1 /* $NetBSD: udf_subr.c,v 1.49 2008/05/19 23:48:04 christos Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.49 2008/05/19 23:48:04 christos Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_quota.h" 38 #include "opt_compat_netbsd.h" 39 #endif 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/sysctl.h> 44 #include <sys/namei.h> 45 #include <sys/proc.h> 46 #include <sys/kernel.h> 47 #include <sys/vnode.h> 48 #include <miscfs/genfs/genfs_node.h> 49 #include <sys/mount.h> 50 #include <sys/buf.h> 51 #include <sys/file.h> 52 #include <sys/device.h> 53 #include <sys/disklabel.h> 54 #include <sys/ioctl.h> 55 #include <sys/malloc.h> 56 #include <sys/dirent.h> 57 #include <sys/stat.h> 58 #include <sys/conf.h> 59 #include <sys/kauth.h> 60 #include <fs/unicode.h> 61 #include <dev/clock_subr.h> 62 63 #include <fs/udf/ecma167-udf.h> 64 #include <fs/udf/udf_mount.h> 65 66 #if defined(_KERNEL_OPT) 67 #include "opt_udf.h" 68 #endif 69 70 #include "udf.h" 71 #include "udf_subr.h" 72 #include "udf_bswap.h" 73 74 75 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 76 77 #define UDF_SET_SYSTEMFILE(vp) \ 78 /* XXXAD Is the vnode locked? */ \ 79 (vp)->v_vflag |= VV_SYSTEM; \ 80 vref(vp); \ 81 vput(vp); \ 82 83 extern int syncer_maxdelay; /* maximum delay time */ 84 extern int (**udf_vnodeop_p)(void *); 85 86 /* --------------------------------------------------------------------- */ 87 88 //#ifdef DEBUG 89 #if 1 90 91 #if 0 92 static void 93 udf_dumpblob(boid *blob, uint32_t dlen) 94 { 95 int i, j; 96 97 printf("blob = %p\n", blob); 98 printf("dump of %d bytes\n", dlen); 99 100 for (i = 0; i < dlen; i+ = 16) { 101 printf("%04x ", i); 102 for (j = 0; j < 16; j++) { 103 if (i+j < dlen) { 104 printf("%02x ", blob[i+j]); 105 } else { 106 printf(" "); 107 } 108 } 109 for (j = 0; j < 16; j++) { 110 if (i+j < dlen) { 111 if (blob[i+j]>32 && blob[i+j]! = 127) { 112 printf("%c", blob[i+j]); 113 } else { 114 printf("."); 115 } 116 } 117 } 118 printf("\n"); 119 } 120 printf("\n"); 121 Debugger(); 122 } 123 #endif 124 125 static void 126 udf_dump_discinfo(struct udf_mount *ump) 127 { 128 char bits[128]; 129 struct mmc_discinfo *di = &ump->discinfo; 130 131 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 132 return; 133 134 printf("Device/media info :\n"); 135 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 136 printf("\tderived class %d\n", di->mmc_class); 137 printf("\tsector size %d\n", di->sector_size); 138 printf("\tdisc state %d\n", di->disc_state); 139 printf("\tlast ses state %d\n", di->last_session_state); 140 printf("\tbg format state %d\n", di->bg_format_state); 141 printf("\tfrst track %d\n", di->first_track); 142 printf("\tfst on last ses %d\n", di->first_track_last_session); 143 printf("\tlst on last ses %d\n", di->last_track_last_session); 144 printf("\tlink block penalty %d\n", di->link_block_penalty); 145 bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits, 146 sizeof(bits)); 147 printf("\tdisc flags %s\n", bits); 148 printf("\tdisc id %x\n", di->disc_id); 149 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 150 151 printf("\tnum sessions %d\n", di->num_sessions); 152 printf("\tnum tracks %d\n", di->num_tracks); 153 154 bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits)); 155 printf("\tcapabilities cur %s\n", bits); 156 bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits)); 157 printf("\tcapabilities cap %s\n", bits); 158 } 159 #else 160 #define udf_dump_discinfo(a); 161 #endif 162 163 164 /* --------------------------------------------------------------------- */ 165 166 /* not called often */ 167 int 168 udf_update_discinfo(struct udf_mount *ump) 169 { 170 struct vnode *devvp = ump->devvp; 171 struct partinfo dpart; 172 struct mmc_discinfo *di; 173 int error; 174 175 DPRINTF(VOLUMES, ("read/update disc info\n")); 176 di = &ump->discinfo; 177 memset(di, 0, sizeof(struct mmc_discinfo)); 178 179 /* check if we're on a MMC capable device, i.e. CD/DVD */ 180 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 181 if (error == 0) { 182 udf_dump_discinfo(ump); 183 return 0; 184 } 185 186 /* disc partition support */ 187 error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED); 188 if (error) 189 return ENODEV; 190 191 /* set up a disc info profile for partitions */ 192 di->mmc_profile = 0x01; /* disc type */ 193 di->mmc_class = MMC_CLASS_DISC; 194 di->disc_state = MMC_STATE_CLOSED; 195 di->last_session_state = MMC_STATE_CLOSED; 196 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 197 di->link_block_penalty = 0; 198 199 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 200 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 201 di->mmc_cap = di->mmc_cur; 202 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 203 204 /* TODO problem with last_possible_lba on resizable VND; request */ 205 di->last_possible_lba = dpart.part->p_size; 206 di->sector_size = dpart.disklab->d_secsize; 207 208 di->num_sessions = 1; 209 di->num_tracks = 1; 210 211 di->first_track = 1; 212 di->first_track_last_session = di->last_track_last_session = 1; 213 214 udf_dump_discinfo(ump); 215 return 0; 216 } 217 218 219 int 220 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 221 { 222 struct vnode *devvp = ump->devvp; 223 struct mmc_discinfo *di = &ump->discinfo; 224 int error, class; 225 226 DPRINTF(VOLUMES, ("read track info\n")); 227 228 class = di->mmc_class; 229 if (class != MMC_CLASS_DISC) { 230 /* tracknr specified in struct ti */ 231 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 232 return error; 233 } 234 235 /* disc partition support */ 236 if (ti->tracknr != 1) 237 return EIO; 238 239 /* create fake ti (TODO check for resized vnds) */ 240 ti->sessionnr = 1; 241 242 ti->track_mode = 0; /* XXX */ 243 ti->data_mode = 0; /* XXX */ 244 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 245 246 ti->track_start = 0; 247 ti->packet_size = 1; 248 249 /* TODO support for resizable vnd */ 250 ti->track_size = di->last_possible_lba; 251 ti->next_writable = di->last_possible_lba; 252 ti->last_recorded = ti->next_writable; 253 ti->free_blocks = 0; 254 255 return 0; 256 } 257 258 259 int 260 udf_setup_writeparams(struct udf_mount *ump) 261 { 262 struct mmc_writeparams mmc_writeparams; 263 int error; 264 265 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 266 return 0; 267 268 /* 269 * only CD burning normally needs setting up, but other disc types 270 * might need other settings to be made. The MMC framework will set up 271 * the nessisary recording parameters according to the disc 272 * characteristics read in. Modifications can be made in the discinfo 273 * structure passed to change the nature of the disc. 274 */ 275 276 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 277 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 278 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 279 280 /* 281 * UDF dictates first track to determine track mode for the whole 282 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 283 * To prevent problems with a `reserved' track in front we start with 284 * the 2nd track and if that is not valid, go for the 1st. 285 */ 286 mmc_writeparams.tracknr = 2; 287 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 288 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 289 290 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 291 FKIOCTL, NOCRED); 292 if (error) { 293 mmc_writeparams.tracknr = 1; 294 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 295 &mmc_writeparams, FKIOCTL, NOCRED); 296 } 297 return error; 298 } 299 300 301 int 302 udf_synchronise_caches(struct udf_mount *ump) 303 { 304 struct mmc_op mmc_op; 305 306 DPRINTF(CALL, ("udf_synchronise_caches()\n")); 307 308 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 309 return 0; 310 311 /* discs are done now */ 312 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 313 return 0; 314 315 bzero(&mmc_op, sizeof(struct mmc_op)); 316 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 317 318 /* ignore return code */ 319 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 320 321 return 0; 322 } 323 324 /* --------------------------------------------------------------------- */ 325 326 /* track/session searching for mounting */ 327 int 328 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 329 int *first_tracknr, int *last_tracknr) 330 { 331 struct mmc_trackinfo trackinfo; 332 uint32_t tracknr, start_track, num_tracks; 333 int error; 334 335 /* if negative, sessionnr is relative to last session */ 336 if (args->sessionnr < 0) { 337 args->sessionnr += ump->discinfo.num_sessions; 338 } 339 340 /* sanity */ 341 if (args->sessionnr < 0) 342 args->sessionnr = 0; 343 if (args->sessionnr > ump->discinfo.num_sessions) 344 args->sessionnr = ump->discinfo.num_sessions; 345 346 /* search the tracks for this session, zero session nr indicates last */ 347 if (args->sessionnr == 0) 348 args->sessionnr = ump->discinfo.num_sessions; 349 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 350 args->sessionnr--; 351 352 /* sanity again */ 353 if (args->sessionnr < 0) 354 args->sessionnr = 0; 355 356 /* search the first and last track of the specified session */ 357 num_tracks = ump->discinfo.num_tracks; 358 start_track = ump->discinfo.first_track; 359 360 /* search for first track of this session */ 361 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 362 /* get track info */ 363 trackinfo.tracknr = tracknr; 364 error = udf_update_trackinfo(ump, &trackinfo); 365 if (error) 366 return error; 367 368 if (trackinfo.sessionnr == args->sessionnr) 369 break; 370 } 371 *first_tracknr = tracknr; 372 373 /* search for last track of this session */ 374 for (;tracknr <= num_tracks; tracknr++) { 375 /* get track info */ 376 trackinfo.tracknr = tracknr; 377 error = udf_update_trackinfo(ump, &trackinfo); 378 if (error || (trackinfo.sessionnr != args->sessionnr)) { 379 tracknr--; 380 break; 381 } 382 } 383 if (tracknr > num_tracks) 384 tracknr--; 385 386 *last_tracknr = tracknr; 387 388 if (*last_tracknr < *first_tracknr) { 389 printf( "udf_search_tracks: sanity check on drive+disc failed, " 390 "drive returned garbage\n"); 391 return EINVAL; 392 } 393 394 assert(*last_tracknr >= *first_tracknr); 395 return 0; 396 } 397 398 399 /* 400 * NOTE: this is the only routine in this file that directly peeks into the 401 * metadata file but since its at a larval state of the mount it can't hurt. 402 * 403 * XXX candidate for udf_allocation.c 404 * XXX clean me up!, change to new node reading code. 405 */ 406 407 static void 408 udf_check_track_metadata_overlap(struct udf_mount *ump, 409 struct mmc_trackinfo *trackinfo) 410 { 411 struct part_desc *part; 412 struct file_entry *fe; 413 struct extfile_entry *efe; 414 struct short_ad *s_ad; 415 struct long_ad *l_ad; 416 uint32_t track_start, track_end; 417 uint32_t phys_part_start, phys_part_end, part_start, part_end; 418 uint32_t sector_size, len, alloclen, plb_num; 419 uint8_t *pos; 420 int addr_type, icblen, icbflags, flags; 421 422 /* get our track extents */ 423 track_start = trackinfo->track_start; 424 track_end = track_start + trackinfo->track_size; 425 426 /* get our base partition extent */ 427 part = ump->partitions[ump->metadata_part]; 428 phys_part_start = udf_rw32(part->start_loc); 429 phys_part_end = phys_part_start + udf_rw32(part->part_len); 430 431 /* no use if its outside the physical partition */ 432 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 433 return; 434 435 /* 436 * now follow all extents in the fe/efe to see if they refer to this 437 * track 438 */ 439 440 sector_size = ump->discinfo.sector_size; 441 442 /* XXX should we claim exclusive access to the metafile ? */ 443 /* TODO: move to new node read code */ 444 fe = ump->metadata_node->fe; 445 efe = ump->metadata_node->efe; 446 if (fe) { 447 alloclen = udf_rw32(fe->l_ad); 448 pos = &fe->data[0] + udf_rw32(fe->l_ea); 449 icbflags = udf_rw16(fe->icbtag.flags); 450 } else { 451 assert(efe); 452 alloclen = udf_rw32(efe->l_ad); 453 pos = &efe->data[0] + udf_rw32(efe->l_ea); 454 icbflags = udf_rw16(efe->icbtag.flags); 455 } 456 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 457 458 while (alloclen) { 459 if (addr_type == UDF_ICB_SHORT_ALLOC) { 460 icblen = sizeof(struct short_ad); 461 s_ad = (struct short_ad *) pos; 462 len = udf_rw32(s_ad->len); 463 plb_num = udf_rw32(s_ad->lb_num); 464 } else { 465 /* should not be present, but why not */ 466 icblen = sizeof(struct long_ad); 467 l_ad = (struct long_ad *) pos; 468 len = udf_rw32(l_ad->len); 469 plb_num = udf_rw32(l_ad->loc.lb_num); 470 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 471 } 472 /* process extent */ 473 flags = UDF_EXT_FLAGS(len); 474 len = UDF_EXT_LEN(len); 475 476 part_start = phys_part_start + plb_num; 477 part_end = part_start + (len / sector_size); 478 479 if ((part_start >= track_start) && (part_end <= track_end)) { 480 /* extent is enclosed within this track */ 481 ump->metadata_track = *trackinfo; 482 return; 483 } 484 485 pos += icblen; 486 alloclen -= icblen; 487 } 488 } 489 490 491 int 492 udf_search_writing_tracks(struct udf_mount *ump) 493 { 494 struct mmc_trackinfo trackinfo; 495 struct part_desc *part; 496 uint32_t tracknr, start_track, num_tracks; 497 uint32_t track_start, track_end, part_start, part_end; 498 int error; 499 500 /* 501 * in the CD/(HD)DVD/BD recordable device model a few tracks within 502 * the last session might be open but in the UDF device model at most 503 * three tracks can be open: a reserved track for delayed ISO VRS 504 * writing, a data track and a metadata track. We search here for the 505 * data track and the metadata track. Note that the reserved track is 506 * troublesome but can be detected by its small size of < 512 sectors. 507 */ 508 509 num_tracks = ump->discinfo.num_tracks; 510 start_track = ump->discinfo.first_track; 511 512 /* fetch info on first and possibly only track */ 513 trackinfo.tracknr = start_track; 514 error = udf_update_trackinfo(ump, &trackinfo); 515 if (error) 516 return error; 517 518 /* copy results to our mount point */ 519 ump->data_track = trackinfo; 520 ump->metadata_track = trackinfo; 521 522 /* if not sequential, we're done */ 523 if (num_tracks == 1) 524 return 0; 525 526 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 527 /* get track info */ 528 trackinfo.tracknr = tracknr; 529 error = udf_update_trackinfo(ump, &trackinfo); 530 if (error) 531 return error; 532 533 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 534 continue; 535 536 track_start = trackinfo.track_start; 537 track_end = track_start + trackinfo.track_size; 538 539 /* check for overlap on data partition */ 540 part = ump->partitions[ump->data_part]; 541 part_start = udf_rw32(part->start_loc); 542 part_end = part_start + udf_rw32(part->part_len); 543 if ((part_start < track_end) && (part_end > track_start)) { 544 ump->data_track = trackinfo; 545 /* TODO check if UDF partition data_part is writable */ 546 } 547 548 /* check for overlap on metadata partition */ 549 if ((ump->meta_alloc == UDF_ALLOC_METASEQUENTIAL) || 550 (ump->meta_alloc == UDF_ALLOC_METABITMAP)) { 551 udf_check_track_metadata_overlap(ump, &trackinfo); 552 } else { 553 ump->metadata_track = trackinfo; 554 } 555 } 556 557 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 558 return EROFS; 559 560 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 561 return EROFS; 562 563 return 0; 564 } 565 566 /* --------------------------------------------------------------------- */ 567 568 /* 569 * Check if the blob starts with a good UDF tag. Tags are protected by a 570 * checksum over the reader except one byte at position 4 that is the checksum 571 * itself. 572 */ 573 574 int 575 udf_check_tag(void *blob) 576 { 577 struct desc_tag *tag = blob; 578 uint8_t *pos, sum, cnt; 579 580 /* check TAG header checksum */ 581 pos = (uint8_t *) tag; 582 sum = 0; 583 584 for(cnt = 0; cnt < 16; cnt++) { 585 if (cnt != 4) 586 sum += *pos; 587 pos++; 588 } 589 if (sum != tag->cksum) { 590 /* bad tag header checksum; this is not a valid tag */ 591 return EINVAL; 592 } 593 594 return 0; 595 } 596 597 598 /* 599 * check tag payload will check descriptor CRC as specified. 600 * If the descriptor is too long, it will return EIO otherwise EINVAL. 601 */ 602 603 int 604 udf_check_tag_payload(void *blob, uint32_t max_length) 605 { 606 struct desc_tag *tag = blob; 607 uint16_t crc, crc_len; 608 609 crc_len = udf_rw16(tag->desc_crc_len); 610 611 /* check payload CRC if applicable */ 612 if (crc_len == 0) 613 return 0; 614 615 if (crc_len > max_length) 616 return EIO; 617 618 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 619 if (crc != udf_rw16(tag->desc_crc)) { 620 /* bad payload CRC; this is a broken tag */ 621 return EINVAL; 622 } 623 624 return 0; 625 } 626 627 628 void 629 udf_validate_tag_sum(void *blob) 630 { 631 struct desc_tag *tag = blob; 632 uint8_t *pos, sum, cnt; 633 634 /* calculate TAG header checksum */ 635 pos = (uint8_t *) tag; 636 sum = 0; 637 638 for(cnt = 0; cnt < 16; cnt++) { 639 if (cnt != 4) sum += *pos; 640 pos++; 641 } 642 tag->cksum = sum; /* 8 bit */ 643 } 644 645 646 /* assumes sector number of descriptor to be saved already present */ 647 void 648 udf_validate_tag_and_crc_sums(void *blob) 649 { 650 struct desc_tag *tag = blob; 651 uint8_t *btag = (uint8_t *) tag; 652 uint16_t crc, crc_len; 653 654 crc_len = udf_rw16(tag->desc_crc_len); 655 656 /* check payload CRC if applicable */ 657 if (crc_len > 0) { 658 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 659 tag->desc_crc = udf_rw16(crc); 660 } 661 662 /* calculate TAG header checksum */ 663 udf_validate_tag_sum(blob); 664 } 665 666 /* --------------------------------------------------------------------- */ 667 668 /* 669 * XXX note the different semantics from udfclient: for FIDs it still rounds 670 * up to sectors. Use udf_fidsize() for a correct length. 671 */ 672 673 int 674 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 675 { 676 uint32_t size, tag_id, num_lb, elmsz; 677 678 tag_id = udf_rw16(dscr->tag.id); 679 680 switch (tag_id) { 681 case TAGID_LOGVOL : 682 size = sizeof(struct logvol_desc) - 1; 683 size += udf_rw32(dscr->lvd.mt_l); 684 break; 685 case TAGID_UNALLOC_SPACE : 686 elmsz = sizeof(struct extent_ad); 687 size = sizeof(struct unalloc_sp_desc) - elmsz; 688 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 689 break; 690 case TAGID_FID : 691 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 692 size = (size + 3) & ~3; 693 break; 694 case TAGID_LOGVOL_INTEGRITY : 695 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 696 size += udf_rw32(dscr->lvid.l_iu); 697 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 698 break; 699 case TAGID_SPACE_BITMAP : 700 size = sizeof(struct space_bitmap_desc) - 1; 701 size += udf_rw32(dscr->sbd.num_bytes); 702 break; 703 case TAGID_SPARING_TABLE : 704 elmsz = sizeof(struct spare_map_entry); 705 size = sizeof(struct udf_sparing_table) - elmsz; 706 size += udf_rw16(dscr->spt.rt_l) * elmsz; 707 break; 708 case TAGID_FENTRY : 709 size = sizeof(struct file_entry); 710 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 711 break; 712 case TAGID_EXTFENTRY : 713 size = sizeof(struct extfile_entry); 714 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 715 break; 716 case TAGID_FSD : 717 size = sizeof(struct fileset_desc); 718 break; 719 default : 720 size = sizeof(union dscrptr); 721 break; 722 } 723 724 if ((size == 0) || (lb_size == 0)) return 0; 725 726 /* round up in sectors */ 727 num_lb = (size + lb_size -1) / lb_size; 728 return num_lb * lb_size; 729 } 730 731 732 int 733 udf_fidsize(struct fileid_desc *fid) 734 { 735 uint32_t size; 736 737 if (udf_rw16(fid->tag.id) != TAGID_FID) 738 panic("got udf_fidsize on non FID\n"); 739 740 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 741 size = (size + 3) & ~3; 742 743 return size; 744 } 745 746 /* --------------------------------------------------------------------- */ 747 748 void 749 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 750 { 751 int ret; 752 753 mutex_enter(&udf_node->node_mutex); 754 /* wait until free */ 755 while (udf_node->i_flags & IN_LOCKED) { 756 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 757 /* TODO check if we should return error; abort */ 758 if (ret == EWOULDBLOCK) { 759 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 760 "wanted at %s:%d, previously locked at %s:%d\n", 761 udf_node, fname, lineno, 762 udf_node->lock_fname, udf_node->lock_lineno)); 763 } 764 } 765 /* grab */ 766 udf_node->i_flags |= IN_LOCKED | flag; 767 /* debug */ 768 udf_node->lock_fname = fname; 769 udf_node->lock_lineno = lineno; 770 771 mutex_exit(&udf_node->node_mutex); 772 } 773 774 775 void 776 udf_unlock_node(struct udf_node *udf_node, int flag) 777 { 778 mutex_enter(&udf_node->node_mutex); 779 udf_node->i_flags &= ~(IN_LOCKED | flag); 780 cv_broadcast(&udf_node->node_lock); 781 mutex_exit(&udf_node->node_mutex); 782 } 783 784 785 /* --------------------------------------------------------------------- */ 786 787 static int 788 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 789 { 790 int error; 791 792 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 793 (union dscrptr **) dst); 794 if (!error) { 795 /* blank terminator blocks are not allowed here */ 796 if (*dst == NULL) 797 return ENOENT; 798 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 799 error = ENOENT; 800 free(*dst, M_UDFVOLD); 801 *dst = NULL; 802 DPRINTF(VOLUMES, ("Not an anchor\n")); 803 } 804 } 805 806 return error; 807 } 808 809 810 int 811 udf_read_anchors(struct udf_mount *ump) 812 { 813 struct udf_args *args = &ump->mount_args; 814 struct mmc_trackinfo first_track; 815 struct mmc_trackinfo second_track; 816 struct mmc_trackinfo last_track; 817 struct anchor_vdp **anchorsp; 818 uint32_t track_start; 819 uint32_t track_end; 820 uint32_t positions[4]; 821 int first_tracknr, last_tracknr; 822 int error, anch, ok, first_anchor; 823 824 /* search the first and last track of the specified session */ 825 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 826 if (!error) { 827 first_track.tracknr = first_tracknr; 828 error = udf_update_trackinfo(ump, &first_track); 829 } 830 if (!error) { 831 last_track.tracknr = last_tracknr; 832 error = udf_update_trackinfo(ump, &last_track); 833 } 834 if ((!error) && (first_tracknr != last_tracknr)) { 835 second_track.tracknr = first_tracknr+1; 836 error = udf_update_trackinfo(ump, &second_track); 837 } 838 if (error) { 839 printf("UDF mount: reading disc geometry failed\n"); 840 return 0; 841 } 842 843 track_start = first_track.track_start; 844 845 /* `end' is not as straitforward as start. */ 846 track_end = last_track.track_start 847 + last_track.track_size - last_track.free_blocks - 1; 848 849 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 850 /* end of track is not straitforward here */ 851 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 852 track_end = last_track.last_recorded; 853 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 854 track_end = last_track.next_writable 855 - ump->discinfo.link_block_penalty; 856 } 857 858 /* its no use reading a blank track */ 859 first_anchor = 0; 860 if (first_track.flags & MMC_TRACKINFO_BLANK) 861 first_anchor = 1; 862 863 /* get our packet size */ 864 ump->packet_size = first_track.packet_size; 865 if (first_track.flags & MMC_TRACKINFO_BLANK) 866 ump->packet_size = second_track.packet_size; 867 868 if (ump->packet_size <= 1) { 869 /* take max, but not bigger than 64 */ 870 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 871 ump->packet_size = MIN(ump->packet_size, 64); 872 } 873 KASSERT(ump->packet_size >= 1); 874 875 /* read anchors start+256, start+512, end-256, end */ 876 positions[0] = track_start+256; 877 positions[1] = track_end-256; 878 positions[2] = track_end; 879 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 880 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 881 882 ok = 0; 883 anchorsp = ump->anchors; 884 for (anch = first_anchor; anch < 4; anch++) { 885 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 886 positions[anch])); 887 error = udf_read_anchor(ump, positions[anch], anchorsp); 888 if (!error) { 889 anchorsp++; 890 ok++; 891 } 892 } 893 894 /* VATs are only recorded on sequential media, but initialise */ 895 ump->first_possible_vat_location = track_start + 2; 896 ump->last_possible_vat_location = track_end + last_track.packet_size; 897 898 return ok; 899 } 900 901 /* --------------------------------------------------------------------- */ 902 903 /* we dont try to be smart; we just record the parts */ 904 #define UDF_UPDATE_DSCR(name, dscr) \ 905 if (name) \ 906 free(name, M_UDFVOLD); \ 907 name = dscr; 908 909 static int 910 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 911 { 912 struct part_desc *part; 913 uint16_t phys_part, raw_phys_part; 914 915 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 916 udf_rw16(dscr->tag.id))); 917 switch (udf_rw16(dscr->tag.id)) { 918 case TAGID_PRI_VOL : /* primary partition */ 919 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 920 break; 921 case TAGID_LOGVOL : /* logical volume */ 922 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 923 break; 924 case TAGID_UNALLOC_SPACE : /* unallocated space */ 925 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 926 break; 927 case TAGID_IMP_VOL : /* implementation */ 928 /* XXX do we care about multiple impl. descr ? */ 929 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 930 break; 931 case TAGID_PARTITION : /* physical partition */ 932 /* not much use if its not allocated */ 933 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 934 free(dscr, M_UDFVOLD); 935 break; 936 } 937 938 /* 939 * BUGALERT: some rogue implementations use random physical 940 * partion numbers to break other implementations so lookup 941 * the number. 942 */ 943 raw_phys_part = udf_rw16(dscr->pd.part_num); 944 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 945 part = ump->partitions[phys_part]; 946 if (part == NULL) 947 break; 948 if (udf_rw16(part->part_num) == raw_phys_part) 949 break; 950 } 951 if (phys_part == UDF_PARTITIONS) { 952 free(dscr, M_UDFVOLD); 953 return EINVAL; 954 } 955 956 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 957 break; 958 case TAGID_VOL : /* volume space extender; rare */ 959 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 960 free(dscr, M_UDFVOLD); 961 break; 962 default : 963 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 964 udf_rw16(dscr->tag.id))); 965 free(dscr, M_UDFVOLD); 966 } 967 968 return 0; 969 } 970 #undef UDF_UPDATE_DSCR 971 972 /* --------------------------------------------------------------------- */ 973 974 static int 975 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 976 { 977 union dscrptr *dscr; 978 uint32_t sector_size, dscr_size; 979 int error; 980 981 sector_size = ump->discinfo.sector_size; 982 983 /* loc is sectornr, len is in bytes */ 984 error = EIO; 985 while (len) { 986 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 987 if (error) 988 return error; 989 990 /* blank block is a terminator */ 991 if (dscr == NULL) 992 return 0; 993 994 /* TERM descriptor is a terminator */ 995 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 996 free(dscr, M_UDFVOLD); 997 return 0; 998 } 999 1000 /* process all others */ 1001 dscr_size = udf_tagsize(dscr, sector_size); 1002 error = udf_process_vds_descriptor(ump, dscr); 1003 if (error) { 1004 free(dscr, M_UDFVOLD); 1005 break; 1006 } 1007 assert((dscr_size % sector_size) == 0); 1008 1009 len -= dscr_size; 1010 loc += dscr_size / sector_size; 1011 } 1012 1013 return error; 1014 } 1015 1016 1017 int 1018 udf_read_vds_space(struct udf_mount *ump) 1019 { 1020 /* struct udf_args *args = &ump->mount_args; */ 1021 struct anchor_vdp *anchor, *anchor2; 1022 size_t size; 1023 uint32_t main_loc, main_len; 1024 uint32_t reserve_loc, reserve_len; 1025 int error; 1026 1027 /* 1028 * read in VDS space provided by the anchors; if one descriptor read 1029 * fails, try the mirror sector. 1030 * 1031 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1032 * avoids the `compatibility features' of DirectCD that may confuse 1033 * stuff completely. 1034 */ 1035 1036 anchor = ump->anchors[0]; 1037 anchor2 = ump->anchors[1]; 1038 assert(anchor); 1039 1040 if (anchor2) { 1041 size = sizeof(struct extent_ad); 1042 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1043 anchor = anchor2; 1044 /* reserve is specified to be a literal copy of main */ 1045 } 1046 1047 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1048 main_len = udf_rw32(anchor->main_vds_ex.len); 1049 1050 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1051 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1052 1053 error = udf_read_vds_extent(ump, main_loc, main_len); 1054 if (error) { 1055 printf("UDF mount: reading in reserve VDS extent\n"); 1056 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1057 } 1058 1059 return error; 1060 } 1061 1062 /* --------------------------------------------------------------------- */ 1063 1064 /* 1065 * Read in the logical volume integrity sequence pointed to by our logical 1066 * volume descriptor. Its a sequence that can be extended using fields in the 1067 * integrity descriptor itself. On sequential media only one is found, on 1068 * rewritable media a sequence of descriptors can be found as a form of 1069 * history keeping and on non sequential write-once media the chain is vital 1070 * to allow more and more descriptors to be written. The last descriptor 1071 * written in an extent needs to claim space for a new extent. 1072 */ 1073 1074 static int 1075 udf_retrieve_lvint(struct udf_mount *ump) 1076 { 1077 union dscrptr *dscr; 1078 struct logvol_int_desc *lvint; 1079 struct udf_lvintq *trace; 1080 uint32_t lb_size, lbnum, len; 1081 int dscr_type, error, trace_len; 1082 1083 lb_size = udf_rw32(ump->logical_vol->lb_size); 1084 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1085 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1086 1087 /* clean trace */ 1088 memset(ump->lvint_trace, 0, 1089 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1090 1091 trace_len = 0; 1092 trace = ump->lvint_trace; 1093 trace->start = lbnum; 1094 trace->end = lbnum + len/lb_size; 1095 trace->pos = 0; 1096 trace->wpos = 0; 1097 1098 lvint = NULL; 1099 dscr = NULL; 1100 error = 0; 1101 while (len) { 1102 trace->pos = lbnum - trace->start; 1103 trace->wpos = trace->pos + 1; 1104 1105 /* read in our integrity descriptor */ 1106 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1107 if (!error) { 1108 if (dscr == NULL) { 1109 trace->wpos = trace->pos; 1110 break; /* empty terminates */ 1111 } 1112 dscr_type = udf_rw16(dscr->tag.id); 1113 if (dscr_type == TAGID_TERM) { 1114 trace->wpos = trace->pos; 1115 break; /* clean terminator */ 1116 } 1117 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1118 /* fatal... corrupt disc */ 1119 error = ENOENT; 1120 break; 1121 } 1122 if (lvint) 1123 free(lvint, M_UDFVOLD); 1124 lvint = &dscr->lvid; 1125 dscr = NULL; 1126 } /* else hope for the best... maybe the next is ok */ 1127 1128 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1129 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1130 1131 /* proceed sequential */ 1132 lbnum += 1; 1133 len -= lb_size; 1134 1135 /* are we linking to a new piece? */ 1136 if (dscr && lvint->next_extent.len) { 1137 len = udf_rw32(lvint->next_extent.len); 1138 lbnum = udf_rw32(lvint->next_extent.loc); 1139 1140 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1141 /* IEK! segment link full... */ 1142 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1143 error = EINVAL; 1144 } else { 1145 trace++; 1146 trace_len++; 1147 1148 trace->start = lbnum; 1149 trace->end = lbnum + len/lb_size; 1150 trace->pos = 0; 1151 trace->wpos = 0; 1152 } 1153 } 1154 } 1155 1156 /* clean up the mess, esp. when there is an error */ 1157 if (dscr) 1158 free(dscr, M_UDFVOLD); 1159 1160 if (error && lvint) { 1161 free(lvint, M_UDFVOLD); 1162 lvint = NULL; 1163 } 1164 1165 if (!lvint) 1166 error = ENOENT; 1167 1168 ump->logvol_integrity = lvint; 1169 return error; 1170 } 1171 1172 1173 static int 1174 udf_loose_lvint_history(struct udf_mount *ump) 1175 { 1176 union dscrptr **bufs, *dscr, *last_dscr; 1177 struct udf_lvintq *trace, *in_trace, *out_trace; 1178 struct logvol_int_desc *lvint; 1179 uint32_t in_ext, in_pos, in_len; 1180 uint32_t out_ext, out_wpos, out_len; 1181 uint32_t lb_size, packet_size, lb_num; 1182 uint32_t len, start; 1183 int ext, minext, extlen, cnt, cpy_len, dscr_type; 1184 int losing; 1185 int error; 1186 1187 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1188 1189 lb_size = udf_rw32(ump->logical_vol->lb_size); 1190 packet_size = ump->data_track.packet_size; /* XXX data track */ 1191 1192 /* search smallest extent */ 1193 trace = &ump->lvint_trace[0]; 1194 minext = trace->end - trace->start; 1195 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1196 trace = &ump->lvint_trace[ext]; 1197 extlen = trace->end - trace->start; 1198 if (extlen == 0) 1199 break; 1200 minext = MIN(minext, extlen); 1201 } 1202 losing = MIN(minext, UDF_LVINT_LOSSAGE); 1203 /* no sense wiping all */ 1204 if (losing == minext) 1205 losing--; 1206 1207 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1208 1209 /* get buffer for pieces */ 1210 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1211 1212 in_ext = 0; 1213 in_pos = losing; 1214 in_trace = &ump->lvint_trace[in_ext]; 1215 in_len = in_trace->end - in_trace->start; 1216 out_ext = 0; 1217 out_wpos = 0; 1218 out_trace = &ump->lvint_trace[out_ext]; 1219 out_len = out_trace->end - out_trace->start; 1220 1221 last_dscr = NULL; 1222 for(;;) { 1223 out_trace->pos = out_wpos; 1224 out_trace->wpos = out_trace->pos; 1225 if (in_pos >= in_len) { 1226 in_ext++; 1227 in_pos = 0; 1228 in_trace = &ump->lvint_trace[in_ext]; 1229 in_len = in_trace->end - in_trace->start; 1230 } 1231 if (out_wpos >= out_len) { 1232 out_ext++; 1233 out_wpos = 0; 1234 out_trace = &ump->lvint_trace[out_ext]; 1235 out_len = out_trace->end - out_trace->start; 1236 } 1237 /* copy overlap contents */ 1238 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1239 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1240 if (cpy_len == 0) 1241 break; 1242 1243 /* copy */ 1244 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1245 for (cnt = 0; cnt < cpy_len; cnt++) { 1246 /* read in our integrity descriptor */ 1247 lb_num = in_trace->start + in_pos + cnt; 1248 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1249 &dscr); 1250 if (error) { 1251 /* copy last one */ 1252 dscr = last_dscr; 1253 } 1254 bufs[cnt] = dscr; 1255 if (!error) { 1256 if (dscr == NULL) { 1257 out_trace->pos = out_wpos + cnt; 1258 out_trace->wpos = out_trace->pos; 1259 break; /* empty terminates */ 1260 } 1261 dscr_type = udf_rw16(dscr->tag.id); 1262 if (dscr_type == TAGID_TERM) { 1263 out_trace->pos = out_wpos + cnt; 1264 out_trace->wpos = out_trace->pos; 1265 break; /* clean terminator */ 1266 } 1267 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1268 panic( "UDF integrity sequence " 1269 "corrupted while mounted!\n"); 1270 } 1271 last_dscr = dscr; 1272 } 1273 } 1274 1275 /* patch up if first entry was on error */ 1276 if (bufs[0] == NULL) { 1277 for (cnt = 0; cnt < cpy_len; cnt++) 1278 if (bufs[cnt] != NULL) 1279 break; 1280 last_dscr = bufs[cnt]; 1281 for (; cnt > 0; cnt--) { 1282 bufs[cnt] = last_dscr; 1283 } 1284 } 1285 1286 /* glue + write out */ 1287 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1288 for (cnt = 0; cnt < cpy_len; cnt++) { 1289 lb_num = out_trace->start + out_wpos + cnt; 1290 lvint = &bufs[cnt]->lvid; 1291 1292 /* set continuation */ 1293 len = 0; 1294 start = 0; 1295 if (out_wpos + cnt == out_len) { 1296 /* get continuation */ 1297 trace = &ump->lvint_trace[out_ext+1]; 1298 len = trace->end - trace->start; 1299 start = trace->start; 1300 } 1301 lvint->next_extent.len = udf_rw32(len); 1302 lvint->next_extent.loc = udf_rw32(start); 1303 1304 lb_num = trace->start + trace->wpos; 1305 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1306 bufs[cnt], lb_num, lb_num); 1307 DPRINTFIF(VOLUMES, error, 1308 ("error writing lvint lb_num\n")); 1309 } 1310 1311 /* free non repeating descriptors */ 1312 last_dscr = NULL; 1313 for (cnt = 0; cnt < cpy_len; cnt++) { 1314 if (bufs[cnt] != last_dscr) 1315 free(bufs[cnt], M_UDFVOLD); 1316 last_dscr = bufs[cnt]; 1317 } 1318 1319 /* advance */ 1320 in_pos += cpy_len; 1321 out_wpos += cpy_len; 1322 } 1323 1324 free(bufs, M_TEMP); 1325 1326 return 0; 1327 } 1328 1329 1330 static int 1331 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1332 { 1333 struct udf_lvintq *trace; 1334 struct timeval now_v; 1335 struct timespec now_s; 1336 uint32_t sector; 1337 int logvol_integrity; 1338 int space, error; 1339 1340 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1341 1342 again: 1343 /* get free space in last chunk */ 1344 trace = ump->lvint_trace; 1345 while (trace->wpos > (trace->end - trace->start)) { 1346 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1347 "wpos = %d\n", trace->start, trace->end, 1348 trace->pos, trace->wpos)); 1349 trace++; 1350 } 1351 1352 /* check if there is space to append */ 1353 space = (trace->end - trace->start) - trace->wpos; 1354 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1355 "space = %d\n", trace->start, trace->end, trace->pos, 1356 trace->wpos, space)); 1357 1358 /* get state */ 1359 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1360 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1361 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1362 /* don't allow this logvol to be opened */ 1363 /* TODO extent LVINT space if possible */ 1364 return EROFS; 1365 } 1366 } 1367 1368 if (space < 1) { 1369 if (lvflag & UDF_APPENDONLY_LVINT) 1370 return EROFS; 1371 /* loose history by re-writing extents */ 1372 error = udf_loose_lvint_history(ump); 1373 if (error) 1374 return error; 1375 goto again; 1376 } 1377 1378 /* update our integrity descriptor to identify us and timestamp it */ 1379 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1380 microtime(&now_v); 1381 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1382 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1383 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1384 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1385 1386 /* writeout integrity descriptor */ 1387 sector = trace->start + trace->wpos; 1388 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1389 (union dscrptr *) ump->logvol_integrity, 1390 sector, sector); 1391 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1392 if (error) 1393 return error; 1394 1395 /* advance write position */ 1396 trace->wpos++; space--; 1397 if (space >= 1) { 1398 /* append terminator */ 1399 sector = trace->start + trace->wpos; 1400 error = udf_write_terminator(ump, sector); 1401 1402 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1403 } 1404 1405 space = (trace->end - trace->start) - trace->wpos; 1406 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1407 "space = %d\n", trace->start, trace->end, trace->pos, 1408 trace->wpos, space)); 1409 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1410 "successfull\n")); 1411 1412 return error; 1413 } 1414 1415 /* --------------------------------------------------------------------- */ 1416 1417 static int 1418 udf_read_partition_spacetables(struct udf_mount *ump) 1419 { 1420 union dscrptr *dscr; 1421 /* struct udf_args *args = &ump->mount_args; */ 1422 struct part_desc *partd; 1423 struct part_hdr_desc *parthdr; 1424 struct udf_bitmap *bitmap; 1425 uint32_t phys_part; 1426 uint32_t lb_num, len; 1427 int error, dscr_type; 1428 1429 /* unallocated space map */ 1430 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1431 partd = ump->partitions[phys_part]; 1432 if (partd == NULL) 1433 continue; 1434 parthdr = &partd->_impl_use.part_hdr; 1435 1436 lb_num = udf_rw32(partd->start_loc); 1437 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1438 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1439 if (len == 0) 1440 continue; 1441 1442 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1443 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1444 if (!error && dscr) { 1445 /* analyse */ 1446 dscr_type = udf_rw16(dscr->tag.id); 1447 if (dscr_type == TAGID_SPACE_BITMAP) { 1448 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1449 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1450 1451 /* fill in ump->part_unalloc_bits */ 1452 bitmap = &ump->part_unalloc_bits[phys_part]; 1453 bitmap->blob = (uint8_t *) dscr; 1454 bitmap->bits = dscr->sbd.data; 1455 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1456 bitmap->pages = NULL; /* TODO */ 1457 bitmap->data_pos = 0; 1458 bitmap->metadata_pos = 0; 1459 } else { 1460 free(dscr, M_UDFVOLD); 1461 1462 printf( "UDF mount: error reading unallocated " 1463 "space bitmap\n"); 1464 return EROFS; 1465 } 1466 } else { 1467 /* blank not allowed */ 1468 printf("UDF mount: blank unallocated space bitmap\n"); 1469 return EROFS; 1470 } 1471 } 1472 1473 /* unallocated space table (not supported) */ 1474 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1475 partd = ump->partitions[phys_part]; 1476 if (partd == NULL) 1477 continue; 1478 parthdr = &partd->_impl_use.part_hdr; 1479 1480 len = udf_rw32(parthdr->unalloc_space_table.len); 1481 if (len) { 1482 printf("UDF mount: space tables not supported\n"); 1483 return EROFS; 1484 } 1485 } 1486 1487 /* freed space map */ 1488 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1489 partd = ump->partitions[phys_part]; 1490 if (partd == NULL) 1491 continue; 1492 parthdr = &partd->_impl_use.part_hdr; 1493 1494 /* freed space map */ 1495 lb_num = udf_rw32(partd->start_loc); 1496 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1497 len = udf_rw32(parthdr->freed_space_bitmap.len); 1498 if (len == 0) 1499 continue; 1500 1501 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1502 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1503 if (!error && dscr) { 1504 /* analyse */ 1505 dscr_type = udf_rw16(dscr->tag.id); 1506 if (dscr_type == TAGID_SPACE_BITMAP) { 1507 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1508 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1509 1510 /* fill in ump->part_freed_bits */ 1511 bitmap = &ump->part_unalloc_bits[phys_part]; 1512 bitmap->blob = (uint8_t *) dscr; 1513 bitmap->bits = dscr->sbd.data; 1514 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1515 bitmap->pages = NULL; /* TODO */ 1516 bitmap->data_pos = 0; 1517 bitmap->metadata_pos = 0; 1518 } else { 1519 free(dscr, M_UDFVOLD); 1520 1521 printf( "UDF mount: error reading freed " 1522 "space bitmap\n"); 1523 return EROFS; 1524 } 1525 } else { 1526 /* blank not allowed */ 1527 printf("UDF mount: blank freed space bitmap\n"); 1528 return EROFS; 1529 } 1530 } 1531 1532 /* freed space table (not supported) */ 1533 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1534 partd = ump->partitions[phys_part]; 1535 if (partd == NULL) 1536 continue; 1537 parthdr = &partd->_impl_use.part_hdr; 1538 1539 len = udf_rw32(parthdr->freed_space_table.len); 1540 if (len) { 1541 printf("UDF mount: space tables not supported\n"); 1542 return EROFS; 1543 } 1544 } 1545 1546 return 0; 1547 } 1548 1549 1550 /* TODO implement async writeout */ 1551 int 1552 udf_write_partition_spacetables(struct udf_mount *ump, int waitfor) 1553 { 1554 union dscrptr *dscr; 1555 /* struct udf_args *args = &ump->mount_args; */ 1556 struct part_desc *partd; 1557 struct part_hdr_desc *parthdr; 1558 uint32_t phys_part; 1559 uint32_t lb_num, len, ptov; 1560 int error_all, error; 1561 1562 error_all = 0; 1563 /* unallocated space map */ 1564 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1565 partd = ump->partitions[phys_part]; 1566 if (partd == NULL) 1567 continue; 1568 parthdr = &partd->_impl_use.part_hdr; 1569 1570 ptov = udf_rw32(partd->start_loc); 1571 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1572 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1573 if (len == 0) 1574 continue; 1575 1576 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1577 lb_num + ptov)); 1578 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1579 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1580 (union dscrptr *) dscr, 1581 ptov + lb_num, lb_num); 1582 if (error) { 1583 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1584 error_all = error; 1585 } 1586 } 1587 1588 /* freed space map */ 1589 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1590 partd = ump->partitions[phys_part]; 1591 if (partd == NULL) 1592 continue; 1593 parthdr = &partd->_impl_use.part_hdr; 1594 1595 /* freed space map */ 1596 ptov = udf_rw32(partd->start_loc); 1597 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1598 len = udf_rw32(parthdr->freed_space_bitmap.len); 1599 if (len == 0) 1600 continue; 1601 1602 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1603 lb_num + ptov)); 1604 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1605 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1606 (union dscrptr *) dscr, 1607 ptov + lb_num, lb_num); 1608 if (error) { 1609 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1610 error_all = error; 1611 } 1612 } 1613 1614 return error_all; 1615 } 1616 1617 /* 1618 * Checks if ump's vds information is correct and complete 1619 */ 1620 1621 int 1622 udf_process_vds(struct udf_mount *ump) { 1623 union udf_pmap *mapping; 1624 /* struct udf_args *args = &ump->mount_args; */ 1625 struct logvol_int_desc *lvint; 1626 struct udf_logvol_info *lvinfo; 1627 struct part_desc *part; 1628 uint32_t n_pm, mt_l; 1629 uint8_t *pmap_pos; 1630 char *domain_name, *map_name; 1631 const char *check_name; 1632 char bits[128]; 1633 int pmap_stype, pmap_size; 1634 int pmap_type, log_part, phys_part, raw_phys_part; 1635 int n_phys, n_virt, n_spar, n_meta; 1636 int len, error; 1637 1638 if (ump == NULL) 1639 return ENOENT; 1640 1641 /* we need at least an anchor (trivial, but for safety) */ 1642 if (ump->anchors[0] == NULL) 1643 return EINVAL; 1644 1645 /* we need at least one primary and one logical volume descriptor */ 1646 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1647 return EINVAL; 1648 1649 /* we need at least one partition descriptor */ 1650 if (ump->partitions[0] == NULL) 1651 return EINVAL; 1652 1653 /* check logical volume sector size verses device sector size */ 1654 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1655 printf("UDF mount: format violation, lb_size != sector size\n"); 1656 return EINVAL; 1657 } 1658 1659 /* check domain name */ 1660 domain_name = ump->logical_vol->domain_id.id; 1661 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1662 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1663 return EINVAL; 1664 } 1665 1666 /* retrieve logical volume integrity sequence */ 1667 error = udf_retrieve_lvint(ump); 1668 1669 /* 1670 * We need at least one logvol integrity descriptor recorded. Note 1671 * that its OK to have an open logical volume integrity here. The VAT 1672 * will close/update the integrity. 1673 */ 1674 if (ump->logvol_integrity == NULL) 1675 return EINVAL; 1676 1677 /* read in and check unallocated and free space info if writing */ 1678 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 1679 error = udf_read_partition_spacetables(ump); 1680 if (error) 1681 return error; 1682 } 1683 1684 /* process derived structures */ 1685 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1686 lvint = ump->logvol_integrity; 1687 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1688 ump->logvol_info = lvinfo; 1689 1690 /* TODO check udf versions? */ 1691 1692 /* 1693 * check logvol mappings: effective virt->log partmap translation 1694 * check and recording of the mapping results. Saves expensive 1695 * strncmp() in tight places. 1696 */ 1697 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1698 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1699 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 1700 pmap_pos = ump->logical_vol->maps; 1701 1702 if (n_pm > UDF_PMAPS) { 1703 printf("UDF mount: too many mappings\n"); 1704 return EINVAL; 1705 } 1706 1707 ump->data_part = ump->metadata_part = 0; 1708 n_phys = n_virt = n_spar = n_meta = 0; 1709 for (log_part = 0; log_part < n_pm; log_part++) { 1710 mapping = (union udf_pmap *) pmap_pos; 1711 pmap_stype = pmap_pos[0]; 1712 pmap_size = pmap_pos[1]; 1713 switch (pmap_stype) { 1714 case 1: /* physical mapping */ 1715 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1716 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1717 pmap_type = UDF_VTOP_TYPE_PHYS; 1718 n_phys++; 1719 ump->data_part = log_part; 1720 ump->metadata_part = log_part; 1721 break; 1722 case 2: /* virtual/sparable/meta mapping */ 1723 map_name = mapping->pm2.part_id.id; 1724 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1725 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1726 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1727 len = UDF_REGID_ID_SIZE; 1728 1729 check_name = "*UDF Virtual Partition"; 1730 if (strncmp(map_name, check_name, len) == 0) { 1731 pmap_type = UDF_VTOP_TYPE_VIRT; 1732 n_virt++; 1733 ump->metadata_part = log_part; 1734 break; 1735 } 1736 check_name = "*UDF Sparable Partition"; 1737 if (strncmp(map_name, check_name, len) == 0) { 1738 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1739 n_spar++; 1740 ump->data_part = log_part; 1741 ump->metadata_part = log_part; 1742 break; 1743 } 1744 check_name = "*UDF Metadata Partition"; 1745 if (strncmp(map_name, check_name, len) == 0) { 1746 pmap_type = UDF_VTOP_TYPE_META; 1747 n_meta++; 1748 ump->metadata_part = log_part; 1749 break; 1750 } 1751 break; 1752 default: 1753 return EINVAL; 1754 } 1755 1756 /* 1757 * BUGALERT: some rogue implementations use random physical 1758 * partion numbers to break other implementations so lookup 1759 * the number. 1760 */ 1761 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1762 part = ump->partitions[phys_part]; 1763 if (part == NULL) 1764 continue; 1765 if (udf_rw16(part->part_num) == raw_phys_part) 1766 break; 1767 } 1768 1769 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 1770 raw_phys_part, phys_part, pmap_type)); 1771 1772 if (phys_part == UDF_PARTITIONS) 1773 return EINVAL; 1774 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1775 return EINVAL; 1776 1777 ump->vtop [log_part] = phys_part; 1778 ump->vtop_tp[log_part] = pmap_type; 1779 1780 pmap_pos += pmap_size; 1781 } 1782 /* not winning the beauty contest */ 1783 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 1784 1785 /* test some basic UDF assertions/requirements */ 1786 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 1787 return EINVAL; 1788 1789 if (n_virt) { 1790 if ((n_phys == 0) || n_spar || n_meta) 1791 return EINVAL; 1792 } 1793 if (n_spar + n_phys == 0) 1794 return EINVAL; 1795 1796 /* determine allocation scheme's based on disc format */ 1797 /* VAT's can only be on a sequential media */ 1798 ump->data_alloc = UDF_ALLOC_SPACEMAP; 1799 if (n_virt) 1800 ump->data_alloc = UDF_ALLOC_SEQUENTIAL; 1801 1802 ump->meta_alloc = UDF_ALLOC_SPACEMAP; 1803 if (n_virt) 1804 ump->meta_alloc = UDF_ALLOC_VAT; 1805 if (n_meta) 1806 ump->meta_alloc = UDF_ALLOC_METABITMAP; 1807 1808 /* special cases for pseudo-overwrite */ 1809 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 1810 ump->data_alloc = UDF_ALLOC_SEQUENTIAL; 1811 if (n_meta) { 1812 ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL; 1813 } else { 1814 ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL; 1815 } 1816 } 1817 1818 /* determine logical volume open/closure actions */ 1819 if (n_virt) { 1820 ump->lvopen = 0; 1821 if (ump->discinfo.last_session_state == MMC_STATE_CLOSED) 1822 ump->lvopen |= UDF_OPEN_SESSION ; 1823 ump->lvclose = UDF_WRITE_VAT; 1824 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 1825 ump->lvclose |= UDF_CLOSE_SESSION; 1826 } else { 1827 /* `normal' rewritable or non sequential media */ 1828 ump->lvopen = UDF_WRITE_LVINT; 1829 ump->lvclose = UDF_WRITE_LVINT; 1830 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 1831 ump->lvopen |= UDF_APPENDONLY_LVINT; 1832 } 1833 1834 /* 1835 * Determine sheduler error behaviour. For virtual partions, update 1836 * the trackinfo; for sparable partitions replace a whole block on the 1837 * sparable table. Allways requeue. 1838 */ 1839 ump->lvreadwrite = 0; 1840 if (n_virt) 1841 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 1842 if (n_spar) 1843 ump->lvreadwrite = UDF_REMAP_BLOCK; 1844 1845 /* 1846 * Select our sheduler 1847 */ 1848 ump->strategy = &udf_strat_rmw; 1849 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 1850 ump->strategy = &udf_strat_sequential; 1851 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 1852 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 1853 ump->strategy = &udf_strat_direct; 1854 if (n_spar) 1855 ump->strategy = &udf_strat_rmw; 1856 1857 /* print results */ 1858 DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n", 1859 ump->data_alloc, ump->meta_alloc)); 1860 DPRINTF(VOLUMES, ("\tdata partition %d, metadata partition %d\n", 1861 ump->data_part, ump->metadata_part)); 1862 1863 bitmask_snprintf(ump->lvopen, UDFLOGVOL_BITS, bits, sizeof(bits)); 1864 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 1865 bitmask_snprintf(ump->lvclose, UDFLOGVOL_BITS, bits, sizeof(bits)); 1866 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 1867 bitmask_snprintf(ump->lvreadwrite, UDFONERROR_BITS, bits, sizeof(bits)); 1868 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 1869 1870 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 1871 (ump->strategy == &udf_strat_direct) ? "Direct" : 1872 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 1873 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 1874 1875 /* signal its OK for now */ 1876 return 0; 1877 } 1878 1879 /* --------------------------------------------------------------------- */ 1880 1881 /* 1882 * Update logical volume name in all structures that keep a record of it. We 1883 * use memmove since each of them might be specified as a source. 1884 * 1885 * Note that it doesn't update the VAT structure! 1886 */ 1887 1888 static void 1889 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 1890 { 1891 struct logvol_desc *lvd = NULL; 1892 struct fileset_desc *fsd = NULL; 1893 struct udf_lv_info *lvi = NULL; 1894 1895 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 1896 lvd = ump->logical_vol; 1897 fsd = ump->fileset_desc; 1898 if (ump->implementation) 1899 lvi = &ump->implementation->_impl_use.lv_info; 1900 1901 /* logvol's id might be specified as origional so use memmove here */ 1902 memmove(lvd->logvol_id, logvol_id, 128); 1903 if (fsd) 1904 memmove(fsd->logvol_id, logvol_id, 128); 1905 if (lvi) 1906 memmove(lvi->logvol_id, logvol_id, 128); 1907 } 1908 1909 /* --------------------------------------------------------------------- */ 1910 1911 /* 1912 * Etended attribute support. UDF knows of 3 places for extended attributes: 1913 * 1914 * (a) inside the file's (e)fe in the length of the extended attriubute area 1915 * before the allocation desctriptors/filedata 1916 * 1917 * (b) in a file referenced by (e)fe->ext_attr_icb and 1918 * 1919 * (c) in the e(fe)'s associated stream directory that can hold various 1920 struct part_desc *part; 1921 * sub-files. In the stream directory a few fixed named subfiles are reserved 1922 * for NT/Unix ACL's and OS/2 attributes. 1923 * 1924 * NOTE: Extended attributes are read randomly but allways written 1925 * *atomicaly*. For ACL's this interface is propably different but not known 1926 * to me yet. 1927 */ 1928 1929 static int 1930 udf_impl_extattr_check(struct impl_extattr_entry *implext) 1931 { 1932 uint16_t *spos; 1933 1934 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 1935 /* checksum valid? */ 1936 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 1937 spos = (uint16_t *) implext->data; 1938 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 1939 return EINVAL; 1940 } 1941 return 0; 1942 } 1943 1944 static void 1945 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 1946 { 1947 uint16_t *spos; 1948 1949 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 1950 /* set checksum */ 1951 spos = (uint16_t *) implext->data; 1952 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 1953 } 1954 } 1955 1956 1957 int 1958 udf_extattr_search_intern(struct udf_node *node, 1959 uint32_t sattr, char const *sattrname, 1960 uint32_t *offsetp, uint32_t *lengthp) 1961 { 1962 struct extattrhdr_desc *eahdr; 1963 struct extattr_entry *attrhdr; 1964 struct impl_extattr_entry *implext; 1965 uint32_t offset, a_l, sector_size; 1966 int32_t l_ea; 1967 uint8_t *pos; 1968 int error; 1969 1970 /* get mountpoint */ 1971 sector_size = node->ump->discinfo.sector_size; 1972 1973 /* get information from fe/efe */ 1974 if (node->fe) { 1975 l_ea = udf_rw32(node->fe->l_ea); 1976 eahdr = (struct extattrhdr_desc *) node->fe->data; 1977 } else { 1978 assert(node->efe); 1979 l_ea = udf_rw32(node->efe->l_ea); 1980 eahdr = (struct extattrhdr_desc *) node->efe->data; 1981 } 1982 1983 /* something recorded here? */ 1984 if (l_ea == 0) 1985 return ENOENT; 1986 1987 /* check extended attribute tag; what to do if it fails? */ 1988 error = udf_check_tag(eahdr); 1989 if (error) 1990 return EINVAL; 1991 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 1992 return EINVAL; 1993 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 1994 if (error) 1995 return EINVAL; 1996 1997 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 1998 1999 /* looking for Ecma-167 attributes? */ 2000 offset = sizeof(struct extattrhdr_desc); 2001 2002 /* looking for either implemenation use or application use */ 2003 if (sattr == 2048) { /* [4/48.10.8] */ 2004 offset = udf_rw32(eahdr->impl_attr_loc); 2005 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2006 return ENOENT; 2007 } 2008 if (sattr == 65536) { /* [4/48.10.9] */ 2009 offset = udf_rw32(eahdr->appl_attr_loc); 2010 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2011 return ENOENT; 2012 } 2013 2014 /* paranoia check offset and l_ea */ 2015 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2016 return EINVAL; 2017 2018 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2019 2020 /* find our extended attribute */ 2021 l_ea -= offset; 2022 pos = (uint8_t *) eahdr + offset; 2023 2024 while (l_ea >= sizeof(struct extattr_entry)) { 2025 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2026 attrhdr = (struct extattr_entry *) pos; 2027 implext = (struct impl_extattr_entry *) pos; 2028 2029 /* get complete attribute length and check for roque values */ 2030 a_l = udf_rw32(attrhdr->a_l); 2031 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2032 udf_rw32(attrhdr->type), 2033 attrhdr->subtype, a_l, l_ea)); 2034 if ((a_l == 0) || (a_l > l_ea)) 2035 return EINVAL; 2036 2037 if (attrhdr->type != sattr) 2038 goto next_attribute; 2039 2040 /* we might have found it! */ 2041 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2042 *offsetp = offset; 2043 *lengthp = a_l; 2044 return 0; /* success */ 2045 } 2046 2047 /* 2048 * Implementation use and application use extended attributes 2049 * have a name to identify. They share the same structure only 2050 * UDF implementation use extended attributes have a checksum 2051 * we need to check 2052 */ 2053 2054 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2055 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2056 /* we have found our appl/implementation attribute */ 2057 *offsetp = offset; 2058 *lengthp = a_l; 2059 return 0; /* success */ 2060 } 2061 2062 next_attribute: 2063 /* next attribute */ 2064 pos += a_l; 2065 l_ea -= a_l; 2066 offset += a_l; 2067 } 2068 /* not found */ 2069 return ENOENT; 2070 } 2071 2072 2073 2074 /* --------------------------------------------------------------------- */ 2075 2076 static int 2077 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2078 { 2079 struct udf_mount *ump; 2080 struct udf_logvol_info *lvinfo; 2081 struct impl_extattr_entry *implext; 2082 struct vatlvext_extattr_entry lvext; 2083 const char *extstr = "*UDF VAT LVExtension"; 2084 uint64_t vat_uniqueid; 2085 uint32_t offset, a_l; 2086 uint8_t *ea_start, *lvextpos; 2087 int error; 2088 2089 /* get mountpoint and lvinfo */ 2090 ump = vat_node->ump; 2091 lvinfo = ump->logvol_info; 2092 2093 /* get information from fe/efe */ 2094 if (vat_node->fe) { 2095 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2096 ea_start = vat_node->fe->data; 2097 } else { 2098 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2099 ea_start = vat_node->efe->data; 2100 } 2101 2102 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2103 if (error) 2104 return error; 2105 2106 implext = (struct impl_extattr_entry *) (ea_start + offset); 2107 error = udf_impl_extattr_check(implext); 2108 if (error) 2109 return error; 2110 2111 /* paranoia */ 2112 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2113 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2114 return EINVAL; 2115 } 2116 2117 /* 2118 * we have found our "VAT LVExtension attribute. BUT due to a 2119 * bug in the specification it might not be word aligned so 2120 * copy first to avoid panics on some machines (!!) 2121 */ 2122 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2123 lvextpos = implext->data + udf_rw32(implext->iu_l); 2124 memcpy(&lvext, lvextpos, sizeof(lvext)); 2125 2126 /* check if it was updated the last time */ 2127 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2128 lvinfo->num_files = lvext.num_files; 2129 lvinfo->num_directories = lvext.num_directories; 2130 udf_update_logvolname(ump, lvext.logvol_id); 2131 } else { 2132 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2133 /* replace VAT LVExt by free space EA */ 2134 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2135 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2136 udf_calc_impl_extattr_checksum(implext); 2137 } 2138 2139 return 0; 2140 } 2141 2142 2143 static int 2144 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2145 { 2146 struct udf_mount *ump; 2147 struct udf_logvol_info *lvinfo; 2148 struct impl_extattr_entry *implext; 2149 struct vatlvext_extattr_entry lvext; 2150 const char *extstr = "*UDF VAT LVExtension"; 2151 uint64_t vat_uniqueid; 2152 uint32_t offset, a_l; 2153 uint8_t *ea_start, *lvextpos; 2154 int error; 2155 2156 /* get mountpoint and lvinfo */ 2157 ump = vat_node->ump; 2158 lvinfo = ump->logvol_info; 2159 2160 /* get information from fe/efe */ 2161 if (vat_node->fe) { 2162 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2163 ea_start = vat_node->fe->data; 2164 } else { 2165 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2166 ea_start = vat_node->efe->data; 2167 } 2168 2169 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2170 if (error) 2171 return error; 2172 /* found, it existed */ 2173 2174 /* paranoia */ 2175 implext = (struct impl_extattr_entry *) (ea_start + offset); 2176 error = udf_impl_extattr_check(implext); 2177 if (error) { 2178 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2179 return error; 2180 } 2181 /* it is correct */ 2182 2183 /* 2184 * we have found our "VAT LVExtension attribute. BUT due to a 2185 * bug in the specification it might not be word aligned so 2186 * copy first to avoid panics on some machines (!!) 2187 */ 2188 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2189 lvextpos = implext->data + udf_rw32(implext->iu_l); 2190 2191 lvext.unique_id_chk = vat_uniqueid; 2192 lvext.num_files = lvinfo->num_files; 2193 lvext.num_directories = lvinfo->num_directories; 2194 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2195 2196 memcpy(lvextpos, &lvext, sizeof(lvext)); 2197 2198 return 0; 2199 } 2200 2201 /* --------------------------------------------------------------------- */ 2202 2203 int 2204 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2205 { 2206 struct udf_mount *ump = vat_node->ump; 2207 2208 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2209 return EINVAL; 2210 2211 memcpy(blob, ump->vat_table + offset, size); 2212 return 0; 2213 } 2214 2215 int 2216 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2217 { 2218 struct udf_mount *ump = vat_node->ump; 2219 uint32_t offset_high; 2220 uint8_t *new_vat_table; 2221 2222 /* extent VAT allocation if needed */ 2223 offset_high = offset + size; 2224 if (offset_high >= ump->vat_table_alloc_len) { 2225 /* realloc */ 2226 new_vat_table = realloc(ump->vat_table, 2227 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2228 M_UDFVOLD, M_WAITOK | M_CANFAIL); 2229 if (!new_vat_table) { 2230 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2231 return ENOMEM; 2232 } 2233 ump->vat_table = new_vat_table; 2234 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2235 } 2236 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2237 2238 memcpy(ump->vat_table + offset, blob, size); 2239 return 0; 2240 } 2241 2242 /* --------------------------------------------------------------------- */ 2243 2244 /* TODO support previous VAT location writeout */ 2245 static int 2246 udf_update_vat_descriptor(struct udf_mount *ump) 2247 { 2248 struct udf_node *vat_node = ump->vat_node; 2249 struct udf_logvol_info *lvinfo = ump->logvol_info; 2250 struct icb_tag *icbtag; 2251 struct udf_oldvat_tail *oldvat_tl; 2252 struct udf_vat *vat; 2253 uint64_t unique_id; 2254 uint32_t lb_size; 2255 uint8_t *raw_vat; 2256 int filetype, error; 2257 2258 KASSERT(vat_node); 2259 KASSERT(lvinfo); 2260 lb_size = udf_rw32(ump->logical_vol->lb_size); 2261 2262 /* get our new unique_id */ 2263 unique_id = udf_advance_uniqueid(ump); 2264 2265 /* get information from fe/efe */ 2266 if (vat_node->fe) { 2267 icbtag = &vat_node->fe->icbtag; 2268 vat_node->fe->unique_id = udf_rw64(unique_id); 2269 } else { 2270 icbtag = &vat_node->efe->icbtag; 2271 vat_node->efe->unique_id = udf_rw64(unique_id); 2272 } 2273 2274 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2275 filetype = icbtag->file_type; 2276 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2277 2278 /* allocate piece to process head or tail of VAT file */ 2279 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2280 2281 if (filetype == 0) { 2282 /* 2283 * Update "*UDF VAT LVExtension" extended attribute from the 2284 * lvint if present. 2285 */ 2286 udf_update_vat_extattr_from_lvid(vat_node); 2287 2288 /* setup identifying regid */ 2289 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2290 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2291 2292 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2293 udf_add_udf_regid(ump, &oldvat_tl->id); 2294 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2295 2296 /* write out new tail of virtual allocation table file */ 2297 error = udf_vat_write(vat_node, raw_vat, 2298 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2299 } else { 2300 /* compose the VAT2 header */ 2301 vat = (struct udf_vat *) raw_vat; 2302 memset(vat, 0, sizeof(struct udf_vat)); 2303 2304 vat->header_len = udf_rw16(152); /* as per spec */ 2305 vat->impl_use_len = udf_rw16(0); 2306 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2307 vat->prev_vat = udf_rw32(0xffffffff); 2308 vat->num_files = lvinfo->num_files; 2309 vat->num_directories = lvinfo->num_directories; 2310 vat->min_udf_readver = lvinfo->min_udf_readver; 2311 vat->min_udf_writever = lvinfo->min_udf_writever; 2312 vat->max_udf_writever = lvinfo->max_udf_writever; 2313 2314 error = udf_vat_write(vat_node, raw_vat, 2315 sizeof(struct udf_vat), 0); 2316 } 2317 free(raw_vat, M_TEMP); 2318 2319 return error; /* success! */ 2320 } 2321 2322 2323 int 2324 udf_writeout_vat(struct udf_mount *ump) 2325 { 2326 struct udf_node *vat_node = ump->vat_node; 2327 uint32_t vat_length; 2328 int error; 2329 2330 KASSERT(vat_node); 2331 2332 DPRINTF(CALL, ("udf_writeout_vat\n")); 2333 2334 mutex_enter(&ump->allocate_mutex); 2335 udf_update_vat_descriptor(ump); 2336 2337 /* write out the VAT contents ; TODO intelligent writing */ 2338 vat_length = ump->vat_table_len; 2339 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2340 ump->vat_table, ump->vat_table_len, 0, 2341 UIO_SYSSPACE, IO_NODELOCKED, FSCRED, NULL, NULL); 2342 if (error) { 2343 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2344 goto out; 2345 } 2346 2347 mutex_exit(&ump->allocate_mutex); 2348 2349 vflushbuf(ump->vat_node->vnode, 1 /* sync */); 2350 error = VOP_FSYNC(ump->vat_node->vnode, 2351 FSCRED, FSYNC_WAIT, 0, 0); 2352 if (error) 2353 printf("udf_writeout_vat: error writing VAT node!\n"); 2354 out: 2355 2356 return error; 2357 } 2358 2359 /* --------------------------------------------------------------------- */ 2360 2361 /* 2362 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2363 * descriptor. If OK, read in complete VAT file. 2364 */ 2365 2366 static int 2367 udf_check_for_vat(struct udf_node *vat_node) 2368 { 2369 struct udf_mount *ump; 2370 struct icb_tag *icbtag; 2371 struct timestamp *mtime; 2372 struct udf_vat *vat; 2373 struct udf_oldvat_tail *oldvat_tl; 2374 struct udf_logvol_info *lvinfo; 2375 uint64_t unique_id; 2376 uint32_t vat_length; 2377 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2378 uint32_t sector_size; 2379 uint32_t *raw_vat; 2380 uint8_t *vat_table; 2381 char *regid_name; 2382 int filetype; 2383 int error; 2384 2385 /* vat_length is really 64 bits though impossible */ 2386 2387 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2388 if (!vat_node) 2389 return ENOENT; 2390 2391 /* get mount info */ 2392 ump = vat_node->ump; 2393 sector_size = udf_rw32(ump->logical_vol->lb_size); 2394 2395 /* check assertions */ 2396 assert(vat_node->fe || vat_node->efe); 2397 assert(ump->logvol_integrity); 2398 2399 /* set vnode type to regular file or we can't read from it! */ 2400 vat_node->vnode->v_type = VREG; 2401 2402 /* get information from fe/efe */ 2403 if (vat_node->fe) { 2404 vat_length = udf_rw64(vat_node->fe->inf_len); 2405 icbtag = &vat_node->fe->icbtag; 2406 mtime = &vat_node->fe->mtime; 2407 unique_id = udf_rw64(vat_node->fe->unique_id); 2408 } else { 2409 vat_length = udf_rw64(vat_node->efe->inf_len); 2410 icbtag = &vat_node->efe->icbtag; 2411 mtime = &vat_node->efe->mtime; 2412 unique_id = udf_rw64(vat_node->efe->unique_id); 2413 } 2414 2415 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2416 filetype = icbtag->file_type; 2417 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2418 return ENOENT; 2419 2420 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2421 2422 vat_table_alloc_len = 2423 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2424 * UDF_VAT_CHUNKSIZE; 2425 2426 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, 2427 M_CANFAIL | M_WAITOK); 2428 if (vat_table == NULL) { 2429 printf("allocation of %d bytes failed for VAT\n", 2430 vat_table_alloc_len); 2431 return ENOMEM; 2432 } 2433 2434 /* allocate piece to read in head or tail of VAT file */ 2435 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2436 2437 /* 2438 * check contents of the file if its the old 1.50 VAT table format. 2439 * Its notoriously broken and allthough some implementations support an 2440 * extention as defined in the UDF 1.50 errata document, its doubtfull 2441 * to be useable since a lot of implementations don't maintain it. 2442 */ 2443 lvinfo = ump->logvol_info; 2444 2445 if (filetype == 0) { 2446 /* definition */ 2447 vat_offset = 0; 2448 vat_entries = (vat_length-36)/4; 2449 2450 /* read in tail of virtual allocation table file */ 2451 error = vn_rdwr(UIO_READ, vat_node->vnode, 2452 (uint8_t *) raw_vat, 2453 sizeof(struct udf_oldvat_tail), 2454 vat_entries * 4, 2455 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2456 NULL, NULL); 2457 if (error) 2458 goto out; 2459 2460 /* check 1.50 VAT */ 2461 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2462 regid_name = (char *) oldvat_tl->id.id; 2463 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2464 if (error) { 2465 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2466 error = ENOENT; 2467 goto out; 2468 } 2469 2470 /* 2471 * update LVID from "*UDF VAT LVExtension" extended attribute 2472 * if present. 2473 */ 2474 udf_update_lvid_from_vat_extattr(vat_node); 2475 } else { 2476 /* read in head of virtual allocation table file */ 2477 error = vn_rdwr(UIO_READ, vat_node->vnode, 2478 (uint8_t *) raw_vat, 2479 sizeof(struct udf_vat), 0, 2480 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2481 NULL, NULL); 2482 if (error) 2483 goto out; 2484 2485 /* definition */ 2486 vat = (struct udf_vat *) raw_vat; 2487 vat_offset = vat->header_len; 2488 vat_entries = (vat_length - vat_offset)/4; 2489 2490 assert(lvinfo); 2491 lvinfo->num_files = vat->num_files; 2492 lvinfo->num_directories = vat->num_directories; 2493 lvinfo->min_udf_readver = vat->min_udf_readver; 2494 lvinfo->min_udf_writever = vat->min_udf_writever; 2495 lvinfo->max_udf_writever = vat->max_udf_writever; 2496 2497 udf_update_logvolname(ump, vat->logvol_id); 2498 } 2499 2500 /* read in complete VAT file */ 2501 error = vn_rdwr(UIO_READ, vat_node->vnode, 2502 vat_table, 2503 vat_length, 0, 2504 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2505 NULL, NULL); 2506 if (error) 2507 printf("read in of complete VAT file failed (error %d)\n", 2508 error); 2509 if (error) 2510 goto out; 2511 2512 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 2513 ump->logvol_integrity->lvint_next_unique_id = unique_id; 2514 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 2515 ump->logvol_integrity->time = *mtime; 2516 2517 ump->vat_table_len = vat_length; 2518 ump->vat_table_alloc_len = vat_table_alloc_len; 2519 ump->vat_table = vat_table; 2520 ump->vat_offset = vat_offset; 2521 ump->vat_entries = vat_entries; 2522 ump->vat_last_free_lb = 0; /* start at beginning */ 2523 2524 out: 2525 if (error) { 2526 if (vat_table) 2527 free(vat_table, M_UDFVOLD); 2528 } 2529 free(raw_vat, M_TEMP); 2530 2531 return error; 2532 } 2533 2534 /* --------------------------------------------------------------------- */ 2535 2536 static int 2537 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 2538 { 2539 struct udf_node *vat_node; 2540 struct long_ad icb_loc; 2541 uint32_t early_vat_loc, late_vat_loc, vat_loc; 2542 int error; 2543 2544 /* mapping info not needed */ 2545 mapping = mapping; 2546 2547 vat_loc = ump->last_possible_vat_location; 2548 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */ 2549 2550 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n", 2551 vat_loc, early_vat_loc)); 2552 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location); 2553 late_vat_loc = vat_loc + 1024; 2554 2555 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n", 2556 vat_loc, early_vat_loc)); 2557 2558 /* start looking from the end of the range */ 2559 do { 2560 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); 2561 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 2562 icb_loc.loc.lb_num = udf_rw32(vat_loc); 2563 2564 error = udf_get_node(ump, &icb_loc, &vat_node); 2565 if (!error) { 2566 error = udf_check_for_vat(vat_node); 2567 DPRINTFIF(VOLUMES, !error, 2568 ("VAT accepted at %d\n", vat_loc)); 2569 if (!error) 2570 break; 2571 } 2572 if (vat_node) { 2573 vput(vat_node->vnode); 2574 vat_node = NULL; 2575 } 2576 vat_loc--; /* walk backwards */ 2577 } while (vat_loc >= early_vat_loc); 2578 2579 /* keep our VAT node around */ 2580 if (vat_node) { 2581 UDF_SET_SYSTEMFILE(vat_node->vnode); 2582 ump->vat_node = vat_node; 2583 } 2584 2585 return error; 2586 } 2587 2588 /* --------------------------------------------------------------------- */ 2589 2590 static int 2591 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 2592 { 2593 union dscrptr *dscr; 2594 struct part_map_spare *pms = &mapping->pms; 2595 uint32_t lb_num; 2596 int spar, error; 2597 2598 /* 2599 * The partition mapping passed on to us specifies the information we 2600 * need to locate and initialise the sparable partition mapping 2601 * information we need. 2602 */ 2603 2604 DPRINTF(VOLUMES, ("Read sparable table\n")); 2605 ump->sparable_packet_size = udf_rw16(pms->packet_len); 2606 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 2607 2608 for (spar = 0; spar < pms->n_st; spar++) { 2609 lb_num = pms->st_loc[spar]; 2610 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 2611 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 2612 if (!error && dscr) { 2613 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 2614 if (ump->sparing_table) 2615 free(ump->sparing_table, M_UDFVOLD); 2616 ump->sparing_table = &dscr->spt; 2617 dscr = NULL; 2618 DPRINTF(VOLUMES, 2619 ("Sparing table accepted (%d entries)\n", 2620 udf_rw16(ump->sparing_table->rt_l))); 2621 break; /* we're done */ 2622 } 2623 } 2624 if (dscr) 2625 free(dscr, M_UDFVOLD); 2626 } 2627 2628 if (ump->sparing_table) 2629 return 0; 2630 2631 return ENOENT; 2632 } 2633 2634 /* --------------------------------------------------------------------- */ 2635 2636 static int 2637 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 2638 { 2639 struct part_map_meta *pmm = &mapping->pmm; 2640 struct long_ad icb_loc; 2641 struct vnode *vp; 2642 int error; 2643 2644 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 2645 icb_loc.loc.part_num = pmm->part_num; 2646 icb_loc.loc.lb_num = pmm->meta_file_lbn; 2647 DPRINTF(VOLUMES, ("Metadata file\n")); 2648 error = udf_get_node(ump, &icb_loc, &ump->metadata_node); 2649 if (ump->metadata_node) { 2650 vp = ump->metadata_node->vnode; 2651 UDF_SET_SYSTEMFILE(vp); 2652 } 2653 2654 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 2655 if (icb_loc.loc.lb_num != -1) { 2656 DPRINTF(VOLUMES, ("Metadata copy file\n")); 2657 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node); 2658 if (ump->metadatamirror_node) { 2659 vp = ump->metadatamirror_node->vnode; 2660 UDF_SET_SYSTEMFILE(vp); 2661 } 2662 } 2663 2664 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 2665 if (icb_loc.loc.lb_num != -1) { 2666 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 2667 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node); 2668 if (ump->metadatabitmap_node) { 2669 vp = ump->metadatabitmap_node->vnode; 2670 UDF_SET_SYSTEMFILE(vp); 2671 } 2672 } 2673 2674 /* if we're mounting read-only we relax the requirements */ 2675 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 2676 error = EFAULT; 2677 if (ump->metadata_node) 2678 error = 0; 2679 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 2680 printf( "udf mount: Metadata file not readable, " 2681 "substituting Metadata copy file\n"); 2682 ump->metadata_node = ump->metadatamirror_node; 2683 ump->metadatamirror_node = NULL; 2684 error = 0; 2685 } 2686 } else { 2687 /* mounting read/write */ 2688 DPRINTF(VOLUMES, ("udf mount: read only file system\n")); 2689 error = EROFS; 2690 } 2691 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 2692 "metadata files\n")); 2693 return error; 2694 } 2695 2696 /* --------------------------------------------------------------------- */ 2697 2698 int 2699 udf_read_vds_tables(struct udf_mount *ump) 2700 { 2701 union udf_pmap *mapping; 2702 /* struct udf_args *args = &ump->mount_args; */ 2703 uint32_t n_pm, mt_l; 2704 uint32_t log_part; 2705 uint8_t *pmap_pos; 2706 int pmap_size; 2707 int error; 2708 2709 /* Iterate again over the part mappings for locations */ 2710 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 2711 mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ 2712 pmap_pos = ump->logical_vol->maps; 2713 2714 for (log_part = 0; log_part < n_pm; log_part++) { 2715 mapping = (union udf_pmap *) pmap_pos; 2716 switch (ump->vtop_tp[log_part]) { 2717 case UDF_VTOP_TYPE_PHYS : 2718 /* nothing */ 2719 break; 2720 case UDF_VTOP_TYPE_VIRT : 2721 /* search and load VAT */ 2722 error = udf_search_vat(ump, mapping); 2723 if (error) 2724 return ENOENT; 2725 break; 2726 case UDF_VTOP_TYPE_SPARABLE : 2727 /* load one of the sparable tables */ 2728 error = udf_read_sparables(ump, mapping); 2729 if (error) 2730 return ENOENT; 2731 break; 2732 case UDF_VTOP_TYPE_META : 2733 /* load the associated file descriptors */ 2734 error = udf_read_metadata_nodes(ump, mapping); 2735 if (error) 2736 return ENOENT; 2737 break; 2738 default: 2739 break; 2740 } 2741 pmap_size = pmap_pos[1]; 2742 pmap_pos += pmap_size; 2743 } 2744 2745 return 0; 2746 } 2747 2748 /* --------------------------------------------------------------------- */ 2749 2750 int 2751 udf_read_rootdirs(struct udf_mount *ump) 2752 { 2753 union dscrptr *dscr; 2754 /* struct udf_args *args = &ump->mount_args; */ 2755 struct udf_node *rootdir_node, *streamdir_node; 2756 struct long_ad fsd_loc, *dir_loc; 2757 uint32_t lb_num, dummy; 2758 uint32_t fsd_len; 2759 int dscr_type; 2760 int error; 2761 2762 /* TODO implement FSD reading in separate function like integrity? */ 2763 /* get fileset descriptor sequence */ 2764 fsd_loc = ump->logical_vol->lv_fsd_loc; 2765 fsd_len = udf_rw32(fsd_loc.len); 2766 2767 dscr = NULL; 2768 error = 0; 2769 while (fsd_len || error) { 2770 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 2771 /* translate fsd_loc to lb_num */ 2772 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 2773 if (error) 2774 break; 2775 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 2776 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 2777 /* end markers */ 2778 if (error || (dscr == NULL)) 2779 break; 2780 2781 /* analyse */ 2782 dscr_type = udf_rw16(dscr->tag.id); 2783 if (dscr_type == TAGID_TERM) 2784 break; 2785 if (dscr_type != TAGID_FSD) { 2786 free(dscr, M_UDFVOLD); 2787 return ENOENT; 2788 } 2789 2790 /* 2791 * TODO check for multiple fileset descriptors; its only 2792 * picking the last now. Also check for FSD 2793 * correctness/interpretability 2794 */ 2795 2796 /* update */ 2797 if (ump->fileset_desc) { 2798 free(ump->fileset_desc, M_UDFVOLD); 2799 } 2800 ump->fileset_desc = &dscr->fsd; 2801 dscr = NULL; 2802 2803 /* continue to the next fsd */ 2804 fsd_len -= ump->discinfo.sector_size; 2805 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 2806 2807 /* follow up to fsd->next_ex (long_ad) if its not null */ 2808 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 2809 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 2810 fsd_loc = ump->fileset_desc->next_ex; 2811 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 2812 } 2813 } 2814 if (dscr) 2815 free(dscr, M_UDFVOLD); 2816 2817 /* there has to be one */ 2818 if (ump->fileset_desc == NULL) 2819 return ENOENT; 2820 2821 DPRINTF(VOLUMES, ("FSD read in fine\n")); 2822 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 2823 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 2824 2825 /* 2826 * Now the FSD is known, read in the rootdirectory and if one exists, 2827 * the system stream dir. Some files in the system streamdir are not 2828 * wanted in this implementation since they are not maintained. If 2829 * writing is enabled we'll delete these files if they exist. 2830 */ 2831 2832 rootdir_node = streamdir_node = NULL; 2833 dir_loc = NULL; 2834 2835 /* try to read in the rootdir */ 2836 dir_loc = &ump->fileset_desc->rootdir_icb; 2837 error = udf_get_node(ump, dir_loc, &rootdir_node); 2838 if (error) 2839 return ENOENT; 2840 2841 /* aparently it read in fine */ 2842 2843 /* 2844 * Try the system stream directory; not very likely in the ones we 2845 * test, but for completeness. 2846 */ 2847 dir_loc = &ump->fileset_desc->streamdir_icb; 2848 if (udf_rw32(dir_loc->len)) { 2849 printf("udf_read_rootdirs: streamdir defined "); 2850 error = udf_get_node(ump, dir_loc, &streamdir_node); 2851 if (error) { 2852 printf("but error in streamdir reading\n"); 2853 } else { 2854 printf("but ignored\n"); 2855 /* 2856 * TODO process streamdir `baddies' i.e. files we dont 2857 * want if R/W 2858 */ 2859 } 2860 } 2861 2862 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 2863 2864 /* release the vnodes again; they'll be auto-recycled later */ 2865 if (streamdir_node) { 2866 vput(streamdir_node->vnode); 2867 } 2868 if (rootdir_node) { 2869 vput(rootdir_node->vnode); 2870 } 2871 2872 return 0; 2873 } 2874 2875 /* --------------------------------------------------------------------- */ 2876 2877 /* To make absolutely sure we are NOT returning zero, add one :) */ 2878 2879 long 2880 udf_calchash(struct long_ad *icbptr) 2881 { 2882 /* ought to be enough since each mountpoint has its own chain */ 2883 return udf_rw32(icbptr->loc.lb_num) + 1; 2884 } 2885 2886 2887 static struct udf_node * 2888 udf_hash_lookup(struct udf_mount *ump, struct long_ad *icbptr) 2889 { 2890 struct udf_node *node; 2891 struct vnode *vp; 2892 uint32_t hashline; 2893 2894 loop: 2895 mutex_enter(&ump->ihash_lock); 2896 2897 hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK; 2898 LIST_FOREACH(node, &ump->udf_nodes[hashline], hashchain) { 2899 assert(node); 2900 if (node->loc.loc.lb_num == icbptr->loc.lb_num && 2901 node->loc.loc.part_num == icbptr->loc.part_num) { 2902 vp = node->vnode; 2903 assert(vp); 2904 mutex_enter(&vp->v_interlock); 2905 mutex_exit(&ump->ihash_lock); 2906 if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) 2907 goto loop; 2908 return node; 2909 } 2910 } 2911 mutex_exit(&ump->ihash_lock); 2912 2913 return NULL; 2914 } 2915 2916 2917 static void 2918 udf_sorted_list_insert(struct udf_node *node) 2919 { 2920 struct udf_mount *ump; 2921 struct udf_node *s_node, *last_node; 2922 uint32_t loc, s_loc; 2923 2924 ump = node->ump; 2925 last_node = NULL; /* XXX gcc */ 2926 2927 if (LIST_EMPTY(&ump->sorted_udf_nodes)) { 2928 LIST_INSERT_HEAD(&ump->sorted_udf_nodes, node, sortchain); 2929 return; 2930 } 2931 2932 /* 2933 * We sort on logical block number here and not on physical block 2934 * number here. Ideally we should go for the physical block nr to get 2935 * better sync performance though this sort will ensure that packets 2936 * won't get spit up unnessisarily. 2937 */ 2938 2939 loc = udf_rw32(node->loc.loc.lb_num); 2940 LIST_FOREACH(s_node, &ump->sorted_udf_nodes, sortchain) { 2941 s_loc = udf_rw32(s_node->loc.loc.lb_num); 2942 if (s_loc > loc) { 2943 LIST_INSERT_BEFORE(s_node, node, sortchain); 2944 return; 2945 } 2946 last_node = s_node; 2947 } 2948 LIST_INSERT_AFTER(last_node, node, sortchain); 2949 } 2950 2951 2952 static void 2953 udf_register_node(struct udf_node *node) 2954 { 2955 struct udf_mount *ump; 2956 struct udf_node *chk; 2957 uint32_t hashline; 2958 2959 ump = node->ump; 2960 mutex_enter(&ump->ihash_lock); 2961 2962 /* add to our hash table */ 2963 hashline = udf_calchash(&node->loc) & UDF_INODE_HASHMASK; 2964 #ifdef DEBUG 2965 LIST_FOREACH(chk, &ump->udf_nodes[hashline], hashchain) { 2966 assert(chk); 2967 if (chk->loc.loc.lb_num == node->loc.loc.lb_num && 2968 chk->loc.loc.part_num == node->loc.loc.part_num) 2969 panic("Double node entered\n"); 2970 } 2971 #else 2972 chk = NULL; 2973 #endif 2974 LIST_INSERT_HEAD(&ump->udf_nodes[hashline], node, hashchain); 2975 2976 /* add to our sorted list */ 2977 udf_sorted_list_insert(node); 2978 2979 mutex_exit(&ump->ihash_lock); 2980 } 2981 2982 2983 static void 2984 udf_deregister_node(struct udf_node *node) 2985 { 2986 struct udf_mount *ump; 2987 2988 ump = node->ump; 2989 mutex_enter(&ump->ihash_lock); 2990 2991 /* from hash and sorted list */ 2992 LIST_REMOVE(node, hashchain); 2993 LIST_REMOVE(node, sortchain); 2994 2995 mutex_exit(&ump->ihash_lock); 2996 } 2997 2998 /* --------------------------------------------------------------------- */ 2999 3000 static void 3001 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 3002 uint32_t sector) 3003 { 3004 assert(ump->logical_vol); 3005 3006 tag->id = udf_rw16(tagid); 3007 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 3008 tag->cksum = 0; 3009 tag->reserved = 0; 3010 tag->serial_num = ump->logical_vol->tag.serial_num; 3011 tag->tag_loc = udf_rw32(sector); 3012 } 3013 3014 3015 uint64_t 3016 udf_advance_uniqueid(struct udf_mount *ump) 3017 { 3018 uint64_t unique_id; 3019 3020 mutex_enter(&ump->logvol_mutex); 3021 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 3022 if (unique_id < 0x10) 3023 unique_id = 0x10; 3024 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 3025 mutex_exit(&ump->logvol_mutex); 3026 3027 return unique_id; 3028 } 3029 3030 3031 static void 3032 udf_adjust_filecount(struct udf_node *udf_node, int sign) 3033 { 3034 struct udf_mount *ump = udf_node->ump; 3035 uint32_t num_dirs, num_files; 3036 int udf_file_type; 3037 3038 /* get file type */ 3039 if (udf_node->fe) { 3040 udf_file_type = udf_node->fe->icbtag.file_type; 3041 } else { 3042 udf_file_type = udf_node->efe->icbtag.file_type; 3043 } 3044 3045 /* adjust file count */ 3046 mutex_enter(&ump->allocate_mutex); 3047 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 3048 num_dirs = udf_rw32(ump->logvol_info->num_directories); 3049 ump->logvol_info->num_directories = 3050 udf_rw32((num_dirs + sign)); 3051 } else { 3052 num_files = udf_rw32(ump->logvol_info->num_files); 3053 ump->logvol_info->num_files = 3054 udf_rw32((num_files + sign)); 3055 } 3056 mutex_exit(&ump->allocate_mutex); 3057 } 3058 3059 3060 void 3061 udf_osta_charset(struct charspec *charspec) 3062 { 3063 bzero(charspec, sizeof(struct charspec)); 3064 charspec->type = 0; 3065 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 3066 } 3067 3068 3069 /* first call udf_set_regid and then the suffix */ 3070 void 3071 udf_set_regid(struct regid *regid, char const *name) 3072 { 3073 bzero(regid, sizeof(struct regid)); 3074 regid->flags = 0; /* not dirty and not protected */ 3075 strcpy((char *) regid->id, name); 3076 } 3077 3078 3079 void 3080 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 3081 { 3082 uint16_t *ver; 3083 3084 ver = (uint16_t *) regid->id_suffix; 3085 *ver = ump->logvol_info->min_udf_readver; 3086 } 3087 3088 3089 void 3090 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 3091 { 3092 uint16_t *ver; 3093 3094 ver = (uint16_t *) regid->id_suffix; 3095 *ver = ump->logvol_info->min_udf_readver; 3096 3097 regid->id_suffix[2] = 4; /* unix */ 3098 regid->id_suffix[3] = 8; /* NetBSD */ 3099 } 3100 3101 3102 void 3103 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 3104 { 3105 regid->id_suffix[0] = 4; /* unix */ 3106 regid->id_suffix[1] = 8; /* NetBSD */ 3107 } 3108 3109 3110 void 3111 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 3112 { 3113 regid->id_suffix[0] = APP_VERSION_MAIN; 3114 regid->id_suffix[1] = APP_VERSION_SUB; 3115 } 3116 3117 static int 3118 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 3119 struct long_ad *parent, uint64_t unique_id) 3120 { 3121 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 3122 int fidsize = 40; 3123 3124 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 3125 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 3126 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 3127 fid->icb = *parent; 3128 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 3129 fid->tag.desc_crc_len = fidsize - UDF_DESC_TAG_LENGTH; 3130 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 3131 3132 return fidsize; 3133 } 3134 3135 /* --------------------------------------------------------------------- */ 3136 3137 int 3138 udf_open_logvol(struct udf_mount *ump) 3139 { 3140 int logvol_integrity; 3141 int error; 3142 3143 /* already/still open? */ 3144 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3145 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3146 return 0; 3147 3148 /* can we open it ? */ 3149 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3150 return EROFS; 3151 3152 /* setup write parameters */ 3153 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3154 if ((error = udf_setup_writeparams(ump)) != 0) 3155 return error; 3156 3157 /* determine data and metadata tracks (most likely same) */ 3158 error = udf_search_writing_tracks(ump); 3159 if (error) { 3160 /* most likely lack of space */ 3161 printf("udf_open_logvol: error searching writing tracks\n"); 3162 return EROFS; 3163 } 3164 3165 /* writeout/update lvint on disc or only in memory */ 3166 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3167 if (ump->lvopen & UDF_OPEN_SESSION) { 3168 /* TODO implement writeout of VRS + VDS */ 3169 printf( "udf_open_logvol:Opening a closed session not yet " 3170 "implemented\n"); 3171 return EROFS; 3172 3173 /* determine data and metadata tracks again */ 3174 error = udf_search_writing_tracks(ump); 3175 } 3176 3177 /* mark it open */ 3178 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3179 3180 /* do we need to write it out? */ 3181 if (ump->lvopen & UDF_WRITE_LVINT) { 3182 error = udf_writeout_lvint(ump, ump->lvopen); 3183 /* if we couldn't write it mark it closed again */ 3184 if (error) { 3185 ump->logvol_integrity->integrity_type = 3186 udf_rw32(UDF_INTEGRITY_CLOSED); 3187 return error; 3188 } 3189 } 3190 3191 return 0; 3192 } 3193 3194 3195 int 3196 udf_close_logvol(struct udf_mount *ump, int mntflags) 3197 { 3198 int logvol_integrity; 3199 int error = 0; 3200 int n; 3201 3202 /* already/still closed? */ 3203 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3204 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3205 return 0; 3206 3207 /* writeout/update lvint or write out VAT */ 3208 DPRINTF(VOLUMES, ("Closing logical volume\n")); 3209 if (ump->lvclose & UDF_WRITE_VAT) { 3210 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3211 3212 /* preprocess the VAT node; its modified on every writeout */ 3213 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3214 udf_update_vat_descriptor(ump->vat_node->ump); 3215 3216 /* write out the VAT node */ 3217 vflushbuf(ump->vat_node->vnode, 1 /* sync */); 3218 for (n = 0; n < 16; n++) { 3219 ump->vat_node->i_flags |= IN_MODIFIED; 3220 error = VOP_FSYNC(ump->vat_node->vnode, 3221 FSCRED, FSYNC_WAIT, 0, 0); 3222 } 3223 if (error) { 3224 printf("udf_close_logvol: writeout of VAT failed\n"); 3225 return error; 3226 } 3227 } 3228 3229 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3230 error = udf_write_partition_spacetables(ump, 1 /* waitfor */); 3231 if (error) { 3232 printf( "udf_close_logvol: writeout of space tables " 3233 "failed\n"); 3234 return error; 3235 } 3236 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3237 } 3238 3239 if (ump->lvclose & UDF_CLOSE_SESSION) { 3240 printf("TODO: Closing a session is not yet implemented\n"); 3241 return EROFS; 3242 ump->lvopen |= UDF_OPEN_SESSION; 3243 } 3244 3245 /* mark it closed */ 3246 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3247 3248 /* do we need to write out the logical volume integrity */ 3249 if (ump->lvclose & UDF_WRITE_LVINT) 3250 error = udf_writeout_lvint(ump, ump->lvopen); 3251 if (error) { 3252 /* HELP now what? mark it open again for now */ 3253 ump->logvol_integrity->integrity_type = 3254 udf_rw32(UDF_INTEGRITY_OPEN); 3255 return error; 3256 } 3257 3258 (void) udf_synchronise_caches(ump); 3259 3260 return 0; 3261 } 3262 3263 /* --------------------------------------------------------------------- */ 3264 3265 /* 3266 * Genfs interfacing 3267 * 3268 * static const struct genfs_ops udf_genfsops = { 3269 * .gop_size = genfs_size, 3270 * size of transfers 3271 * .gop_alloc = udf_gop_alloc, 3272 * allocate len bytes at offset 3273 * .gop_write = genfs_gop_write, 3274 * putpages interface code 3275 * .gop_markupdate = udf_gop_markupdate, 3276 * set update/modify flags etc. 3277 * } 3278 */ 3279 3280 /* 3281 * Genfs interface. These four functions are the only ones defined though not 3282 * documented... great.... 3283 */ 3284 3285 /* 3286 * Callback from genfs to allocate len bytes at offset off; only called when 3287 * filling up gaps in the allocation. 3288 */ 3289 /* XXX should be check if there is space enough in udf_gop_alloc? */ 3290 static int 3291 udf_gop_alloc(struct vnode *vp, off_t off, 3292 off_t len, int flags, kauth_cred_t cred) 3293 { 3294 #if 0 3295 struct udf_node *udf_node = VTOI(vp); 3296 struct udf_mount *ump = udf_node->ump; 3297 uint32_t lb_size, num_lb; 3298 #endif 3299 3300 DPRINTF(NOTIMPL, ("udf_gop_alloc not implemented\n")); 3301 DPRINTF(ALLOC, ("udf_gop_alloc called for %"PRIu64" bytes\n", len)); 3302 3303 return 0; 3304 } 3305 3306 3307 /* 3308 * callback from genfs to update our flags 3309 */ 3310 static void 3311 udf_gop_markupdate(struct vnode *vp, int flags) 3312 { 3313 struct udf_node *udf_node = VTOI(vp); 3314 u_long mask = 0; 3315 3316 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 3317 mask = IN_ACCESS; 3318 } 3319 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 3320 if (vp->v_type == VREG) { 3321 mask |= IN_CHANGE | IN_UPDATE; 3322 } else { 3323 mask |= IN_MODIFY; 3324 } 3325 } 3326 if (mask) { 3327 udf_node->i_flags |= mask; 3328 } 3329 } 3330 3331 3332 static const struct genfs_ops udf_genfsops = { 3333 .gop_size = genfs_size, 3334 .gop_alloc = udf_gop_alloc, 3335 .gop_write = genfs_gop_write_rwmap, 3336 .gop_markupdate = udf_gop_markupdate, 3337 }; 3338 3339 3340 /* --------------------------------------------------------------------- */ 3341 3342 int 3343 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 3344 { 3345 union dscrptr *dscr; 3346 int error; 3347 3348 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK); 3349 bzero(dscr, ump->discinfo.sector_size); 3350 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 3351 3352 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 3353 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 3354 (void) udf_validate_tag_and_crc_sums(dscr); 3355 3356 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 3357 dscr, sector, sector); 3358 3359 free(dscr, M_TEMP); 3360 3361 return error; 3362 } 3363 3364 3365 /* --------------------------------------------------------------------- */ 3366 3367 /* UDF<->unix converters */ 3368 3369 /* --------------------------------------------------------------------- */ 3370 3371 static mode_t 3372 udf_perm_to_unix_mode(uint32_t perm) 3373 { 3374 mode_t mode; 3375 3376 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 3377 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 3378 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 3379 3380 return mode; 3381 } 3382 3383 /* --------------------------------------------------------------------- */ 3384 3385 static uint32_t 3386 unix_mode_to_udf_perm(mode_t mode) 3387 { 3388 uint32_t perm; 3389 3390 perm = ((mode & S_IRWXO) ); 3391 perm |= ((mode & S_IRWXG) << 2); 3392 perm |= ((mode & S_IRWXU) << 4); 3393 perm |= ((mode & S_IWOTH) << 3); 3394 perm |= ((mode & S_IWGRP) << 5); 3395 perm |= ((mode & S_IWUSR) << 7); 3396 3397 return perm; 3398 } 3399 3400 /* --------------------------------------------------------------------- */ 3401 3402 static uint32_t 3403 udf_icb_to_unix_filetype(uint32_t icbftype) 3404 { 3405 switch (icbftype) { 3406 case UDF_ICB_FILETYPE_DIRECTORY : 3407 case UDF_ICB_FILETYPE_STREAMDIR : 3408 return S_IFDIR; 3409 case UDF_ICB_FILETYPE_FIFO : 3410 return S_IFIFO; 3411 case UDF_ICB_FILETYPE_CHARDEVICE : 3412 return S_IFCHR; 3413 case UDF_ICB_FILETYPE_BLOCKDEVICE : 3414 return S_IFBLK; 3415 case UDF_ICB_FILETYPE_RANDOMACCESS : 3416 case UDF_ICB_FILETYPE_REALTIME : 3417 return S_IFREG; 3418 case UDF_ICB_FILETYPE_SYMLINK : 3419 return S_IFLNK; 3420 case UDF_ICB_FILETYPE_SOCKET : 3421 return S_IFSOCK; 3422 } 3423 /* no idea what this is */ 3424 return 0; 3425 } 3426 3427 /* --------------------------------------------------------------------- */ 3428 3429 void 3430 udf_to_unix_name(char *result, int result_len, char *id, int len, 3431 struct charspec *chsp) 3432 { 3433 uint16_t *raw_name, *unix_name; 3434 uint16_t *inchp, ch; 3435 uint8_t *outchp; 3436 const char *osta_id = "OSTA Compressed Unicode"; 3437 int ucode_chars, nice_uchars, is_osta_typ0, nout; 3438 3439 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 3440 unix_name = raw_name + 1024; /* split space in half */ 3441 assert(sizeof(char) == sizeof(uint8_t)); 3442 outchp = (uint8_t *) result; 3443 3444 is_osta_typ0 = (chsp->type == 0); 3445 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 3446 if (is_osta_typ0) { 3447 /* TODO clean up */ 3448 *raw_name = *unix_name = 0; 3449 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 3450 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 3451 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 3452 /* output UTF8 */ 3453 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 3454 ch = *inchp; 3455 nout = wput_utf8(outchp, result_len, ch); 3456 outchp += nout; result_len -= nout; 3457 if (!ch) break; 3458 } 3459 *outchp++ = 0; 3460 } else { 3461 /* assume 8bit char length byte latin-1 */ 3462 assert(*id == 8); 3463 assert(strlen((char *) (id+1)) <= MAXNAMLEN); 3464 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 3465 } 3466 free(raw_name, M_UDFTEMP); 3467 } 3468 3469 /* --------------------------------------------------------------------- */ 3470 3471 void 3472 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 3473 struct charspec *chsp) 3474 { 3475 uint16_t *raw_name; 3476 uint16_t *outchp; 3477 const char *inchp; 3478 const char *osta_id = "OSTA Compressed Unicode"; 3479 int udf_chars, is_osta_typ0, bits; 3480 size_t cnt; 3481 3482 /* allocate temporary unicode-16 buffer */ 3483 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 3484 3485 /* convert utf8 to unicode-16 */ 3486 *raw_name = 0; 3487 inchp = name; 3488 outchp = raw_name; 3489 bits = 8; 3490 for (cnt = name_len, udf_chars = 0; cnt;) { 3491 /*###3490 [cc] warning: passing argument 2 of 'wget_utf8' from incompatible pointer type%%%*/ 3492 *outchp = wget_utf8(&inchp, &cnt); 3493 if (*outchp > 0xff) 3494 bits=16; 3495 outchp++; 3496 udf_chars++; 3497 } 3498 /* null terminate just in case */ 3499 *outchp++ = 0; 3500 3501 is_osta_typ0 = (chsp->type == 0); 3502 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 3503 if (is_osta_typ0) { 3504 udf_chars = udf_CompressUnicode(udf_chars, bits, 3505 (unicode_t *) raw_name, 3506 (byte *) result); 3507 } else { 3508 printf("unix to udf name: no CHSP0 ?\n"); 3509 /* XXX assume 8bit char length byte latin-1 */ 3510 *result++ = 8; udf_chars = 1; 3511 strncpy(result, name + 1, name_len); 3512 udf_chars += name_len; 3513 } 3514 *result_len = udf_chars; 3515 free(raw_name, M_UDFTEMP); 3516 } 3517 3518 /* --------------------------------------------------------------------- */ 3519 3520 void 3521 udf_timestamp_to_timespec(struct udf_mount *ump, 3522 struct timestamp *timestamp, 3523 struct timespec *timespec) 3524 { 3525 struct clock_ymdhms ymdhms; 3526 uint32_t usecs, secs, nsecs; 3527 uint16_t tz; 3528 3529 /* fill in ymdhms structure from timestamp */ 3530 memset(&ymdhms, 0, sizeof(ymdhms)); 3531 ymdhms.dt_year = udf_rw16(timestamp->year); 3532 ymdhms.dt_mon = timestamp->month; 3533 ymdhms.dt_day = timestamp->day; 3534 ymdhms.dt_wday = 0; /* ? */ 3535 ymdhms.dt_hour = timestamp->hour; 3536 ymdhms.dt_min = timestamp->minute; 3537 ymdhms.dt_sec = timestamp->second; 3538 3539 secs = clock_ymdhms_to_secs(&ymdhms); 3540 usecs = timestamp->usec + 3541 100*timestamp->hund_usec + 10000*timestamp->centisec; 3542 nsecs = usecs * 1000; 3543 3544 /* 3545 * Calculate the time zone. The timezone is 12 bit signed 2's 3546 * compliment, so we gotta do some extra magic to handle it right. 3547 */ 3548 tz = udf_rw16(timestamp->type_tz); 3549 tz &= 0x0fff; /* only lower 12 bits are significant */ 3550 if (tz & 0x0800) /* sign extention */ 3551 tz |= 0xf000; 3552 3553 /* TODO check timezone conversion */ 3554 /* check if we are specified a timezone to convert */ 3555 if (udf_rw16(timestamp->type_tz) & 0x1000) { 3556 if ((int16_t) tz != -2047) 3557 secs -= (int16_t) tz * 60; 3558 } else { 3559 secs -= ump->mount_args.gmtoff; 3560 } 3561 3562 timespec->tv_sec = secs; 3563 timespec->tv_nsec = nsecs; 3564 } 3565 3566 3567 void 3568 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 3569 { 3570 struct clock_ymdhms ymdhms; 3571 uint32_t husec, usec, csec; 3572 3573 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 3574 3575 usec = (timespec->tv_nsec + 500) / 1000; /* round */ 3576 husec = usec / 100; 3577 usec -= husec * 100; /* only 0-99 in usec */ 3578 csec = husec / 100; /* only 0-99 in csec */ 3579 husec -= csec * 100; /* only 0-99 in husec */ 3580 3581 /* set method 1 for CUT/GMT */ 3582 timestamp->type_tz = udf_rw16((1<<12) + 0); 3583 timestamp->year = udf_rw16(ymdhms.dt_year); 3584 timestamp->month = ymdhms.dt_mon; 3585 timestamp->day = ymdhms.dt_day; 3586 timestamp->hour = ymdhms.dt_hour; 3587 timestamp->minute = ymdhms.dt_min; 3588 timestamp->second = ymdhms.dt_sec; 3589 timestamp->centisec = csec; 3590 timestamp->hund_usec = husec; 3591 timestamp->usec = usec; 3592 } 3593 3594 /* --------------------------------------------------------------------- */ 3595 3596 /* 3597 * Attribute and filetypes converters with get/set pairs 3598 */ 3599 3600 uint32_t 3601 udf_getaccessmode(struct udf_node *udf_node) 3602 { 3603 struct file_entry *fe = udf_node->fe;; 3604 struct extfile_entry *efe = udf_node->efe; 3605 uint32_t udf_perm, icbftype; 3606 uint32_t mode, ftype; 3607 uint16_t icbflags; 3608 3609 UDF_LOCK_NODE(udf_node, 0); 3610 if (fe) { 3611 udf_perm = udf_rw32(fe->perm); 3612 icbftype = fe->icbtag.file_type; 3613 icbflags = udf_rw16(fe->icbtag.flags); 3614 } else { 3615 assert(udf_node->efe); 3616 udf_perm = udf_rw32(efe->perm); 3617 icbftype = efe->icbtag.file_type; 3618 icbflags = udf_rw16(efe->icbtag.flags); 3619 } 3620 3621 mode = udf_perm_to_unix_mode(udf_perm); 3622 ftype = udf_icb_to_unix_filetype(icbftype); 3623 3624 /* set suid, sgid, sticky from flags in fe/efe */ 3625 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 3626 mode |= S_ISUID; 3627 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 3628 mode |= S_ISGID; 3629 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 3630 mode |= S_ISVTX; 3631 3632 UDF_UNLOCK_NODE(udf_node, 0); 3633 3634 return mode | ftype; 3635 } 3636 3637 3638 void 3639 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 3640 { 3641 struct file_entry *fe = udf_node->fe; 3642 struct extfile_entry *efe = udf_node->efe; 3643 uint32_t udf_perm; 3644 uint16_t icbflags; 3645 3646 UDF_LOCK_NODE(udf_node, 0); 3647 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 3648 if (fe) { 3649 icbflags = udf_rw16(fe->icbtag.flags); 3650 } else { 3651 icbflags = udf_rw16(efe->icbtag.flags); 3652 } 3653 3654 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 3655 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 3656 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 3657 if (mode & S_ISUID) 3658 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 3659 if (mode & S_ISGID) 3660 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 3661 if (mode & S_ISVTX) 3662 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 3663 3664 if (fe) { 3665 fe->perm = udf_rw32(udf_perm); 3666 fe->icbtag.flags = udf_rw16(icbflags); 3667 } else { 3668 efe->perm = udf_rw32(udf_perm); 3669 efe->icbtag.flags = udf_rw16(icbflags); 3670 } 3671 3672 UDF_UNLOCK_NODE(udf_node, 0); 3673 } 3674 3675 3676 void 3677 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 3678 { 3679 struct udf_mount *ump = udf_node->ump; 3680 struct file_entry *fe = udf_node->fe; 3681 struct extfile_entry *efe = udf_node->efe; 3682 uid_t uid; 3683 gid_t gid; 3684 3685 UDF_LOCK_NODE(udf_node, 0); 3686 if (fe) { 3687 uid = (uid_t)udf_rw32(fe->uid); 3688 gid = (gid_t)udf_rw32(fe->gid); 3689 } else { 3690 assert(udf_node->efe); 3691 uid = (uid_t)udf_rw32(efe->uid); 3692 gid = (gid_t)udf_rw32(efe->gid); 3693 } 3694 3695 /* do the uid/gid translation game */ 3696 if ((uid == (uid_t) -1) && (gid == (gid_t) -1)) { 3697 uid = ump->mount_args.anon_uid; 3698 gid = ump->mount_args.anon_gid; 3699 } 3700 *uidp = uid; 3701 *gidp = gid; 3702 3703 UDF_UNLOCK_NODE(udf_node, 0); 3704 } 3705 3706 3707 void 3708 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 3709 { 3710 struct udf_mount *ump = udf_node->ump; 3711 struct file_entry *fe = udf_node->fe; 3712 struct extfile_entry *efe = udf_node->efe; 3713 uid_t nobody_uid; 3714 gid_t nobody_gid; 3715 3716 UDF_LOCK_NODE(udf_node, 0); 3717 3718 /* do the uid/gid translation game */ 3719 nobody_uid = ump->mount_args.nobody_uid; 3720 nobody_gid = ump->mount_args.nobody_gid; 3721 if ((uid == nobody_uid) && (gid == nobody_gid)) { 3722 uid = (uid_t) -1; 3723 gid = (gid_t) -1; 3724 } 3725 3726 if (fe) { 3727 fe->uid = udf_rw32((uint32_t) uid); 3728 fe->gid = udf_rw32((uint32_t) gid); 3729 } else { 3730 efe->uid = udf_rw32((uint32_t) uid); 3731 efe->gid = udf_rw32((uint32_t) gid); 3732 } 3733 3734 UDF_UNLOCK_NODE(udf_node, 0); 3735 } 3736 3737 3738 /* --------------------------------------------------------------------- */ 3739 3740 /* 3741 * Directory read and manipulation functions. 3742 * 3743 * Note that if the file is found, the cached diroffset possition *before* the 3744 * advance is remembered. Thus if the same filename is lookup again just after 3745 * this lookup its immediately found. 3746 */ 3747 3748 int 3749 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 3750 struct long_ad *icb_loc) 3751 { 3752 struct udf_node *dir_node = VTOI(vp); 3753 struct file_entry *fe = dir_node->fe; 3754 struct extfile_entry *efe = dir_node->efe; 3755 struct fileid_desc *fid; 3756 struct dirent *dirent; 3757 uint64_t file_size, diroffset, pre_diroffset; 3758 uint32_t lb_size; 3759 int found, error; 3760 3761 /* get directory filesize */ 3762 if (fe) { 3763 file_size = udf_rw64(fe->inf_len); 3764 } else { 3765 assert(efe); 3766 file_size = udf_rw64(efe->inf_len); 3767 } 3768 3769 /* allocate temporary space for fid */ 3770 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 3771 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 3772 3773 found = 0; 3774 diroffset = dir_node->last_diroffset; 3775 3776 /* 3777 * if the directory is trunced or if we have never visited it yet, 3778 * start at the end. 3779 */ 3780 if ((diroffset >= file_size) || (diroffset == 0)) { 3781 diroffset = dir_node->last_diroffset = file_size; 3782 } 3783 3784 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 3785 3786 while (!found) { 3787 /* if at the end, go trough zero */ 3788 if (diroffset >= file_size) 3789 diroffset = 0; 3790 3791 pre_diroffset = diroffset; 3792 3793 /* transfer a new fid/dirent */ 3794 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 3795 if (error) 3796 break; 3797 3798 /* skip deleted entries */ 3799 if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) { 3800 if ((strlen(dirent->d_name) == namelen) && 3801 (strncmp(dirent->d_name, name, namelen) == 0)) { 3802 found = 1; 3803 *icb_loc = fid->icb; 3804 /* remember where we were before the advance */ 3805 diroffset = pre_diroffset; 3806 } 3807 } 3808 3809 if (diroffset == dir_node->last_diroffset) { 3810 /* we have cycled */ 3811 break; 3812 } 3813 } 3814 free(fid, M_UDFTEMP); 3815 free(dirent, M_UDFTEMP); 3816 dir_node->last_diroffset = diroffset; 3817 3818 return found; 3819 } 3820 3821 /* --------------------------------------------------------------------- */ 3822 3823 static int 3824 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 3825 struct long_ad *node_icb, struct long_ad *parent_icb, 3826 uint64_t parent_unique_id) 3827 { 3828 struct timespec now; 3829 struct icb_tag *icb; 3830 uint64_t unique_id; 3831 uint32_t fidsize, lb_num; 3832 int crclen; 3833 3834 lb_num = udf_rw32(node_icb->loc.lb_num); 3835 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 3836 icb = &fe->icbtag; 3837 3838 /* 3839 * Always use strategy type 4 unless on WORM wich we don't support 3840 * (yet). Fill in defaults and set for internal allocation of data. 3841 */ 3842 icb->strat_type = udf_rw16(4); 3843 icb->max_num_entries = udf_rw16(1); 3844 icb->file_type = file_type; /* 8 bit */ 3845 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 3846 3847 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 3848 fe->link_cnt = udf_rw16(0); /* explicit setting */ 3849 3850 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 3851 3852 vfs_timestamp(&now); 3853 udf_timespec_to_timestamp(&now, &fe->atime); 3854 udf_timespec_to_timestamp(&now, &fe->attrtime); 3855 udf_timespec_to_timestamp(&now, &fe->mtime); 3856 3857 udf_set_regid(&fe->imp_id, IMPL_NAME); 3858 udf_add_impl_regid(ump, &fe->imp_id); 3859 3860 unique_id = udf_advance_uniqueid(ump); 3861 fe->unique_id = udf_rw64(unique_id); 3862 3863 fidsize = 0; 3864 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 3865 fidsize = udf_create_parentfid(ump, 3866 (struct fileid_desc *) fe->data, parent_icb, 3867 parent_unique_id); 3868 } 3869 3870 /* record fidlength information */ 3871 fe->inf_len = udf_rw64(fidsize); 3872 fe->l_ea = udf_rw32(0); 3873 fe->l_ad = udf_rw32(fidsize); 3874 fe->logblks_rec = udf_rw64(0); /* intern */ 3875 3876 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 3877 crclen += fidsize; 3878 fe->tag.desc_crc_len = udf_rw16(crclen); 3879 3880 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 3881 3882 return fidsize; 3883 } 3884 3885 /* --------------------------------------------------------------------- */ 3886 3887 static int 3888 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 3889 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 3890 uint64_t parent_unique_id) 3891 { 3892 struct timespec now; 3893 struct icb_tag *icb; 3894 uint64_t unique_id; 3895 uint32_t fidsize, lb_num; 3896 int crclen; 3897 3898 lb_num = udf_rw32(node_icb->loc.lb_num); 3899 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 3900 icb = &efe->icbtag; 3901 3902 /* 3903 * Always use strategy type 4 unless on WORM wich we don't support 3904 * (yet). Fill in defaults and set for internal allocation of data. 3905 */ 3906 icb->strat_type = udf_rw16(4); 3907 icb->max_num_entries = udf_rw16(1); 3908 icb->file_type = file_type; /* 8 bit */ 3909 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 3910 3911 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 3912 efe->link_cnt = udf_rw16(0); /* explicit setting */ 3913 3914 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 3915 3916 vfs_timestamp(&now); 3917 udf_timespec_to_timestamp(&now, &efe->ctime); 3918 udf_timespec_to_timestamp(&now, &efe->atime); 3919 udf_timespec_to_timestamp(&now, &efe->attrtime); 3920 udf_timespec_to_timestamp(&now, &efe->mtime); 3921 3922 udf_set_regid(&efe->imp_id, IMPL_NAME); 3923 udf_add_impl_regid(ump, &efe->imp_id); 3924 3925 unique_id = udf_advance_uniqueid(ump); 3926 efe->unique_id = udf_rw64(unique_id); 3927 3928 fidsize = 0; 3929 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 3930 fidsize = udf_create_parentfid(ump, 3931 (struct fileid_desc *) efe->data, parent_icb, 3932 parent_unique_id); 3933 } 3934 3935 /* record fidlength information */ 3936 efe->obj_size = udf_rw64(fidsize); 3937 efe->inf_len = udf_rw64(fidsize); 3938 efe->l_ea = udf_rw32(0); 3939 efe->l_ad = udf_rw32(fidsize); 3940 efe->logblks_rec = udf_rw64(0); /* intern */ 3941 3942 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 3943 crclen += fidsize; 3944 efe->tag.desc_crc_len = udf_rw16(crclen); 3945 3946 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 3947 3948 return fidsize; 3949 } 3950 3951 /* --------------------------------------------------------------------- */ 3952 3953 int 3954 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 3955 struct udf_node *udf_node, struct componentname *cnp) 3956 { 3957 struct file_entry *fe = dir_node->fe; 3958 struct extfile_entry *efe = dir_node->efe; 3959 struct fileid_desc *fid; 3960 struct dirent *dirent; 3961 uint64_t file_size, diroffset; 3962 uint32_t lb_size, fidsize; 3963 int found, error; 3964 char const *name = cnp->cn_nameptr; 3965 int namelen = cnp->cn_namelen; 3966 int refcnt; 3967 3968 /* get directory filesize */ 3969 if (fe) { 3970 file_size = udf_rw64(fe->inf_len); 3971 } else { 3972 assert(efe); 3973 file_size = udf_rw64(efe->inf_len); 3974 } 3975 3976 /* allocate temporary space for fid */ 3977 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 3978 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 3979 3980 found = 0; 3981 diroffset = dir_node->last_diroffset; 3982 3983 /* 3984 * if the directory is trunced or if we have never visited it yet, 3985 * start at the end. 3986 */ 3987 if ((diroffset >= file_size) || (diroffset == 0)) { 3988 diroffset = dir_node->last_diroffset = file_size; 3989 } 3990 3991 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 3992 3993 while (!found) { 3994 /* if at the end, go trough zero */ 3995 if (diroffset >= file_size) 3996 diroffset = 0; 3997 3998 /* transfer a new fid/dirent */ 3999 error = udf_read_fid_stream(dir_node->vnode, &diroffset, 4000 fid, dirent); 4001 if (error) 4002 break; 4003 4004 /* skip deleted entries */ 4005 if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) { 4006 if ((strlen(dirent->d_name) == namelen) && 4007 (strncmp(dirent->d_name, name, namelen) == 0)) { 4008 found = 1; 4009 } 4010 } 4011 4012 if (diroffset == dir_node->last_diroffset) { 4013 /* we have cycled */ 4014 break; 4015 } 4016 } 4017 if (!found) { 4018 free(fid, M_UDFTEMP); 4019 free(dirent, M_UDFTEMP); 4020 dir_node->last_diroffset = diroffset; 4021 return ENOENT; 4022 } 4023 4024 /* mark deleted */ 4025 fid->file_char |= UDF_FILE_CHAR_DEL; 4026 #ifdef UDF_COMPLETE_DELETE 4027 memset(&fid->icb, 0, sizeof(fid->icb)); 4028 #endif 4029 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4030 4031 /* roll back last advance from udf_read_fid_stream */ 4032 fidsize = udf_fidsize(fid); 4033 diroffset -= fidsize; 4034 4035 /* write out */ 4036 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4037 fid, fidsize, diroffset, 4038 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4039 FSCRED, NULL, NULL); 4040 if (error == 0) { 4041 /* get reference count of attached node */ 4042 if (udf_node->fe) { 4043 refcnt = udf_rw16(udf_node->fe->link_cnt); 4044 } else { 4045 KASSERT(udf_node->efe); 4046 refcnt = udf_rw16(udf_node->efe->link_cnt); 4047 } 4048 #ifdef UDF_COMPLETE_DELETE 4049 /* substract reference counter in attached node */ 4050 refcnt -= 1; 4051 if (udf_node->fe) { 4052 udf_node->fe->link_cnt = udf_rw16(refcnt); 4053 } else { 4054 udf_node->efe->link_cnt = udf_rw16(refcnt); 4055 } 4056 4057 /* prevent writeout when refcnt == 0 */ 4058 if (refcnt == 0) 4059 udf_node->i_flags |= IN_DELETED; 4060 4061 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4062 int drefcnt; 4063 4064 /* substract reference counter in directory node */ 4065 /* note subtract 2 (?) for its was also backreferenced */ 4066 if (dir_node->fe) { 4067 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4068 drefcnt -= 1; 4069 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4070 } else { 4071 KASSERT(dir_node->efe); 4072 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4073 drefcnt -= 1; 4074 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4075 } 4076 } 4077 4078 udf_node->i_flags |= IN_MODIFIED; 4079 dir_node->i_flags |= IN_MODIFIED; 4080 #endif 4081 /* if it is/was a hardlink adjust the file count */ 4082 if (refcnt > 0) 4083 udf_adjust_filecount(udf_node, -1); 4084 4085 /* XXX we could restart at the deleted entry */ 4086 diroffset = 0; 4087 } 4088 4089 free(fid, M_UDFTEMP); 4090 free(dirent, M_UDFTEMP); 4091 dir_node->last_diroffset = diroffset; 4092 4093 return error; 4094 } 4095 4096 /* --------------------------------------------------------------------- */ 4097 4098 /* 4099 * We are not allowed to split the fid tag itself over an logical block so 4100 * check the space remaining in the logical block. 4101 * 4102 * We try to select the smallest candidate for recycling or when none is 4103 * found, append a new one at the end of the directory. 4104 */ 4105 4106 int 4107 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 4108 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 4109 { 4110 struct vnode *dvp = dir_node->vnode; 4111 struct fileid_desc *fid; 4112 struct icb_tag *icbtag; 4113 struct charspec osta_charspec; 4114 struct dirent dirent; 4115 uint64_t unique_id, dir_size, diroffset; 4116 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 4117 uint32_t chosen_size, chosen_size_diff; 4118 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 4119 int file_char, refcnt, icbflags, addr_type, error; 4120 4121 lb_size = udf_rw32(ump->logical_vol->lb_size); 4122 udf_osta_charset(&osta_charspec); 4123 4124 if (dir_node->fe) { 4125 dir_size = udf_rw64(dir_node->fe->inf_len); 4126 icbtag = &dir_node->fe->icbtag; 4127 } else { 4128 dir_size = udf_rw64(dir_node->efe->inf_len); 4129 icbtag = &dir_node->efe->icbtag; 4130 } 4131 4132 icbflags = udf_rw16(icbtag->flags); 4133 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 4134 4135 if (udf_node->fe) { 4136 unique_id = udf_rw64(udf_node->fe->unique_id); 4137 refcnt = udf_rw16(udf_node->fe->link_cnt); 4138 } else { 4139 unique_id = udf_rw64(udf_node->efe->unique_id); 4140 refcnt = udf_rw16(udf_node->efe->link_cnt); 4141 } 4142 4143 if (refcnt > 0) { 4144 unique_id = udf_advance_uniqueid(ump); 4145 udf_adjust_filecount(udf_node, 1); 4146 } 4147 4148 4149 /* determine file characteristics */ 4150 file_char = 0; /* visible non deleted file and not stream metadata */ 4151 if (vap->va_type == VDIR) 4152 file_char = UDF_FILE_CHAR_DIR; 4153 4154 /* malloc scrap buffer */ 4155 fid = malloc(lb_size, M_TEMP, M_WAITOK); 4156 bzero(fid, lb_size); 4157 4158 /* calculate _minimum_ fid size */ 4159 unix_to_udf_name((char *) fid->data, &fid->l_fi, 4160 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 4161 fidsize = UDF_FID_SIZE + fid->l_fi; 4162 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 4163 4164 /* find position that will fit the FID */ 4165 diroffset = dir_node->last_diroffset; 4166 4167 /* 4168 * if the directory is trunced or if we have never visited it yet, 4169 * start at the end. 4170 */ 4171 if ((diroffset >= dir_size) || (diroffset == 0)) { 4172 diroffset = dir_node->last_diroffset = dir_size; 4173 } 4174 4175 chosen_fid_pos = diroffset; 4176 chosen_size = 0; 4177 chosen_size_diff = UINT_MAX; 4178 4179 for (;;) { 4180 /* if at the end, go trough zero */ 4181 if (diroffset >= dir_size) 4182 diroffset = 0; 4183 4184 /* get fid/dirent */ 4185 fid_pos = diroffset; 4186 error = udf_read_fid_stream(dvp, &diroffset, fid, &dirent); 4187 if (error) 4188 break; 4189 4190 this_fidsize = udf_fidsize(fid); 4191 4192 /* reuse deleted entries */ 4193 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4194 size_diff = this_fidsize - fidsize; 4195 end_fid_pos = fid_pos + this_fidsize; 4196 lb_rest = lb_size - (end_fid_pos % lb_size); 4197 4198 #ifndef UDF_COMPLETE_DELETE 4199 /* only reuse entries that are wiped */ 4200 /* check if the len + loc are marked zero */ 4201 if (udf_rw32(fid->icb.len != 0)) 4202 break; 4203 if (udf_rw32(fid->icb.loc.lb_num) != 0) 4204 break; 4205 if (udf_rw16(fid->icb.loc.part_num != 0)) 4206 break; 4207 #endif 4208 /* select if not splitting the tag and its smaller */ 4209 if ((size_diff >= 0) && 4210 (size_diff < chosen_size_diff) && 4211 (lb_rest >= sizeof(struct desc_tag))) 4212 { 4213 /* UDF 2.3.4.2+3 specifies rules for iu size */ 4214 if ((size_diff == 0) || (size_diff >= 32)) { 4215 chosen_fid_pos = fid_pos; 4216 chosen_size = this_fidsize; 4217 chosen_size_diff = size_diff; 4218 } 4219 } 4220 } 4221 4222 if (diroffset == dir_node->last_diroffset) { 4223 /* we have cycled */ 4224 break; 4225 } 4226 } 4227 /* unlikely */ 4228 if (error) { 4229 free(fid, M_TEMP); 4230 return error; 4231 } 4232 4233 /* extend directory if no other candidate found */ 4234 if (chosen_size == 0) { 4235 chosen_fid_pos = dir_size; 4236 chosen_size = fidsize; 4237 chosen_size_diff = 0; 4238 4239 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 4240 if (addr_type == UDF_ICB_INTERN_ALLOC) { 4241 /* pre-grow directory to see if we're to switch */ 4242 udf_grow_node(dir_node, dir_size + chosen_size); 4243 4244 icbflags = udf_rw16(icbtag->flags); 4245 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 4246 } 4247 4248 /* make sure the next fid desc_tag won't be splitted */ 4249 if (addr_type != UDF_ICB_INTERN_ALLOC) { 4250 end_fid_pos = chosen_fid_pos + chosen_size; 4251 lb_rest = lb_size - (end_fid_pos % lb_size); 4252 4253 /* pad with implementation use regid if needed */ 4254 if (lb_rest < sizeof(struct desc_tag)) 4255 chosen_size += 32; 4256 } 4257 } 4258 chosen_size_diff = chosen_size - fidsize; 4259 diroffset = chosen_fid_pos + chosen_size; 4260 4261 /* populate the FID */ 4262 memset(fid, 0, lb_size); 4263 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 4264 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 4265 fid->file_char = file_char; 4266 fid->icb = udf_node->loc; 4267 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 4268 fid->l_iu = udf_rw16(0); 4269 4270 if (chosen_size > fidsize) { 4271 /* insert implementation-use regid to space it correctly */ 4272 fid->l_iu = udf_rw16(chosen_size_diff); 4273 4274 /* set implementation use */ 4275 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 4276 udf_add_impl_regid(ump, (struct regid *) fid->data); 4277 } 4278 4279 /* fill in name */ 4280 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 4281 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 4282 4283 fid->tag.desc_crc_len = chosen_size - UDF_DESC_TAG_LENGTH; 4284 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4285 4286 /* writeout FID/update parent directory */ 4287 error = vn_rdwr(UIO_WRITE, dvp, 4288 fid, chosen_size, chosen_fid_pos, 4289 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4290 FSCRED, NULL, NULL); 4291 4292 if (error) { 4293 free(fid, M_TEMP); 4294 return error; 4295 } 4296 4297 /* add reference counter in attached node */ 4298 if (udf_node->fe) { 4299 refcnt = udf_rw16(udf_node->fe->link_cnt); 4300 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 4301 } else { 4302 KASSERT(udf_node->efe); 4303 refcnt = udf_rw16(udf_node->efe->link_cnt); 4304 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 4305 } 4306 4307 /* mark not deleted if it was... just in case, but do warn */ 4308 if (udf_node->i_flags & IN_DELETED) { 4309 printf("udf: warning, marking a file undeleted\n"); 4310 udf_node->i_flags &= ~IN_DELETED; 4311 } 4312 4313 if (file_char & UDF_FILE_CHAR_DIR) { 4314 /* add reference counter in directory node for '..' */ 4315 if (dir_node->fe) { 4316 refcnt = udf_rw16(dir_node->fe->link_cnt); 4317 refcnt++; 4318 dir_node->fe->link_cnt = udf_rw16(refcnt); 4319 } else { 4320 KASSERT(dir_node->efe); 4321 refcnt = udf_rw16(dir_node->efe->link_cnt); 4322 refcnt++; 4323 dir_node->efe->link_cnt = udf_rw16(refcnt); 4324 } 4325 } 4326 4327 /* update our last position so we dont have to cycle again and again */ 4328 dir_node->last_diroffset = diroffset; 4329 4330 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 4331 /* VN_KNOTE(udf_node, ...) */ 4332 udf_update(udf_node->vnode, NULL, NULL, 0); 4333 4334 free(fid, M_TEMP); 4335 4336 return 0; 4337 } 4338 4339 /* --------------------------------------------------------------------- */ 4340 4341 /* 4342 * Each node can have an attached streamdir node though not recursively. These 4343 * are otherwise known as named substreams/named extended attributes that have 4344 * no size limitations. 4345 * 4346 * `Normal' extended attributes are indicated with a number and are recorded 4347 * in either the fe/efe descriptor itself for small descriptors or recorded in 4348 * the attached extended attribute file. Since these spaces can get 4349 * fragmented, care ought to be taken. 4350 * 4351 * Since the size of the space reserved for allocation descriptors is limited, 4352 * there is a mechanim provided for extending this space; this is done by a 4353 * special extent to allow schrinking of the allocations without breaking the 4354 * linkage to the allocation extent descriptor. 4355 */ 4356 4357 int 4358 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 4359 struct udf_node **udf_noderes) 4360 { 4361 union dscrptr *dscr; 4362 struct udf_node *udf_node; 4363 struct vnode *nvp; 4364 struct long_ad icb_loc, last_fe_icb_loc; 4365 uint64_t file_size; 4366 uint32_t lb_size, sector, dummy; 4367 uint8_t *file_data; 4368 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 4369 int slot, eof, error; 4370 4371 DPRINTF(NODE, ("udf_get_node called\n")); 4372 *udf_noderes = udf_node = NULL; 4373 4374 /* lock to disallow simultanious creation of same udf_node */ 4375 mutex_enter(&ump->get_node_lock); 4376 4377 DPRINTF(NODE, ("\tlookup in hash table\n")); 4378 /* lookup in hash table */ 4379 assert(ump); 4380 assert(node_icb_loc); 4381 udf_node = udf_hash_lookup(ump, node_icb_loc); 4382 if (udf_node) { 4383 DPRINTF(NODE, ("\tgot it from the hash!\n")); 4384 /* vnode is returned locked */ 4385 *udf_noderes = udf_node; 4386 mutex_exit(&ump->get_node_lock); 4387 return 0; 4388 } 4389 4390 /* garbage check: translate udf_node_icb_loc to sectornr */ 4391 error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy); 4392 if (error) { 4393 /* no use, this will fail anyway */ 4394 mutex_exit(&ump->get_node_lock); 4395 return EINVAL; 4396 } 4397 4398 /* build udf_node (do initialise!) */ 4399 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 4400 memset(udf_node, 0, sizeof(struct udf_node)); 4401 4402 DPRINTF(NODE, ("\tget new vnode\n")); 4403 /* give it a vnode */ 4404 error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp); 4405 if (error) { 4406 pool_put(&udf_node_pool, udf_node); 4407 mutex_exit(&ump->get_node_lock); 4408 return error; 4409 } 4410 4411 /* always return locked vnode */ 4412 if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) { 4413 /* recycle vnode and unlock; simultanious will fail too */ 4414 ungetnewvnode(nvp); 4415 mutex_exit(&ump->get_node_lock); 4416 return error; 4417 } 4418 4419 /* initialise crosslinks, note location of fe/efe for hashing */ 4420 udf_node->ump = ump; 4421 udf_node->vnode = nvp; 4422 nvp->v_data = udf_node; 4423 udf_node->loc = *node_icb_loc; 4424 udf_node->lockf = 0; 4425 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 4426 cv_init(&udf_node->node_lock, "udf_nlk"); 4427 genfs_node_init(nvp, &udf_genfsops); /* inititise genfs */ 4428 udf_node->outstanding_bufs = 0; 4429 udf_node->outstanding_nodedscr = 0; 4430 4431 /* insert into the hash lookup */ 4432 udf_register_node(udf_node); 4433 4434 /* safe to unlock, the entry is in the hash table, vnode is locked */ 4435 mutex_exit(&ump->get_node_lock); 4436 4437 icb_loc = *node_icb_loc; 4438 needs_indirect = 0; 4439 strat4096 = 0; 4440 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 4441 file_size = 0; 4442 file_data = NULL; 4443 lb_size = udf_rw32(ump->logical_vol->lb_size); 4444 4445 DPRINTF(NODE, ("\tstart reading descriptors\n")); 4446 do { 4447 /* try to read in fe/efe */ 4448 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 4449 4450 /* blank sector marks end of sequence, check this */ 4451 if ((dscr == NULL) && (!strat4096)) 4452 error = ENOENT; 4453 4454 /* break if read error or blank sector */ 4455 if (error || (dscr == NULL)) 4456 break; 4457 4458 /* process descriptor based on the descriptor type */ 4459 dscr_type = udf_rw16(dscr->tag.id); 4460 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 4461 4462 /* if dealing with an indirect entry, follow the link */ 4463 if (dscr_type == TAGID_INDIRECTENTRY) { 4464 needs_indirect = 0; 4465 udf_free_logvol_dscr(ump, &icb_loc, dscr); 4466 icb_loc = dscr->inde.indirect_icb; 4467 continue; 4468 } 4469 4470 /* only file entries and extended file entries allowed here */ 4471 if ((dscr_type != TAGID_FENTRY) && 4472 (dscr_type != TAGID_EXTFENTRY)) { 4473 udf_free_logvol_dscr(ump, &icb_loc, dscr); 4474 error = ENOENT; 4475 break; 4476 } 4477 4478 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 4479 4480 /* choose this one */ 4481 last_fe_icb_loc = icb_loc; 4482 4483 /* record and process/update (ext)fentry */ 4484 file_data = NULL; 4485 if (dscr_type == TAGID_FENTRY) { 4486 if (udf_node->fe) 4487 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 4488 udf_node->fe); 4489 udf_node->fe = &dscr->fe; 4490 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 4491 udf_file_type = udf_node->fe->icbtag.file_type; 4492 file_size = udf_rw64(udf_node->fe->inf_len); 4493 file_data = udf_node->fe->data; 4494 } else { 4495 if (udf_node->efe) 4496 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 4497 udf_node->efe); 4498 udf_node->efe = &dscr->efe; 4499 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 4500 udf_file_type = udf_node->efe->icbtag.file_type; 4501 file_size = udf_rw64(udf_node->efe->inf_len); 4502 file_data = udf_node->efe->data; 4503 } 4504 4505 /* check recording strategy (structure) */ 4506 4507 /* 4508 * Strategy 4096 is a daisy linked chain terminating with an 4509 * unrecorded sector or a TERM descriptor. The next 4510 * descriptor is to be found in the sector that follows the 4511 * current sector. 4512 */ 4513 if (strat == 4096) { 4514 strat4096 = 1; 4515 needs_indirect = 1; 4516 4517 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 4518 } 4519 4520 /* 4521 * Strategy 4 is the normal strategy and terminates, but if 4522 * we're in strategy 4096, we can't have strategy 4 mixed in 4523 */ 4524 4525 if (strat == 4) { 4526 if (strat4096) { 4527 error = EINVAL; 4528 break; 4529 } 4530 break; /* done */ 4531 } 4532 } while (!error); 4533 4534 /* first round of cleanup code */ 4535 if (error) { 4536 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 4537 /* recycle udf_node */ 4538 udf_dispose_node(udf_node); 4539 4540 vlockmgr(nvp->v_vnlock, LK_RELEASE); 4541 nvp->v_data = NULL; 4542 ungetnewvnode(nvp); 4543 4544 return EINVAL; /* error code ok? */ 4545 } 4546 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 4547 4548 /* assert no references to dscr anymore beyong this point */ 4549 assert((udf_node->fe) || (udf_node->efe)); 4550 dscr = NULL; 4551 4552 /* 4553 * Remember where to record an updated version of the descriptor. If 4554 * there is a sequence of indirect entries, icb_loc will have been 4555 * updated. Its the write disipline to allocate new space and to make 4556 * sure the chain is maintained. 4557 * 4558 * `needs_indirect' flags if the next location is to be filled with 4559 * with an indirect entry. 4560 */ 4561 udf_node->write_loc = icb_loc; 4562 udf_node->needs_indirect = needs_indirect; 4563 4564 /* 4565 * Go trough all allocations extents of this descriptor and when 4566 * encountering a redirect read in the allocation extension. These are 4567 * daisy-chained. 4568 */ 4569 UDF_LOCK_NODE(udf_node, 0); 4570 udf_node->num_extensions = 0; 4571 4572 error = 0; 4573 slot = 0; 4574 for (;;) { 4575 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 4576 if (eof) 4577 break; 4578 4579 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) { 4580 slot++; 4581 continue; 4582 } 4583 4584 DPRINTF(NODE, ("\tgot redirect extent\n")); 4585 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 4586 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 4587 "too many allocation extensions on " 4588 "udf_node\n")); 4589 error = EINVAL; 4590 break; 4591 } 4592 4593 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 4594 if (udf_rw32(icb_loc.len) != lb_size) { 4595 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 4596 "extension size in udf_node\n")); 4597 error = EINVAL; 4598 break; 4599 } 4600 4601 /* load in allocation extent */ 4602 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 4603 if (error || (dscr == NULL)) 4604 break; 4605 4606 /* process read-in descriptor */ 4607 dscr_type = udf_rw16(dscr->tag.id); 4608 4609 if (dscr_type != TAGID_ALLOCEXTENT) { 4610 udf_free_logvol_dscr(ump, &icb_loc, dscr); 4611 error = ENOENT; 4612 break; 4613 } 4614 4615 DPRINTF(NODE, ("\trecording redirect extent\n")); 4616 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 4617 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 4618 4619 udf_node->num_extensions++; 4620 4621 } /* while */ 4622 UDF_UNLOCK_NODE(udf_node, 0); 4623 4624 /* second round of cleanup code */ 4625 if (error) { 4626 /* recycle udf_node */ 4627 udf_dispose_node(udf_node); 4628 4629 vlockmgr(nvp->v_vnlock, LK_RELEASE); 4630 nvp->v_data = NULL; 4631 ungetnewvnode(nvp); 4632 4633 return EINVAL; /* error code ok? */ 4634 } 4635 4636 DPRINTF(NODE, ("\tnode read in fine\n")); 4637 4638 /* 4639 * Translate UDF filetypes into vnode types. 4640 * 4641 * Systemfiles like the meta main and mirror files are not treated as 4642 * normal files, so we type them as having no type. UDF dictates that 4643 * they are not allowed to be visible. 4644 */ 4645 4646 switch (udf_file_type) { 4647 case UDF_ICB_FILETYPE_DIRECTORY : 4648 case UDF_ICB_FILETYPE_STREAMDIR : 4649 nvp->v_type = VDIR; 4650 break; 4651 case UDF_ICB_FILETYPE_BLOCKDEVICE : 4652 nvp->v_type = VBLK; 4653 break; 4654 case UDF_ICB_FILETYPE_CHARDEVICE : 4655 nvp->v_type = VCHR; 4656 break; 4657 case UDF_ICB_FILETYPE_SOCKET : 4658 nvp->v_type = VSOCK; 4659 break; 4660 case UDF_ICB_FILETYPE_FIFO : 4661 nvp->v_type = VFIFO; 4662 break; 4663 case UDF_ICB_FILETYPE_SYMLINK : 4664 nvp->v_type = VLNK; 4665 break; 4666 case UDF_ICB_FILETYPE_VAT : 4667 case UDF_ICB_FILETYPE_META_MAIN : 4668 case UDF_ICB_FILETYPE_META_MIRROR : 4669 nvp->v_type = VNON; 4670 break; 4671 case UDF_ICB_FILETYPE_RANDOMACCESS : 4672 case UDF_ICB_FILETYPE_REALTIME : 4673 nvp->v_type = VREG; 4674 break; 4675 default: 4676 /* YIKES, something else */ 4677 nvp->v_type = VNON; 4678 } 4679 4680 /* TODO specfs, fifofs etc etc. vnops setting */ 4681 4682 /* don't forget to set vnode's v_size */ 4683 uvm_vnp_setsize(nvp, file_size); 4684 4685 /* TODO ext attr and streamdir udf_nodes */ 4686 4687 *udf_noderes = udf_node; 4688 4689 return 0; 4690 } 4691 4692 /* --------------------------------------------------------------------- */ 4693 4694 4695 /* TODO !!!!! writeout alloc_ext_entry's!!! */ 4696 int 4697 udf_writeout_node(struct udf_node *udf_node, int waitfor) 4698 { 4699 union dscrptr *dscr; 4700 struct long_ad *loc; 4701 int error; 4702 4703 DPRINTF(NODE, ("udf_writeout_node called\n")); 4704 4705 KASSERT(udf_node->outstanding_bufs == 0); 4706 KASSERT(udf_node->outstanding_nodedscr == 0); 4707 4708 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 4709 4710 if (udf_node->i_flags & IN_DELETED) { 4711 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 4712 return 0; 4713 } 4714 4715 /* we're going to write out the descriptor so clear the flags */ 4716 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 4717 4718 if (udf_node->fe) { 4719 dscr = (union dscrptr *) udf_node->fe; 4720 } else { 4721 KASSERT(udf_node->efe); 4722 dscr = (union dscrptr *) udf_node->efe; 4723 } 4724 KASSERT(dscr); 4725 4726 loc = &udf_node->write_loc; 4727 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 4728 return error; 4729 } 4730 4731 /* --------------------------------------------------------------------- */ 4732 4733 int 4734 udf_dispose_node(struct udf_node *udf_node) 4735 { 4736 struct vnode *vp; 4737 4738 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 4739 if (!udf_node) { 4740 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 4741 return 0; 4742 } 4743 4744 vp = udf_node->vnode; 4745 #ifdef DIAGNOSTIC 4746 if (vp->v_numoutput) 4747 panic("disposing UDF node with pending I/O's, udf_node = %p, " 4748 "v_numoutput = %d", udf_node, vp->v_numoutput); 4749 #endif 4750 4751 /* wait until out of sync (just in case we happen to stumble over one */ 4752 KASSERT(!mutex_owned(&mntvnode_lock)); 4753 mutex_enter(&mntvnode_lock); 4754 while (udf_node->i_flags & IN_SYNCED) { 4755 cv_timedwait(&udf_node->ump->dirtynodes_cv, &mntvnode_lock, 4756 hz/16); 4757 } 4758 mutex_exit(&mntvnode_lock); 4759 4760 /* TODO extended attributes and streamdir */ 4761 4762 /* remove from our hash lookup table */ 4763 udf_deregister_node(udf_node); 4764 4765 /* destroy our lock */ 4766 mutex_destroy(&udf_node->node_mutex); 4767 cv_destroy(&udf_node->node_lock); 4768 4769 /* dissociate our udf_node from the vnode */ 4770 genfs_node_destroy(udf_node->vnode); 4771 vp->v_data = NULL; 4772 4773 /* free associated memory and the node itself */ 4774 if (udf_node->fe) 4775 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, udf_node->fe); 4776 if (udf_node->efe) 4777 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, udf_node->efe); 4778 4779 udf_node->fe = (void *) 0xdeadaaaa; 4780 udf_node->efe = (void *) 0xdeadbbbb; 4781 udf_node->ump = (void *) 0xdeadbeef; 4782 pool_put(&udf_node_pool, udf_node); 4783 4784 return 0; 4785 } 4786 4787 4788 4789 /* 4790 * create a new node using the specified vnodeops, vap and cnp but with the 4791 * udf_file_type. This allows special files to be created. Use with care. 4792 */ 4793 4794 static int 4795 udf_create_node_raw(struct vnode *dvp, struct vnode **vpp, int udf_file_type, 4796 int (**vnodeops)(void *), struct vattr *vap, struct componentname *cnp) 4797 { 4798 union dscrptr *dscr; 4799 struct udf_node *dir_node = VTOI(dvp);; 4800 struct udf_node *udf_node; 4801 struct udf_mount *ump = dir_node->ump; 4802 struct vnode *nvp; 4803 struct long_ad node_icb_loc; 4804 uint64_t parent_unique_id; 4805 uint64_t lmapping, pmapping; 4806 uint32_t lb_size, lb_num; 4807 uint16_t vpart_num; 4808 int fid_size, error; 4809 4810 lb_size = udf_rw32(ump->logical_vol->lb_size); 4811 *vpp = NULL; 4812 4813 /* allocate vnode */ 4814 error = getnewvnode(VT_UDF, ump->vfs_mountp, vnodeops, &nvp); 4815 if (error) 4816 return error; 4817 4818 /* lock node */ 4819 error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY); 4820 if (error) { 4821 nvp->v_data = NULL; 4822 ungetnewvnode(nvp); 4823 return error; 4824 } 4825 4826 /* get disc allocation for one logical block */ 4827 error = udf_pre_allocate_space(ump, UDF_C_NODE, 1, 4828 &vpart_num, &lmapping, &pmapping); 4829 lb_num = lmapping; 4830 if (error) { 4831 vlockmgr(nvp->v_vnlock, LK_RELEASE); 4832 ungetnewvnode(nvp); 4833 return error; 4834 } 4835 4836 /* initialise pointer to location */ 4837 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 4838 node_icb_loc.len = lb_size; 4839 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 4840 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 4841 4842 /* build udf_node (do initialise!) */ 4843 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 4844 memset(udf_node, 0, sizeof(struct udf_node)); 4845 4846 /* initialise crosslinks, note location of fe/efe for hashing */ 4847 /* bugalert: synchronise with udf_get_node() */ 4848 udf_node->ump = ump; 4849 udf_node->vnode = nvp; 4850 nvp->v_data = udf_node; 4851 udf_node->loc = node_icb_loc; 4852 udf_node->write_loc = node_icb_loc; 4853 udf_node->lockf = 0; 4854 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 4855 cv_init(&udf_node->node_lock, "udf_nlk"); 4856 udf_node->outstanding_bufs = 0; 4857 udf_node->outstanding_nodedscr = 0; 4858 4859 /* initialise genfs */ 4860 genfs_node_init(nvp, &udf_genfsops); 4861 4862 /* insert into the hash lookup */ 4863 udf_register_node(udf_node); 4864 4865 /* get parent's unique ID for refering '..' if its a directory */ 4866 if (dir_node->fe) { 4867 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 4868 } else { 4869 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 4870 } 4871 4872 /* get descriptor */ 4873 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 4874 4875 /* choose a fe or an efe for it */ 4876 if (ump->logical_vol->tag.descriptor_ver == 2) { 4877 udf_node->fe = &dscr->fe; 4878 fid_size = udf_create_new_fe(ump, udf_node->fe, 4879 udf_file_type, &udf_node->loc, 4880 &dir_node->loc, parent_unique_id); 4881 /* TODO add extended attribute for creation time */ 4882 } else { 4883 udf_node->efe = &dscr->efe; 4884 fid_size = udf_create_new_efe(ump, udf_node->efe, 4885 udf_file_type, &udf_node->loc, 4886 &dir_node->loc, parent_unique_id); 4887 } 4888 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 4889 4890 /* update vnode's size and type */ 4891 nvp->v_type = vap->va_type; 4892 uvm_vnp_setsize(nvp, fid_size); 4893 4894 /* set access mode */ 4895 udf_setaccessmode(udf_node, vap->va_mode); 4896 4897 /* set ownership */ 4898 udf_setownership(udf_node, vap->va_uid, vap->va_gid); 4899 4900 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 4901 if (error) { 4902 /* free disc allocation for node */ 4903 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 4904 4905 /* recycle udf_node */ 4906 udf_dispose_node(udf_node); 4907 vput(nvp); 4908 4909 *vpp = NULL; 4910 return error; 4911 } 4912 4913 /* adjust file count */ 4914 udf_adjust_filecount(udf_node, 1); 4915 4916 /* return result */ 4917 *vpp = nvp; 4918 4919 return 0; 4920 } 4921 4922 4923 int 4924 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 4925 struct componentname *cnp) 4926 { 4927 int (**vnodeops)(void *); 4928 int udf_file_type; 4929 4930 DPRINTF(NODE, ("udf_create_node called\n")); 4931 4932 /* what type are we creating ? */ 4933 vnodeops = udf_vnodeop_p; 4934 /* start with a default */ 4935 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 4936 4937 *vpp = NULL; 4938 4939 switch (vap->va_type) { 4940 case VREG : 4941 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 4942 break; 4943 case VDIR : 4944 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 4945 break; 4946 case VLNK : 4947 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 4948 break; 4949 case VBLK : 4950 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 4951 /* specfs */ 4952 return ENOTSUP; 4953 break; 4954 case VCHR : 4955 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 4956 /* specfs */ 4957 return ENOTSUP; 4958 break; 4959 case VFIFO : 4960 udf_file_type = UDF_ICB_FILETYPE_FIFO; 4961 /* specfs */ 4962 return ENOTSUP; 4963 break; 4964 case VSOCK : 4965 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 4966 /* specfs */ 4967 return ENOTSUP; 4968 break; 4969 case VNON : 4970 case VBAD : 4971 default : 4972 /* nothing; can we even create these? */ 4973 return EINVAL; 4974 } 4975 4976 return udf_create_node_raw(dvp, vpp, udf_file_type, vnodeops, vap, cnp); 4977 } 4978 4979 /* --------------------------------------------------------------------- */ 4980 4981 static void 4982 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 4983 { 4984 struct udf_mount *ump = udf_node->ump; 4985 uint32_t lb_size, lb_num, len, num_lb; 4986 uint16_t vpart_num; 4987 4988 /* is there really one? */ 4989 if (mem == NULL) 4990 return; 4991 4992 /* got a descriptor here */ 4993 len = udf_rw32(loc->len); 4994 lb_num = udf_rw32(loc->loc.lb_num); 4995 vpart_num = udf_rw16(loc->loc.part_num); 4996 4997 lb_size = udf_rw32(ump->logical_vol->lb_size); 4998 num_lb = (len + lb_size -1) / lb_size; 4999 5000 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5001 } 5002 5003 void 5004 udf_delete_node(struct udf_node *udf_node) 5005 { 5006 void *dscr; 5007 struct udf_mount *ump; 5008 struct long_ad *loc; 5009 int extnr, lvint, dummy; 5010 5011 ump = udf_node->ump; 5012 5013 /* paranoia check on integrity; should be open!; we could panic */ 5014 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 5015 if (lvint == UDF_INTEGRITY_CLOSED) 5016 printf("\tIntegrity was CLOSED!\n"); 5017 5018 /* whatever the node type, change its size to zero */ 5019 (void) udf_resize_node(udf_node, 0, &dummy); 5020 5021 /* force it to be `clean'; no use writing it out */ 5022 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 5023 IN_CHANGE | IN_UPDATE | IN_MODIFY); 5024 5025 /* adjust file count */ 5026 udf_adjust_filecount(udf_node, -1); 5027 5028 /* 5029 * Free its allocated descriptors; memory will be released when 5030 * vop_reclaim() is called. 5031 */ 5032 loc = &udf_node->loc; 5033 5034 dscr = udf_node->fe; 5035 udf_free_descriptor_space(udf_node, loc, dscr); 5036 dscr = udf_node->efe; 5037 udf_free_descriptor_space(udf_node, loc, dscr); 5038 5039 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 5040 dscr = udf_node->ext[extnr]; 5041 loc = &udf_node->ext_loc[extnr]; 5042 udf_free_descriptor_space(udf_node, loc, dscr); 5043 } 5044 } 5045 5046 /* --------------------------------------------------------------------- */ 5047 5048 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 5049 int 5050 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 5051 { 5052 struct file_entry *fe = udf_node->fe; 5053 struct extfile_entry *efe = udf_node->efe; 5054 uint64_t file_size; 5055 int error; 5056 5057 if (fe) { 5058 file_size = udf_rw64(fe->inf_len); 5059 } else { 5060 assert(udf_node->efe); 5061 file_size = udf_rw64(efe->inf_len); 5062 } 5063 5064 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 5065 file_size, new_size)); 5066 5067 /* if not changing, we're done */ 5068 if (file_size == new_size) 5069 return 0; 5070 5071 *extended = (new_size > file_size); 5072 if (*extended) { 5073 error = udf_grow_node(udf_node, new_size); 5074 } else { 5075 error = udf_shrink_node(udf_node, new_size); 5076 } 5077 5078 return error; 5079 } 5080 5081 5082 /* --------------------------------------------------------------------- */ 5083 5084 void 5085 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 5086 struct timespec *mod, struct timespec *changed) 5087 { 5088 struct timespec now; 5089 struct file_entry *fe; 5090 struct extfile_entry *efe; 5091 struct timestamp *atime, *mtime, *attrtime; 5092 5093 /* protect against rogue values */ 5094 if (!udf_node) 5095 return; 5096 5097 fe = udf_node->fe; 5098 efe = udf_node->efe; 5099 5100 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 5101 return; 5102 5103 /* get descriptor information */ 5104 if (fe) { 5105 atime = &fe->atime; 5106 mtime = &fe->mtime; 5107 attrtime = &fe->attrtime; 5108 } else { 5109 assert(udf_node->efe); 5110 atime = &efe->atime; 5111 mtime = &efe->mtime; 5112 attrtime = &efe->attrtime; 5113 } 5114 5115 vfs_timestamp(&now); 5116 5117 /* set access time */ 5118 if (udf_node->i_flags & IN_ACCESS) { 5119 if (acc == NULL) 5120 acc = &now; 5121 udf_timespec_to_timestamp(acc, atime); 5122 } 5123 5124 /* set modification time */ 5125 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 5126 if (mod == NULL) 5127 mod = &now; 5128 udf_timespec_to_timestamp(mod, mtime); 5129 } 5130 5131 /* set change time */ 5132 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) { 5133 if (changed == NULL) 5134 changed = &now; 5135 udf_timespec_to_timestamp(changed, attrtime); 5136 } 5137 5138 /* notify updates to the node itself */ 5139 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 5140 udf_node->i_flags |= IN_ACCESSED; 5141 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 5142 udf_node->i_flags |= IN_MODIFIED; 5143 5144 /* clear modification flags */ 5145 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 5146 } 5147 5148 /* --------------------------------------------------------------------- */ 5149 5150 int 5151 udf_update(struct vnode *vp, struct timespec *acc, 5152 struct timespec *mod, int updflags) 5153 { 5154 struct udf_node *udf_node = VTOI(vp); 5155 struct udf_mount *ump = udf_node->ump; 5156 struct regid *impl_id; 5157 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 5158 int waitfor, flags; 5159 5160 #ifdef DEBUG 5161 char bits[128]; 5162 DPRINTF(CALL, ("udf_update(node, %p, %p, %d)\n", acc, mod, updflags)); 5163 bitmask_snprintf(udf_node->i_flags, IN_FLAGBITS, bits, sizeof(bits)); 5164 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 5165 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 5166 #endif 5167 5168 /* set our times */ 5169 udf_itimes(udf_node, acc, mod, NULL); 5170 5171 /* set our implementation id */ 5172 if (udf_node->fe) { 5173 impl_id = &udf_node->fe->imp_id; 5174 } else { 5175 impl_id = &udf_node->efe->imp_id; 5176 } 5177 udf_set_regid(impl_id, IMPL_NAME); 5178 udf_add_impl_regid(ump, impl_id); 5179 5180 /* if called when mounted readonly, never write back */ 5181 if (vp->v_mount->mnt_flag & MNT_RDONLY) 5182 return 0; 5183 5184 /* check if the node is dirty 'enough'*/ 5185 if (updflags & UPDATE_CLOSE) { 5186 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 5187 } else { 5188 flags = udf_node->i_flags & IN_MODIFIED; 5189 } 5190 if (flags == 0) 5191 return 0; 5192 5193 /* determine if we need to write sync or async */ 5194 waitfor = 0; 5195 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 5196 /* sync mounted */ 5197 waitfor = updflags & UPDATE_WAIT; 5198 if (updflags & UPDATE_DIROP) 5199 waitfor |= UPDATE_WAIT; 5200 } 5201 if (waitfor) 5202 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 5203 5204 return 0; 5205 } 5206 5207 5208 /* --------------------------------------------------------------------- */ 5209 5210 /* 5211 * Read one fid and process it into a dirent and advance to the next (*fid) 5212 * has to be allocated a logical block in size, (*dirent) struct dirent length 5213 */ 5214 5215 int 5216 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 5217 struct fileid_desc *fid, struct dirent *dirent) 5218 { 5219 struct udf_node *dir_node = VTOI(vp); 5220 struct udf_mount *ump = dir_node->ump; 5221 struct file_entry *fe = dir_node->fe; 5222 struct extfile_entry *efe = dir_node->efe; 5223 uint32_t fid_size, lb_size; 5224 uint64_t file_size; 5225 char *fid_name; 5226 int enough, error; 5227 5228 assert(fid); 5229 assert(dirent); 5230 assert(dir_node); 5231 assert(offset); 5232 assert(*offset != 1); 5233 5234 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 5235 /* check if we're past the end of the directory */ 5236 if (fe) { 5237 file_size = udf_rw64(fe->inf_len); 5238 } else { 5239 assert(dir_node->efe); 5240 file_size = udf_rw64(efe->inf_len); 5241 } 5242 if (*offset >= file_size) 5243 return EINVAL; 5244 5245 /* get maximum length of FID descriptor */ 5246 lb_size = udf_rw32(ump->logical_vol->lb_size); 5247 5248 /* initialise return values */ 5249 fid_size = 0; 5250 memset(dirent, 0, sizeof(struct dirent)); 5251 memset(fid, 0, lb_size); 5252 5253 enough = (file_size - (*offset) >= UDF_FID_SIZE); 5254 if (!enough) { 5255 /* short dir ... */ 5256 return EIO; 5257 } 5258 5259 error = vn_rdwr(UIO_READ, vp, 5260 fid, MIN(file_size - (*offset), lb_size), *offset, 5261 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 5262 NULL, NULL); 5263 if (error) 5264 return error; 5265 5266 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 5267 /* 5268 * Check if we got a whole descriptor. 5269 * TODO Try to `resync' directory stream when something is very wrong. 5270 */ 5271 5272 /* check if our FID header is OK */ 5273 error = udf_check_tag(fid); 5274 if (error) { 5275 goto brokendir; 5276 } 5277 DPRINTF(FIDS, ("\ttag check ok\n")); 5278 5279 if (udf_rw16(fid->tag.id) != TAGID_FID) { 5280 error = EIO; 5281 goto brokendir; 5282 } 5283 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 5284 5285 /* check for length */ 5286 fid_size = udf_fidsize(fid); 5287 enough = (file_size - (*offset) >= fid_size); 5288 if (!enough) { 5289 error = EIO; 5290 goto brokendir; 5291 } 5292 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 5293 5294 /* check FID contents */ 5295 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 5296 brokendir: 5297 if (error) { 5298 /* note that is sometimes a bit quick to report */ 5299 printf("BROKEN DIRECTORY ENTRY\n"); 5300 /* RESYNC? */ 5301 /* TODO: use udf_resync_fid_stream */ 5302 return EIO; 5303 } 5304 DPRINTF(FIDS, ("\tpayload checked ok\n")); 5305 5306 /* we got a whole and valid descriptor! */ 5307 DPRINTF(FIDS, ("\tinterpret FID\n")); 5308 5309 /* create resulting dirent structure */ 5310 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 5311 udf_to_unix_name(dirent->d_name, MAXNAMLEN, 5312 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 5313 5314 /* '..' has no name, so provide one */ 5315 if (fid->file_char & UDF_FILE_CHAR_PAR) 5316 strcpy(dirent->d_name, ".."); 5317 5318 dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */ 5319 dirent->d_namlen = strlen(dirent->d_name); 5320 dirent->d_reclen = _DIRENT_SIZE(dirent); 5321 5322 /* 5323 * Note that its not worth trying to go for the filetypes now... its 5324 * too expensive too 5325 */ 5326 dirent->d_type = DT_UNKNOWN; 5327 5328 /* initial guess for filetype we can make */ 5329 if (fid->file_char & UDF_FILE_CHAR_DIR) 5330 dirent->d_type = DT_DIR; 5331 5332 /* advance */ 5333 *offset += fid_size; 5334 5335 return error; 5336 } 5337 5338 5339 /* --------------------------------------------------------------------- */ 5340 5341 static void 5342 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor, 5343 int pass, int *ndirty) 5344 { 5345 struct udf_node *udf_node, *n_udf_node; 5346 struct vnode *vp; 5347 int vdirty, error; 5348 int on_type, on_flags, on_vnode; 5349 5350 derailed: 5351 KASSERT(mutex_owned(&mntvnode_lock)); 5352 5353 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 5354 udf_node = LIST_FIRST(&ump->sorted_udf_nodes); 5355 for (;udf_node; udf_node = n_udf_node) { 5356 DPRINTF(SYNC, (".")); 5357 5358 udf_node->i_flags &= ~IN_SYNCED; 5359 vp = udf_node->vnode; 5360 5361 mutex_enter(&vp->v_interlock); 5362 n_udf_node = LIST_NEXT(udf_node, sortchain); 5363 if (n_udf_node) 5364 n_udf_node->i_flags |= IN_SYNCED; 5365 5366 /* system nodes are not synced this way */ 5367 if (vp->v_vflag & VV_SYSTEM) { 5368 mutex_exit(&vp->v_interlock); 5369 continue; 5370 } 5371 5372 /* check if its dirty enough to even try */ 5373 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON); 5374 on_flags = ((udf_node->i_flags & 5375 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0); 5376 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd) 5377 && UVM_OBJ_IS_CLEAN(&vp->v_uobj); 5378 if (on_type || (on_flags || on_vnode)) { /* XXX */ 5379 /* not dirty (enough?) */ 5380 mutex_exit(&vp->v_interlock); 5381 continue; 5382 } 5383 5384 mutex_exit(&mntvnode_lock); 5385 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK); 5386 if (error) { 5387 mutex_enter(&mntvnode_lock); 5388 if (error == ENOENT) 5389 goto derailed; 5390 *ndirty += 1; 5391 continue; 5392 } 5393 5394 switch (pass) { 5395 case 1: 5396 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 5397 break; 5398 case 2: 5399 vdirty = vp->v_numoutput; 5400 if (vp->v_tag == VT_UDF) 5401 vdirty += udf_node->outstanding_bufs + 5402 udf_node->outstanding_nodedscr; 5403 if (vdirty == 0) 5404 VOP_FSYNC(vp, cred, 0,0,0); 5405 *ndirty += vdirty; 5406 break; 5407 case 3: 5408 vdirty = vp->v_numoutput; 5409 if (vp->v_tag == VT_UDF) 5410 vdirty += udf_node->outstanding_bufs + 5411 udf_node->outstanding_nodedscr; 5412 *ndirty += vdirty; 5413 break; 5414 } 5415 5416 vput(vp); 5417 mutex_enter(&mntvnode_lock); 5418 } 5419 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 5420 } 5421 5422 5423 void 5424 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 5425 { 5426 int dummy, ndirty; 5427 5428 mutex_enter(&mntvnode_lock); 5429 recount: 5430 dummy = 0; 5431 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 5432 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 5433 udf_sync_pass(ump, cred, waitfor, 1, &dummy); 5434 5435 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 5436 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 5437 udf_sync_pass(ump, cred, waitfor, 2, &dummy); 5438 5439 if (waitfor == MNT_WAIT) { 5440 ndirty = ump->devvp->v_numoutput; 5441 DPRINTF(NODE, ("counting pending blocks: on devvp %d\n", 5442 ndirty)); 5443 udf_sync_pass(ump, cred, waitfor, 3, &ndirty); 5444 DPRINTF(NODE, ("counted num dirty pending blocks %d\n", 5445 ndirty)); 5446 5447 if (ndirty) { 5448 /* 1/4 second wait */ 5449 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock, 5450 hz/4); 5451 goto recount; 5452 } 5453 } 5454 5455 mutex_exit(&mntvnode_lock); 5456 } 5457 5458 /* --------------------------------------------------------------------- */ 5459 5460 /* 5461 * Read and write file extent in/from the buffer. 5462 * 5463 * The splitup of the extent into seperate request-buffers is to minimise 5464 * copying around as much as possible. 5465 * 5466 * block based file reading and writing 5467 */ 5468 5469 static int 5470 udf_read_internal(struct udf_node *node, uint8_t *blob) 5471 { 5472 struct udf_mount *ump; 5473 struct file_entry *fe = node->fe; 5474 struct extfile_entry *efe = node->efe; 5475 uint64_t inflen; 5476 uint32_t sector_size; 5477 uint8_t *pos; 5478 int icbflags, addr_type; 5479 5480 /* get extent and do some paranoia checks */ 5481 ump = node->ump; 5482 sector_size = ump->discinfo.sector_size; 5483 5484 if (fe) { 5485 inflen = udf_rw64(fe->inf_len); 5486 pos = &fe->data[0] + udf_rw32(fe->l_ea); 5487 icbflags = udf_rw16(fe->icbtag.flags); 5488 } else { 5489 assert(node->efe); 5490 inflen = udf_rw64(efe->inf_len); 5491 pos = &efe->data[0] + udf_rw32(efe->l_ea); 5492 icbflags = udf_rw16(efe->icbtag.flags); 5493 } 5494 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5495 5496 assert(addr_type == UDF_ICB_INTERN_ALLOC); 5497 assert(inflen < sector_size); 5498 5499 /* copy out info */ 5500 memset(blob, 0, sector_size); 5501 memcpy(blob, pos, inflen); 5502 5503 return 0; 5504 } 5505 5506 5507 static int 5508 udf_write_internal(struct udf_node *node, uint8_t *blob) 5509 { 5510 struct udf_mount *ump; 5511 struct file_entry *fe = node->fe; 5512 struct extfile_entry *efe = node->efe; 5513 uint64_t inflen; 5514 uint32_t sector_size; 5515 uint8_t *pos; 5516 int icbflags, addr_type; 5517 5518 /* get extent and do some paranoia checks */ 5519 ump = node->ump; 5520 sector_size = ump->discinfo.sector_size; 5521 5522 if (fe) { 5523 inflen = udf_rw64(fe->inf_len); 5524 pos = &fe->data[0] + udf_rw32(fe->l_ea); 5525 icbflags = udf_rw16(fe->icbtag.flags); 5526 } else { 5527 assert(node->efe); 5528 inflen = udf_rw64(efe->inf_len); 5529 pos = &efe->data[0] + udf_rw32(efe->l_ea); 5530 icbflags = udf_rw16(efe->icbtag.flags); 5531 } 5532 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5533 5534 assert(addr_type == UDF_ICB_INTERN_ALLOC); 5535 assert(inflen < sector_size); 5536 5537 /* copy in blob */ 5538 /* memset(pos, 0, inflen); */ 5539 memcpy(pos, blob, inflen); 5540 5541 return 0; 5542 } 5543 5544 5545 void 5546 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 5547 { 5548 struct buf *nestbuf; 5549 struct udf_mount *ump = udf_node->ump; 5550 uint64_t *mapping; 5551 uint64_t run_start; 5552 uint32_t sector_size; 5553 uint32_t buf_offset, sector, rbuflen, rblk; 5554 uint32_t from, lblkno; 5555 uint32_t sectors; 5556 uint8_t *buf_pos; 5557 int error, run_length, isdir, what; 5558 5559 sector_size = udf_node->ump->discinfo.sector_size; 5560 5561 from = buf->b_blkno; 5562 sectors = buf->b_bcount / sector_size; 5563 5564 isdir = (udf_node->vnode->v_type == VDIR); 5565 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 5566 5567 /* assure we have enough translation slots */ 5568 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 5569 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 5570 5571 if (sectors > UDF_MAX_MAPPINGS) { 5572 printf("udf_read_filebuf: implementation limit on bufsize\n"); 5573 buf->b_error = EIO; 5574 biodone(buf); 5575 return; 5576 } 5577 5578 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 5579 5580 error = 0; 5581 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 5582 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 5583 if (error) { 5584 buf->b_error = error; 5585 biodone(buf); 5586 goto out; 5587 } 5588 DPRINTF(READ, ("\ttranslate extent went OK\n")); 5589 5590 /* pre-check if its an internal */ 5591 if (*mapping == UDF_TRANS_INTERN) { 5592 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 5593 if (error) 5594 buf->b_error = error; 5595 biodone(buf); 5596 goto out; 5597 } 5598 DPRINTF(READ, ("\tnot intern\n")); 5599 5600 #ifdef DEBUG 5601 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 5602 printf("Returned translation table:\n"); 5603 for (sector = 0; sector < sectors; sector++) { 5604 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 5605 } 5606 } 5607 #endif 5608 5609 /* request read-in of data from disc sheduler */ 5610 buf->b_resid = buf->b_bcount; 5611 for (sector = 0; sector < sectors; sector++) { 5612 buf_offset = sector * sector_size; 5613 buf_pos = (uint8_t *) buf->b_data + buf_offset; 5614 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 5615 5616 /* check if its zero or unmapped to stop reading */ 5617 switch (mapping[sector]) { 5618 case UDF_TRANS_UNMAPPED: 5619 case UDF_TRANS_ZERO: 5620 /* copy zero sector TODO runlength like below */ 5621 memset(buf_pos, 0, sector_size); 5622 DPRINTF(READ, ("\treturning zero sector\n")); 5623 nestiobuf_done(buf, sector_size, 0); 5624 break; 5625 default : 5626 DPRINTF(READ, ("\tread sector " 5627 "%"PRIu64"\n", mapping[sector])); 5628 5629 lblkno = from + sector; 5630 run_start = mapping[sector]; 5631 run_length = 1; 5632 while (sector < sectors-1) { 5633 if (mapping[sector+1] != mapping[sector]+1) 5634 break; 5635 run_length++; 5636 sector++; 5637 } 5638 5639 /* 5640 * nest an iobuf and mark it for async reading. Since 5641 * we're using nested buffers, they can't be cached by 5642 * design. 5643 */ 5644 rbuflen = run_length * sector_size; 5645 rblk = run_start * (sector_size/DEV_BSIZE); 5646 5647 nestbuf = getiobuf(NULL, true); 5648 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 5649 /* nestbuf is B_ASYNC */ 5650 5651 /* identify this nestbuf */ 5652 nestbuf->b_lblkno = lblkno; 5653 assert(nestbuf->b_vp == udf_node->vnode); 5654 5655 /* CD shedules on raw blkno */ 5656 nestbuf->b_blkno = rblk; 5657 nestbuf->b_proc = NULL; 5658 nestbuf->b_rawblkno = rblk; 5659 nestbuf->b_udf_c_type = what; 5660 5661 udf_discstrat_queuebuf(ump, nestbuf); 5662 } 5663 } 5664 out: 5665 /* if we're synchronously reading, wait for the completion */ 5666 if ((buf->b_flags & B_ASYNC) == 0) 5667 biowait(buf); 5668 5669 DPRINTF(READ, ("\tend of read_filebuf\n")); 5670 free(mapping, M_TEMP); 5671 return; 5672 } 5673 5674 5675 void 5676 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 5677 { 5678 struct buf *nestbuf; 5679 struct udf_mount *ump = udf_node->ump; 5680 uint64_t *mapping; 5681 uint64_t run_start; 5682 uint32_t lb_size; 5683 uint32_t buf_offset, lb_num, rbuflen, rblk; 5684 uint32_t from, lblkno; 5685 uint32_t num_lb; 5686 uint8_t *buf_pos; 5687 int error, run_length, isdir, what, s; 5688 5689 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 5690 5691 from = buf->b_blkno; 5692 num_lb = buf->b_bcount / lb_size; 5693 5694 isdir = (udf_node->vnode->v_type == VDIR); 5695 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 5696 5697 /* assure we have enough translation slots */ 5698 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 5699 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 5700 5701 if (num_lb > UDF_MAX_MAPPINGS) { 5702 printf("udf_write_filebuf: implementation limit on bufsize\n"); 5703 buf->b_error = EIO; 5704 biodone(buf); 5705 return; 5706 } 5707 5708 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 5709 5710 error = 0; 5711 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 5712 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 5713 if (error) { 5714 buf->b_error = error; 5715 biodone(buf); 5716 goto out; 5717 } 5718 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 5719 5720 /* if its internally mapped, we can write it in the descriptor itself */ 5721 if (*mapping == UDF_TRANS_INTERN) { 5722 /* TODO paranoia check if we ARE going to have enough space */ 5723 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 5724 if (error) 5725 buf->b_error = error; 5726 biodone(buf); 5727 goto out; 5728 } 5729 DPRINTF(WRITE, ("\tnot intern\n")); 5730 5731 /* request write out of data to disc sheduler */ 5732 buf->b_resid = buf->b_bcount; 5733 for (lb_num = 0; lb_num < num_lb; lb_num++) { 5734 buf_offset = lb_num * lb_size; 5735 buf_pos = (uint8_t *) buf->b_data + buf_offset; 5736 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 5737 5738 /* 5739 * Mappings are not that important here. Just before we write 5740 * the lb_num we late-allocate them when needed and update the 5741 * mapping in the udf_node. 5742 */ 5743 5744 /* XXX why not ignore the mapping altogether ? */ 5745 /* TODO estimate here how much will be late-allocated */ 5746 DPRINTF(WRITE, ("\twrite lb_num " 5747 "%"PRIu64, mapping[lb_num])); 5748 5749 lblkno = from + lb_num; 5750 run_start = mapping[lb_num]; 5751 run_length = 1; 5752 while (lb_num < num_lb-1) { 5753 if (mapping[lb_num+1] != mapping[lb_num]+1) 5754 if (mapping[lb_num+1] != mapping[lb_num]) 5755 break; 5756 run_length++; 5757 lb_num++; 5758 } 5759 DPRINTF(WRITE, ("+ %d\n", run_length)); 5760 5761 /* nest an iobuf on the master buffer for the extent */ 5762 rbuflen = run_length * lb_size; 5763 rblk = run_start * (lb_size/DEV_BSIZE); 5764 5765 #if 0 5766 /* if its zero or unmapped, our blknr gets -1 for unmapped */ 5767 switch (mapping[lb_num]) { 5768 case UDF_TRANS_UNMAPPED: 5769 case UDF_TRANS_ZERO: 5770 rblk = -1; 5771 break; 5772 default: 5773 rblk = run_start * (lb_size/DEV_BSIZE); 5774 break; 5775 } 5776 #endif 5777 5778 nestbuf = getiobuf(NULL, true); 5779 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 5780 /* nestbuf is B_ASYNC */ 5781 5782 /* identify this nestbuf */ 5783 nestbuf->b_lblkno = lblkno; 5784 KASSERT(nestbuf->b_vp == udf_node->vnode); 5785 5786 /* CD shedules on raw blkno */ 5787 nestbuf->b_blkno = rblk; 5788 nestbuf->b_proc = NULL; 5789 nestbuf->b_rawblkno = rblk; 5790 nestbuf->b_udf_c_type = what; 5791 5792 /* increment our outstanding bufs counter */ 5793 s = splbio(); 5794 udf_node->outstanding_bufs++; 5795 splx(s); 5796 5797 udf_discstrat_queuebuf(ump, nestbuf); 5798 } 5799 out: 5800 /* if we're synchronously writing, wait for the completion */ 5801 if ((buf->b_flags & B_ASYNC) == 0) 5802 biowait(buf); 5803 5804 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 5805 free(mapping, M_TEMP); 5806 return; 5807 } 5808 5809 /* --------------------------------------------------------------------- */ 5810 5811 5812