xref: /netbsd-src/sys/kern/kern_cctr.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: kern_cctr.c,v 1.12 2020/10/10 18:18:04 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2020 Jason R. Thorpe
5  * Copyright (c) 2018 Naruaki Etomi
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Most of the following was adapted from the Linux/ia64 cycle counter
31  * synchronization algorithm:
32  *
33  *	IA-64 Linux Kernel: Design and Implementation p356-p361
34  *	(Hewlett-Packard Professional Books)
35  *
36  * Here's a rough description of how it works.
37  *
38  * The primary CPU is the reference monotonic counter.  Each secondary
39  * CPU is responsible for knowing the offset of its own cycle counter
40  * relative to the primary's.  When the time counter is read, the CC
41  * value is adjusted by this delta.
42  *
43  * Calibration happens periodically, and works like this:
44  *
45  * Secondary CPU                               Primary CPU
46  *   Send IPI to publish reference CC
47  *                                   --------->
48  *                                             Indicate Primary Ready
49  *                <----------------------------
50  *   T0 = local CC
51  *   Indicate Secondary Ready
52  *                           ----------------->
53  *     (assume this happens at Tavg)           Publish reference CC
54  *                                             Indicate completion
55  *                    <------------------------
56  *   Notice completion
57  *   T1 = local CC
58  *
59  *   Tavg = (T0 + T1) / 2
60  *
61  *   Delta = Tavg - Published primary CC value
62  *
63  * "Notice completion" is performed by waiting for the primary to set
64  * the calibration state to FINISHED.  This is a little unfortunate,
65  * because T0->Tavg involves a single store-release on the secondary, and
66  * Tavg->T1 involves a store-relaxed and a store-release.  It would be
67  * better to simply wait for the reference CC to transition from 0 to
68  * non-0 (i.e. just wait for a single store-release from Tavg->T1), but
69  * if the cycle counter just happened to read back as 0 at that instant,
70  * we would never break out of the loop.
71  *
72  * We trigger calibration roughly once a second; the period is actually
73  * skewed based on the CPU index in order to avoid lock contention.  The
74  * calibration interval does not need to be precise, and so this is fine.
75  */
76 
77 #include <sys/cdefs.h>
78 __KERNEL_RCSID(0, "$NetBSD: kern_cctr.c,v 1.12 2020/10/10 18:18:04 thorpej Exp $");
79 
80 #include <sys/param.h>
81 #include <sys/atomic.h>
82 #include <sys/systm.h>
83 #include <sys/sysctl.h>
84 #include <sys/timepps.h>
85 #include <sys/time.h>
86 #include <sys/timetc.h>
87 #include <sys/kernel.h>
88 #include <sys/power.h>
89 #include <sys/cpu.h>
90 #include <machine/cpu_counter.h>
91 
92 /* XXX make cc_timecounter.tc_frequency settable by sysctl() */
93 
94 #if defined(MULTIPROCESSOR)
95 static uint32_t cc_primary __cacheline_aligned;
96 static uint32_t cc_calibration_state __cacheline_aligned;
97 static kmutex_t cc_calibration_lock __cacheline_aligned;
98 
99 #define	CC_CAL_START		0	/* initial state */
100 #define	CC_CAL_PRIMARY_READY	1	/* primary CPU ready to respond */
101 #define	CC_CAL_SECONDARY_READY	2	/* secondary CPU ready to receive */
102 #define	CC_CAL_FINISHED		3	/* calibration attempt complete */
103 #endif /* MULTIPROCESSOR */
104 
105 static struct timecounter cc_timecounter = {
106 	.tc_get_timecount	= cc_get_timecount,
107 	.tc_poll_pps		= NULL,
108 	.tc_counter_mask	= ~0u,
109 	.tc_frequency		= 0,
110 	.tc_name		= "unknown cycle counter",
111 	/*
112 	 * don't pick cycle counter automatically
113 	 * if frequency changes might affect cycle counter
114 	 */
115 	.tc_quality		= -100000,
116 
117 	.tc_priv		= NULL,
118 	.tc_next		= NULL
119 };
120 
121 /*
122  * Initialize cycle counter based timecounter.  This must be done on the
123  * primary CPU.
124  */
125 struct timecounter *
126 cc_init(timecounter_get_t getcc, uint64_t freq, const char *name, int quality)
127 {
128 	static bool cc_init_done __diagused;
129 	struct cpu_info * const ci = curcpu();
130 
131 	KASSERT(!cc_init_done);
132 	KASSERT(cold);
133 	KASSERT(CPU_IS_PRIMARY(ci));
134 
135 #if defined(MULTIPROCESSOR)
136 	mutex_init(&cc_calibration_lock, MUTEX_DEFAULT, IPL_HIGH);
137 #endif
138 
139 	cc_init_done = true;
140 
141 	ci->ci_cc.cc_delta = 0;
142 	ci->ci_cc.cc_ticks = 0;
143 	ci->ci_cc.cc_cal_ticks = 0;
144 
145 	if (getcc != NULL)
146 		cc_timecounter.tc_get_timecount = getcc;
147 
148 	cc_timecounter.tc_frequency = freq;
149 	cc_timecounter.tc_name = name;
150 	cc_timecounter.tc_quality = quality;
151 	tc_init(&cc_timecounter);
152 
153 	return &cc_timecounter;
154 }
155 
156 /*
157  * Initialize cycle counter timecounter calibration data on a secondary
158  * CPU.  Must be called on that secondary CPU.
159  */
160 void
161 cc_init_secondary(struct cpu_info * const ci)
162 {
163 	KASSERT(!CPU_IS_PRIMARY(curcpu()));
164 	KASSERT(ci == curcpu());
165 
166 	ci->ci_cc.cc_ticks = 0;
167 
168 	/*
169 	 * It's not critical that calibration be performed in
170 	 * precise intervals, so skew when calibration is done
171 	 * on each secondary CPU based on it's CPU index to
172 	 * avoid contending on the calibration lock.
173 	 */
174 	ci->ci_cc.cc_cal_ticks = hz - cpu_index(ci);
175 	KASSERT(ci->ci_cc.cc_cal_ticks);
176 
177 	cc_calibrate_cpu(ci);
178 }
179 
180 /*
181  * pick up tick count scaled to reference tick count
182  */
183 u_int
184 cc_get_timecount(struct timecounter *tc)
185 {
186 #if defined(MULTIPROCESSOR)
187 	int64_t rcc, ncsw;
188 
189  retry:
190  	ncsw = curlwp->l_ncsw;
191 
192  	__insn_barrier();
193 	/* N.B. the delta is always 0 on the primary. */
194 	rcc = cpu_counter32() - curcpu()->ci_cc.cc_delta;
195  	__insn_barrier();
196 
197  	if (ncsw != curlwp->l_ncsw) {
198  		/* Was preempted */
199  		goto retry;
200 	}
201 
202 	return rcc;
203 #else
204 	return cpu_counter32();
205 #endif /* MULTIPROCESSOR */
206 }
207 
208 #if defined(MULTIPROCESSOR)
209 static inline bool
210 cc_get_delta(struct cpu_info * const ci)
211 {
212 	int64_t t0, t1, tcenter = 0;
213 
214 	t0 = cpu_counter32();
215 
216 	atomic_store_release(&cc_calibration_state, CC_CAL_SECONDARY_READY);
217 
218 	for (;;) {
219 		if (atomic_load_acquire(&cc_calibration_state) ==
220 		    CC_CAL_FINISHED) {
221 			break;
222 		}
223 	}
224 
225 	t1 = cpu_counter32();
226 
227 	if (t1 < t0) {
228 		/* Overflow! */
229 		return false;
230 	}
231 
232 	/* average t0 and t1 without overflow: */
233 	tcenter = (t0 >> 1) + (t1 >> 1);
234 	if ((t0 & 1) + (t1 & 1) == 2)
235 		tcenter++;
236 
237 	ci->ci_cc.cc_delta = tcenter - cc_primary;
238 
239 	return true;
240 }
241 #endif /* MULTIPROCESSOR */
242 
243 /*
244  * Called on secondary CPUs to calibrate their cycle counter offset
245  * relative to the primary CPU.
246  */
247 void
248 cc_calibrate_cpu(struct cpu_info * const ci)
249 {
250 #if defined(MULTIPROCESSOR)
251 	KASSERT(!CPU_IS_PRIMARY(ci));
252 
253 	mutex_spin_enter(&cc_calibration_lock);
254 
255  retry:
256 	atomic_store_release(&cc_calibration_state, CC_CAL_START);
257 
258 	/* Trigger primary CPU. */
259 	cc_get_primary_cc();
260 
261 	for (;;) {
262 		if (atomic_load_acquire(&cc_calibration_state) ==
263 		    CC_CAL_PRIMARY_READY) {
264 			break;
265 		}
266 	}
267 
268 	if (! cc_get_delta(ci)) {
269 		goto retry;
270 	}
271 
272 	mutex_exit(&cc_calibration_lock);
273 #endif /* MULTIPROCESSOR */
274 }
275 
276 void
277 cc_primary_cc(void)
278 {
279 #if defined(MULTIPROCESSOR)
280 	/* N.B. We expect all interrupts to be blocked. */
281 
282 	atomic_store_release(&cc_calibration_state, CC_CAL_PRIMARY_READY);
283 
284 	for (;;) {
285 		if (atomic_load_acquire(&cc_calibration_state) ==
286 		    CC_CAL_SECONDARY_READY) {
287 			break;
288 		}
289 	}
290 
291 	cc_primary = cpu_counter32();
292 	atomic_store_release(&cc_calibration_state, CC_CAL_FINISHED);
293 #endif /* MULTIPROCESSOR */
294 }
295