(bigtick >> 1)) 1300 v_usec += bigtick; 1301 if (v_usec < 0) 1302 v_usec = -(-v_usec >> pps_shift); 1303 else 1304 v_usec = v_usec >> pps_shift; 1305 pps_usec = u_usec; 1306 cal_sec = tvp->tv_sec; 1307 cal_usec = tvp->tv_usec; 1308 cal_sec -= pps_time.tv_sec; 1309 cal_usec -= pps_time.tv_usec; 1310 if (cal_usec < 0) { 1311 cal_usec += 1000000; 1312 cal_sec--; 1313 } 1314 pps_time = *tvp; 1315 1316 /* 1317 * Check for lost interrupts, noise, excessive jitter and 1318 * excessive frequency error. The number of timer ticks during 1319 * the interval may vary +-1 tick. Add to this a margin of one 1320 * tick for the PPS signal jitter and maximum frequency 1321 * deviation. If the limits are exceeded, the calibration 1322 * interval is reset to the minimum and we start over. 1323 */ 1324 u_usec = (long)tick << 1; 1325 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1326 || (cal_sec == 0 && cal_usec < u_usec)) 1327 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1328 pps_errcnt++; 1329 pps_shift = PPS_SHIFT; 1330 pps_intcnt = 0; 1331 time_status |= STA_PPSERROR; 1332 return; 1333 } 1334 1335 /* 1336 * A three-stage median filter is used to help deglitch the pps 1337 * frequency. The median sample becomes the frequency offset 1338 * estimate; the difference between the other two samples 1339 * becomes the frequency dispersion (stability) estimate. 1340 */ 1341 pps_ff[2] = pps_ff[1]; 1342 pps_ff[1] = pps_ff[0]; 1343 pps_ff[0] = v_usec; 1344 if (pps_ff[0] > pps_ff[1]) { 1345 if (pps_ff[1] > pps_ff[2]) { 1346 u_usec = pps_ff[1]; /* 0 1 2 */ 1347 v_usec = pps_ff[0] - pps_ff[2]; 1348 } else if (pps_ff[2] > pps_ff[0]) { 1349 u_usec = pps_ff[0]; /* 2 0 1 */ 1350 v_usec = pps_ff[2] - pps_ff[1]; 1351 } else { 1352 u_usec = pps_ff[2]; /* 0 2 1 */ 1353 v_usec = pps_ff[0] - pps_ff[1]; 1354 } 1355 } else { 1356 if (pps_ff[1] < pps_ff[2]) { 1357 u_usec = pps_ff[1]; /* 2 1 0 */ 1358 v_usec = pps_ff[2] - pps_ff[0]; 1359 } else if (pps_ff[2] < pps_ff[0]) { 1360 u_usec = pps_ff[0]; /* 1 0 2 */ 1361 v_usec = pps_ff[1] - pps_ff[2]; 1362 } else { 1363 u_usec = pps_ff[2]; /* 1 2 0 */ 1364 v_usec = pps_ff[1] - pps_ff[0]; 1365 } 1366 } 1367 1368 /* 1369 * Here the frequency dispersion (stability) is updated. If it 1370 * is less than one-fourth the maximum (MAXFREQ), the frequency 1371 * offset is updated as well, but clamped to the tolerance. It 1372 * will be processed later by the hardclock() routine. 1373 */ 1374 v_usec = (v_usec >> 1) - pps_stabil; 1375 if (v_usec < 0) 1376 pps_stabil -= -v_usec >> PPS_AVG; 1377 else 1378 pps_stabil += v_usec >> PPS_AVG; 1379 if (pps_stabil > MAXFREQ >> 2) { 1380 pps_stbcnt++; 1381 time_status |= STA_PPSWANDER; 1382 return; 1383 } 1384 if (time_status & STA_PPSFREQ) { 1385 if (u_usec < 0) { 1386 pps_freq -= -u_usec >> PPS_AVG; 1387 if (pps_freq < -time_tolerance) 1388 pps_freq = -time_tolerance; 1389 u_usec = -u_usec; 1390 } else { 1391 pps_freq += u_usec >> PPS_AVG; 1392 if (pps_freq > time_tolerance) 1393 pps_freq = time_tolerance; 1394 } 1395 } 1396 1397 /* 1398 * Here the calibration interval is adjusted. If the maximum 1399 * time difference is greater than tick / 4, reduce the interval 1400 * by half. If this is not the case for four consecutive 1401 * intervals, double the interval. 1402 */ 1403 if (u_usec << pps_shift > bigtick >> 2) { 1404 pps_intcnt = 0; 1405 if (pps_shift > PPS_SHIFT) 1406 pps_shift--; 1407 } else if (pps_intcnt >= 4) { 1408 pps_intcnt = 0; 1409 if (pps_shift < PPS_SHIFTMAX) 1410 pps_shift++; 1411 } else 1412 pps_intcnt++; 1413 } 1414 #endif /* PPS_SYNC */ 1415 #endif /* NTP */ 1416 1417 /* 1418 * Return information about system clocks. 1419 */ 1420 int 1421 sysctl_clockrate(void *where, size_t *sizep) 1422 { 1423 struct clockinfo clkinfo; 1424 1425 /* 1426 * Construct clockinfo structure. 1427 */ 1428 clkinfo.tick = tick; 1429 clkinfo.tickadj = tickadj; 1430 clkinfo.hz = hz; 1431 clkinfo.profhz = profhz; 1432 clkinfo.stathz = stathz ? stathz : hz; 1433 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1434 } 1435