1 /* $NetBSD: udf_subr.c,v 1.129 2015/04/06 08:39:23 hannken Exp $ */ 2 3 /* 4 * Copyright (c) 2006, 2008 Reinoud Zandijk 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 30 #include <sys/cdefs.h> 31 #ifndef lint 32 __KERNEL_RCSID(0, "$NetBSD: udf_subr.c,v 1.129 2015/04/06 08:39:23 hannken Exp $"); 33 #endif /* not lint */ 34 35 36 #if defined(_KERNEL_OPT) 37 #include "opt_compat_netbsd.h" 38 #endif 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/sysctl.h> 43 #include <sys/namei.h> 44 #include <sys/proc.h> 45 #include <sys/kernel.h> 46 #include <sys/vnode.h> 47 #include <miscfs/genfs/genfs_node.h> 48 #include <sys/mount.h> 49 #include <sys/buf.h> 50 #include <sys/file.h> 51 #include <sys/device.h> 52 #include <sys/disklabel.h> 53 #include <sys/ioctl.h> 54 #include <sys/malloc.h> 55 #include <sys/dirent.h> 56 #include <sys/stat.h> 57 #include <sys/conf.h> 58 #include <sys/kauth.h> 59 #include <fs/unicode.h> 60 #include <dev/clock_subr.h> 61 62 #include <fs/udf/ecma167-udf.h> 63 #include <fs/udf/udf_mount.h> 64 #include <sys/dirhash.h> 65 66 #include "udf.h" 67 #include "udf_subr.h" 68 #include "udf_bswap.h" 69 70 71 #define VTOI(vnode) ((struct udf_node *) (vnode)->v_data) 72 73 #define UDF_SET_SYSTEMFILE(vp) \ 74 /* XXXAD Is the vnode locked? */ \ 75 (vp)->v_vflag |= VV_SYSTEM; \ 76 vref((vp)); \ 77 vput((vp)); \ 78 79 extern int syncer_maxdelay; /* maximum delay time */ 80 extern int (**udf_vnodeop_p)(void *); 81 82 /* --------------------------------------------------------------------- */ 83 84 //#ifdef DEBUG 85 #if 1 86 87 #if 0 88 static void 89 udf_dumpblob(boid *blob, uint32_t dlen) 90 { 91 int i, j; 92 93 printf("blob = %p\n", blob); 94 printf("dump of %d bytes\n", dlen); 95 96 for (i = 0; i < dlen; i+ = 16) { 97 printf("%04x ", i); 98 for (j = 0; j < 16; j++) { 99 if (i+j < dlen) { 100 printf("%02x ", blob[i+j]); 101 } else { 102 printf(" "); 103 } 104 } 105 for (j = 0; j < 16; j++) { 106 if (i+j < dlen) { 107 if (blob[i+j]>32 && blob[i+j]! = 127) { 108 printf("%c", blob[i+j]); 109 } else { 110 printf("."); 111 } 112 } 113 } 114 printf("\n"); 115 } 116 printf("\n"); 117 Debugger(); 118 } 119 #endif 120 121 static void 122 udf_dump_discinfo(struct udf_mount *ump) 123 { 124 char bits[128]; 125 struct mmc_discinfo *di = &ump->discinfo; 126 127 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 128 return; 129 130 printf("Device/media info :\n"); 131 printf("\tMMC profile 0x%02x\n", di->mmc_profile); 132 printf("\tderived class %d\n", di->mmc_class); 133 printf("\tsector size %d\n", di->sector_size); 134 printf("\tdisc state %d\n", di->disc_state); 135 printf("\tlast ses state %d\n", di->last_session_state); 136 printf("\tbg format state %d\n", di->bg_format_state); 137 printf("\tfrst track %d\n", di->first_track); 138 printf("\tfst on last ses %d\n", di->first_track_last_session); 139 printf("\tlst on last ses %d\n", di->last_track_last_session); 140 printf("\tlink block penalty %d\n", di->link_block_penalty); 141 snprintb(bits, sizeof(bits), MMC_DFLAGS_FLAGBITS, di->disc_flags); 142 printf("\tdisc flags %s\n", bits); 143 printf("\tdisc id %x\n", di->disc_id); 144 printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); 145 146 printf("\tnum sessions %d\n", di->num_sessions); 147 printf("\tnum tracks %d\n", di->num_tracks); 148 149 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cur); 150 printf("\tcapabilities cur %s\n", bits); 151 snprintb(bits, sizeof(bits), MMC_CAP_FLAGBITS, di->mmc_cap); 152 printf("\tcapabilities cap %s\n", bits); 153 } 154 155 static void 156 udf_dump_trackinfo(struct mmc_trackinfo *trackinfo) 157 { 158 char bits[128]; 159 160 if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) 161 return; 162 163 printf("Trackinfo for track %d:\n", trackinfo->tracknr); 164 printf("\tsessionnr %d\n", trackinfo->sessionnr); 165 printf("\ttrack mode %d\n", trackinfo->track_mode); 166 printf("\tdata mode %d\n", trackinfo->data_mode); 167 snprintb(bits, sizeof(bits), MMC_TRACKINFO_FLAGBITS, trackinfo->flags); 168 printf("\tflags %s\n", bits); 169 170 printf("\ttrack start %d\n", trackinfo->track_start); 171 printf("\tnext_writable %d\n", trackinfo->next_writable); 172 printf("\tfree_blocks %d\n", trackinfo->free_blocks); 173 printf("\tpacket_size %d\n", trackinfo->packet_size); 174 printf("\ttrack size %d\n", trackinfo->track_size); 175 printf("\tlast recorded block %d\n", trackinfo->last_recorded); 176 } 177 178 #else 179 #define udf_dump_discinfo(a); 180 #define udf_dump_trackinfo(a); 181 #endif 182 183 184 /* --------------------------------------------------------------------- */ 185 186 /* not called often */ 187 int 188 udf_update_discinfo(struct udf_mount *ump) 189 { 190 struct vnode *devvp = ump->devvp; 191 uint64_t psize; 192 unsigned secsize; 193 struct mmc_discinfo *di; 194 int error; 195 196 DPRINTF(VOLUMES, ("read/update disc info\n")); 197 di = &ump->discinfo; 198 memset(di, 0, sizeof(struct mmc_discinfo)); 199 200 /* check if we're on a MMC capable device, i.e. CD/DVD */ 201 error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED); 202 if (error == 0) { 203 udf_dump_discinfo(ump); 204 return 0; 205 } 206 207 /* disc partition support */ 208 error = getdisksize(devvp, &psize, &secsize); 209 if (error) 210 return error; 211 212 /* set up a disc info profile for partitions */ 213 di->mmc_profile = 0x01; /* disc type */ 214 di->mmc_class = MMC_CLASS_DISC; 215 di->disc_state = MMC_STATE_CLOSED; 216 di->last_session_state = MMC_STATE_CLOSED; 217 di->bg_format_state = MMC_BGFSTATE_COMPLETED; 218 di->link_block_penalty = 0; 219 220 di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | 221 MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; 222 di->mmc_cap = di->mmc_cur; 223 di->disc_flags = MMC_DFLAGS_UNRESTRICTED; 224 225 /* TODO problem with last_possible_lba on resizable VND; request */ 226 di->last_possible_lba = psize; 227 di->sector_size = secsize; 228 229 di->num_sessions = 1; 230 di->num_tracks = 1; 231 232 di->first_track = 1; 233 di->first_track_last_session = di->last_track_last_session = 1; 234 235 udf_dump_discinfo(ump); 236 return 0; 237 } 238 239 240 int 241 udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) 242 { 243 struct vnode *devvp = ump->devvp; 244 struct mmc_discinfo *di = &ump->discinfo; 245 int error, class; 246 247 DPRINTF(VOLUMES, ("read track info\n")); 248 249 class = di->mmc_class; 250 if (class != MMC_CLASS_DISC) { 251 /* tracknr specified in struct ti */ 252 error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED); 253 return error; 254 } 255 256 /* disc partition support */ 257 if (ti->tracknr != 1) 258 return EIO; 259 260 /* create fake ti (TODO check for resized vnds) */ 261 ti->sessionnr = 1; 262 263 ti->track_mode = 0; /* XXX */ 264 ti->data_mode = 0; /* XXX */ 265 ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; 266 267 ti->track_start = 0; 268 ti->packet_size = 1; 269 270 /* TODO support for resizable vnd */ 271 ti->track_size = di->last_possible_lba; 272 ti->next_writable = di->last_possible_lba; 273 ti->last_recorded = ti->next_writable; 274 ti->free_blocks = 0; 275 276 return 0; 277 } 278 279 280 int 281 udf_setup_writeparams(struct udf_mount *ump) 282 { 283 struct mmc_writeparams mmc_writeparams; 284 int error; 285 286 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 287 return 0; 288 289 /* 290 * only CD burning normally needs setting up, but other disc types 291 * might need other settings to be made. The MMC framework will set up 292 * the nessisary recording parameters according to the disc 293 * characteristics read in. Modifications can be made in the discinfo 294 * structure passed to change the nature of the disc. 295 */ 296 297 memset(&mmc_writeparams, 0, sizeof(struct mmc_writeparams)); 298 mmc_writeparams.mmc_class = ump->discinfo.mmc_class; 299 mmc_writeparams.mmc_cur = ump->discinfo.mmc_cur; 300 301 /* 302 * UDF dictates first track to determine track mode for the whole 303 * disc. [UDF 1.50/6.10.1.1, UDF 1.50/6.10.2.1] 304 * To prevent problems with a `reserved' track in front we start with 305 * the 2nd track and if that is not valid, go for the 1st. 306 */ 307 mmc_writeparams.tracknr = 2; 308 mmc_writeparams.data_mode = MMC_DATAMODE_DEFAULT; /* XA disc */ 309 mmc_writeparams.track_mode = MMC_TRACKMODE_DEFAULT; /* data */ 310 311 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, &mmc_writeparams, 312 FKIOCTL, NOCRED); 313 if (error) { 314 mmc_writeparams.tracknr = 1; 315 error = VOP_IOCTL(ump->devvp, MMCSETUPWRITEPARAMS, 316 &mmc_writeparams, FKIOCTL, NOCRED); 317 } 318 return error; 319 } 320 321 322 int 323 udf_synchronise_caches(struct udf_mount *ump) 324 { 325 struct mmc_op mmc_op; 326 327 DPRINTF(CALL, ("udf_synchronise_caches()\n")); 328 329 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 330 return 0; 331 332 /* discs are done now */ 333 if (ump->discinfo.mmc_class == MMC_CLASS_DISC) 334 return 0; 335 336 memset(&mmc_op, 0, sizeof(struct mmc_op)); 337 mmc_op.operation = MMC_OP_SYNCHRONISECACHE; 338 339 /* ignore return code */ 340 (void) VOP_IOCTL(ump->devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 341 342 return 0; 343 } 344 345 /* --------------------------------------------------------------------- */ 346 347 /* track/session searching for mounting */ 348 int 349 udf_search_tracks(struct udf_mount *ump, struct udf_args *args, 350 int *first_tracknr, int *last_tracknr) 351 { 352 struct mmc_trackinfo trackinfo; 353 uint32_t tracknr, start_track, num_tracks; 354 int error; 355 356 /* if negative, sessionnr is relative to last session */ 357 if (args->sessionnr < 0) { 358 args->sessionnr += ump->discinfo.num_sessions; 359 } 360 361 /* sanity */ 362 if (args->sessionnr < 0) 363 args->sessionnr = 0; 364 if (args->sessionnr > ump->discinfo.num_sessions) 365 args->sessionnr = ump->discinfo.num_sessions; 366 367 /* search the tracks for this session, zero session nr indicates last */ 368 if (args->sessionnr == 0) 369 args->sessionnr = ump->discinfo.num_sessions; 370 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 371 args->sessionnr--; 372 373 /* sanity again */ 374 if (args->sessionnr < 0) 375 args->sessionnr = 0; 376 377 /* search the first and last track of the specified session */ 378 num_tracks = ump->discinfo.num_tracks; 379 start_track = ump->discinfo.first_track; 380 381 /* search for first track of this session */ 382 for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { 383 /* get track info */ 384 trackinfo.tracknr = tracknr; 385 error = udf_update_trackinfo(ump, &trackinfo); 386 if (error) 387 return error; 388 389 if (trackinfo.sessionnr == args->sessionnr) 390 break; 391 } 392 *first_tracknr = tracknr; 393 394 /* search for last track of this session */ 395 for (;tracknr <= num_tracks; tracknr++) { 396 /* get track info */ 397 trackinfo.tracknr = tracknr; 398 error = udf_update_trackinfo(ump, &trackinfo); 399 if (error || (trackinfo.sessionnr != args->sessionnr)) { 400 tracknr--; 401 break; 402 } 403 } 404 if (tracknr > num_tracks) 405 tracknr--; 406 407 *last_tracknr = tracknr; 408 409 if (*last_tracknr < *first_tracknr) { 410 printf( "udf_search_tracks: sanity check on drive+disc failed, " 411 "drive returned garbage\n"); 412 return EINVAL; 413 } 414 415 assert(*last_tracknr >= *first_tracknr); 416 return 0; 417 } 418 419 420 /* 421 * NOTE: this is the only routine in this file that directly peeks into the 422 * metadata file but since its at a larval state of the mount it can't hurt. 423 * 424 * XXX candidate for udf_allocation.c 425 * XXX clean me up!, change to new node reading code. 426 */ 427 428 static void 429 udf_check_track_metadata_overlap(struct udf_mount *ump, 430 struct mmc_trackinfo *trackinfo) 431 { 432 struct part_desc *part; 433 struct file_entry *fe; 434 struct extfile_entry *efe; 435 struct short_ad *s_ad; 436 struct long_ad *l_ad; 437 uint32_t track_start, track_end; 438 uint32_t phys_part_start, phys_part_end, part_start, part_end; 439 uint32_t sector_size, len, alloclen, plb_num; 440 uint8_t *pos; 441 int addr_type, icblen, icbflags; 442 443 /* get our track extents */ 444 track_start = trackinfo->track_start; 445 track_end = track_start + trackinfo->track_size; 446 447 /* get our base partition extent */ 448 KASSERT(ump->node_part == ump->fids_part); 449 part = ump->partitions[ump->vtop[ump->node_part]]; 450 phys_part_start = udf_rw32(part->start_loc); 451 phys_part_end = phys_part_start + udf_rw32(part->part_len); 452 453 /* no use if its outside the physical partition */ 454 if ((phys_part_start >= track_end) || (phys_part_end < track_start)) 455 return; 456 457 /* 458 * now follow all extents in the fe/efe to see if they refer to this 459 * track 460 */ 461 462 sector_size = ump->discinfo.sector_size; 463 464 /* XXX should we claim exclusive access to the metafile ? */ 465 /* TODO: move to new node read code */ 466 fe = ump->metadata_node->fe; 467 efe = ump->metadata_node->efe; 468 if (fe) { 469 alloclen = udf_rw32(fe->l_ad); 470 pos = &fe->data[0] + udf_rw32(fe->l_ea); 471 icbflags = udf_rw16(fe->icbtag.flags); 472 } else { 473 assert(efe); 474 alloclen = udf_rw32(efe->l_ad); 475 pos = &efe->data[0] + udf_rw32(efe->l_ea); 476 icbflags = udf_rw16(efe->icbtag.flags); 477 } 478 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 479 480 while (alloclen) { 481 if (addr_type == UDF_ICB_SHORT_ALLOC) { 482 icblen = sizeof(struct short_ad); 483 s_ad = (struct short_ad *) pos; 484 len = udf_rw32(s_ad->len); 485 plb_num = udf_rw32(s_ad->lb_num); 486 } else { 487 /* should not be present, but why not */ 488 icblen = sizeof(struct long_ad); 489 l_ad = (struct long_ad *) pos; 490 len = udf_rw32(l_ad->len); 491 plb_num = udf_rw32(l_ad->loc.lb_num); 492 /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ 493 } 494 /* process extent */ 495 len = UDF_EXT_LEN(len); 496 497 part_start = phys_part_start + plb_num; 498 part_end = part_start + (len / sector_size); 499 500 if ((part_start >= track_start) && (part_end <= track_end)) { 501 /* extent is enclosed within this track */ 502 ump->metadata_track = *trackinfo; 503 return; 504 } 505 506 pos += icblen; 507 alloclen -= icblen; 508 } 509 } 510 511 512 int 513 udf_search_writing_tracks(struct udf_mount *ump) 514 { 515 struct vnode *devvp = ump->devvp; 516 struct mmc_trackinfo trackinfo; 517 struct mmc_op mmc_op; 518 struct part_desc *part; 519 uint32_t tracknr, start_track, num_tracks; 520 uint32_t track_start, track_end, part_start, part_end; 521 int node_alloc, error; 522 523 /* 524 * in the CD/(HD)DVD/BD recordable device model a few tracks within 525 * the last session might be open but in the UDF device model at most 526 * three tracks can be open: a reserved track for delayed ISO VRS 527 * writing, a data track and a metadata track. We search here for the 528 * data track and the metadata track. Note that the reserved track is 529 * troublesome but can be detected by its small size of < 512 sectors. 530 */ 531 532 /* update discinfo since it might have changed */ 533 error = udf_update_discinfo(ump); 534 if (error) 535 return error; 536 537 num_tracks = ump->discinfo.num_tracks; 538 start_track = ump->discinfo.first_track; 539 540 /* fetch info on first and possibly only track */ 541 trackinfo.tracknr = start_track; 542 error = udf_update_trackinfo(ump, &trackinfo); 543 if (error) 544 return error; 545 546 /* copy results to our mount point */ 547 ump->data_track = trackinfo; 548 ump->metadata_track = trackinfo; 549 550 /* if not sequential, we're done */ 551 if (num_tracks == 1) 552 return 0; 553 554 for (tracknr = start_track;tracknr <= num_tracks; tracknr++) { 555 /* get track info */ 556 trackinfo.tracknr = tracknr; 557 error = udf_update_trackinfo(ump, &trackinfo); 558 if (error) 559 return error; 560 561 /* 562 * If this track is marked damaged, ask for repair. This is an 563 * optional command, so ignore its error but report warning. 564 */ 565 if (trackinfo.flags & MMC_TRACKINFO_DAMAGED) { 566 memset(&mmc_op, 0, sizeof(mmc_op)); 567 mmc_op.operation = MMC_OP_REPAIRTRACK; 568 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 569 mmc_op.tracknr = tracknr; 570 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, FKIOCTL, NOCRED); 571 if (error) 572 (void)printf("Drive can't explicitly repair " 573 "damaged track %d, but it might " 574 "autorepair\n", tracknr); 575 576 /* reget track info */ 577 error = udf_update_trackinfo(ump, &trackinfo); 578 if (error) 579 return error; 580 } 581 if ((trackinfo.flags & MMC_TRACKINFO_NWA_VALID) == 0) 582 continue; 583 584 track_start = trackinfo.track_start; 585 track_end = track_start + trackinfo.track_size; 586 587 /* check for overlap on data partition */ 588 part = ump->partitions[ump->data_part]; 589 part_start = udf_rw32(part->start_loc); 590 part_end = part_start + udf_rw32(part->part_len); 591 if ((part_start < track_end) && (part_end > track_start)) { 592 ump->data_track = trackinfo; 593 /* TODO check if UDF partition data_part is writable */ 594 } 595 596 /* check for overlap on metadata partition */ 597 node_alloc = ump->vtop_alloc[ump->node_part]; 598 if ((node_alloc == UDF_ALLOC_METASEQUENTIAL) || 599 (node_alloc == UDF_ALLOC_METABITMAP)) { 600 udf_check_track_metadata_overlap(ump, &trackinfo); 601 } else { 602 ump->metadata_track = trackinfo; 603 } 604 } 605 606 if ((ump->data_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 607 return EROFS; 608 609 if ((ump->metadata_track.flags & MMC_TRACKINFO_NWA_VALID) == 0) 610 return EROFS; 611 612 return 0; 613 } 614 615 /* --------------------------------------------------------------------- */ 616 617 /* 618 * Check if the blob starts with a good UDF tag. Tags are protected by a 619 * checksum over the reader except one byte at position 4 that is the checksum 620 * itself. 621 */ 622 623 int 624 udf_check_tag(void *blob) 625 { 626 struct desc_tag *tag = blob; 627 uint8_t *pos, sum, cnt; 628 629 /* check TAG header checksum */ 630 pos = (uint8_t *) tag; 631 sum = 0; 632 633 for(cnt = 0; cnt < 16; cnt++) { 634 if (cnt != 4) 635 sum += *pos; 636 pos++; 637 } 638 if (sum != tag->cksum) { 639 /* bad tag header checksum; this is not a valid tag */ 640 return EINVAL; 641 } 642 643 return 0; 644 } 645 646 647 /* 648 * check tag payload will check descriptor CRC as specified. 649 * If the descriptor is too long, it will return EIO otherwise EINVAL. 650 */ 651 652 int 653 udf_check_tag_payload(void *blob, uint32_t max_length) 654 { 655 struct desc_tag *tag = blob; 656 uint16_t crc, crc_len; 657 658 crc_len = udf_rw16(tag->desc_crc_len); 659 660 /* check payload CRC if applicable */ 661 if (crc_len == 0) 662 return 0; 663 664 if (crc_len > max_length) 665 return EIO; 666 667 crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); 668 if (crc != udf_rw16(tag->desc_crc)) { 669 /* bad payload CRC; this is a broken tag */ 670 return EINVAL; 671 } 672 673 return 0; 674 } 675 676 677 void 678 udf_validate_tag_sum(void *blob) 679 { 680 struct desc_tag *tag = blob; 681 uint8_t *pos, sum, cnt; 682 683 /* calculate TAG header checksum */ 684 pos = (uint8_t *) tag; 685 sum = 0; 686 687 for(cnt = 0; cnt < 16; cnt++) { 688 if (cnt != 4) sum += *pos; 689 pos++; 690 } 691 tag->cksum = sum; /* 8 bit */ 692 } 693 694 695 /* assumes sector number of descriptor to be saved already present */ 696 void 697 udf_validate_tag_and_crc_sums(void *blob) 698 { 699 struct desc_tag *tag = blob; 700 uint8_t *btag = (uint8_t *) tag; 701 uint16_t crc, crc_len; 702 703 crc_len = udf_rw16(tag->desc_crc_len); 704 705 /* check payload CRC if applicable */ 706 if (crc_len > 0) { 707 crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); 708 tag->desc_crc = udf_rw16(crc); 709 } 710 711 /* calculate TAG header checksum */ 712 udf_validate_tag_sum(blob); 713 } 714 715 /* --------------------------------------------------------------------- */ 716 717 /* 718 * XXX note the different semantics from udfclient: for FIDs it still rounds 719 * up to sectors. Use udf_fidsize() for a correct length. 720 */ 721 722 int 723 udf_tagsize(union dscrptr *dscr, uint32_t lb_size) 724 { 725 uint32_t size, tag_id, num_lb, elmsz; 726 727 tag_id = udf_rw16(dscr->tag.id); 728 729 switch (tag_id) { 730 case TAGID_LOGVOL : 731 size = sizeof(struct logvol_desc) - 1; 732 size += udf_rw32(dscr->lvd.mt_l); 733 break; 734 case TAGID_UNALLOC_SPACE : 735 elmsz = sizeof(struct extent_ad); 736 size = sizeof(struct unalloc_sp_desc) - elmsz; 737 size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; 738 break; 739 case TAGID_FID : 740 size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); 741 size = (size + 3) & ~3; 742 break; 743 case TAGID_LOGVOL_INTEGRITY : 744 size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); 745 size += udf_rw32(dscr->lvid.l_iu); 746 size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); 747 break; 748 case TAGID_SPACE_BITMAP : 749 size = sizeof(struct space_bitmap_desc) - 1; 750 size += udf_rw32(dscr->sbd.num_bytes); 751 break; 752 case TAGID_SPARING_TABLE : 753 elmsz = sizeof(struct spare_map_entry); 754 size = sizeof(struct udf_sparing_table) - elmsz; 755 size += udf_rw16(dscr->spt.rt_l) * elmsz; 756 break; 757 case TAGID_FENTRY : 758 size = sizeof(struct file_entry); 759 size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; 760 break; 761 case TAGID_EXTFENTRY : 762 size = sizeof(struct extfile_entry); 763 size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; 764 break; 765 case TAGID_FSD : 766 size = sizeof(struct fileset_desc); 767 break; 768 default : 769 size = sizeof(union dscrptr); 770 break; 771 } 772 773 if ((size == 0) || (lb_size == 0)) 774 return 0; 775 776 if (lb_size == 1) 777 return size; 778 779 /* round up in sectors */ 780 num_lb = (size + lb_size -1) / lb_size; 781 return num_lb * lb_size; 782 } 783 784 785 int 786 udf_fidsize(struct fileid_desc *fid) 787 { 788 uint32_t size; 789 790 if (udf_rw16(fid->tag.id) != TAGID_FID) 791 panic("got udf_fidsize on non FID\n"); 792 793 size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); 794 size = (size + 3) & ~3; 795 796 return size; 797 } 798 799 /* --------------------------------------------------------------------- */ 800 801 void 802 udf_lock_node(struct udf_node *udf_node, int flag, char const *fname, const int lineno) 803 { 804 int ret; 805 806 mutex_enter(&udf_node->node_mutex); 807 /* wait until free */ 808 while (udf_node->i_flags & IN_LOCKED) { 809 ret = cv_timedwait(&udf_node->node_lock, &udf_node->node_mutex, hz/8); 810 /* TODO check if we should return error; abort */ 811 if (ret == EWOULDBLOCK) { 812 DPRINTF(LOCKING, ( "udf_lock_node: udf_node %p would block " 813 "wanted at %s:%d, previously locked at %s:%d\n", 814 udf_node, fname, lineno, 815 udf_node->lock_fname, udf_node->lock_lineno)); 816 } 817 } 818 /* grab */ 819 udf_node->i_flags |= IN_LOCKED | flag; 820 /* debug */ 821 udf_node->lock_fname = fname; 822 udf_node->lock_lineno = lineno; 823 824 mutex_exit(&udf_node->node_mutex); 825 } 826 827 828 void 829 udf_unlock_node(struct udf_node *udf_node, int flag) 830 { 831 mutex_enter(&udf_node->node_mutex); 832 udf_node->i_flags &= ~(IN_LOCKED | flag); 833 cv_broadcast(&udf_node->node_lock); 834 mutex_exit(&udf_node->node_mutex); 835 } 836 837 838 /* --------------------------------------------------------------------- */ 839 840 static int 841 udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) 842 { 843 int error; 844 845 error = udf_read_phys_dscr(ump, sector, M_UDFVOLD, 846 (union dscrptr **) dst); 847 if (!error) { 848 /* blank terminator blocks are not allowed here */ 849 if (*dst == NULL) 850 return ENOENT; 851 if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { 852 error = ENOENT; 853 free(*dst, M_UDFVOLD); 854 *dst = NULL; 855 DPRINTF(VOLUMES, ("Not an anchor\n")); 856 } 857 } 858 859 return error; 860 } 861 862 863 int 864 udf_read_anchors(struct udf_mount *ump) 865 { 866 struct udf_args *args = &ump->mount_args; 867 struct mmc_trackinfo first_track; 868 struct mmc_trackinfo second_track; 869 struct mmc_trackinfo last_track; 870 struct anchor_vdp **anchorsp; 871 uint32_t track_start; 872 uint32_t track_end; 873 uint32_t positions[4]; 874 int first_tracknr, last_tracknr; 875 int error, anch, ok, first_anchor; 876 877 /* search the first and last track of the specified session */ 878 error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); 879 if (!error) { 880 first_track.tracknr = first_tracknr; 881 error = udf_update_trackinfo(ump, &first_track); 882 } 883 if (!error) { 884 last_track.tracknr = last_tracknr; 885 error = udf_update_trackinfo(ump, &last_track); 886 } 887 if ((!error) && (first_tracknr != last_tracknr)) { 888 second_track.tracknr = first_tracknr+1; 889 error = udf_update_trackinfo(ump, &second_track); 890 } 891 if (error) { 892 printf("UDF mount: reading disc geometry failed\n"); 893 return 0; 894 } 895 896 track_start = first_track.track_start; 897 898 /* `end' is not as straitforward as start. */ 899 track_end = last_track.track_start 900 + last_track.track_size - last_track.free_blocks - 1; 901 902 if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { 903 /* end of track is not straitforward here */ 904 if (last_track.flags & MMC_TRACKINFO_LRA_VALID) 905 track_end = last_track.last_recorded; 906 else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) 907 track_end = last_track.next_writable 908 - ump->discinfo.link_block_penalty; 909 } 910 911 /* its no use reading a blank track */ 912 first_anchor = 0; 913 if (first_track.flags & MMC_TRACKINFO_BLANK) 914 first_anchor = 1; 915 916 /* get our packet size */ 917 ump->packet_size = first_track.packet_size; 918 if (first_track.flags & MMC_TRACKINFO_BLANK) 919 ump->packet_size = second_track.packet_size; 920 921 if (ump->packet_size <= 1) { 922 /* take max, but not bigger than 64 */ 923 ump->packet_size = MAXPHYS / ump->discinfo.sector_size; 924 ump->packet_size = MIN(ump->packet_size, 64); 925 } 926 KASSERT(ump->packet_size >= 1); 927 928 /* read anchors start+256, start+512, end-256, end */ 929 positions[0] = track_start+256; 930 positions[1] = track_end-256; 931 positions[2] = track_end; 932 positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ 933 /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ 934 935 ok = 0; 936 anchorsp = ump->anchors; 937 for (anch = first_anchor; anch < 4; anch++) { 938 DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, 939 positions[anch])); 940 error = udf_read_anchor(ump, positions[anch], anchorsp); 941 if (!error) { 942 anchorsp++; 943 ok++; 944 } 945 } 946 947 /* VATs are only recorded on sequential media, but initialise */ 948 ump->first_possible_vat_location = track_start + 2; 949 ump->last_possible_vat_location = track_end + last_track.packet_size; 950 951 return ok; 952 } 953 954 /* --------------------------------------------------------------------- */ 955 956 int 957 udf_get_c_type(struct udf_node *udf_node) 958 { 959 int isdir, what; 960 961 isdir = (udf_node->vnode->v_type == VDIR); 962 what = isdir ? UDF_C_FIDS : UDF_C_USERDATA; 963 964 if (udf_node->ump) 965 if (udf_node == udf_node->ump->metadatabitmap_node) 966 what = UDF_C_METADATA_SBM; 967 968 return what; 969 } 970 971 972 int 973 udf_get_record_vpart(struct udf_mount *ump, int udf_c_type) 974 { 975 int vpart_num; 976 977 vpart_num = ump->data_part; 978 if (udf_c_type == UDF_C_NODE) 979 vpart_num = ump->node_part; 980 if (udf_c_type == UDF_C_FIDS) 981 vpart_num = ump->fids_part; 982 983 return vpart_num; 984 } 985 986 987 /* 988 * BUGALERT: some rogue implementations use random physical partition 989 * numbers to break other implementations so lookup the number. 990 */ 991 992 static uint16_t 993 udf_find_raw_phys(struct udf_mount *ump, uint16_t raw_phys_part) 994 { 995 struct part_desc *part; 996 uint16_t phys_part; 997 998 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 999 part = ump->partitions[phys_part]; 1000 if (part == NULL) 1001 break; 1002 if (udf_rw16(part->part_num) == raw_phys_part) 1003 break; 1004 } 1005 return phys_part; 1006 } 1007 1008 /* --------------------------------------------------------------------- */ 1009 1010 /* we dont try to be smart; we just record the parts */ 1011 #define UDF_UPDATE_DSCR(name, dscr) \ 1012 if (name) \ 1013 free(name, M_UDFVOLD); \ 1014 name = dscr; 1015 1016 static int 1017 udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) 1018 { 1019 uint16_t phys_part, raw_phys_part; 1020 1021 DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", 1022 udf_rw16(dscr->tag.id))); 1023 switch (udf_rw16(dscr->tag.id)) { 1024 case TAGID_PRI_VOL : /* primary partition */ 1025 UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); 1026 break; 1027 case TAGID_LOGVOL : /* logical volume */ 1028 UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); 1029 break; 1030 case TAGID_UNALLOC_SPACE : /* unallocated space */ 1031 UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); 1032 break; 1033 case TAGID_IMP_VOL : /* implementation */ 1034 /* XXX do we care about multiple impl. descr ? */ 1035 UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); 1036 break; 1037 case TAGID_PARTITION : /* physical partition */ 1038 /* not much use if its not allocated */ 1039 if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { 1040 free(dscr, M_UDFVOLD); 1041 break; 1042 } 1043 1044 /* 1045 * BUGALERT: some rogue implementations use random physical 1046 * partition numbers to break other implementations so lookup 1047 * the number. 1048 */ 1049 raw_phys_part = udf_rw16(dscr->pd.part_num); 1050 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1051 1052 if (phys_part == UDF_PARTITIONS) { 1053 free(dscr, M_UDFVOLD); 1054 return EINVAL; 1055 } 1056 1057 UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); 1058 break; 1059 case TAGID_VOL : /* volume space extender; rare */ 1060 DPRINTF(VOLUMES, ("VDS extender ignored\n")); 1061 free(dscr, M_UDFVOLD); 1062 break; 1063 default : 1064 DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", 1065 udf_rw16(dscr->tag.id))); 1066 free(dscr, M_UDFVOLD); 1067 } 1068 1069 return 0; 1070 } 1071 #undef UDF_UPDATE_DSCR 1072 1073 /* --------------------------------------------------------------------- */ 1074 1075 static int 1076 udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) 1077 { 1078 union dscrptr *dscr; 1079 uint32_t sector_size, dscr_size; 1080 int error; 1081 1082 sector_size = ump->discinfo.sector_size; 1083 1084 /* loc is sectornr, len is in bytes */ 1085 error = EIO; 1086 while (len) { 1087 error = udf_read_phys_dscr(ump, loc, M_UDFVOLD, &dscr); 1088 if (error) 1089 return error; 1090 1091 /* blank block is a terminator */ 1092 if (dscr == NULL) 1093 return 0; 1094 1095 /* TERM descriptor is a terminator */ 1096 if (udf_rw16(dscr->tag.id) == TAGID_TERM) { 1097 free(dscr, M_UDFVOLD); 1098 return 0; 1099 } 1100 1101 /* process all others */ 1102 dscr_size = udf_tagsize(dscr, sector_size); 1103 error = udf_process_vds_descriptor(ump, dscr); 1104 if (error) { 1105 free(dscr, M_UDFVOLD); 1106 break; 1107 } 1108 assert((dscr_size % sector_size) == 0); 1109 1110 len -= dscr_size; 1111 loc += dscr_size / sector_size; 1112 } 1113 1114 return error; 1115 } 1116 1117 1118 int 1119 udf_read_vds_space(struct udf_mount *ump) 1120 { 1121 /* struct udf_args *args = &ump->mount_args; */ 1122 struct anchor_vdp *anchor, *anchor2; 1123 size_t size; 1124 uint32_t main_loc, main_len; 1125 uint32_t reserve_loc, reserve_len; 1126 int error; 1127 1128 /* 1129 * read in VDS space provided by the anchors; if one descriptor read 1130 * fails, try the mirror sector. 1131 * 1132 * check if 2nd anchor is different from 1st; if so, go for 2nd. This 1133 * avoids the `compatibility features' of DirectCD that may confuse 1134 * stuff completely. 1135 */ 1136 1137 anchor = ump->anchors[0]; 1138 anchor2 = ump->anchors[1]; 1139 assert(anchor); 1140 1141 if (anchor2) { 1142 size = sizeof(struct extent_ad); 1143 if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) 1144 anchor = anchor2; 1145 /* reserve is specified to be a literal copy of main */ 1146 } 1147 1148 main_loc = udf_rw32(anchor->main_vds_ex.loc); 1149 main_len = udf_rw32(anchor->main_vds_ex.len); 1150 1151 reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); 1152 reserve_len = udf_rw32(anchor->reserve_vds_ex.len); 1153 1154 error = udf_read_vds_extent(ump, main_loc, main_len); 1155 if (error) { 1156 printf("UDF mount: reading in reserve VDS extent\n"); 1157 error = udf_read_vds_extent(ump, reserve_loc, reserve_len); 1158 } 1159 1160 return error; 1161 } 1162 1163 /* --------------------------------------------------------------------- */ 1164 1165 /* 1166 * Read in the logical volume integrity sequence pointed to by our logical 1167 * volume descriptor. Its a sequence that can be extended using fields in the 1168 * integrity descriptor itself. On sequential media only one is found, on 1169 * rewritable media a sequence of descriptors can be found as a form of 1170 * history keeping and on non sequential write-once media the chain is vital 1171 * to allow more and more descriptors to be written. The last descriptor 1172 * written in an extent needs to claim space for a new extent. 1173 */ 1174 1175 static int 1176 udf_retrieve_lvint(struct udf_mount *ump) 1177 { 1178 union dscrptr *dscr; 1179 struct logvol_int_desc *lvint; 1180 struct udf_lvintq *trace; 1181 uint32_t lb_size, lbnum, len; 1182 int dscr_type, error, trace_len; 1183 1184 lb_size = udf_rw32(ump->logical_vol->lb_size); 1185 len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); 1186 lbnum = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); 1187 1188 /* clean trace */ 1189 memset(ump->lvint_trace, 0, 1190 UDF_LVDINT_SEGMENTS * sizeof(struct udf_lvintq)); 1191 1192 trace_len = 0; 1193 trace = ump->lvint_trace; 1194 trace->start = lbnum; 1195 trace->end = lbnum + len/lb_size; 1196 trace->pos = 0; 1197 trace->wpos = 0; 1198 1199 lvint = NULL; 1200 dscr = NULL; 1201 error = 0; 1202 while (len) { 1203 trace->pos = lbnum - trace->start; 1204 trace->wpos = trace->pos + 1; 1205 1206 /* read in our integrity descriptor */ 1207 error = udf_read_phys_dscr(ump, lbnum, M_UDFVOLD, &dscr); 1208 if (!error) { 1209 if (dscr == NULL) { 1210 trace->wpos = trace->pos; 1211 break; /* empty terminates */ 1212 } 1213 dscr_type = udf_rw16(dscr->tag.id); 1214 if (dscr_type == TAGID_TERM) { 1215 trace->wpos = trace->pos; 1216 break; /* clean terminator */ 1217 } 1218 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1219 /* fatal... corrupt disc */ 1220 error = ENOENT; 1221 break; 1222 } 1223 if (lvint) 1224 free(lvint, M_UDFVOLD); 1225 lvint = &dscr->lvid; 1226 dscr = NULL; 1227 } /* else hope for the best... maybe the next is ok */ 1228 1229 DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", 1230 udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); 1231 1232 /* proceed sequential */ 1233 lbnum += 1; 1234 len -= lb_size; 1235 1236 /* are we linking to a new piece? */ 1237 if (dscr && lvint->next_extent.len) { 1238 len = udf_rw32(lvint->next_extent.len); 1239 lbnum = udf_rw32(lvint->next_extent.loc); 1240 1241 if (trace_len >= UDF_LVDINT_SEGMENTS-1) { 1242 /* IEK! segment link full... */ 1243 DPRINTF(VOLUMES, ("lvdint segments full\n")); 1244 error = EINVAL; 1245 } else { 1246 trace++; 1247 trace_len++; 1248 1249 trace->start = lbnum; 1250 trace->end = lbnum + len/lb_size; 1251 trace->pos = 0; 1252 trace->wpos = 0; 1253 } 1254 } 1255 } 1256 1257 /* clean up the mess, esp. when there is an error */ 1258 if (dscr) 1259 free(dscr, M_UDFVOLD); 1260 1261 if (error && lvint) { 1262 free(lvint, M_UDFVOLD); 1263 lvint = NULL; 1264 } 1265 1266 if (!lvint) 1267 error = ENOENT; 1268 1269 ump->logvol_integrity = lvint; 1270 return error; 1271 } 1272 1273 1274 static int 1275 udf_loose_lvint_history(struct udf_mount *ump) 1276 { 1277 union dscrptr **bufs, *dscr, *last_dscr; 1278 struct udf_lvintq *trace, *in_trace, *out_trace; 1279 struct logvol_int_desc *lvint; 1280 uint32_t in_ext, in_pos, in_len; 1281 uint32_t out_ext, out_wpos, out_len; 1282 uint32_t lb_num; 1283 uint32_t len, start; 1284 int ext, minext, extlen, cnt, cpy_len, dscr_type; 1285 int losing; 1286 int error; 1287 1288 DPRINTF(VOLUMES, ("need to lose some lvint history\n")); 1289 1290 /* search smallest extent */ 1291 trace = &ump->lvint_trace[0]; 1292 minext = trace->end - trace->start; 1293 for (ext = 1; ext < UDF_LVDINT_SEGMENTS; ext++) { 1294 trace = &ump->lvint_trace[ext]; 1295 extlen = trace->end - trace->start; 1296 if (extlen == 0) 1297 break; 1298 minext = MIN(minext, extlen); 1299 } 1300 losing = MIN(minext, UDF_LVINT_LOSSAGE); 1301 /* no sense wiping all */ 1302 if (losing == minext) 1303 losing--; 1304 1305 DPRINTF(VOLUMES, ("\tlosing %d entries\n", losing)); 1306 1307 /* get buffer for pieces */ 1308 bufs = malloc(UDF_LVDINT_SEGMENTS * sizeof(void *), M_TEMP, M_WAITOK); 1309 1310 in_ext = 0; 1311 in_pos = losing; 1312 in_trace = &ump->lvint_trace[in_ext]; 1313 in_len = in_trace->end - in_trace->start; 1314 out_ext = 0; 1315 out_wpos = 0; 1316 out_trace = &ump->lvint_trace[out_ext]; 1317 out_len = out_trace->end - out_trace->start; 1318 1319 last_dscr = NULL; 1320 for(;;) { 1321 out_trace->pos = out_wpos; 1322 out_trace->wpos = out_trace->pos; 1323 if (in_pos >= in_len) { 1324 in_ext++; 1325 in_pos = 0; 1326 in_trace = &ump->lvint_trace[in_ext]; 1327 in_len = in_trace->end - in_trace->start; 1328 } 1329 if (out_wpos >= out_len) { 1330 out_ext++; 1331 out_wpos = 0; 1332 out_trace = &ump->lvint_trace[out_ext]; 1333 out_len = out_trace->end - out_trace->start; 1334 } 1335 /* copy overlap contents */ 1336 cpy_len = MIN(in_len - in_pos, out_len - out_wpos); 1337 cpy_len = MIN(cpy_len, in_len - in_trace->pos); 1338 if (cpy_len == 0) 1339 break; 1340 1341 /* copy */ 1342 DPRINTF(VOLUMES, ("\treading %d lvid descriptors\n", cpy_len)); 1343 for (cnt = 0; cnt < cpy_len; cnt++) { 1344 /* read in our integrity descriptor */ 1345 lb_num = in_trace->start + in_pos + cnt; 1346 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, 1347 &dscr); 1348 if (error) { 1349 /* copy last one */ 1350 dscr = last_dscr; 1351 } 1352 bufs[cnt] = dscr; 1353 if (!error) { 1354 if (dscr == NULL) { 1355 out_trace->pos = out_wpos + cnt; 1356 out_trace->wpos = out_trace->pos; 1357 break; /* empty terminates */ 1358 } 1359 dscr_type = udf_rw16(dscr->tag.id); 1360 if (dscr_type == TAGID_TERM) { 1361 out_trace->pos = out_wpos + cnt; 1362 out_trace->wpos = out_trace->pos; 1363 break; /* clean terminator */ 1364 } 1365 if (dscr_type != TAGID_LOGVOL_INTEGRITY) { 1366 panic( "UDF integrity sequence " 1367 "corrupted while mounted!\n"); 1368 } 1369 last_dscr = dscr; 1370 } 1371 } 1372 1373 /* patch up if first entry was on error */ 1374 if (bufs[0] == NULL) { 1375 for (cnt = 0; cnt < cpy_len; cnt++) 1376 if (bufs[cnt] != NULL) 1377 break; 1378 last_dscr = bufs[cnt]; 1379 for (; cnt > 0; cnt--) { 1380 bufs[cnt] = last_dscr; 1381 } 1382 } 1383 1384 /* glue + write out */ 1385 DPRINTF(VOLUMES, ("\twriting %d lvid descriptors\n", cpy_len)); 1386 for (cnt = 0; cnt < cpy_len; cnt++) { 1387 lb_num = out_trace->start + out_wpos + cnt; 1388 lvint = &bufs[cnt]->lvid; 1389 1390 /* set continuation */ 1391 len = 0; 1392 start = 0; 1393 if (out_wpos + cnt == out_len) { 1394 /* get continuation */ 1395 trace = &ump->lvint_trace[out_ext+1]; 1396 len = trace->end - trace->start; 1397 start = trace->start; 1398 } 1399 lvint->next_extent.len = udf_rw32(len); 1400 lvint->next_extent.loc = udf_rw32(start); 1401 1402 lb_num = trace->start + trace->wpos; 1403 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1404 bufs[cnt], lb_num, lb_num); 1405 DPRINTFIF(VOLUMES, error, 1406 ("error writing lvint lb_num\n")); 1407 } 1408 1409 /* free non repeating descriptors */ 1410 last_dscr = NULL; 1411 for (cnt = 0; cnt < cpy_len; cnt++) { 1412 if (bufs[cnt] != last_dscr) 1413 free(bufs[cnt], M_UDFVOLD); 1414 last_dscr = bufs[cnt]; 1415 } 1416 1417 /* advance */ 1418 in_pos += cpy_len; 1419 out_wpos += cpy_len; 1420 } 1421 1422 free(bufs, M_TEMP); 1423 1424 return 0; 1425 } 1426 1427 1428 static int 1429 udf_writeout_lvint(struct udf_mount *ump, int lvflag) 1430 { 1431 struct udf_lvintq *trace; 1432 struct timeval now_v; 1433 struct timespec now_s; 1434 uint32_t sector; 1435 int logvol_integrity; 1436 int space, error; 1437 1438 DPRINTF(VOLUMES, ("writing out logvol integrity descriptor\n")); 1439 1440 again: 1441 /* get free space in last chunk */ 1442 trace = ump->lvint_trace; 1443 while (trace->wpos > (trace->end - trace->start)) { 1444 DPRINTF(VOLUMES, ("skip : start = %d, end = %d, pos = %d, " 1445 "wpos = %d\n", trace->start, trace->end, 1446 trace->pos, trace->wpos)); 1447 trace++; 1448 } 1449 1450 /* check if there is space to append */ 1451 space = (trace->end - trace->start) - trace->wpos; 1452 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1453 "space = %d\n", trace->start, trace->end, trace->pos, 1454 trace->wpos, space)); 1455 1456 /* get state */ 1457 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 1458 if (logvol_integrity == UDF_INTEGRITY_CLOSED) { 1459 if ((space < 3) && (lvflag & UDF_APPENDONLY_LVINT)) { 1460 /* TODO extent LVINT space if possible */ 1461 return EROFS; 1462 } 1463 } 1464 1465 if (space < 1) { 1466 if (lvflag & UDF_APPENDONLY_LVINT) 1467 return EROFS; 1468 /* loose history by re-writing extents */ 1469 error = udf_loose_lvint_history(ump); 1470 if (error) 1471 return error; 1472 goto again; 1473 } 1474 1475 /* update our integrity descriptor to identify us and timestamp it */ 1476 DPRINTF(VOLUMES, ("updating integrity descriptor\n")); 1477 microtime(&now_v); 1478 TIMEVAL_TO_TIMESPEC(&now_v, &now_s); 1479 udf_timespec_to_timestamp(&now_s, &ump->logvol_integrity->time); 1480 udf_set_regid(&ump->logvol_info->impl_id, IMPL_NAME); 1481 udf_add_impl_regid(ump, &ump->logvol_info->impl_id); 1482 1483 /* writeout integrity descriptor */ 1484 sector = trace->start + trace->wpos; 1485 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1486 (union dscrptr *) ump->logvol_integrity, 1487 sector, sector); 1488 DPRINTF(VOLUMES, ("writeout lvint : error = %d\n", error)); 1489 if (error) 1490 return error; 1491 1492 /* advance write position */ 1493 trace->wpos++; space--; 1494 if (space >= 1) { 1495 /* append terminator */ 1496 sector = trace->start + trace->wpos; 1497 error = udf_write_terminator(ump, sector); 1498 1499 DPRINTF(VOLUMES, ("write terminator : error = %d\n", error)); 1500 } 1501 1502 space = (trace->end - trace->start) - trace->wpos; 1503 DPRINTF(VOLUMES, ("write start = %d, end = %d, pos = %d, wpos = %d, " 1504 "space = %d\n", trace->start, trace->end, trace->pos, 1505 trace->wpos, space)); 1506 DPRINTF(VOLUMES, ("finished writing out logvol integrity descriptor " 1507 "successfull\n")); 1508 1509 return error; 1510 } 1511 1512 /* --------------------------------------------------------------------- */ 1513 1514 static int 1515 udf_read_physical_partition_spacetables(struct udf_mount *ump) 1516 { 1517 union dscrptr *dscr; 1518 /* struct udf_args *args = &ump->mount_args; */ 1519 struct part_desc *partd; 1520 struct part_hdr_desc *parthdr; 1521 struct udf_bitmap *bitmap; 1522 uint32_t phys_part; 1523 uint32_t lb_num, len; 1524 int error, dscr_type; 1525 1526 /* unallocated space map */ 1527 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1528 partd = ump->partitions[phys_part]; 1529 if (partd == NULL) 1530 continue; 1531 parthdr = &partd->_impl_use.part_hdr; 1532 1533 lb_num = udf_rw32(partd->start_loc); 1534 lb_num += udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1535 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1536 if (len == 0) 1537 continue; 1538 1539 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1540 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1541 if (!error && dscr) { 1542 /* analyse */ 1543 dscr_type = udf_rw16(dscr->tag.id); 1544 if (dscr_type == TAGID_SPACE_BITMAP) { 1545 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1546 ump->part_unalloc_dscr[phys_part] = &dscr->sbd; 1547 1548 /* fill in ump->part_unalloc_bits */ 1549 bitmap = &ump->part_unalloc_bits[phys_part]; 1550 bitmap->blob = (uint8_t *) dscr; 1551 bitmap->bits = dscr->sbd.data; 1552 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1553 bitmap->pages = NULL; /* TODO */ 1554 bitmap->data_pos = 0; 1555 bitmap->metadata_pos = 0; 1556 } else { 1557 free(dscr, M_UDFVOLD); 1558 1559 printf( "UDF mount: error reading unallocated " 1560 "space bitmap\n"); 1561 return EROFS; 1562 } 1563 } else { 1564 /* blank not allowed */ 1565 printf("UDF mount: blank unallocated space bitmap\n"); 1566 return EROFS; 1567 } 1568 } 1569 1570 /* unallocated space table (not supported) */ 1571 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1572 partd = ump->partitions[phys_part]; 1573 if (partd == NULL) 1574 continue; 1575 parthdr = &partd->_impl_use.part_hdr; 1576 1577 len = udf_rw32(parthdr->unalloc_space_table.len); 1578 if (len) { 1579 printf("UDF mount: space tables not supported\n"); 1580 return EROFS; 1581 } 1582 } 1583 1584 /* freed space map */ 1585 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1586 partd = ump->partitions[phys_part]; 1587 if (partd == NULL) 1588 continue; 1589 parthdr = &partd->_impl_use.part_hdr; 1590 1591 /* freed space map */ 1592 lb_num = udf_rw32(partd->start_loc); 1593 lb_num += udf_rw32(parthdr->freed_space_bitmap.lb_num); 1594 len = udf_rw32(parthdr->freed_space_bitmap.len); 1595 if (len == 0) 1596 continue; 1597 1598 DPRINTF(VOLUMES, ("Read unalloc. space bitmap %d\n", lb_num)); 1599 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 1600 if (!error && dscr) { 1601 /* analyse */ 1602 dscr_type = udf_rw16(dscr->tag.id); 1603 if (dscr_type == TAGID_SPACE_BITMAP) { 1604 DPRINTF(VOLUMES, ("Accepting space bitmap\n")); 1605 ump->part_freed_dscr[phys_part] = &dscr->sbd; 1606 1607 /* fill in ump->part_freed_bits */ 1608 bitmap = &ump->part_unalloc_bits[phys_part]; 1609 bitmap->blob = (uint8_t *) dscr; 1610 bitmap->bits = dscr->sbd.data; 1611 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1612 bitmap->pages = NULL; /* TODO */ 1613 bitmap->data_pos = 0; 1614 bitmap->metadata_pos = 0; 1615 } else { 1616 free(dscr, M_UDFVOLD); 1617 1618 printf( "UDF mount: error reading freed " 1619 "space bitmap\n"); 1620 return EROFS; 1621 } 1622 } else { 1623 /* blank not allowed */ 1624 printf("UDF mount: blank freed space bitmap\n"); 1625 return EROFS; 1626 } 1627 } 1628 1629 /* freed space table (not supported) */ 1630 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1631 partd = ump->partitions[phys_part]; 1632 if (partd == NULL) 1633 continue; 1634 parthdr = &partd->_impl_use.part_hdr; 1635 1636 len = udf_rw32(parthdr->freed_space_table.len); 1637 if (len) { 1638 printf("UDF mount: space tables not supported\n"); 1639 return EROFS; 1640 } 1641 } 1642 1643 return 0; 1644 } 1645 1646 1647 /* TODO implement async writeout */ 1648 int 1649 udf_write_physical_partition_spacetables(struct udf_mount *ump, int waitfor) 1650 { 1651 union dscrptr *dscr; 1652 /* struct udf_args *args = &ump->mount_args; */ 1653 struct part_desc *partd; 1654 struct part_hdr_desc *parthdr; 1655 uint32_t phys_part; 1656 uint32_t lb_num, len, ptov; 1657 int error_all, error; 1658 1659 error_all = 0; 1660 /* unallocated space map */ 1661 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1662 partd = ump->partitions[phys_part]; 1663 if (partd == NULL) 1664 continue; 1665 parthdr = &partd->_impl_use.part_hdr; 1666 1667 ptov = udf_rw32(partd->start_loc); 1668 lb_num = udf_rw32(parthdr->unalloc_space_bitmap.lb_num); 1669 len = udf_rw32(parthdr->unalloc_space_bitmap.len); 1670 if (len == 0) 1671 continue; 1672 1673 DPRINTF(VOLUMES, ("Write unalloc. space bitmap %d\n", 1674 lb_num + ptov)); 1675 dscr = (union dscrptr *) ump->part_unalloc_dscr[phys_part]; 1676 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1677 (union dscrptr *) dscr, 1678 ptov + lb_num, lb_num); 1679 if (error) { 1680 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1681 error_all = error; 1682 } 1683 } 1684 1685 /* freed space map */ 1686 for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { 1687 partd = ump->partitions[phys_part]; 1688 if (partd == NULL) 1689 continue; 1690 parthdr = &partd->_impl_use.part_hdr; 1691 1692 /* freed space map */ 1693 ptov = udf_rw32(partd->start_loc); 1694 lb_num = udf_rw32(parthdr->freed_space_bitmap.lb_num); 1695 len = udf_rw32(parthdr->freed_space_bitmap.len); 1696 if (len == 0) 1697 continue; 1698 1699 DPRINTF(VOLUMES, ("Write freed space bitmap %d\n", 1700 lb_num + ptov)); 1701 dscr = (union dscrptr *) ump->part_freed_dscr[phys_part]; 1702 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 1703 (union dscrptr *) dscr, 1704 ptov + lb_num, lb_num); 1705 if (error) { 1706 DPRINTF(VOLUMES, ("\tfailed!! (error %d)\n", error)); 1707 error_all = error; 1708 } 1709 } 1710 1711 return error_all; 1712 } 1713 1714 1715 static int 1716 udf_read_metadata_partition_spacetable(struct udf_mount *ump) 1717 { 1718 struct udf_node *bitmap_node; 1719 union dscrptr *dscr; 1720 struct udf_bitmap *bitmap; 1721 uint64_t inflen; 1722 int error, dscr_type; 1723 1724 bitmap_node = ump->metadatabitmap_node; 1725 1726 /* only read in when metadata bitmap node is read in */ 1727 if (bitmap_node == NULL) 1728 return 0; 1729 1730 if (bitmap_node->fe) { 1731 inflen = udf_rw64(bitmap_node->fe->inf_len); 1732 } else { 1733 KASSERT(bitmap_node->efe); 1734 inflen = udf_rw64(bitmap_node->efe->inf_len); 1735 } 1736 1737 DPRINTF(VOLUMES, ("Reading metadata space bitmap for " 1738 "%"PRIu64" bytes\n", inflen)); 1739 1740 /* allocate space for bitmap */ 1741 dscr = malloc(inflen, M_UDFVOLD, M_CANFAIL | M_WAITOK); 1742 if (!dscr) 1743 return ENOMEM; 1744 1745 /* set vnode type to regular file or we can't read from it! */ 1746 bitmap_node->vnode->v_type = VREG; 1747 1748 /* read in complete metadata bitmap file */ 1749 error = vn_rdwr(UIO_READ, bitmap_node->vnode, 1750 dscr, 1751 inflen, 0, 1752 UIO_SYSSPACE, 1753 IO_SYNC | IO_ALTSEMANTICS, FSCRED, 1754 NULL, NULL); 1755 if (error) { 1756 DPRINTF(VOLUMES, ("Error reading metadata space bitmap\n")); 1757 goto errorout; 1758 } 1759 1760 /* analyse */ 1761 dscr_type = udf_rw16(dscr->tag.id); 1762 if (dscr_type == TAGID_SPACE_BITMAP) { 1763 DPRINTF(VOLUMES, ("Accepting metadata space bitmap\n")); 1764 ump->metadata_unalloc_dscr = &dscr->sbd; 1765 1766 /* fill in bitmap bits */ 1767 bitmap = &ump->metadata_unalloc_bits; 1768 bitmap->blob = (uint8_t *) dscr; 1769 bitmap->bits = dscr->sbd.data; 1770 bitmap->max_offset = udf_rw32(dscr->sbd.num_bits); 1771 bitmap->pages = NULL; /* TODO */ 1772 bitmap->data_pos = 0; 1773 bitmap->metadata_pos = 0; 1774 } else { 1775 DPRINTF(VOLUMES, ("No valid bitmap found!\n")); 1776 goto errorout; 1777 } 1778 1779 return 0; 1780 1781 errorout: 1782 free(dscr, M_UDFVOLD); 1783 printf( "UDF mount: error reading unallocated " 1784 "space bitmap for metadata partition\n"); 1785 return EROFS; 1786 } 1787 1788 1789 int 1790 udf_write_metadata_partition_spacetable(struct udf_mount *ump, int waitfor) 1791 { 1792 struct udf_node *bitmap_node; 1793 union dscrptr *dscr; 1794 uint64_t new_inflen; 1795 int dummy, error; 1796 1797 bitmap_node = ump->metadatabitmap_node; 1798 1799 /* only write out when metadata bitmap node is known */ 1800 if (bitmap_node == NULL) 1801 return 0; 1802 1803 if (!bitmap_node->fe) { 1804 KASSERT(bitmap_node->efe); 1805 } 1806 1807 /* reduce length to zero */ 1808 dscr = (union dscrptr *) ump->metadata_unalloc_dscr; 1809 new_inflen = udf_tagsize(dscr, 1); 1810 1811 DPRINTF(VOLUMES, ("Resize and write out metadata space bitmap " 1812 " for %"PRIu64" bytes\n", new_inflen)); 1813 1814 error = udf_resize_node(bitmap_node, new_inflen, &dummy); 1815 if (error) 1816 printf("Error resizing metadata space bitmap\n"); 1817 1818 error = vn_rdwr(UIO_WRITE, bitmap_node->vnode, 1819 dscr, 1820 new_inflen, 0, 1821 UIO_SYSSPACE, 1822 IO_ALTSEMANTICS, FSCRED, 1823 NULL, NULL); 1824 1825 bitmap_node->i_flags |= IN_MODIFIED; 1826 error = vflushbuf(bitmap_node->vnode, FSYNC_WAIT); 1827 if (error == 0) 1828 error = VOP_FSYNC(bitmap_node->vnode, 1829 FSCRED, FSYNC_WAIT, 0, 0); 1830 1831 if (error) 1832 printf( "Error writing out metadata partition unalloced " 1833 "space bitmap!\n"); 1834 1835 return error; 1836 } 1837 1838 1839 /* --------------------------------------------------------------------- */ 1840 1841 /* 1842 * Checks if ump's vds information is correct and complete 1843 */ 1844 1845 int 1846 udf_process_vds(struct udf_mount *ump) { 1847 union udf_pmap *mapping; 1848 /* struct udf_args *args = &ump->mount_args; */ 1849 struct logvol_int_desc *lvint; 1850 struct udf_logvol_info *lvinfo; 1851 uint32_t n_pm; 1852 uint8_t *pmap_pos; 1853 char *domain_name, *map_name; 1854 const char *check_name; 1855 char bits[128]; 1856 int pmap_stype, pmap_size; 1857 int pmap_type, log_part, phys_part, raw_phys_part, maps_on; 1858 int n_phys, n_virt, n_spar, n_meta; 1859 int len; 1860 1861 if (ump == NULL) 1862 return ENOENT; 1863 1864 /* we need at least an anchor (trivial, but for safety) */ 1865 if (ump->anchors[0] == NULL) 1866 return EINVAL; 1867 1868 /* we need at least one primary and one logical volume descriptor */ 1869 if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) 1870 return EINVAL; 1871 1872 /* we need at least one partition descriptor */ 1873 if (ump->partitions[0] == NULL) 1874 return EINVAL; 1875 1876 /* check logical volume sector size verses device sector size */ 1877 if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { 1878 printf("UDF mount: format violation, lb_size != sector size\n"); 1879 return EINVAL; 1880 } 1881 1882 /* check domain name */ 1883 domain_name = ump->logical_vol->domain_id.id; 1884 if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { 1885 printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); 1886 return EINVAL; 1887 } 1888 1889 /* retrieve logical volume integrity sequence */ 1890 (void)udf_retrieve_lvint(ump); 1891 1892 /* 1893 * We need at least one logvol integrity descriptor recorded. Note 1894 * that its OK to have an open logical volume integrity here. The VAT 1895 * will close/update the integrity. 1896 */ 1897 if (ump->logvol_integrity == NULL) 1898 return EINVAL; 1899 1900 /* process derived structures */ 1901 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1902 lvint = ump->logvol_integrity; 1903 lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); 1904 ump->logvol_info = lvinfo; 1905 1906 /* TODO check udf versions? */ 1907 1908 /* 1909 * check logvol mappings: effective virt->log partmap translation 1910 * check and recording of the mapping results. Saves expensive 1911 * strncmp() in tight places. 1912 */ 1913 DPRINTF(VOLUMES, ("checking logvol mappings\n")); 1914 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 1915 pmap_pos = ump->logical_vol->maps; 1916 1917 if (n_pm > UDF_PMAPS) { 1918 printf("UDF mount: too many mappings\n"); 1919 return EINVAL; 1920 } 1921 1922 /* count types and set partition numbers */ 1923 ump->data_part = ump->node_part = ump->fids_part = 0; 1924 n_phys = n_virt = n_spar = n_meta = 0; 1925 for (log_part = 0; log_part < n_pm; log_part++) { 1926 mapping = (union udf_pmap *) pmap_pos; 1927 pmap_stype = pmap_pos[0]; 1928 pmap_size = pmap_pos[1]; 1929 switch (pmap_stype) { 1930 case 1: /* physical mapping */ 1931 /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ 1932 raw_phys_part = udf_rw16(mapping->pm1.part_num); 1933 pmap_type = UDF_VTOP_TYPE_PHYS; 1934 n_phys++; 1935 ump->data_part = log_part; 1936 ump->node_part = log_part; 1937 ump->fids_part = log_part; 1938 break; 1939 case 2: /* virtual/sparable/meta mapping */ 1940 map_name = mapping->pm2.part_id.id; 1941 /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ 1942 raw_phys_part = udf_rw16(mapping->pm2.part_num); 1943 pmap_type = UDF_VTOP_TYPE_UNKNOWN; 1944 len = UDF_REGID_ID_SIZE; 1945 1946 check_name = "*UDF Virtual Partition"; 1947 if (strncmp(map_name, check_name, len) == 0) { 1948 pmap_type = UDF_VTOP_TYPE_VIRT; 1949 n_virt++; 1950 ump->node_part = log_part; 1951 break; 1952 } 1953 check_name = "*UDF Sparable Partition"; 1954 if (strncmp(map_name, check_name, len) == 0) { 1955 pmap_type = UDF_VTOP_TYPE_SPARABLE; 1956 n_spar++; 1957 ump->data_part = log_part; 1958 ump->node_part = log_part; 1959 ump->fids_part = log_part; 1960 break; 1961 } 1962 check_name = "*UDF Metadata Partition"; 1963 if (strncmp(map_name, check_name, len) == 0) { 1964 pmap_type = UDF_VTOP_TYPE_META; 1965 n_meta++; 1966 ump->node_part = log_part; 1967 ump->fids_part = log_part; 1968 break; 1969 } 1970 break; 1971 default: 1972 return EINVAL; 1973 } 1974 1975 /* 1976 * BUGALERT: some rogue implementations use random physical 1977 * partition numbers to break other implementations so lookup 1978 * the number. 1979 */ 1980 phys_part = udf_find_raw_phys(ump, raw_phys_part); 1981 1982 DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, 1983 raw_phys_part, phys_part, pmap_type)); 1984 1985 if (phys_part == UDF_PARTITIONS) 1986 return EINVAL; 1987 if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) 1988 return EINVAL; 1989 1990 ump->vtop [log_part] = phys_part; 1991 ump->vtop_tp[log_part] = pmap_type; 1992 1993 pmap_pos += pmap_size; 1994 } 1995 /* not winning the beauty contest */ 1996 ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; 1997 1998 /* test some basic UDF assertions/requirements */ 1999 if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) 2000 return EINVAL; 2001 2002 if (n_virt) { 2003 if ((n_phys == 0) || n_spar || n_meta) 2004 return EINVAL; 2005 } 2006 if (n_spar + n_phys == 0) 2007 return EINVAL; 2008 2009 /* select allocation type for each logical partition */ 2010 for (log_part = 0; log_part < n_pm; log_part++) { 2011 maps_on = ump->vtop[log_part]; 2012 switch (ump->vtop_tp[log_part]) { 2013 case UDF_VTOP_TYPE_PHYS : 2014 assert(maps_on == log_part); 2015 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2016 break; 2017 case UDF_VTOP_TYPE_VIRT : 2018 ump->vtop_alloc[log_part] = UDF_ALLOC_VAT; 2019 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2020 break; 2021 case UDF_VTOP_TYPE_SPARABLE : 2022 assert(maps_on == log_part); 2023 ump->vtop_alloc[log_part] = UDF_ALLOC_SPACEMAP; 2024 break; 2025 case UDF_VTOP_TYPE_META : 2026 ump->vtop_alloc[log_part] = UDF_ALLOC_METABITMAP; 2027 if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { 2028 /* special case for UDF 2.60 */ 2029 ump->vtop_alloc[log_part] = UDF_ALLOC_METASEQUENTIAL; 2030 ump->vtop_alloc[maps_on] = UDF_ALLOC_SEQUENTIAL; 2031 } 2032 break; 2033 default: 2034 panic("bad alloction type in udf's ump->vtop\n"); 2035 } 2036 } 2037 2038 /* determine logical volume open/closure actions */ 2039 if (n_virt) { 2040 ump->lvopen = 0; 2041 if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) 2042 ump->lvopen |= UDF_OPEN_SESSION ; 2043 ump->lvclose = UDF_WRITE_VAT; 2044 if (ump->mount_args.udfmflags & UDFMNT_CLOSESESSION) 2045 ump->lvclose |= UDF_CLOSE_SESSION; 2046 } else { 2047 /* `normal' rewritable or non sequential media */ 2048 ump->lvopen = UDF_WRITE_LVINT; 2049 ump->lvclose = UDF_WRITE_LVINT; 2050 if ((ump->discinfo.mmc_cur & MMC_CAP_REWRITABLE) == 0) 2051 ump->lvopen |= UDF_APPENDONLY_LVINT; 2052 if ((ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2053 ump->lvopen &= ~UDF_APPENDONLY_LVINT; 2054 } 2055 2056 /* 2057 * Determine sheduler error behaviour. For virtual partitions, update 2058 * the trackinfo; for sparable partitions replace a whole block on the 2059 * sparable table. Allways requeue. 2060 */ 2061 ump->lvreadwrite = 0; 2062 if (n_virt) 2063 ump->lvreadwrite = UDF_UPDATE_TRACKINFO; 2064 if (n_spar) 2065 ump->lvreadwrite = UDF_REMAP_BLOCK; 2066 2067 /* 2068 * Select our sheduler 2069 */ 2070 ump->strategy = &udf_strat_rmw; 2071 if (n_virt || (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE)) 2072 ump->strategy = &udf_strat_sequential; 2073 if ((ump->discinfo.mmc_class == MMC_CLASS_DISC) || 2074 (ump->discinfo.mmc_class == MMC_CLASS_UNKN)) 2075 ump->strategy = &udf_strat_direct; 2076 if (n_spar) 2077 ump->strategy = &udf_strat_rmw; 2078 2079 #if 0 2080 /* read-only access won't benefit from the other shedulers */ 2081 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 2082 ump->strategy = &udf_strat_direct; 2083 #endif 2084 2085 /* print results */ 2086 DPRINTF(VOLUMES, ("\tdata partition %d\n", ump->data_part)); 2087 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->data_part])); 2088 DPRINTF(VOLUMES, ("\tnode partition %d\n", ump->node_part)); 2089 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->node_part])); 2090 DPRINTF(VOLUMES, ("\tfids partition %d\n", ump->fids_part)); 2091 DPRINTF(VOLUMES, ("\t\talloc scheme %d\n", ump->vtop_alloc[ump->fids_part])); 2092 2093 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvopen); 2094 DPRINTF(VOLUMES, ("\tactions on logvol open %s\n", bits)); 2095 snprintb(bits, sizeof(bits), UDFLOGVOL_BITS, ump->lvclose); 2096 DPRINTF(VOLUMES, ("\tactions on logvol close %s\n", bits)); 2097 snprintb(bits, sizeof(bits), UDFONERROR_BITS, ump->lvreadwrite); 2098 DPRINTF(VOLUMES, ("\tactions on logvol errors %s\n", bits)); 2099 2100 DPRINTF(VOLUMES, ("\tselected sheduler `%s`\n", 2101 (ump->strategy == &udf_strat_direct) ? "Direct" : 2102 (ump->strategy == &udf_strat_sequential) ? "Sequential" : 2103 (ump->strategy == &udf_strat_rmw) ? "RMW" : "UNKNOWN!")); 2104 2105 /* signal its OK for now */ 2106 return 0; 2107 } 2108 2109 /* --------------------------------------------------------------------- */ 2110 2111 /* 2112 * Update logical volume name in all structures that keep a record of it. We 2113 * use memmove since each of them might be specified as a source. 2114 * 2115 * Note that it doesn't update the VAT structure! 2116 */ 2117 2118 static void 2119 udf_update_logvolname(struct udf_mount *ump, char *logvol_id) 2120 { 2121 struct logvol_desc *lvd = NULL; 2122 struct fileset_desc *fsd = NULL; 2123 struct udf_lv_info *lvi = NULL; 2124 2125 DPRINTF(VOLUMES, ("Updating logical volume name\n")); 2126 lvd = ump->logical_vol; 2127 fsd = ump->fileset_desc; 2128 if (ump->implementation) 2129 lvi = &ump->implementation->_impl_use.lv_info; 2130 2131 /* logvol's id might be specified as origional so use memmove here */ 2132 memmove(lvd->logvol_id, logvol_id, 128); 2133 if (fsd) 2134 memmove(fsd->logvol_id, logvol_id, 128); 2135 if (lvi) 2136 memmove(lvi->logvol_id, logvol_id, 128); 2137 } 2138 2139 /* --------------------------------------------------------------------- */ 2140 2141 void 2142 udf_inittag(struct udf_mount *ump, struct desc_tag *tag, int tagid, 2143 uint32_t sector) 2144 { 2145 assert(ump->logical_vol); 2146 2147 tag->id = udf_rw16(tagid); 2148 tag->descriptor_ver = ump->logical_vol->tag.descriptor_ver; 2149 tag->cksum = 0; 2150 tag->reserved = 0; 2151 tag->serial_num = ump->logical_vol->tag.serial_num; 2152 tag->tag_loc = udf_rw32(sector); 2153 } 2154 2155 2156 uint64_t 2157 udf_advance_uniqueid(struct udf_mount *ump) 2158 { 2159 uint64_t unique_id; 2160 2161 mutex_enter(&ump->logvol_mutex); 2162 unique_id = udf_rw64(ump->logvol_integrity->lvint_next_unique_id); 2163 if (unique_id < 0x10) 2164 unique_id = 0x10; 2165 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id + 1); 2166 mutex_exit(&ump->logvol_mutex); 2167 2168 return unique_id; 2169 } 2170 2171 2172 static void 2173 udf_adjust_filecount(struct udf_node *udf_node, int sign) 2174 { 2175 struct udf_mount *ump = udf_node->ump; 2176 uint32_t num_dirs, num_files; 2177 int udf_file_type; 2178 2179 /* get file type */ 2180 if (udf_node->fe) { 2181 udf_file_type = udf_node->fe->icbtag.file_type; 2182 } else { 2183 udf_file_type = udf_node->efe->icbtag.file_type; 2184 } 2185 2186 /* adjust file count */ 2187 mutex_enter(&ump->allocate_mutex); 2188 if (udf_file_type == UDF_ICB_FILETYPE_DIRECTORY) { 2189 num_dirs = udf_rw32(ump->logvol_info->num_directories); 2190 ump->logvol_info->num_directories = 2191 udf_rw32((num_dirs + sign)); 2192 } else { 2193 num_files = udf_rw32(ump->logvol_info->num_files); 2194 ump->logvol_info->num_files = 2195 udf_rw32((num_files + sign)); 2196 } 2197 mutex_exit(&ump->allocate_mutex); 2198 } 2199 2200 2201 void 2202 udf_osta_charset(struct charspec *charspec) 2203 { 2204 memset(charspec, 0, sizeof(struct charspec)); 2205 charspec->type = 0; 2206 strcpy((char *) charspec->inf, "OSTA Compressed Unicode"); 2207 } 2208 2209 2210 /* first call udf_set_regid and then the suffix */ 2211 void 2212 udf_set_regid(struct regid *regid, char const *name) 2213 { 2214 memset(regid, 0, sizeof(struct regid)); 2215 regid->flags = 0; /* not dirty and not protected */ 2216 strcpy((char *) regid->id, name); 2217 } 2218 2219 2220 void 2221 udf_add_domain_regid(struct udf_mount *ump, struct regid *regid) 2222 { 2223 uint16_t *ver; 2224 2225 ver = (uint16_t *) regid->id_suffix; 2226 *ver = ump->logvol_info->min_udf_readver; 2227 } 2228 2229 2230 void 2231 udf_add_udf_regid(struct udf_mount *ump, struct regid *regid) 2232 { 2233 uint16_t *ver; 2234 2235 ver = (uint16_t *) regid->id_suffix; 2236 *ver = ump->logvol_info->min_udf_readver; 2237 2238 regid->id_suffix[2] = 4; /* unix */ 2239 regid->id_suffix[3] = 8; /* NetBSD */ 2240 } 2241 2242 2243 void 2244 udf_add_impl_regid(struct udf_mount *ump, struct regid *regid) 2245 { 2246 regid->id_suffix[0] = 4; /* unix */ 2247 regid->id_suffix[1] = 8; /* NetBSD */ 2248 } 2249 2250 2251 void 2252 udf_add_app_regid(struct udf_mount *ump, struct regid *regid) 2253 { 2254 regid->id_suffix[0] = APP_VERSION_MAIN; 2255 regid->id_suffix[1] = APP_VERSION_SUB; 2256 } 2257 2258 static int 2259 udf_create_parentfid(struct udf_mount *ump, struct fileid_desc *fid, 2260 struct long_ad *parent, uint64_t unique_id) 2261 { 2262 /* the size of an empty FID is 38 but needs to be a multiple of 4 */ 2263 int fidsize = 40; 2264 2265 udf_inittag(ump, &fid->tag, TAGID_FID, udf_rw32(parent->loc.lb_num)); 2266 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 2267 fid->file_char = UDF_FILE_CHAR_DIR | UDF_FILE_CHAR_PAR; 2268 fid->icb = *parent; 2269 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 2270 fid->tag.desc_crc_len = udf_rw16(fidsize - UDF_DESC_TAG_LENGTH); 2271 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 2272 2273 return fidsize; 2274 } 2275 2276 /* --------------------------------------------------------------------- */ 2277 2278 /* 2279 * Extended attribute support. UDF knows of 3 places for extended attributes: 2280 * 2281 * (a) inside the file's (e)fe in the length of the extended attribute area 2282 * before the allocation descriptors/filedata 2283 * 2284 * (b) in a file referenced by (e)fe->ext_attr_icb and 2285 * 2286 * (c) in the e(fe)'s associated stream directory that can hold various 2287 * sub-files. In the stream directory a few fixed named subfiles are reserved 2288 * for NT/Unix ACL's and OS/2 attributes. 2289 * 2290 * NOTE: Extended attributes are read randomly but allways written 2291 * *atomicaly*. For ACL's this interface is propably different but not known 2292 * to me yet. 2293 * 2294 * Order of extended attributes in a space : 2295 * ECMA 167 EAs 2296 * Non block aligned Implementation Use EAs 2297 * Block aligned Implementation Use EAs 2298 * Application Use EAs 2299 */ 2300 2301 static int 2302 udf_impl_extattr_check(struct impl_extattr_entry *implext) 2303 { 2304 uint16_t *spos; 2305 2306 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2307 /* checksum valid? */ 2308 DPRINTF(EXTATTR, ("checking UDF impl. attr checksum\n")); 2309 spos = (uint16_t *) implext->data; 2310 if (udf_rw16(*spos) != udf_ea_cksum((uint8_t *) implext)) 2311 return EINVAL; 2312 } 2313 return 0; 2314 } 2315 2316 static void 2317 udf_calc_impl_extattr_checksum(struct impl_extattr_entry *implext) 2318 { 2319 uint16_t *spos; 2320 2321 if (strncmp(implext->imp_id.id, "*UDF", 4) == 0) { 2322 /* set checksum */ 2323 spos = (uint16_t *) implext->data; 2324 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2325 } 2326 } 2327 2328 2329 int 2330 udf_extattr_search_intern(struct udf_node *node, 2331 uint32_t sattr, char const *sattrname, 2332 uint32_t *offsetp, uint32_t *lengthp) 2333 { 2334 struct extattrhdr_desc *eahdr; 2335 struct extattr_entry *attrhdr; 2336 struct impl_extattr_entry *implext; 2337 uint32_t offset, a_l, sector_size; 2338 int32_t l_ea; 2339 uint8_t *pos; 2340 int error; 2341 2342 /* get mountpoint */ 2343 sector_size = node->ump->discinfo.sector_size; 2344 2345 /* get information from fe/efe */ 2346 if (node->fe) { 2347 l_ea = udf_rw32(node->fe->l_ea); 2348 eahdr = (struct extattrhdr_desc *) node->fe->data; 2349 } else { 2350 assert(node->efe); 2351 l_ea = udf_rw32(node->efe->l_ea); 2352 eahdr = (struct extattrhdr_desc *) node->efe->data; 2353 } 2354 2355 /* something recorded here? */ 2356 if (l_ea == 0) 2357 return ENOENT; 2358 2359 /* check extended attribute tag; what to do if it fails? */ 2360 error = udf_check_tag(eahdr); 2361 if (error) 2362 return EINVAL; 2363 if (udf_rw16(eahdr->tag.id) != TAGID_EXTATTR_HDR) 2364 return EINVAL; 2365 error = udf_check_tag_payload(eahdr, sizeof(struct extattrhdr_desc)); 2366 if (error) 2367 return EINVAL; 2368 2369 DPRINTF(EXTATTR, ("Found %d bytes of extended attributes\n", l_ea)); 2370 2371 /* looking for Ecma-167 attributes? */ 2372 offset = sizeof(struct extattrhdr_desc); 2373 2374 /* looking for either implemenation use or application use */ 2375 if (sattr == 2048) { /* [4/48.10.8] */ 2376 offset = udf_rw32(eahdr->impl_attr_loc); 2377 if (offset == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2378 return ENOENT; 2379 } 2380 if (sattr == 65536) { /* [4/48.10.9] */ 2381 offset = udf_rw32(eahdr->appl_attr_loc); 2382 if (offset == UDF_APPL_ATTR_LOC_NOT_PRESENT) 2383 return ENOENT; 2384 } 2385 2386 /* paranoia check offset and l_ea */ 2387 if (l_ea + offset >= sector_size - sizeof(struct extattr_entry)) 2388 return EINVAL; 2389 2390 DPRINTF(EXTATTR, ("Starting at offset %d\n", offset)); 2391 2392 /* find our extended attribute */ 2393 l_ea -= offset; 2394 pos = (uint8_t *) eahdr + offset; 2395 2396 while (l_ea >= sizeof(struct extattr_entry)) { 2397 DPRINTF(EXTATTR, ("%d extended attr bytes left\n", l_ea)); 2398 attrhdr = (struct extattr_entry *) pos; 2399 implext = (struct impl_extattr_entry *) pos; 2400 2401 /* get complete attribute length and check for roque values */ 2402 a_l = udf_rw32(attrhdr->a_l); 2403 DPRINTF(EXTATTR, ("attribute %d:%d, len %d/%d\n", 2404 udf_rw32(attrhdr->type), 2405 attrhdr->subtype, a_l, l_ea)); 2406 if ((a_l == 0) || (a_l > l_ea)) 2407 return EINVAL; 2408 2409 if (attrhdr->type != sattr) 2410 goto next_attribute; 2411 2412 /* we might have found it! */ 2413 if (attrhdr->type < 2048) { /* Ecma-167 attribute */ 2414 *offsetp = offset; 2415 *lengthp = a_l; 2416 return 0; /* success */ 2417 } 2418 2419 /* 2420 * Implementation use and application use extended attributes 2421 * have a name to identify. They share the same structure only 2422 * UDF implementation use extended attributes have a checksum 2423 * we need to check 2424 */ 2425 2426 DPRINTF(EXTATTR, ("named attribute %s\n", implext->imp_id.id)); 2427 if (strcmp(implext->imp_id.id, sattrname) == 0) { 2428 /* we have found our appl/implementation attribute */ 2429 *offsetp = offset; 2430 *lengthp = a_l; 2431 return 0; /* success */ 2432 } 2433 2434 next_attribute: 2435 /* next attribute */ 2436 pos += a_l; 2437 l_ea -= a_l; 2438 offset += a_l; 2439 } 2440 /* not found */ 2441 return ENOENT; 2442 } 2443 2444 2445 static void 2446 udf_extattr_insert_internal(struct udf_mount *ump, union dscrptr *dscr, 2447 struct extattr_entry *extattr) 2448 { 2449 struct file_entry *fe; 2450 struct extfile_entry *efe; 2451 struct extattrhdr_desc *extattrhdr; 2452 struct impl_extattr_entry *implext; 2453 uint32_t impl_attr_loc, appl_attr_loc, l_ea, a_l, exthdr_len; 2454 uint32_t *l_eap, l_ad; 2455 uint16_t *spos; 2456 uint8_t *bpos, *data; 2457 2458 if (udf_rw16(dscr->tag.id) == TAGID_FENTRY) { 2459 fe = &dscr->fe; 2460 data = fe->data; 2461 l_eap = &fe->l_ea; 2462 l_ad = udf_rw32(fe->l_ad); 2463 } else if (udf_rw16(dscr->tag.id) == TAGID_EXTFENTRY) { 2464 efe = &dscr->efe; 2465 data = efe->data; 2466 l_eap = &efe->l_ea; 2467 l_ad = udf_rw32(efe->l_ad); 2468 } else { 2469 panic("Bad tag passed to udf_extattr_insert_internal"); 2470 } 2471 2472 /* can't append already written to file descriptors yet */ 2473 assert(l_ad == 0); 2474 __USE(l_ad); 2475 2476 /* should have a header! */ 2477 extattrhdr = (struct extattrhdr_desc *) data; 2478 l_ea = udf_rw32(*l_eap); 2479 if (l_ea == 0) { 2480 /* create empty extended attribute header */ 2481 exthdr_len = sizeof(struct extattrhdr_desc); 2482 2483 udf_inittag(ump, &extattrhdr->tag, TAGID_EXTATTR_HDR, 2484 /* loc */ 0); 2485 extattrhdr->impl_attr_loc = udf_rw32(exthdr_len); 2486 extattrhdr->appl_attr_loc = udf_rw32(exthdr_len); 2487 extattrhdr->tag.desc_crc_len = udf_rw16(8); 2488 2489 /* record extended attribute header length */ 2490 l_ea = exthdr_len; 2491 *l_eap = udf_rw32(l_ea); 2492 } 2493 2494 /* extract locations */ 2495 impl_attr_loc = udf_rw32(extattrhdr->impl_attr_loc); 2496 appl_attr_loc = udf_rw32(extattrhdr->appl_attr_loc); 2497 if (impl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2498 impl_attr_loc = l_ea; 2499 if (appl_attr_loc == UDF_IMPL_ATTR_LOC_NOT_PRESENT) 2500 appl_attr_loc = l_ea; 2501 2502 /* Ecma 167 EAs */ 2503 if (udf_rw32(extattr->type) < 2048) { 2504 assert(impl_attr_loc == l_ea); 2505 assert(appl_attr_loc == l_ea); 2506 } 2507 2508 /* implementation use extended attributes */ 2509 if (udf_rw32(extattr->type) == 2048) { 2510 assert(appl_attr_loc == l_ea); 2511 2512 /* calculate and write extended attribute header checksum */ 2513 implext = (struct impl_extattr_entry *) extattr; 2514 assert(udf_rw32(implext->iu_l) == 4); /* [UDF 3.3.4.5] */ 2515 spos = (uint16_t *) implext->data; 2516 *spos = udf_rw16(udf_ea_cksum((uint8_t *) implext)); 2517 } 2518 2519 /* application use extended attributes */ 2520 assert(udf_rw32(extattr->type) != 65536); 2521 assert(appl_attr_loc == l_ea); 2522 2523 /* append the attribute at the end of the current space */ 2524 bpos = data + udf_rw32(*l_eap); 2525 a_l = udf_rw32(extattr->a_l); 2526 2527 /* update impl. attribute locations */ 2528 if (udf_rw32(extattr->type) < 2048) { 2529 impl_attr_loc = l_ea + a_l; 2530 appl_attr_loc = l_ea + a_l; 2531 } 2532 if (udf_rw32(extattr->type) == 2048) { 2533 appl_attr_loc = l_ea + a_l; 2534 } 2535 2536 /* copy and advance */ 2537 memcpy(bpos, extattr, a_l); 2538 l_ea += a_l; 2539 *l_eap = udf_rw32(l_ea); 2540 2541 /* do the `dance` again backwards */ 2542 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) != 2) { 2543 if (impl_attr_loc == l_ea) 2544 impl_attr_loc = UDF_IMPL_ATTR_LOC_NOT_PRESENT; 2545 if (appl_attr_loc == l_ea) 2546 appl_attr_loc = UDF_APPL_ATTR_LOC_NOT_PRESENT; 2547 } 2548 2549 /* store offsets */ 2550 extattrhdr->impl_attr_loc = udf_rw32(impl_attr_loc); 2551 extattrhdr->appl_attr_loc = udf_rw32(appl_attr_loc); 2552 } 2553 2554 2555 /* --------------------------------------------------------------------- */ 2556 2557 static int 2558 udf_update_lvid_from_vat_extattr(struct udf_node *vat_node) 2559 { 2560 struct udf_mount *ump; 2561 struct udf_logvol_info *lvinfo; 2562 struct impl_extattr_entry *implext; 2563 struct vatlvext_extattr_entry lvext; 2564 const char *extstr = "*UDF VAT LVExtension"; 2565 uint64_t vat_uniqueid; 2566 uint32_t offset, a_l; 2567 uint8_t *ea_start, *lvextpos; 2568 int error; 2569 2570 /* get mountpoint and lvinfo */ 2571 ump = vat_node->ump; 2572 lvinfo = ump->logvol_info; 2573 2574 /* get information from fe/efe */ 2575 if (vat_node->fe) { 2576 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2577 ea_start = vat_node->fe->data; 2578 } else { 2579 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2580 ea_start = vat_node->efe->data; 2581 } 2582 2583 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2584 if (error) 2585 return error; 2586 2587 implext = (struct impl_extattr_entry *) (ea_start + offset); 2588 error = udf_impl_extattr_check(implext); 2589 if (error) 2590 return error; 2591 2592 /* paranoia */ 2593 if (a_l != sizeof(*implext) -1 + udf_rw32(implext->iu_l) + sizeof(lvext)) { 2594 DPRINTF(VOLUMES, ("VAT LVExtension size doesn't compute\n")); 2595 return EINVAL; 2596 } 2597 2598 /* 2599 * we have found our "VAT LVExtension attribute. BUT due to a 2600 * bug in the specification it might not be word aligned so 2601 * copy first to avoid panics on some machines (!!) 2602 */ 2603 DPRINTF(VOLUMES, ("Found VAT LVExtension attr\n")); 2604 lvextpos = implext->data + udf_rw32(implext->iu_l); 2605 memcpy(&lvext, lvextpos, sizeof(lvext)); 2606 2607 /* check if it was updated the last time */ 2608 if (udf_rw64(lvext.unique_id_chk) == vat_uniqueid) { 2609 lvinfo->num_files = lvext.num_files; 2610 lvinfo->num_directories = lvext.num_directories; 2611 udf_update_logvolname(ump, lvext.logvol_id); 2612 } else { 2613 DPRINTF(VOLUMES, ("VAT LVExtension out of date\n")); 2614 /* replace VAT LVExt by free space EA */ 2615 memset(implext->imp_id.id, 0, UDF_REGID_ID_SIZE); 2616 strcpy(implext->imp_id.id, "*UDF FreeEASpace"); 2617 udf_calc_impl_extattr_checksum(implext); 2618 } 2619 2620 return 0; 2621 } 2622 2623 2624 static int 2625 udf_update_vat_extattr_from_lvid(struct udf_node *vat_node) 2626 { 2627 struct udf_mount *ump; 2628 struct udf_logvol_info *lvinfo; 2629 struct impl_extattr_entry *implext; 2630 struct vatlvext_extattr_entry lvext; 2631 const char *extstr = "*UDF VAT LVExtension"; 2632 uint64_t vat_uniqueid; 2633 uint32_t offset, a_l; 2634 uint8_t *ea_start, *lvextpos; 2635 int error; 2636 2637 /* get mountpoint and lvinfo */ 2638 ump = vat_node->ump; 2639 lvinfo = ump->logvol_info; 2640 2641 /* get information from fe/efe */ 2642 if (vat_node->fe) { 2643 vat_uniqueid = udf_rw64(vat_node->fe->unique_id); 2644 ea_start = vat_node->fe->data; 2645 } else { 2646 vat_uniqueid = udf_rw64(vat_node->efe->unique_id); 2647 ea_start = vat_node->efe->data; 2648 } 2649 2650 error = udf_extattr_search_intern(vat_node, 2048, extstr, &offset, &a_l); 2651 if (error) 2652 return error; 2653 /* found, it existed */ 2654 2655 /* paranoia */ 2656 implext = (struct impl_extattr_entry *) (ea_start + offset); 2657 error = udf_impl_extattr_check(implext); 2658 if (error) { 2659 DPRINTF(VOLUMES, ("VAT LVExtension bad on update\n")); 2660 return error; 2661 } 2662 /* it is correct */ 2663 2664 /* 2665 * we have found our "VAT LVExtension attribute. BUT due to a 2666 * bug in the specification it might not be word aligned so 2667 * copy first to avoid panics on some machines (!!) 2668 */ 2669 DPRINTF(VOLUMES, ("Updating VAT LVExtension attr\n")); 2670 lvextpos = implext->data + udf_rw32(implext->iu_l); 2671 2672 lvext.unique_id_chk = vat_uniqueid; 2673 lvext.num_files = lvinfo->num_files; 2674 lvext.num_directories = lvinfo->num_directories; 2675 memmove(lvext.logvol_id, ump->logical_vol->logvol_id, 128); 2676 2677 memcpy(lvextpos, &lvext, sizeof(lvext)); 2678 2679 return 0; 2680 } 2681 2682 /* --------------------------------------------------------------------- */ 2683 2684 int 2685 udf_vat_read(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2686 { 2687 struct udf_mount *ump = vat_node->ump; 2688 2689 if (offset + size > ump->vat_offset + ump->vat_entries * 4) 2690 return EINVAL; 2691 2692 memcpy(blob, ump->vat_table + offset, size); 2693 return 0; 2694 } 2695 2696 int 2697 udf_vat_write(struct udf_node *vat_node, uint8_t *blob, int size, uint32_t offset) 2698 { 2699 struct udf_mount *ump = vat_node->ump; 2700 uint32_t offset_high; 2701 uint8_t *new_vat_table; 2702 2703 /* extent VAT allocation if needed */ 2704 offset_high = offset + size; 2705 if (offset_high >= ump->vat_table_alloc_len) { 2706 /* realloc */ 2707 new_vat_table = realloc(ump->vat_table, 2708 ump->vat_table_alloc_len + UDF_VAT_CHUNKSIZE, 2709 M_UDFVOLD, M_WAITOK | M_CANFAIL); 2710 if (!new_vat_table) { 2711 printf("udf_vat_write: can't extent VAT, out of mem\n"); 2712 return ENOMEM; 2713 } 2714 ump->vat_table = new_vat_table; 2715 ump->vat_table_alloc_len += UDF_VAT_CHUNKSIZE; 2716 } 2717 ump->vat_table_len = MAX(ump->vat_table_len, offset_high); 2718 2719 memcpy(ump->vat_table + offset, blob, size); 2720 return 0; 2721 } 2722 2723 /* --------------------------------------------------------------------- */ 2724 2725 /* TODO support previous VAT location writeout */ 2726 static int 2727 udf_update_vat_descriptor(struct udf_mount *ump) 2728 { 2729 struct udf_node *vat_node = ump->vat_node; 2730 struct udf_logvol_info *lvinfo = ump->logvol_info; 2731 struct icb_tag *icbtag; 2732 struct udf_oldvat_tail *oldvat_tl; 2733 struct udf_vat *vat; 2734 uint64_t unique_id; 2735 uint32_t lb_size; 2736 uint8_t *raw_vat; 2737 int filetype, error; 2738 2739 KASSERT(vat_node); 2740 KASSERT(lvinfo); 2741 lb_size = udf_rw32(ump->logical_vol->lb_size); 2742 2743 /* get our new unique_id */ 2744 unique_id = udf_advance_uniqueid(ump); 2745 2746 /* get information from fe/efe */ 2747 if (vat_node->fe) { 2748 icbtag = &vat_node->fe->icbtag; 2749 vat_node->fe->unique_id = udf_rw64(unique_id); 2750 } else { 2751 icbtag = &vat_node->efe->icbtag; 2752 vat_node->efe->unique_id = udf_rw64(unique_id); 2753 } 2754 2755 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2756 filetype = icbtag->file_type; 2757 KASSERT((filetype == 0) || (filetype == UDF_ICB_FILETYPE_VAT)); 2758 2759 /* allocate piece to process head or tail of VAT file */ 2760 raw_vat = malloc(lb_size, M_TEMP, M_WAITOK); 2761 2762 if (filetype == 0) { 2763 /* 2764 * Update "*UDF VAT LVExtension" extended attribute from the 2765 * lvint if present. 2766 */ 2767 udf_update_vat_extattr_from_lvid(vat_node); 2768 2769 /* setup identifying regid */ 2770 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2771 memset(oldvat_tl, 0, sizeof(struct udf_oldvat_tail)); 2772 2773 udf_set_regid(&oldvat_tl->id, "*UDF Virtual Alloc Tbl"); 2774 udf_add_udf_regid(ump, &oldvat_tl->id); 2775 oldvat_tl->prev_vat = udf_rw32(0xffffffff); 2776 2777 /* write out new tail of virtual allocation table file */ 2778 error = udf_vat_write(vat_node, raw_vat, 2779 sizeof(struct udf_oldvat_tail), ump->vat_entries * 4); 2780 } else { 2781 /* compose the VAT2 header */ 2782 vat = (struct udf_vat *) raw_vat; 2783 memset(vat, 0, sizeof(struct udf_vat)); 2784 2785 vat->header_len = udf_rw16(152); /* as per spec */ 2786 vat->impl_use_len = udf_rw16(0); 2787 memmove(vat->logvol_id, ump->logical_vol->logvol_id, 128); 2788 vat->prev_vat = udf_rw32(0xffffffff); 2789 vat->num_files = lvinfo->num_files; 2790 vat->num_directories = lvinfo->num_directories; 2791 vat->min_udf_readver = lvinfo->min_udf_readver; 2792 vat->min_udf_writever = lvinfo->min_udf_writever; 2793 vat->max_udf_writever = lvinfo->max_udf_writever; 2794 2795 error = udf_vat_write(vat_node, raw_vat, 2796 sizeof(struct udf_vat), 0); 2797 } 2798 free(raw_vat, M_TEMP); 2799 2800 return error; /* success! */ 2801 } 2802 2803 2804 int 2805 udf_writeout_vat(struct udf_mount *ump) 2806 { 2807 struct udf_node *vat_node = ump->vat_node; 2808 int error; 2809 2810 KASSERT(vat_node); 2811 2812 DPRINTF(CALL, ("udf_writeout_vat\n")); 2813 2814 // mutex_enter(&ump->allocate_mutex); 2815 udf_update_vat_descriptor(ump); 2816 2817 /* write out the VAT contents ; TODO intelligent writing */ 2818 error = vn_rdwr(UIO_WRITE, vat_node->vnode, 2819 ump->vat_table, ump->vat_table_len, 0, 2820 UIO_SYSSPACE, 0, FSCRED, NULL, NULL); 2821 if (error) { 2822 printf("udf_writeout_vat: failed to write out VAT contents\n"); 2823 goto out; 2824 } 2825 2826 // mutex_exit(&ump->allocate_mutex); 2827 2828 error = vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 2829 if (error) 2830 goto out; 2831 error = VOP_FSYNC(ump->vat_node->vnode, 2832 FSCRED, FSYNC_WAIT, 0, 0); 2833 if (error) 2834 printf("udf_writeout_vat: error writing VAT node!\n"); 2835 out: 2836 2837 return error; 2838 } 2839 2840 /* --------------------------------------------------------------------- */ 2841 2842 /* 2843 * Read in relevant pieces of VAT file and check if its indeed a VAT file 2844 * descriptor. If OK, read in complete VAT file. 2845 */ 2846 2847 static int 2848 udf_check_for_vat(struct udf_node *vat_node) 2849 { 2850 struct udf_mount *ump; 2851 struct icb_tag *icbtag; 2852 struct timestamp *mtime; 2853 struct udf_vat *vat; 2854 struct udf_oldvat_tail *oldvat_tl; 2855 struct udf_logvol_info *lvinfo; 2856 uint64_t unique_id; 2857 uint32_t vat_length; 2858 uint32_t vat_offset, vat_entries, vat_table_alloc_len; 2859 uint32_t sector_size; 2860 uint32_t *raw_vat; 2861 uint8_t *vat_table; 2862 char *regid_name; 2863 int filetype; 2864 int error; 2865 2866 /* vat_length is really 64 bits though impossible */ 2867 2868 DPRINTF(VOLUMES, ("Checking for VAT\n")); 2869 if (!vat_node) 2870 return ENOENT; 2871 2872 /* get mount info */ 2873 ump = vat_node->ump; 2874 sector_size = udf_rw32(ump->logical_vol->lb_size); 2875 2876 /* check assertions */ 2877 assert(vat_node->fe || vat_node->efe); 2878 assert(ump->logvol_integrity); 2879 2880 /* set vnode type to regular file or we can't read from it! */ 2881 vat_node->vnode->v_type = VREG; 2882 2883 /* get information from fe/efe */ 2884 if (vat_node->fe) { 2885 vat_length = udf_rw64(vat_node->fe->inf_len); 2886 icbtag = &vat_node->fe->icbtag; 2887 mtime = &vat_node->fe->mtime; 2888 unique_id = udf_rw64(vat_node->fe->unique_id); 2889 } else { 2890 vat_length = udf_rw64(vat_node->efe->inf_len); 2891 icbtag = &vat_node->efe->icbtag; 2892 mtime = &vat_node->efe->mtime; 2893 unique_id = udf_rw64(vat_node->efe->unique_id); 2894 } 2895 2896 /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ 2897 filetype = icbtag->file_type; 2898 if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) 2899 return ENOENT; 2900 2901 DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); 2902 2903 vat_table_alloc_len = 2904 ((vat_length + UDF_VAT_CHUNKSIZE-1) / UDF_VAT_CHUNKSIZE) 2905 * UDF_VAT_CHUNKSIZE; 2906 2907 vat_table = malloc(vat_table_alloc_len, M_UDFVOLD, 2908 M_CANFAIL | M_WAITOK); 2909 if (vat_table == NULL) { 2910 printf("allocation of %d bytes failed for VAT\n", 2911 vat_table_alloc_len); 2912 return ENOMEM; 2913 } 2914 2915 /* allocate piece to read in head or tail of VAT file */ 2916 raw_vat = malloc(sector_size, M_TEMP, M_WAITOK); 2917 2918 /* 2919 * check contents of the file if its the old 1.50 VAT table format. 2920 * Its notoriously broken and allthough some implementations support an 2921 * extention as defined in the UDF 1.50 errata document, its doubtfull 2922 * to be useable since a lot of implementations don't maintain it. 2923 */ 2924 lvinfo = ump->logvol_info; 2925 2926 if (filetype == 0) { 2927 /* definition */ 2928 vat_offset = 0; 2929 vat_entries = (vat_length-36)/4; 2930 2931 /* read in tail of virtual allocation table file */ 2932 error = vn_rdwr(UIO_READ, vat_node->vnode, 2933 (uint8_t *) raw_vat, 2934 sizeof(struct udf_oldvat_tail), 2935 vat_entries * 4, 2936 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2937 NULL, NULL); 2938 if (error) 2939 goto out; 2940 2941 /* check 1.50 VAT */ 2942 oldvat_tl = (struct udf_oldvat_tail *) raw_vat; 2943 regid_name = (char *) oldvat_tl->id.id; 2944 error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); 2945 if (error) { 2946 DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); 2947 error = ENOENT; 2948 goto out; 2949 } 2950 2951 /* 2952 * update LVID from "*UDF VAT LVExtension" extended attribute 2953 * if present. 2954 */ 2955 udf_update_lvid_from_vat_extattr(vat_node); 2956 } else { 2957 /* read in head of virtual allocation table file */ 2958 error = vn_rdwr(UIO_READ, vat_node->vnode, 2959 (uint8_t *) raw_vat, 2960 sizeof(struct udf_vat), 0, 2961 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2962 NULL, NULL); 2963 if (error) 2964 goto out; 2965 2966 /* definition */ 2967 vat = (struct udf_vat *) raw_vat; 2968 vat_offset = vat->header_len; 2969 vat_entries = (vat_length - vat_offset)/4; 2970 2971 assert(lvinfo); 2972 lvinfo->num_files = vat->num_files; 2973 lvinfo->num_directories = vat->num_directories; 2974 lvinfo->min_udf_readver = vat->min_udf_readver; 2975 lvinfo->min_udf_writever = vat->min_udf_writever; 2976 lvinfo->max_udf_writever = vat->max_udf_writever; 2977 2978 udf_update_logvolname(ump, vat->logvol_id); 2979 } 2980 2981 /* read in complete VAT file */ 2982 error = vn_rdwr(UIO_READ, vat_node->vnode, 2983 vat_table, 2984 vat_length, 0, 2985 UIO_SYSSPACE, IO_SYNC | IO_NODELOCKED, FSCRED, 2986 NULL, NULL); 2987 if (error) 2988 printf("read in of complete VAT file failed (error %d)\n", 2989 error); 2990 if (error) 2991 goto out; 2992 2993 DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); 2994 ump->logvol_integrity->lvint_next_unique_id = udf_rw64(unique_id); 2995 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 2996 ump->logvol_integrity->time = *mtime; 2997 2998 ump->vat_table_len = vat_length; 2999 ump->vat_table_alloc_len = vat_table_alloc_len; 3000 ump->vat_table = vat_table; 3001 ump->vat_offset = vat_offset; 3002 ump->vat_entries = vat_entries; 3003 ump->vat_last_free_lb = 0; /* start at beginning */ 3004 3005 out: 3006 if (error) { 3007 if (vat_table) 3008 free(vat_table, M_UDFVOLD); 3009 } 3010 free(raw_vat, M_TEMP); 3011 3012 return error; 3013 } 3014 3015 /* --------------------------------------------------------------------- */ 3016 3017 static int 3018 udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) 3019 { 3020 struct udf_node *vat_node; 3021 struct long_ad icb_loc; 3022 uint32_t early_vat_loc, vat_loc; 3023 int error; 3024 3025 /* mapping info not needed */ 3026 mapping = mapping; 3027 3028 vat_loc = ump->last_possible_vat_location; 3029 early_vat_loc = vat_loc - 256; /* 8 blocks of 32 sectors */ 3030 3031 DPRINTF(VOLUMES, ("1) last possible %d, early_vat_loc %d \n", 3032 vat_loc, early_vat_loc)); 3033 early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location); 3034 3035 DPRINTF(VOLUMES, ("2) last possible %d, early_vat_loc %d \n", 3036 vat_loc, early_vat_loc)); 3037 3038 /* start looking from the end of the range */ 3039 do { 3040 DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); 3041 icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); 3042 icb_loc.loc.lb_num = udf_rw32(vat_loc); 3043 3044 error = udf_get_node(ump, &icb_loc, &vat_node); 3045 if (!error) { 3046 error = udf_check_for_vat(vat_node); 3047 DPRINTFIF(VOLUMES, !error, 3048 ("VAT accepted at %d\n", vat_loc)); 3049 if (!error) 3050 break; 3051 } 3052 if (vat_node) { 3053 vput(vat_node->vnode); 3054 vat_node = NULL; 3055 } 3056 vat_loc--; /* walk backwards */ 3057 } while (vat_loc >= early_vat_loc); 3058 3059 /* keep our VAT node around */ 3060 if (vat_node) { 3061 UDF_SET_SYSTEMFILE(vat_node->vnode); 3062 ump->vat_node = vat_node; 3063 } 3064 3065 return error; 3066 } 3067 3068 /* --------------------------------------------------------------------- */ 3069 3070 static int 3071 udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) 3072 { 3073 union dscrptr *dscr; 3074 struct part_map_spare *pms = &mapping->pms; 3075 uint32_t lb_num; 3076 int spar, error; 3077 3078 /* 3079 * The partition mapping passed on to us specifies the information we 3080 * need to locate and initialise the sparable partition mapping 3081 * information we need. 3082 */ 3083 3084 DPRINTF(VOLUMES, ("Read sparable table\n")); 3085 ump->sparable_packet_size = udf_rw16(pms->packet_len); 3086 KASSERT(ump->sparable_packet_size >= ump->packet_size); /* XXX */ 3087 3088 for (spar = 0; spar < pms->n_st; spar++) { 3089 lb_num = pms->st_loc[spar]; 3090 DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); 3091 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3092 if (!error && dscr) { 3093 if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { 3094 if (ump->sparing_table) 3095 free(ump->sparing_table, M_UDFVOLD); 3096 ump->sparing_table = &dscr->spt; 3097 dscr = NULL; 3098 DPRINTF(VOLUMES, 3099 ("Sparing table accepted (%d entries)\n", 3100 udf_rw16(ump->sparing_table->rt_l))); 3101 break; /* we're done */ 3102 } 3103 } 3104 if (dscr) 3105 free(dscr, M_UDFVOLD); 3106 } 3107 3108 if (ump->sparing_table) 3109 return 0; 3110 3111 return ENOENT; 3112 } 3113 3114 /* --------------------------------------------------------------------- */ 3115 3116 static int 3117 udf_read_metadata_nodes(struct udf_mount *ump, union udf_pmap *mapping) 3118 { 3119 struct part_map_meta *pmm = &mapping->pmm; 3120 struct long_ad icb_loc; 3121 struct vnode *vp; 3122 uint16_t raw_phys_part, phys_part; 3123 int error; 3124 3125 /* 3126 * BUGALERT: some rogue implementations use random physical 3127 * partition numbers to break other implementations so lookup 3128 * the number. 3129 */ 3130 3131 /* extract our allocation parameters set up on format */ 3132 ump->metadata_alloc_unit_size = udf_rw32(mapping->pmm.alloc_unit_size); 3133 ump->metadata_alignment_unit_size = udf_rw16(mapping->pmm.alignment_unit_size); 3134 ump->metadata_flags = mapping->pmm.flags; 3135 3136 DPRINTF(VOLUMES, ("Reading in Metadata files\n")); 3137 raw_phys_part = udf_rw16(pmm->part_num); 3138 phys_part = udf_find_raw_phys(ump, raw_phys_part); 3139 3140 icb_loc.loc.part_num = udf_rw16(phys_part); 3141 3142 DPRINTF(VOLUMES, ("Metadata file\n")); 3143 icb_loc.loc.lb_num = pmm->meta_file_lbn; 3144 error = udf_get_node(ump, &icb_loc, &ump->metadata_node); 3145 if (ump->metadata_node) { 3146 vp = ump->metadata_node->vnode; 3147 UDF_SET_SYSTEMFILE(vp); 3148 } 3149 3150 icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; 3151 if (icb_loc.loc.lb_num != -1) { 3152 DPRINTF(VOLUMES, ("Metadata copy file\n")); 3153 error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_node); 3154 if (ump->metadatamirror_node) { 3155 vp = ump->metadatamirror_node->vnode; 3156 UDF_SET_SYSTEMFILE(vp); 3157 } 3158 } 3159 3160 icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; 3161 if (icb_loc.loc.lb_num != -1) { 3162 DPRINTF(VOLUMES, ("Metadata bitmap file\n")); 3163 error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_node); 3164 if (ump->metadatabitmap_node) { 3165 vp = ump->metadatabitmap_node->vnode; 3166 UDF_SET_SYSTEMFILE(vp); 3167 } 3168 } 3169 3170 /* if we're mounting read-only we relax the requirements */ 3171 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { 3172 error = EFAULT; 3173 if (ump->metadata_node) 3174 error = 0; 3175 if ((ump->metadata_node == NULL) && (ump->metadatamirror_node)) { 3176 printf( "udf mount: Metadata file not readable, " 3177 "substituting Metadata copy file\n"); 3178 ump->metadata_node = ump->metadatamirror_node; 3179 ump->metadatamirror_node = NULL; 3180 error = 0; 3181 } 3182 } else { 3183 /* mounting read/write */ 3184 /* XXX DISABLED! metadata writing is not working yet XXX */ 3185 if (error) 3186 error = EROFS; 3187 } 3188 DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " 3189 "metadata files\n")); 3190 return error; 3191 } 3192 3193 /* --------------------------------------------------------------------- */ 3194 3195 int 3196 udf_read_vds_tables(struct udf_mount *ump) 3197 { 3198 union udf_pmap *mapping; 3199 /* struct udf_args *args = &ump->mount_args; */ 3200 uint32_t n_pm; 3201 uint32_t log_part; 3202 uint8_t *pmap_pos; 3203 int pmap_size; 3204 int error; 3205 3206 /* Iterate (again) over the part mappings for locations */ 3207 n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ 3208 pmap_pos = ump->logical_vol->maps; 3209 3210 for (log_part = 0; log_part < n_pm; log_part++) { 3211 mapping = (union udf_pmap *) pmap_pos; 3212 switch (ump->vtop_tp[log_part]) { 3213 case UDF_VTOP_TYPE_PHYS : 3214 /* nothing */ 3215 break; 3216 case UDF_VTOP_TYPE_VIRT : 3217 /* search and load VAT */ 3218 error = udf_search_vat(ump, mapping); 3219 if (error) 3220 return ENOENT; 3221 break; 3222 case UDF_VTOP_TYPE_SPARABLE : 3223 /* load one of the sparable tables */ 3224 error = udf_read_sparables(ump, mapping); 3225 if (error) 3226 return ENOENT; 3227 break; 3228 case UDF_VTOP_TYPE_META : 3229 /* load the associated file descriptors */ 3230 error = udf_read_metadata_nodes(ump, mapping); 3231 if (error) 3232 return ENOENT; 3233 break; 3234 default: 3235 break; 3236 } 3237 pmap_size = pmap_pos[1]; 3238 pmap_pos += pmap_size; 3239 } 3240 3241 /* read in and check unallocated and free space info if writing */ 3242 if ((ump->vfs_mountp->mnt_flag & MNT_RDONLY) == 0) { 3243 error = udf_read_physical_partition_spacetables(ump); 3244 if (error) 3245 return error; 3246 3247 /* also read in metadata partition spacebitmap if defined */ 3248 error = udf_read_metadata_partition_spacetable(ump); 3249 return error; 3250 } 3251 3252 return 0; 3253 } 3254 3255 /* --------------------------------------------------------------------- */ 3256 3257 int 3258 udf_read_rootdirs(struct udf_mount *ump) 3259 { 3260 union dscrptr *dscr; 3261 /* struct udf_args *args = &ump->mount_args; */ 3262 struct udf_node *rootdir_node, *streamdir_node; 3263 struct long_ad fsd_loc, *dir_loc; 3264 uint32_t lb_num, dummy; 3265 uint32_t fsd_len; 3266 int dscr_type; 3267 int error; 3268 3269 /* TODO implement FSD reading in separate function like integrity? */ 3270 /* get fileset descriptor sequence */ 3271 fsd_loc = ump->logical_vol->lv_fsd_loc; 3272 fsd_len = udf_rw32(fsd_loc.len); 3273 3274 dscr = NULL; 3275 error = 0; 3276 while (fsd_len || error) { 3277 DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); 3278 /* translate fsd_loc to lb_num */ 3279 error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); 3280 if (error) 3281 break; 3282 DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); 3283 error = udf_read_phys_dscr(ump, lb_num, M_UDFVOLD, &dscr); 3284 /* end markers */ 3285 if (error || (dscr == NULL)) 3286 break; 3287 3288 /* analyse */ 3289 dscr_type = udf_rw16(dscr->tag.id); 3290 if (dscr_type == TAGID_TERM) 3291 break; 3292 if (dscr_type != TAGID_FSD) { 3293 free(dscr, M_UDFVOLD); 3294 return ENOENT; 3295 } 3296 3297 /* 3298 * TODO check for multiple fileset descriptors; its only 3299 * picking the last now. Also check for FSD 3300 * correctness/interpretability 3301 */ 3302 3303 /* update */ 3304 if (ump->fileset_desc) { 3305 free(ump->fileset_desc, M_UDFVOLD); 3306 } 3307 ump->fileset_desc = &dscr->fsd; 3308 dscr = NULL; 3309 3310 /* continue to the next fsd */ 3311 fsd_len -= ump->discinfo.sector_size; 3312 fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); 3313 3314 /* follow up to fsd->next_ex (long_ad) if its not null */ 3315 if (udf_rw32(ump->fileset_desc->next_ex.len)) { 3316 DPRINTF(VOLUMES, ("follow up FSD extent\n")); 3317 fsd_loc = ump->fileset_desc->next_ex; 3318 fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); 3319 } 3320 } 3321 if (dscr) 3322 free(dscr, M_UDFVOLD); 3323 3324 /* there has to be one */ 3325 if (ump->fileset_desc == NULL) 3326 return ENOENT; 3327 3328 DPRINTF(VOLUMES, ("FSD read in fine\n")); 3329 DPRINTF(VOLUMES, ("Updating fsd logical volume id\n")); 3330 udf_update_logvolname(ump, ump->logical_vol->logvol_id); 3331 3332 /* 3333 * Now the FSD is known, read in the rootdirectory and if one exists, 3334 * the system stream dir. Some files in the system streamdir are not 3335 * wanted in this implementation since they are not maintained. If 3336 * writing is enabled we'll delete these files if they exist. 3337 */ 3338 3339 rootdir_node = streamdir_node = NULL; 3340 dir_loc = NULL; 3341 3342 /* try to read in the rootdir */ 3343 dir_loc = &ump->fileset_desc->rootdir_icb; 3344 error = udf_get_node(ump, dir_loc, &rootdir_node); 3345 if (error) 3346 return ENOENT; 3347 3348 /* aparently it read in fine */ 3349 3350 /* 3351 * Try the system stream directory; not very likely in the ones we 3352 * test, but for completeness. 3353 */ 3354 dir_loc = &ump->fileset_desc->streamdir_icb; 3355 if (udf_rw32(dir_loc->len)) { 3356 printf("udf_read_rootdirs: streamdir defined "); 3357 error = udf_get_node(ump, dir_loc, &streamdir_node); 3358 if (error) { 3359 printf("but error in streamdir reading\n"); 3360 } else { 3361 printf("but ignored\n"); 3362 /* 3363 * TODO process streamdir `baddies' i.e. files we dont 3364 * want if R/W 3365 */ 3366 } 3367 } 3368 3369 DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); 3370 3371 /* release the vnodes again; they'll be auto-recycled later */ 3372 if (streamdir_node) { 3373 vput(streamdir_node->vnode); 3374 } 3375 if (rootdir_node) { 3376 vput(rootdir_node->vnode); 3377 } 3378 3379 return 0; 3380 } 3381 3382 /* --------------------------------------------------------------------- */ 3383 3384 /* To make absolutely sure we are NOT returning zero, add one :) */ 3385 3386 long 3387 udf_get_node_id(const struct long_ad *icbptr) 3388 { 3389 /* ought to be enough since each mountpoint has its own chain */ 3390 return udf_rw32(icbptr->loc.lb_num) + 1; 3391 } 3392 3393 3394 int 3395 udf_compare_icb(const struct long_ad *a, const struct long_ad *b) 3396 { 3397 if (udf_rw16(a->loc.part_num) < udf_rw16(b->loc.part_num)) 3398 return -1; 3399 if (udf_rw16(a->loc.part_num) > udf_rw16(b->loc.part_num)) 3400 return 1; 3401 3402 if (udf_rw32(a->loc.lb_num) < udf_rw32(b->loc.lb_num)) 3403 return -1; 3404 if (udf_rw32(a->loc.lb_num) > udf_rw32(b->loc.lb_num)) 3405 return 1; 3406 3407 return 0; 3408 } 3409 3410 3411 static int 3412 udf_compare_rbnodes(void *ctx, const void *a, const void *b) 3413 { 3414 const struct udf_node *a_node = a; 3415 const struct udf_node *b_node = b; 3416 3417 return udf_compare_icb(&a_node->loc, &b_node->loc); 3418 } 3419 3420 3421 static int 3422 udf_compare_rbnode_icb(void *ctx, const void *a, const void *key) 3423 { 3424 const struct udf_node *a_node = a; 3425 const struct long_ad * const icb = key; 3426 3427 return udf_compare_icb(&a_node->loc, icb); 3428 } 3429 3430 3431 static const rb_tree_ops_t udf_node_rbtree_ops = { 3432 .rbto_compare_nodes = udf_compare_rbnodes, 3433 .rbto_compare_key = udf_compare_rbnode_icb, 3434 .rbto_node_offset = offsetof(struct udf_node, rbnode), 3435 .rbto_context = NULL 3436 }; 3437 3438 3439 void 3440 udf_init_nodes_tree(struct udf_mount *ump) 3441 { 3442 3443 rb_tree_init(&ump->udf_node_tree, &udf_node_rbtree_ops); 3444 } 3445 3446 3447 static void 3448 udf_register_node(struct udf_node *udf_node) 3449 { 3450 struct udf_mount *ump = udf_node->ump; 3451 3452 /* add node to the rb tree */ 3453 mutex_enter(&ump->ihash_lock); 3454 rb_tree_insert_node(&ump->udf_node_tree, udf_node); 3455 mutex_exit(&ump->ihash_lock); 3456 } 3457 3458 3459 static void 3460 udf_deregister_node(struct udf_node *udf_node) 3461 { 3462 struct udf_mount *ump = udf_node->ump; 3463 3464 /* remove node from the rb tree */ 3465 mutex_enter(&ump->ihash_lock); 3466 rb_tree_remove_node(&ump->udf_node_tree, udf_node); 3467 mutex_exit(&ump->ihash_lock); 3468 } 3469 3470 /* --------------------------------------------------------------------- */ 3471 3472 static int 3473 udf_validate_session_start(struct udf_mount *ump) 3474 { 3475 struct mmc_trackinfo trackinfo; 3476 struct vrs_desc *vrs; 3477 uint32_t tracknr, sessionnr, sector, sector_size; 3478 uint32_t iso9660_vrs, write_track_start; 3479 uint8_t *buffer, *blank, *pos; 3480 int blks, max_sectors, vrs_len; 3481 int error; 3482 3483 /* disc appendable? */ 3484 if (ump->discinfo.disc_state == MMC_STATE_FULL) 3485 return EROFS; 3486 3487 /* already written here? if so, there should be an ISO VDS */ 3488 if (ump->discinfo.last_session_state == MMC_STATE_INCOMPLETE) 3489 return 0; 3490 3491 /* 3492 * Check if the first track of the session is blank and if so, copy or 3493 * create a dummy ISO descriptor so the disc is valid again. 3494 */ 3495 3496 tracknr = ump->discinfo.first_track_last_session; 3497 memset(&trackinfo, 0, sizeof(struct mmc_trackinfo)); 3498 trackinfo.tracknr = tracknr; 3499 error = udf_update_trackinfo(ump, &trackinfo); 3500 if (error) 3501 return error; 3502 3503 udf_dump_trackinfo(&trackinfo); 3504 KASSERT(trackinfo.flags & (MMC_TRACKINFO_BLANK | MMC_TRACKINFO_RESERVED)); 3505 KASSERT(trackinfo.sessionnr > 1); 3506 3507 KASSERT(trackinfo.flags & MMC_TRACKINFO_NWA_VALID); 3508 write_track_start = trackinfo.next_writable; 3509 3510 /* we have to copy the ISO VRS from a former session */ 3511 DPRINTF(VOLUMES, ("validate_session_start: " 3512 "blank or reserved track, copying VRS\n")); 3513 3514 /* sessionnr should be the session we're mounting */ 3515 sessionnr = ump->mount_args.sessionnr; 3516 3517 /* start at the first track */ 3518 tracknr = ump->discinfo.first_track; 3519 while (tracknr <= ump->discinfo.num_tracks) { 3520 trackinfo.tracknr = tracknr; 3521 error = udf_update_trackinfo(ump, &trackinfo); 3522 if (error) { 3523 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3524 return error; 3525 } 3526 if (trackinfo.sessionnr == sessionnr) 3527 break; 3528 tracknr++; 3529 } 3530 if (trackinfo.sessionnr != sessionnr) { 3531 DPRINTF(VOLUMES, ("failed to get trackinfo; aborting\n")); 3532 return ENOENT; 3533 } 3534 3535 DPRINTF(VOLUMES, ("found possible former ISO VRS at\n")); 3536 udf_dump_trackinfo(&trackinfo); 3537 3538 /* 3539 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3540 * minimum ISO `sector size' 2048 3541 */ 3542 sector_size = ump->discinfo.sector_size; 3543 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3544 + trackinfo.track_start; 3545 3546 buffer = malloc(UDF_ISO_VRS_SIZE, M_TEMP, M_WAITOK); 3547 max_sectors = UDF_ISO_VRS_SIZE / sector_size; 3548 blks = MAX(1, 2048 / sector_size); 3549 3550 error = 0; 3551 for (sector = 0; sector < max_sectors; sector += blks) { 3552 pos = buffer + sector * sector_size; 3553 error = udf_read_phys_sectors(ump, UDF_C_DSCR, pos, 3554 iso9660_vrs + sector, blks); 3555 if (error) 3556 break; 3557 /* check this ISO descriptor */ 3558 vrs = (struct vrs_desc *) pos; 3559 DPRINTF(VOLUMES, ("got VRS id `%4s`\n", vrs->identifier)); 3560 if (strncmp(vrs->identifier, VRS_CD001, 5) == 0) 3561 continue; 3562 if (strncmp(vrs->identifier, VRS_CDW02, 5) == 0) 3563 continue; 3564 if (strncmp(vrs->identifier, VRS_BEA01, 5) == 0) 3565 continue; 3566 if (strncmp(vrs->identifier, VRS_NSR02, 5) == 0) 3567 continue; 3568 if (strncmp(vrs->identifier, VRS_NSR03, 5) == 0) 3569 continue; 3570 if (strncmp(vrs->identifier, VRS_TEA01, 5) == 0) 3571 break; 3572 /* now what? for now, end of sequence */ 3573 break; 3574 } 3575 vrs_len = sector + blks; 3576 if (error) { 3577 DPRINTF(VOLUMES, ("error reading old ISO VRS\n")); 3578 DPRINTF(VOLUMES, ("creating minimal ISO VRS\n")); 3579 3580 memset(buffer, 0, UDF_ISO_VRS_SIZE); 3581 3582 vrs = (struct vrs_desc *) (buffer); 3583 vrs->struct_type = 0; 3584 vrs->version = 1; 3585 memcpy(vrs->identifier,VRS_BEA01, 5); 3586 3587 vrs = (struct vrs_desc *) (buffer + 2048); 3588 vrs->struct_type = 0; 3589 vrs->version = 1; 3590 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 3591 memcpy(vrs->identifier,VRS_NSR02, 5); 3592 } else { 3593 memcpy(vrs->identifier,VRS_NSR03, 5); 3594 } 3595 3596 vrs = (struct vrs_desc *) (buffer + 4096); 3597 vrs->struct_type = 0; 3598 vrs->version = 1; 3599 memcpy(vrs->identifier, VRS_TEA01, 5); 3600 3601 vrs_len = 3*blks; 3602 } 3603 3604 DPRINTF(VOLUMES, ("Got VRS of %d sectors long\n", vrs_len)); 3605 3606 /* 3607 * location of iso9660 vrs is defined as first sector AFTER 32kb, 3608 * minimum ISO `sector size' 2048 3609 */ 3610 sector_size = ump->discinfo.sector_size; 3611 iso9660_vrs = ((32*1024 + sector_size - 1) / sector_size) 3612 + write_track_start; 3613 3614 /* write out 32 kb */ 3615 blank = malloc(sector_size, M_TEMP, M_WAITOK); 3616 memset(blank, 0, sector_size); 3617 error = 0; 3618 for (sector = write_track_start; sector < iso9660_vrs; sector ++) { 3619 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3620 blank, sector, 1); 3621 if (error) 3622 break; 3623 } 3624 if (!error) { 3625 /* write out our ISO VRS */ 3626 KASSERT(sector == iso9660_vrs); 3627 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, buffer, 3628 sector, vrs_len); 3629 sector += vrs_len; 3630 } 3631 if (!error) { 3632 /* fill upto the first anchor at S+256 */ 3633 for (; sector < write_track_start+256; sector++) { 3634 error = udf_write_phys_sectors(ump, UDF_C_ABSOLUTE, 3635 blank, sector, 1); 3636 if (error) 3637 break; 3638 } 3639 } 3640 if (!error) { 3641 /* write out anchor; write at ABSOLUTE place! */ 3642 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_ABSOLUTE, 3643 (union dscrptr *) ump->anchors[0], sector, sector); 3644 if (error) 3645 printf("writeout of anchor failed!\n"); 3646 } 3647 3648 free(blank, M_TEMP); 3649 free(buffer, M_TEMP); 3650 3651 if (error) 3652 printf("udf_open_session: error writing iso vrs! : " 3653 "leaving disc in compromised state!\n"); 3654 3655 /* synchronise device caches */ 3656 (void) udf_synchronise_caches(ump); 3657 3658 return error; 3659 } 3660 3661 3662 int 3663 udf_open_logvol(struct udf_mount *ump) 3664 { 3665 int logvol_integrity; 3666 int error; 3667 3668 /* already/still open? */ 3669 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3670 if (logvol_integrity == UDF_INTEGRITY_OPEN) 3671 return 0; 3672 3673 /* can we open it ? */ 3674 if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) 3675 return EROFS; 3676 3677 /* setup write parameters */ 3678 DPRINTF(VOLUMES, ("Setting up write parameters\n")); 3679 if ((error = udf_setup_writeparams(ump)) != 0) 3680 return error; 3681 3682 /* determine data and metadata tracks (most likely same) */ 3683 error = udf_search_writing_tracks(ump); 3684 if (error) { 3685 /* most likely lack of space */ 3686 printf("udf_open_logvol: error searching writing tracks\n"); 3687 return EROFS; 3688 } 3689 3690 /* writeout/update lvint on disc or only in memory */ 3691 DPRINTF(VOLUMES, ("Opening logical volume\n")); 3692 if (ump->lvopen & UDF_OPEN_SESSION) { 3693 /* TODO optional track reservation opening */ 3694 error = udf_validate_session_start(ump); 3695 if (error) 3696 return error; 3697 3698 /* determine data and metadata tracks again */ 3699 error = udf_search_writing_tracks(ump); 3700 } 3701 3702 /* mark it open */ 3703 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_OPEN); 3704 3705 /* do we need to write it out? */ 3706 if (ump->lvopen & UDF_WRITE_LVINT) { 3707 error = udf_writeout_lvint(ump, ump->lvopen); 3708 /* if we couldn't write it mark it closed again */ 3709 if (error) { 3710 ump->logvol_integrity->integrity_type = 3711 udf_rw32(UDF_INTEGRITY_CLOSED); 3712 return error; 3713 } 3714 } 3715 3716 return 0; 3717 } 3718 3719 3720 int 3721 udf_close_logvol(struct udf_mount *ump, int mntflags) 3722 { 3723 struct vnode *devvp = ump->devvp; 3724 struct mmc_op mmc_op; 3725 int logvol_integrity; 3726 int error = 0, error1 = 0, error2 = 0; 3727 int tracknr; 3728 int nvats, n, nok; 3729 3730 /* already/still closed? */ 3731 logvol_integrity = udf_rw32(ump->logvol_integrity->integrity_type); 3732 if (logvol_integrity == UDF_INTEGRITY_CLOSED) 3733 return 0; 3734 3735 /* writeout/update lvint or write out VAT */ 3736 DPRINTF(VOLUMES, ("udf_close_logvol: closing logical volume\n")); 3737 #ifdef DIAGNOSTIC 3738 if (ump->lvclose & UDF_CLOSE_SESSION) 3739 KASSERT(ump->lvclose & UDF_WRITE_VAT); 3740 #endif 3741 3742 if (ump->lvclose & UDF_WRITE_VAT) { 3743 DPRINTF(VOLUMES, ("lvclose & UDF_WRITE_VAT\n")); 3744 3745 /* write out the VAT data and all its descriptors */ 3746 DPRINTF(VOLUMES, ("writeout vat_node\n")); 3747 udf_writeout_vat(ump); 3748 (void) vflushbuf(ump->vat_node->vnode, FSYNC_WAIT); 3749 3750 (void) VOP_FSYNC(ump->vat_node->vnode, 3751 FSCRED, FSYNC_WAIT, 0, 0); 3752 3753 if (ump->lvclose & UDF_CLOSE_SESSION) { 3754 DPRINTF(VOLUMES, ("udf_close_logvol: closing session " 3755 "as requested\n")); 3756 } 3757 3758 /* at least two DVD packets and 3 CD-R packets */ 3759 nvats = 32; 3760 3761 #if notyet 3762 /* 3763 * TODO calculate the available space and if the disc is 3764 * allmost full, write out till end-256-1 with banks, write 3765 * AVDP and fill up with VATs, then close session and close 3766 * disc. 3767 */ 3768 if (ump->lvclose & UDF_FINALISE_DISC) { 3769 error = udf_write_phys_dscr_sync(ump, NULL, 3770 UDF_C_FLOAT_DSCR, 3771 (union dscrptr *) ump->anchors[0], 3772 0, 0); 3773 if (error) 3774 printf("writeout of anchor failed!\n"); 3775 3776 /* pad space with VAT ICBs */ 3777 nvats = 256; 3778 } 3779 #endif 3780 3781 /* write out a number of VAT nodes */ 3782 nok = 0; 3783 for (n = 0; n < nvats; n++) { 3784 /* will now only write last FE/EFE */ 3785 ump->vat_node->i_flags |= IN_MODIFIED; 3786 error = VOP_FSYNC(ump->vat_node->vnode, 3787 FSCRED, FSYNC_WAIT, 0, 0); 3788 if (!error) 3789 nok++; 3790 } 3791 if (nok < 14) { 3792 /* arbitrary; but at least one or two CD frames */ 3793 printf("writeout of at least 14 VATs failed\n"); 3794 return error; 3795 } 3796 } 3797 3798 /* NOTE the disc is in a (minimal) valid state now; no erroring out */ 3799 3800 /* finish closing of session */ 3801 if (ump->lvclose & UDF_CLOSE_SESSION) { 3802 error = udf_validate_session_start(ump); 3803 if (error) 3804 return error; 3805 3806 (void) udf_synchronise_caches(ump); 3807 3808 /* close all associated tracks */ 3809 tracknr = ump->discinfo.first_track_last_session; 3810 error = 0; 3811 while (tracknr <= ump->discinfo.last_track_last_session) { 3812 DPRINTF(VOLUMES, ("\tclosing possible open " 3813 "track %d\n", tracknr)); 3814 memset(&mmc_op, 0, sizeof(mmc_op)); 3815 mmc_op.operation = MMC_OP_CLOSETRACK; 3816 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3817 mmc_op.tracknr = tracknr; 3818 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3819 FKIOCTL, NOCRED); 3820 if (error) 3821 printf("udf_close_logvol: closing of " 3822 "track %d failed\n", tracknr); 3823 tracknr ++; 3824 } 3825 if (!error) { 3826 DPRINTF(VOLUMES, ("closing session\n")); 3827 memset(&mmc_op, 0, sizeof(mmc_op)); 3828 mmc_op.operation = MMC_OP_CLOSESESSION; 3829 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3830 mmc_op.sessionnr = ump->discinfo.num_sessions; 3831 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3832 FKIOCTL, NOCRED); 3833 if (error) 3834 printf("udf_close_logvol: closing of session" 3835 "failed\n"); 3836 } 3837 if (!error) 3838 ump->lvopen |= UDF_OPEN_SESSION; 3839 if (error) { 3840 printf("udf_close_logvol: leaving disc as it is\n"); 3841 ump->lvclose &= ~UDF_FINALISE_DISC; 3842 } 3843 } 3844 3845 if (ump->lvclose & UDF_FINALISE_DISC) { 3846 memset(&mmc_op, 0, sizeof(mmc_op)); 3847 mmc_op.operation = MMC_OP_FINALISEDISC; 3848 mmc_op.mmc_profile = ump->discinfo.mmc_profile; 3849 mmc_op.sessionnr = ump->discinfo.num_sessions; 3850 error = VOP_IOCTL(devvp, MMCOP, &mmc_op, 3851 FKIOCTL, NOCRED); 3852 if (error) 3853 printf("udf_close_logvol: finalising disc" 3854 "failed\n"); 3855 } 3856 3857 /* write out partition bitmaps if requested */ 3858 if (ump->lvclose & UDF_WRITE_PART_BITMAPS) { 3859 /* sync writeout metadata spacetable if existing */ 3860 error1 = udf_write_metadata_partition_spacetable(ump, true); 3861 if (error1) 3862 printf( "udf_close_logvol: writeout of metadata space " 3863 "bitmap failed\n"); 3864 3865 /* sync writeout partition spacetables */ 3866 error2 = udf_write_physical_partition_spacetables(ump, true); 3867 if (error2) 3868 printf( "udf_close_logvol: writeout of space tables " 3869 "failed\n"); 3870 3871 if (error1 || error2) 3872 return (error1 | error2); 3873 3874 ump->lvclose &= ~UDF_WRITE_PART_BITMAPS; 3875 } 3876 3877 /* write out metadata partition nodes if requested */ 3878 if (ump->lvclose & UDF_WRITE_METAPART_NODES) { 3879 /* sync writeout metadata descriptor node */ 3880 error1 = udf_writeout_node(ump->metadata_node, FSYNC_WAIT); 3881 if (error1) 3882 printf( "udf_close_logvol: writeout of metadata partition " 3883 "node failed\n"); 3884 3885 /* duplicate metadata partition descriptor if needed */ 3886 udf_synchronise_metadatamirror_node(ump); 3887 3888 /* sync writeout metadatamirror descriptor node */ 3889 error2 = udf_writeout_node(ump->metadatamirror_node, FSYNC_WAIT); 3890 if (error2) 3891 printf( "udf_close_logvol: writeout of metadata partition " 3892 "mirror node failed\n"); 3893 3894 if (error1 || error2) 3895 return (error1 | error2); 3896 3897 ump->lvclose &= ~UDF_WRITE_METAPART_NODES; 3898 } 3899 3900 /* mark it closed */ 3901 ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); 3902 3903 /* do we need to write out the logical volume integrity? */ 3904 if (ump->lvclose & UDF_WRITE_LVINT) 3905 error = udf_writeout_lvint(ump, ump->lvopen); 3906 if (error) { 3907 /* HELP now what? mark it open again for now */ 3908 ump->logvol_integrity->integrity_type = 3909 udf_rw32(UDF_INTEGRITY_OPEN); 3910 return error; 3911 } 3912 3913 (void) udf_synchronise_caches(ump); 3914 3915 return 0; 3916 } 3917 3918 /* --------------------------------------------------------------------- */ 3919 3920 /* 3921 * Genfs interfacing 3922 * 3923 * static const struct genfs_ops udf_genfsops = { 3924 * .gop_size = genfs_size, 3925 * size of transfers 3926 * .gop_alloc = udf_gop_alloc, 3927 * allocate len bytes at offset 3928 * .gop_write = genfs_gop_write, 3929 * putpages interface code 3930 * .gop_markupdate = udf_gop_markupdate, 3931 * set update/modify flags etc. 3932 * } 3933 */ 3934 3935 /* 3936 * Genfs interface. These four functions are the only ones defined though not 3937 * documented... great.... 3938 */ 3939 3940 /* 3941 * Called for allocating an extent of the file either by VOP_WRITE() or by 3942 * genfs filling up gaps. 3943 */ 3944 static int 3945 udf_gop_alloc(struct vnode *vp, off_t off, 3946 off_t len, int flags, kauth_cred_t cred) 3947 { 3948 struct udf_node *udf_node = VTOI(vp); 3949 struct udf_mount *ump = udf_node->ump; 3950 uint64_t lb_start, lb_end; 3951 uint32_t lb_size, num_lb; 3952 int udf_c_type, vpart_num, can_fail; 3953 int error; 3954 3955 DPRINTF(ALLOC, ("udf_gop_alloc called for offset %"PRIu64" for %"PRIu64" bytes, %s\n", 3956 off, len, flags? "SYNC":"NONE")); 3957 3958 /* 3959 * request the pages of our vnode and see how many pages will need to 3960 * be allocated and reserve that space 3961 */ 3962 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 3963 lb_start = off / lb_size; 3964 lb_end = (off + len + lb_size -1) / lb_size; 3965 num_lb = lb_end - lb_start; 3966 3967 udf_c_type = udf_get_c_type(udf_node); 3968 vpart_num = udf_get_record_vpart(ump, udf_c_type); 3969 3970 /* all requests can fail */ 3971 can_fail = true; 3972 3973 /* fid's (directories) can't fail */ 3974 if (udf_c_type == UDF_C_FIDS) 3975 can_fail = false; 3976 3977 /* system files can't fail */ 3978 if (vp->v_vflag & VV_SYSTEM) 3979 can_fail = false; 3980 3981 error = udf_reserve_space(ump, udf_node, udf_c_type, 3982 vpart_num, num_lb, can_fail); 3983 3984 DPRINTF(ALLOC, ("\tlb_start %"PRIu64", lb_end %"PRIu64", num_lb %d\n", 3985 lb_start, lb_end, num_lb)); 3986 3987 return error; 3988 } 3989 3990 3991 /* 3992 * callback from genfs to update our flags 3993 */ 3994 static void 3995 udf_gop_markupdate(struct vnode *vp, int flags) 3996 { 3997 struct udf_node *udf_node = VTOI(vp); 3998 u_long mask = 0; 3999 4000 if ((flags & GOP_UPDATE_ACCESSED) != 0) { 4001 mask = IN_ACCESS; 4002 } 4003 if ((flags & GOP_UPDATE_MODIFIED) != 0) { 4004 if (vp->v_type == VREG) { 4005 mask |= IN_CHANGE | IN_UPDATE; 4006 } else { 4007 mask |= IN_MODIFY; 4008 } 4009 } 4010 if (mask) { 4011 udf_node->i_flags |= mask; 4012 } 4013 } 4014 4015 4016 static const struct genfs_ops udf_genfsops = { 4017 .gop_size = genfs_size, 4018 .gop_alloc = udf_gop_alloc, 4019 .gop_write = genfs_gop_write_rwmap, 4020 .gop_markupdate = udf_gop_markupdate, 4021 }; 4022 4023 4024 /* --------------------------------------------------------------------- */ 4025 4026 int 4027 udf_write_terminator(struct udf_mount *ump, uint32_t sector) 4028 { 4029 union dscrptr *dscr; 4030 int error; 4031 4032 dscr = malloc(ump->discinfo.sector_size, M_TEMP, M_WAITOK|M_ZERO); 4033 udf_inittag(ump, &dscr->tag, TAGID_TERM, sector); 4034 4035 /* CRC length for an anchor is 512 - tag length; defined in Ecma 167 */ 4036 dscr->tag.desc_crc_len = udf_rw16(512-UDF_DESC_TAG_LENGTH); 4037 (void) udf_validate_tag_and_crc_sums(dscr); 4038 4039 error = udf_write_phys_dscr_sync(ump, NULL, UDF_C_DSCR, 4040 dscr, sector, sector); 4041 4042 free(dscr, M_TEMP); 4043 4044 return error; 4045 } 4046 4047 4048 /* --------------------------------------------------------------------- */ 4049 4050 /* UDF<->unix converters */ 4051 4052 /* --------------------------------------------------------------------- */ 4053 4054 static mode_t 4055 udf_perm_to_unix_mode(uint32_t perm) 4056 { 4057 mode_t mode; 4058 4059 mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); 4060 mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); 4061 mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); 4062 4063 return mode; 4064 } 4065 4066 /* --------------------------------------------------------------------- */ 4067 4068 static uint32_t 4069 unix_mode_to_udf_perm(mode_t mode) 4070 { 4071 uint32_t perm; 4072 4073 perm = ((mode & S_IRWXO) ); 4074 perm |= ((mode & S_IRWXG) << 2); 4075 perm |= ((mode & S_IRWXU) << 4); 4076 perm |= ((mode & S_IWOTH) << 3); 4077 perm |= ((mode & S_IWGRP) << 5); 4078 perm |= ((mode & S_IWUSR) << 7); 4079 4080 return perm; 4081 } 4082 4083 /* --------------------------------------------------------------------- */ 4084 4085 static uint32_t 4086 udf_icb_to_unix_filetype(uint32_t icbftype) 4087 { 4088 switch (icbftype) { 4089 case UDF_ICB_FILETYPE_DIRECTORY : 4090 case UDF_ICB_FILETYPE_STREAMDIR : 4091 return S_IFDIR; 4092 case UDF_ICB_FILETYPE_FIFO : 4093 return S_IFIFO; 4094 case UDF_ICB_FILETYPE_CHARDEVICE : 4095 return S_IFCHR; 4096 case UDF_ICB_FILETYPE_BLOCKDEVICE : 4097 return S_IFBLK; 4098 case UDF_ICB_FILETYPE_RANDOMACCESS : 4099 case UDF_ICB_FILETYPE_REALTIME : 4100 return S_IFREG; 4101 case UDF_ICB_FILETYPE_SYMLINK : 4102 return S_IFLNK; 4103 case UDF_ICB_FILETYPE_SOCKET : 4104 return S_IFSOCK; 4105 } 4106 /* no idea what this is */ 4107 return 0; 4108 } 4109 4110 /* --------------------------------------------------------------------- */ 4111 4112 void 4113 udf_to_unix_name(char *result, int result_len, char *id, int len, 4114 struct charspec *chsp) 4115 { 4116 uint16_t *raw_name, *unix_name; 4117 uint16_t *inchp, ch; 4118 uint8_t *outchp; 4119 const char *osta_id = "OSTA Compressed Unicode"; 4120 int ucode_chars, nice_uchars, is_osta_typ0, nout; 4121 4122 raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); 4123 unix_name = raw_name + 1024; /* split space in half */ 4124 assert(sizeof(char) == sizeof(uint8_t)); 4125 outchp = (uint8_t *) result; 4126 4127 is_osta_typ0 = (chsp->type == 0); 4128 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4129 if (is_osta_typ0) { 4130 /* TODO clean up */ 4131 *raw_name = *unix_name = 0; 4132 ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); 4133 ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); 4134 nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); 4135 /* output UTF8 */ 4136 for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { 4137 ch = *inchp; 4138 nout = wput_utf8(outchp, result_len, ch); 4139 outchp += nout; result_len -= nout; 4140 if (!ch) break; 4141 } 4142 *outchp++ = 0; 4143 } else { 4144 /* assume 8bit char length byte latin-1 */ 4145 assert(*id == 8); 4146 assert(strlen((char *) (id+1)) <= NAME_MAX); 4147 strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); 4148 } 4149 free(raw_name, M_UDFTEMP); 4150 } 4151 4152 /* --------------------------------------------------------------------- */ 4153 4154 void 4155 unix_to_udf_name(char *result, uint8_t *result_len, char const *name, int name_len, 4156 struct charspec *chsp) 4157 { 4158 uint16_t *raw_name; 4159 uint16_t *outchp; 4160 const char *inchp; 4161 const char *osta_id = "OSTA Compressed Unicode"; 4162 int udf_chars, is_osta_typ0, bits; 4163 size_t cnt; 4164 4165 /* allocate temporary unicode-16 buffer */ 4166 raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); 4167 4168 /* convert utf8 to unicode-16 */ 4169 *raw_name = 0; 4170 inchp = name; 4171 outchp = raw_name; 4172 bits = 8; 4173 for (cnt = name_len, udf_chars = 0; cnt;) { 4174 *outchp = wget_utf8(&inchp, &cnt); 4175 if (*outchp > 0xff) 4176 bits=16; 4177 outchp++; 4178 udf_chars++; 4179 } 4180 /* null terminate just in case */ 4181 *outchp++ = 0; 4182 4183 is_osta_typ0 = (chsp->type == 0); 4184 is_osta_typ0 &= (strcmp((char *) chsp->inf, osta_id) == 0); 4185 if (is_osta_typ0) { 4186 udf_chars = udf_CompressUnicode(udf_chars, bits, 4187 (unicode_t *) raw_name, 4188 (byte *) result); 4189 } else { 4190 printf("unix to udf name: no CHSP0 ?\n"); 4191 /* XXX assume 8bit char length byte latin-1 */ 4192 *result++ = 8; udf_chars = 1; 4193 strncpy(result, name + 1, name_len); 4194 udf_chars += name_len; 4195 } 4196 *result_len = udf_chars; 4197 free(raw_name, M_UDFTEMP); 4198 } 4199 4200 /* --------------------------------------------------------------------- */ 4201 4202 void 4203 udf_timestamp_to_timespec(struct udf_mount *ump, 4204 struct timestamp *timestamp, 4205 struct timespec *timespec) 4206 { 4207 struct clock_ymdhms ymdhms; 4208 uint32_t usecs, secs, nsecs; 4209 uint16_t tz; 4210 4211 /* fill in ymdhms structure from timestamp */ 4212 memset(&ymdhms, 0, sizeof(ymdhms)); 4213 ymdhms.dt_year = udf_rw16(timestamp->year); 4214 ymdhms.dt_mon = timestamp->month; 4215 ymdhms.dt_day = timestamp->day; 4216 ymdhms.dt_wday = 0; /* ? */ 4217 ymdhms.dt_hour = timestamp->hour; 4218 ymdhms.dt_min = timestamp->minute; 4219 ymdhms.dt_sec = timestamp->second; 4220 4221 secs = clock_ymdhms_to_secs(&ymdhms); 4222 usecs = timestamp->usec + 4223 100*timestamp->hund_usec + 10000*timestamp->centisec; 4224 nsecs = usecs * 1000; 4225 4226 /* 4227 * Calculate the time zone. The timezone is 12 bit signed 2's 4228 * compliment, so we gotta do some extra magic to handle it right. 4229 */ 4230 tz = udf_rw16(timestamp->type_tz); 4231 tz &= 0x0fff; /* only lower 12 bits are significant */ 4232 if (tz & 0x0800) /* sign extention */ 4233 tz |= 0xf000; 4234 4235 /* TODO check timezone conversion */ 4236 /* check if we are specified a timezone to convert */ 4237 if (udf_rw16(timestamp->type_tz) & 0x1000) { 4238 if ((int16_t) tz != -2047) 4239 secs -= (int16_t) tz * 60; 4240 } else { 4241 secs -= ump->mount_args.gmtoff; 4242 } 4243 4244 timespec->tv_sec = secs; 4245 timespec->tv_nsec = nsecs; 4246 } 4247 4248 4249 void 4250 udf_timespec_to_timestamp(struct timespec *timespec, struct timestamp *timestamp) 4251 { 4252 struct clock_ymdhms ymdhms; 4253 uint32_t husec, usec, csec; 4254 4255 (void) clock_secs_to_ymdhms(timespec->tv_sec, &ymdhms); 4256 4257 usec = timespec->tv_nsec / 1000; 4258 husec = usec / 100; 4259 usec -= husec * 100; /* only 0-99 in usec */ 4260 csec = husec / 100; /* only 0-99 in csec */ 4261 husec -= csec * 100; /* only 0-99 in husec */ 4262 4263 /* set method 1 for CUT/GMT */ 4264 timestamp->type_tz = udf_rw16((1<<12) + 0); 4265 timestamp->year = udf_rw16(ymdhms.dt_year); 4266 timestamp->month = ymdhms.dt_mon; 4267 timestamp->day = ymdhms.dt_day; 4268 timestamp->hour = ymdhms.dt_hour; 4269 timestamp->minute = ymdhms.dt_min; 4270 timestamp->second = ymdhms.dt_sec; 4271 timestamp->centisec = csec; 4272 timestamp->hund_usec = husec; 4273 timestamp->usec = usec; 4274 } 4275 4276 /* --------------------------------------------------------------------- */ 4277 4278 /* 4279 * Attribute and filetypes converters with get/set pairs 4280 */ 4281 4282 uint32_t 4283 udf_getaccessmode(struct udf_node *udf_node) 4284 { 4285 struct file_entry *fe = udf_node->fe; 4286 struct extfile_entry *efe = udf_node->efe; 4287 uint32_t udf_perm, icbftype; 4288 uint32_t mode, ftype; 4289 uint16_t icbflags; 4290 4291 UDF_LOCK_NODE(udf_node, 0); 4292 if (fe) { 4293 udf_perm = udf_rw32(fe->perm); 4294 icbftype = fe->icbtag.file_type; 4295 icbflags = udf_rw16(fe->icbtag.flags); 4296 } else { 4297 assert(udf_node->efe); 4298 udf_perm = udf_rw32(efe->perm); 4299 icbftype = efe->icbtag.file_type; 4300 icbflags = udf_rw16(efe->icbtag.flags); 4301 } 4302 4303 mode = udf_perm_to_unix_mode(udf_perm); 4304 ftype = udf_icb_to_unix_filetype(icbftype); 4305 4306 /* set suid, sgid, sticky from flags in fe/efe */ 4307 if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) 4308 mode |= S_ISUID; 4309 if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) 4310 mode |= S_ISGID; 4311 if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) 4312 mode |= S_ISVTX; 4313 4314 UDF_UNLOCK_NODE(udf_node, 0); 4315 4316 return mode | ftype; 4317 } 4318 4319 4320 void 4321 udf_setaccessmode(struct udf_node *udf_node, mode_t mode) 4322 { 4323 struct file_entry *fe = udf_node->fe; 4324 struct extfile_entry *efe = udf_node->efe; 4325 uint32_t udf_perm; 4326 uint16_t icbflags; 4327 4328 UDF_LOCK_NODE(udf_node, 0); 4329 udf_perm = unix_mode_to_udf_perm(mode & ALLPERMS); 4330 if (fe) { 4331 icbflags = udf_rw16(fe->icbtag.flags); 4332 } else { 4333 icbflags = udf_rw16(efe->icbtag.flags); 4334 } 4335 4336 icbflags &= ~UDF_ICB_TAG_FLAGS_SETUID; 4337 icbflags &= ~UDF_ICB_TAG_FLAGS_SETGID; 4338 icbflags &= ~UDF_ICB_TAG_FLAGS_STICKY; 4339 if (mode & S_ISUID) 4340 icbflags |= UDF_ICB_TAG_FLAGS_SETUID; 4341 if (mode & S_ISGID) 4342 icbflags |= UDF_ICB_TAG_FLAGS_SETGID; 4343 if (mode & S_ISVTX) 4344 icbflags |= UDF_ICB_TAG_FLAGS_STICKY; 4345 4346 if (fe) { 4347 fe->perm = udf_rw32(udf_perm); 4348 fe->icbtag.flags = udf_rw16(icbflags); 4349 } else { 4350 efe->perm = udf_rw32(udf_perm); 4351 efe->icbtag.flags = udf_rw16(icbflags); 4352 } 4353 4354 UDF_UNLOCK_NODE(udf_node, 0); 4355 } 4356 4357 4358 void 4359 udf_getownership(struct udf_node *udf_node, uid_t *uidp, gid_t *gidp) 4360 { 4361 struct udf_mount *ump = udf_node->ump; 4362 struct file_entry *fe = udf_node->fe; 4363 struct extfile_entry *efe = udf_node->efe; 4364 uid_t uid; 4365 gid_t gid; 4366 4367 UDF_LOCK_NODE(udf_node, 0); 4368 if (fe) { 4369 uid = (uid_t)udf_rw32(fe->uid); 4370 gid = (gid_t)udf_rw32(fe->gid); 4371 } else { 4372 assert(udf_node->efe); 4373 uid = (uid_t)udf_rw32(efe->uid); 4374 gid = (gid_t)udf_rw32(efe->gid); 4375 } 4376 4377 /* do the uid/gid translation game */ 4378 if (uid == (uid_t) -1) 4379 uid = ump->mount_args.anon_uid; 4380 if (gid == (gid_t) -1) 4381 gid = ump->mount_args.anon_gid; 4382 4383 *uidp = uid; 4384 *gidp = gid; 4385 4386 UDF_UNLOCK_NODE(udf_node, 0); 4387 } 4388 4389 4390 void 4391 udf_setownership(struct udf_node *udf_node, uid_t uid, gid_t gid) 4392 { 4393 struct udf_mount *ump = udf_node->ump; 4394 struct file_entry *fe = udf_node->fe; 4395 struct extfile_entry *efe = udf_node->efe; 4396 uid_t nobody_uid; 4397 gid_t nobody_gid; 4398 4399 UDF_LOCK_NODE(udf_node, 0); 4400 4401 /* do the uid/gid translation game */ 4402 nobody_uid = ump->mount_args.nobody_uid; 4403 nobody_gid = ump->mount_args.nobody_gid; 4404 if (uid == nobody_uid) 4405 uid = (uid_t) -1; 4406 if (gid == nobody_gid) 4407 gid = (gid_t) -1; 4408 4409 if (fe) { 4410 fe->uid = udf_rw32((uint32_t) uid); 4411 fe->gid = udf_rw32((uint32_t) gid); 4412 } else { 4413 efe->uid = udf_rw32((uint32_t) uid); 4414 efe->gid = udf_rw32((uint32_t) gid); 4415 } 4416 4417 UDF_UNLOCK_NODE(udf_node, 0); 4418 } 4419 4420 4421 /* --------------------------------------------------------------------- */ 4422 4423 4424 int 4425 udf_dirhash_fill(struct udf_node *dir_node) 4426 { 4427 struct vnode *dvp = dir_node->vnode; 4428 struct dirhash *dirh; 4429 struct file_entry *fe = dir_node->fe; 4430 struct extfile_entry *efe = dir_node->efe; 4431 struct fileid_desc *fid; 4432 struct dirent *dirent; 4433 uint64_t file_size, pre_diroffset, diroffset; 4434 uint32_t lb_size; 4435 int error; 4436 4437 /* make sure we have a dirhash to work on */ 4438 dirh = dir_node->dir_hash; 4439 KASSERT(dirh); 4440 KASSERT(dirh->refcnt > 0); 4441 4442 if (dirh->flags & DIRH_BROKEN) 4443 return EIO; 4444 if (dirh->flags & DIRH_COMPLETE) 4445 return 0; 4446 4447 /* make sure we have a clean dirhash to add to */ 4448 dirhash_purge_entries(dirh); 4449 4450 /* get directory filesize */ 4451 if (fe) { 4452 file_size = udf_rw64(fe->inf_len); 4453 } else { 4454 assert(efe); 4455 file_size = udf_rw64(efe->inf_len); 4456 } 4457 4458 /* allocate temporary space for fid */ 4459 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4460 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4461 4462 /* allocate temporary space for dirent */ 4463 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4464 4465 error = 0; 4466 diroffset = 0; 4467 while (diroffset < file_size) { 4468 /* transfer a new fid/dirent */ 4469 pre_diroffset = diroffset; 4470 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4471 if (error) { 4472 /* TODO what to do? continue but not add? */ 4473 dirh->flags |= DIRH_BROKEN; 4474 dirhash_purge_entries(dirh); 4475 break; 4476 } 4477 4478 if ((fid->file_char & UDF_FILE_CHAR_DEL)) { 4479 /* register deleted extent for reuse */ 4480 dirhash_enter_freed(dirh, pre_diroffset, 4481 udf_fidsize(fid)); 4482 } else { 4483 /* append to the dirhash */ 4484 dirhash_enter(dirh, dirent, pre_diroffset, 4485 udf_fidsize(fid), 0); 4486 } 4487 } 4488 dirh->flags |= DIRH_COMPLETE; 4489 4490 free(fid, M_UDFTEMP); 4491 free(dirent, M_UDFTEMP); 4492 4493 return error; 4494 } 4495 4496 4497 /* --------------------------------------------------------------------- */ 4498 4499 /* 4500 * Directory read and manipulation functions. 4501 * 4502 */ 4503 4504 int 4505 udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, 4506 struct long_ad *icb_loc, int *found) 4507 { 4508 struct udf_node *dir_node = VTOI(vp); 4509 struct dirhash *dirh; 4510 struct dirhash_entry *dirh_ep; 4511 struct fileid_desc *fid; 4512 struct dirent *dirent; 4513 uint64_t diroffset; 4514 uint32_t lb_size; 4515 int hit, error; 4516 4517 /* set default return */ 4518 *found = 0; 4519 4520 /* get our dirhash and make sure its read in */ 4521 dirhash_get(&dir_node->dir_hash); 4522 error = udf_dirhash_fill(dir_node); 4523 if (error) { 4524 dirhash_put(dir_node->dir_hash); 4525 return error; 4526 } 4527 dirh = dir_node->dir_hash; 4528 4529 /* allocate temporary space for fid */ 4530 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4531 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4532 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4533 4534 DPRINTF(DIRHASH, ("dirhash_lookup looking for `%*.*s`\n", 4535 namelen, namelen, name)); 4536 4537 /* search our dirhash hits */ 4538 memset(icb_loc, 0, sizeof(*icb_loc)); 4539 dirh_ep = NULL; 4540 for (;;) { 4541 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4542 /* if no hit, abort the search */ 4543 if (!hit) 4544 break; 4545 4546 /* check this hit */ 4547 diroffset = dirh_ep->offset; 4548 4549 /* transfer a new fid/dirent */ 4550 error = udf_read_fid_stream(vp, &diroffset, fid, dirent); 4551 if (error) 4552 break; 4553 4554 DPRINTF(DIRHASH, ("dirhash_lookup\tchecking `%*.*s`\n", 4555 dirent->d_namlen, dirent->d_namlen, dirent->d_name)); 4556 4557 /* see if its our entry */ 4558 #ifdef DIAGNOSTIC 4559 if (dirent->d_namlen != namelen) { 4560 printf("WARNING: dirhash_lookup() returned wrong " 4561 "d_namelen: %d and ought to be %d\n", 4562 dirent->d_namlen, namelen); 4563 printf("\tlooked for `%s' and got `%s'\n", 4564 name, dirent->d_name); 4565 } 4566 #endif 4567 if (strncmp(dirent->d_name, name, namelen) == 0) { 4568 *found = 1; 4569 *icb_loc = fid->icb; 4570 break; 4571 } 4572 } 4573 free(fid, M_UDFTEMP); 4574 free(dirent, M_UDFTEMP); 4575 4576 dirhash_put(dir_node->dir_hash); 4577 4578 return error; 4579 } 4580 4581 /* --------------------------------------------------------------------- */ 4582 4583 static int 4584 udf_create_new_fe(struct udf_mount *ump, struct file_entry *fe, int file_type, 4585 struct long_ad *node_icb, struct long_ad *parent_icb, 4586 uint64_t parent_unique_id) 4587 { 4588 struct timespec now; 4589 struct icb_tag *icb; 4590 struct filetimes_extattr_entry *ft_extattr; 4591 uint64_t unique_id; 4592 uint32_t fidsize, lb_num; 4593 uint8_t *bpos; 4594 int crclen, attrlen; 4595 4596 lb_num = udf_rw32(node_icb->loc.lb_num); 4597 udf_inittag(ump, &fe->tag, TAGID_FENTRY, lb_num); 4598 icb = &fe->icbtag; 4599 4600 /* 4601 * Always use strategy type 4 unless on WORM wich we don't support 4602 * (yet). Fill in defaults and set for internal allocation of data. 4603 */ 4604 icb->strat_type = udf_rw16(4); 4605 icb->max_num_entries = udf_rw16(1); 4606 icb->file_type = file_type; /* 8 bit */ 4607 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4608 4609 fe->perm = udf_rw32(0x7fff); /* all is allowed */ 4610 fe->link_cnt = udf_rw16(0); /* explicit setting */ 4611 4612 fe->ckpoint = udf_rw32(1); /* user supplied file version */ 4613 4614 vfs_timestamp(&now); 4615 udf_timespec_to_timestamp(&now, &fe->atime); 4616 udf_timespec_to_timestamp(&now, &fe->attrtime); 4617 udf_timespec_to_timestamp(&now, &fe->mtime); 4618 4619 udf_set_regid(&fe->imp_id, IMPL_NAME); 4620 udf_add_impl_regid(ump, &fe->imp_id); 4621 4622 unique_id = udf_advance_uniqueid(ump); 4623 fe->unique_id = udf_rw64(unique_id); 4624 fe->l_ea = udf_rw32(0); 4625 4626 /* create extended attribute to record our creation time */ 4627 attrlen = UDF_FILETIMES_ATTR_SIZE(1); 4628 ft_extattr = malloc(attrlen, M_UDFTEMP, M_WAITOK); 4629 memset(ft_extattr, 0, attrlen); 4630 ft_extattr->hdr.type = udf_rw32(UDF_FILETIMES_ATTR_NO); 4631 ft_extattr->hdr.subtype = 1; /* [4/48.10.5] */ 4632 ft_extattr->hdr.a_l = udf_rw32(UDF_FILETIMES_ATTR_SIZE(1)); 4633 ft_extattr->d_l = udf_rw32(UDF_TIMESTAMP_SIZE); /* one item */ 4634 ft_extattr->existence = UDF_FILETIMES_FILE_CREATION; 4635 udf_timespec_to_timestamp(&now, &ft_extattr->times[0]); 4636 4637 udf_extattr_insert_internal(ump, (union dscrptr *) fe, 4638 (struct extattr_entry *) ft_extattr); 4639 free(ft_extattr, M_UDFTEMP); 4640 4641 /* if its a directory, create '..' */ 4642 bpos = (uint8_t *) fe->data + udf_rw32(fe->l_ea); 4643 fidsize = 0; 4644 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4645 fidsize = udf_create_parentfid(ump, 4646 (struct fileid_desc *) bpos, parent_icb, 4647 parent_unique_id); 4648 } 4649 4650 /* record fidlength information */ 4651 fe->inf_len = udf_rw64(fidsize); 4652 fe->l_ad = udf_rw32(fidsize); 4653 fe->logblks_rec = udf_rw64(0); /* intern */ 4654 4655 crclen = sizeof(struct file_entry) - 1 - UDF_DESC_TAG_LENGTH; 4656 crclen += udf_rw32(fe->l_ea) + fidsize; 4657 fe->tag.desc_crc_len = udf_rw16(crclen); 4658 4659 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fe); 4660 4661 return fidsize; 4662 } 4663 4664 /* --------------------------------------------------------------------- */ 4665 4666 static int 4667 udf_create_new_efe(struct udf_mount *ump, struct extfile_entry *efe, 4668 int file_type, struct long_ad *node_icb, struct long_ad *parent_icb, 4669 uint64_t parent_unique_id) 4670 { 4671 struct timespec now; 4672 struct icb_tag *icb; 4673 uint64_t unique_id; 4674 uint32_t fidsize, lb_num; 4675 uint8_t *bpos; 4676 int crclen; 4677 4678 lb_num = udf_rw32(node_icb->loc.lb_num); 4679 udf_inittag(ump, &efe->tag, TAGID_EXTFENTRY, lb_num); 4680 icb = &efe->icbtag; 4681 4682 /* 4683 * Always use strategy type 4 unless on WORM wich we don't support 4684 * (yet). Fill in defaults and set for internal allocation of data. 4685 */ 4686 icb->strat_type = udf_rw16(4); 4687 icb->max_num_entries = udf_rw16(1); 4688 icb->file_type = file_type; /* 8 bit */ 4689 icb->flags = udf_rw16(UDF_ICB_INTERN_ALLOC); 4690 4691 efe->perm = udf_rw32(0x7fff); /* all is allowed */ 4692 efe->link_cnt = udf_rw16(0); /* explicit setting */ 4693 4694 efe->ckpoint = udf_rw32(1); /* user supplied file version */ 4695 4696 vfs_timestamp(&now); 4697 udf_timespec_to_timestamp(&now, &efe->ctime); 4698 udf_timespec_to_timestamp(&now, &efe->atime); 4699 udf_timespec_to_timestamp(&now, &efe->attrtime); 4700 udf_timespec_to_timestamp(&now, &efe->mtime); 4701 4702 udf_set_regid(&efe->imp_id, IMPL_NAME); 4703 udf_add_impl_regid(ump, &efe->imp_id); 4704 4705 unique_id = udf_advance_uniqueid(ump); 4706 efe->unique_id = udf_rw64(unique_id); 4707 efe->l_ea = udf_rw32(0); 4708 4709 /* if its a directory, create '..' */ 4710 bpos = (uint8_t *) efe->data + udf_rw32(efe->l_ea); 4711 fidsize = 0; 4712 if (file_type == UDF_ICB_FILETYPE_DIRECTORY) { 4713 fidsize = udf_create_parentfid(ump, 4714 (struct fileid_desc *) bpos, parent_icb, 4715 parent_unique_id); 4716 } 4717 4718 /* record fidlength information */ 4719 efe->obj_size = udf_rw64(fidsize); 4720 efe->inf_len = udf_rw64(fidsize); 4721 efe->l_ad = udf_rw32(fidsize); 4722 efe->logblks_rec = udf_rw64(0); /* intern */ 4723 4724 crclen = sizeof(struct extfile_entry) - 1 - UDF_DESC_TAG_LENGTH; 4725 crclen += udf_rw32(efe->l_ea) + fidsize; 4726 efe->tag.desc_crc_len = udf_rw16(crclen); 4727 4728 (void) udf_validate_tag_and_crc_sums((union dscrptr *) efe); 4729 4730 return fidsize; 4731 } 4732 4733 /* --------------------------------------------------------------------- */ 4734 4735 int 4736 udf_dir_detach(struct udf_mount *ump, struct udf_node *dir_node, 4737 struct udf_node *udf_node, struct componentname *cnp) 4738 { 4739 struct vnode *dvp = dir_node->vnode; 4740 struct dirhash *dirh; 4741 struct dirhash_entry *dirh_ep; 4742 struct file_entry *fe = dir_node->fe; 4743 struct fileid_desc *fid; 4744 struct dirent *dirent; 4745 uint64_t diroffset; 4746 uint32_t lb_size, fidsize; 4747 int found, error; 4748 char const *name = cnp->cn_nameptr; 4749 int namelen = cnp->cn_namelen; 4750 int hit, refcnt; 4751 4752 /* get our dirhash and make sure its read in */ 4753 dirhash_get(&dir_node->dir_hash); 4754 error = udf_dirhash_fill(dir_node); 4755 if (error) { 4756 dirhash_put(dir_node->dir_hash); 4757 return error; 4758 } 4759 dirh = dir_node->dir_hash; 4760 4761 /* get directory filesize */ 4762 if (!fe) { 4763 assert(dir_node->efe); 4764 } 4765 4766 /* allocate temporary space for fid */ 4767 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4768 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4769 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4770 4771 /* search our dirhash hits */ 4772 found = 0; 4773 dirh_ep = NULL; 4774 for (;;) { 4775 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4776 /* if no hit, abort the search */ 4777 if (!hit) 4778 break; 4779 4780 /* check this hit */ 4781 diroffset = dirh_ep->offset; 4782 4783 /* transfer a new fid/dirent */ 4784 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4785 if (error) 4786 break; 4787 4788 /* see if its our entry */ 4789 KASSERT(dirent->d_namlen == namelen); 4790 if (strncmp(dirent->d_name, name, namelen) == 0) { 4791 found = 1; 4792 break; 4793 } 4794 } 4795 4796 if (!found) 4797 error = ENOENT; 4798 if (error) 4799 goto error_out; 4800 4801 /* mark deleted */ 4802 fid->file_char |= UDF_FILE_CHAR_DEL; 4803 #ifdef UDF_COMPLETE_DELETE 4804 memset(&fid->icb, 0, sizeof(fid->icb)); 4805 #endif 4806 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4807 4808 /* get size of fid and compensate for the read_fid_stream advance */ 4809 fidsize = udf_fidsize(fid); 4810 diroffset -= fidsize; 4811 4812 /* write out */ 4813 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4814 fid, fidsize, diroffset, 4815 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4816 FSCRED, NULL, NULL); 4817 if (error) 4818 goto error_out; 4819 4820 /* get reference count of attached node */ 4821 if (udf_node->fe) { 4822 refcnt = udf_rw16(udf_node->fe->link_cnt); 4823 } else { 4824 KASSERT(udf_node->efe); 4825 refcnt = udf_rw16(udf_node->efe->link_cnt); 4826 } 4827 #ifdef UDF_COMPLETE_DELETE 4828 /* substract reference counter in attached node */ 4829 refcnt -= 1; 4830 if (udf_node->fe) { 4831 udf_node->fe->link_cnt = udf_rw16(refcnt); 4832 } else { 4833 udf_node->efe->link_cnt = udf_rw16(refcnt); 4834 } 4835 4836 /* prevent writeout when refcnt == 0 */ 4837 if (refcnt == 0) 4838 udf_node->i_flags |= IN_DELETED; 4839 4840 if (fid->file_char & UDF_FILE_CHAR_DIR) { 4841 int drefcnt; 4842 4843 /* substract reference counter in directory node */ 4844 /* note subtract 2 (?) for its was also backreferenced */ 4845 if (dir_node->fe) { 4846 drefcnt = udf_rw16(dir_node->fe->link_cnt); 4847 drefcnt -= 1; 4848 dir_node->fe->link_cnt = udf_rw16(drefcnt); 4849 } else { 4850 KASSERT(dir_node->efe); 4851 drefcnt = udf_rw16(dir_node->efe->link_cnt); 4852 drefcnt -= 1; 4853 dir_node->efe->link_cnt = udf_rw16(drefcnt); 4854 } 4855 } 4856 4857 udf_node->i_flags |= IN_MODIFIED; 4858 dir_node->i_flags |= IN_MODIFIED; 4859 #endif 4860 /* if it is/was a hardlink adjust the file count */ 4861 if (refcnt > 0) 4862 udf_adjust_filecount(udf_node, -1); 4863 4864 /* remove from the dirhash */ 4865 dirhash_remove(dirh, dirent, diroffset, 4866 udf_fidsize(fid)); 4867 4868 error_out: 4869 free(fid, M_UDFTEMP); 4870 free(dirent, M_UDFTEMP); 4871 4872 dirhash_put(dir_node->dir_hash); 4873 4874 return error; 4875 } 4876 4877 /* --------------------------------------------------------------------- */ 4878 4879 int 4880 udf_dir_update_rootentry(struct udf_mount *ump, struct udf_node *dir_node, 4881 struct udf_node *new_parent_node) 4882 { 4883 struct vnode *dvp = dir_node->vnode; 4884 struct dirhash *dirh; 4885 struct dirhash_entry *dirh_ep; 4886 struct file_entry *fe; 4887 struct extfile_entry *efe; 4888 struct fileid_desc *fid; 4889 struct dirent *dirent; 4890 uint64_t diroffset; 4891 uint64_t new_parent_unique_id; 4892 uint32_t lb_size, fidsize; 4893 int found, error; 4894 char const *name = ".."; 4895 int namelen = 2; 4896 int hit; 4897 4898 /* get our dirhash and make sure its read in */ 4899 dirhash_get(&dir_node->dir_hash); 4900 error = udf_dirhash_fill(dir_node); 4901 if (error) { 4902 dirhash_put(dir_node->dir_hash); 4903 return error; 4904 } 4905 dirh = dir_node->dir_hash; 4906 4907 /* get new parent's unique ID */ 4908 fe = new_parent_node->fe; 4909 efe = new_parent_node->efe; 4910 if (fe) { 4911 new_parent_unique_id = udf_rw64(fe->unique_id); 4912 } else { 4913 assert(efe); 4914 new_parent_unique_id = udf_rw64(efe->unique_id); 4915 } 4916 4917 /* get directory filesize */ 4918 fe = dir_node->fe; 4919 efe = dir_node->efe; 4920 if (!fe) { 4921 assert(efe); 4922 } 4923 4924 /* allocate temporary space for fid */ 4925 lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); 4926 fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); 4927 dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); 4928 4929 /* 4930 * NOTE the standard does not dictate the FID entry '..' should be 4931 * first, though in practice it will most likely be. 4932 */ 4933 4934 /* search our dirhash hits */ 4935 found = 0; 4936 dirh_ep = NULL; 4937 for (;;) { 4938 hit = dirhash_lookup(dirh, name, namelen, &dirh_ep); 4939 /* if no hit, abort the search */ 4940 if (!hit) 4941 break; 4942 4943 /* check this hit */ 4944 diroffset = dirh_ep->offset; 4945 4946 /* transfer a new fid/dirent */ 4947 error = udf_read_fid_stream(dvp, &diroffset, fid, dirent); 4948 if (error) 4949 break; 4950 4951 /* see if its our entry */ 4952 KASSERT(dirent->d_namlen == namelen); 4953 if (strncmp(dirent->d_name, name, namelen) == 0) { 4954 found = 1; 4955 break; 4956 } 4957 } 4958 4959 if (!found) 4960 error = ENOENT; 4961 if (error) 4962 goto error_out; 4963 4964 /* update our ICB to the new parent, hit of lower 32 bits of uniqueid */ 4965 fid->icb = new_parent_node->write_loc; 4966 fid->icb.longad_uniqueid = udf_rw32(new_parent_unique_id); 4967 4968 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 4969 4970 /* get size of fid and compensate for the read_fid_stream advance */ 4971 fidsize = udf_fidsize(fid); 4972 diroffset -= fidsize; 4973 4974 /* write out */ 4975 error = vn_rdwr(UIO_WRITE, dir_node->vnode, 4976 fid, fidsize, diroffset, 4977 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 4978 FSCRED, NULL, NULL); 4979 4980 /* nothing to be done in the dirhash */ 4981 4982 error_out: 4983 free(fid, M_UDFTEMP); 4984 free(dirent, M_UDFTEMP); 4985 4986 dirhash_put(dir_node->dir_hash); 4987 4988 return error; 4989 } 4990 4991 /* --------------------------------------------------------------------- */ 4992 4993 /* 4994 * We are not allowed to split the fid tag itself over an logical block so 4995 * check the space remaining in the logical block. 4996 * 4997 * We try to select the smallest candidate for recycling or when none is 4998 * found, append a new one at the end of the directory. 4999 */ 5000 5001 int 5002 udf_dir_attach(struct udf_mount *ump, struct udf_node *dir_node, 5003 struct udf_node *udf_node, struct vattr *vap, struct componentname *cnp) 5004 { 5005 struct vnode *dvp = dir_node->vnode; 5006 struct dirhash *dirh; 5007 struct dirhash_entry *dirh_ep; 5008 struct fileid_desc *fid; 5009 struct icb_tag *icbtag; 5010 struct charspec osta_charspec; 5011 struct dirent dirent; 5012 uint64_t unique_id, dir_size; 5013 uint64_t fid_pos, end_fid_pos, chosen_fid_pos; 5014 uint32_t chosen_size, chosen_size_diff; 5015 int lb_size, lb_rest, fidsize, this_fidsize, size_diff; 5016 int file_char, refcnt, icbflags, addr_type, hit, error; 5017 5018 /* get our dirhash and make sure its read in */ 5019 dirhash_get(&dir_node->dir_hash); 5020 error = udf_dirhash_fill(dir_node); 5021 if (error) { 5022 dirhash_put(dir_node->dir_hash); 5023 return error; 5024 } 5025 dirh = dir_node->dir_hash; 5026 5027 /* get info */ 5028 lb_size = udf_rw32(ump->logical_vol->lb_size); 5029 udf_osta_charset(&osta_charspec); 5030 5031 if (dir_node->fe) { 5032 dir_size = udf_rw64(dir_node->fe->inf_len); 5033 icbtag = &dir_node->fe->icbtag; 5034 } else { 5035 dir_size = udf_rw64(dir_node->efe->inf_len); 5036 icbtag = &dir_node->efe->icbtag; 5037 } 5038 5039 icbflags = udf_rw16(icbtag->flags); 5040 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5041 5042 if (udf_node->fe) { 5043 unique_id = udf_rw64(udf_node->fe->unique_id); 5044 refcnt = udf_rw16(udf_node->fe->link_cnt); 5045 } else { 5046 unique_id = udf_rw64(udf_node->efe->unique_id); 5047 refcnt = udf_rw16(udf_node->efe->link_cnt); 5048 } 5049 5050 if (refcnt > 0) { 5051 unique_id = udf_advance_uniqueid(ump); 5052 udf_adjust_filecount(udf_node, 1); 5053 } 5054 5055 /* determine file characteristics */ 5056 file_char = 0; /* visible non deleted file and not stream metadata */ 5057 if (vap->va_type == VDIR) 5058 file_char = UDF_FILE_CHAR_DIR; 5059 5060 /* malloc scrap buffer */ 5061 fid = malloc(lb_size, M_TEMP, M_WAITOK|M_ZERO); 5062 5063 /* calculate _minimum_ fid size */ 5064 unix_to_udf_name((char *) fid->data, &fid->l_fi, 5065 cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5066 fidsize = UDF_FID_SIZE + fid->l_fi; 5067 fidsize = (fidsize + 3) & ~3; /* multiple of 4 */ 5068 5069 /* find position that will fit the FID */ 5070 chosen_fid_pos = dir_size; 5071 chosen_size = 0; 5072 chosen_size_diff = UINT_MAX; 5073 5074 /* shut up gcc */ 5075 dirent.d_namlen = 0; 5076 5077 /* search our dirhash hits */ 5078 error = 0; 5079 dirh_ep = NULL; 5080 for (;;) { 5081 hit = dirhash_lookup_freed(dirh, fidsize, &dirh_ep); 5082 /* if no hit, abort the search */ 5083 if (!hit) 5084 break; 5085 5086 /* check this hit for size */ 5087 this_fidsize = dirh_ep->entry_size; 5088 5089 /* check this hit */ 5090 fid_pos = dirh_ep->offset; 5091 end_fid_pos = fid_pos + this_fidsize; 5092 size_diff = this_fidsize - fidsize; 5093 lb_rest = lb_size - (end_fid_pos % lb_size); 5094 5095 #ifndef UDF_COMPLETE_DELETE 5096 /* transfer a new fid/dirent */ 5097 error = udf_read_fid_stream(vp, &fid_pos, fid, dirent); 5098 if (error) 5099 goto error_out; 5100 5101 /* only reuse entries that are wiped */ 5102 /* check if the len + loc are marked zero */ 5103 if (udf_rw32(fid->icb.len) != 0) 5104 continue; 5105 if (udf_rw32(fid->icb.loc.lb_num) != 0) 5106 continue; 5107 if (udf_rw16(fid->icb.loc.part_num) != 0) 5108 continue; 5109 #endif /* UDF_COMPLETE_DELETE */ 5110 5111 /* select if not splitting the tag and its smaller */ 5112 if ((size_diff >= 0) && 5113 (size_diff < chosen_size_diff) && 5114 (lb_rest >= sizeof(struct desc_tag))) 5115 { 5116 /* UDF 2.3.4.2+3 specifies rules for iu size */ 5117 if ((size_diff == 0) || (size_diff >= 32)) { 5118 chosen_fid_pos = fid_pos; 5119 chosen_size = this_fidsize; 5120 chosen_size_diff = size_diff; 5121 } 5122 } 5123 } 5124 5125 5126 /* extend directory if no other candidate found */ 5127 if (chosen_size == 0) { 5128 chosen_fid_pos = dir_size; 5129 chosen_size = fidsize; 5130 chosen_size_diff = 0; 5131 5132 /* special case UDF 2.00+ 2.3.4.4, no splitting up fid tag */ 5133 if (addr_type == UDF_ICB_INTERN_ALLOC) { 5134 /* pre-grow directory to see if we're to switch */ 5135 udf_grow_node(dir_node, dir_size + chosen_size); 5136 5137 icbflags = udf_rw16(icbtag->flags); 5138 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 5139 } 5140 5141 /* make sure the next fid desc_tag won't be splitted */ 5142 if (addr_type != UDF_ICB_INTERN_ALLOC) { 5143 end_fid_pos = chosen_fid_pos + chosen_size; 5144 lb_rest = lb_size - (end_fid_pos % lb_size); 5145 5146 /* pad with implementation use regid if needed */ 5147 if (lb_rest < sizeof(struct desc_tag)) 5148 chosen_size += 32; 5149 } 5150 } 5151 chosen_size_diff = chosen_size - fidsize; 5152 5153 /* populate the FID */ 5154 memset(fid, 0, lb_size); 5155 udf_inittag(ump, &fid->tag, TAGID_FID, 0); 5156 fid->file_version_num = udf_rw16(1); /* UDF 2.3.4.1 */ 5157 fid->file_char = file_char; 5158 fid->icb = udf_node->loc; 5159 fid->icb.longad_uniqueid = udf_rw32((uint32_t) unique_id); 5160 fid->l_iu = udf_rw16(0); 5161 5162 if (chosen_size > fidsize) { 5163 /* insert implementation-use regid to space it correctly */ 5164 fid->l_iu = udf_rw16(chosen_size_diff); 5165 5166 /* set implementation use */ 5167 udf_set_regid((struct regid *) fid->data, IMPL_NAME); 5168 udf_add_impl_regid(ump, (struct regid *) fid->data); 5169 } 5170 5171 /* fill in name */ 5172 unix_to_udf_name((char *) fid->data + udf_rw16(fid->l_iu), 5173 &fid->l_fi, cnp->cn_nameptr, cnp->cn_namelen, &osta_charspec); 5174 5175 fid->tag.desc_crc_len = udf_rw16(chosen_size - UDF_DESC_TAG_LENGTH); 5176 (void) udf_validate_tag_and_crc_sums((union dscrptr *) fid); 5177 5178 /* writeout FID/update parent directory */ 5179 error = vn_rdwr(UIO_WRITE, dvp, 5180 fid, chosen_size, chosen_fid_pos, 5181 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, 5182 FSCRED, NULL, NULL); 5183 5184 if (error) 5185 goto error_out; 5186 5187 /* add reference counter in attached node */ 5188 if (udf_node->fe) { 5189 refcnt = udf_rw16(udf_node->fe->link_cnt); 5190 udf_node->fe->link_cnt = udf_rw16(refcnt+1); 5191 } else { 5192 KASSERT(udf_node->efe); 5193 refcnt = udf_rw16(udf_node->efe->link_cnt); 5194 udf_node->efe->link_cnt = udf_rw16(refcnt+1); 5195 } 5196 5197 /* mark not deleted if it was... just in case, but do warn */ 5198 if (udf_node->i_flags & IN_DELETED) { 5199 printf("udf: warning, marking a file undeleted\n"); 5200 udf_node->i_flags &= ~IN_DELETED; 5201 } 5202 5203 if (file_char & UDF_FILE_CHAR_DIR) { 5204 /* add reference counter in directory node for '..' */ 5205 if (dir_node->fe) { 5206 refcnt = udf_rw16(dir_node->fe->link_cnt); 5207 refcnt++; 5208 dir_node->fe->link_cnt = udf_rw16(refcnt); 5209 } else { 5210 KASSERT(dir_node->efe); 5211 refcnt = udf_rw16(dir_node->efe->link_cnt); 5212 refcnt++; 5213 dir_node->efe->link_cnt = udf_rw16(refcnt); 5214 } 5215 } 5216 5217 /* append to the dirhash */ 5218 /* NOTE do not use dirent anymore or it won't match later! */ 5219 udf_to_unix_name(dirent.d_name, NAME_MAX, 5220 (char *) fid->data + udf_rw16(fid->l_iu), fid->l_fi, &osta_charspec); 5221 dirent.d_namlen = strlen(dirent.d_name); 5222 dirhash_enter(dirh, &dirent, chosen_fid_pos, 5223 udf_fidsize(fid), 1); 5224 5225 /* note updates */ 5226 udf_node->i_flags |= IN_CHANGE | IN_MODIFY; /* | IN_CREATE? */ 5227 /* VN_KNOTE(udf_node, ...) */ 5228 udf_update(udf_node->vnode, NULL, NULL, NULL, 0); 5229 5230 error_out: 5231 free(fid, M_TEMP); 5232 5233 dirhash_put(dir_node->dir_hash); 5234 5235 return error; 5236 } 5237 5238 /* --------------------------------------------------------------------- */ 5239 5240 /* 5241 * Each node can have an attached streamdir node though not recursively. These 5242 * are otherwise known as named substreams/named extended attributes that have 5243 * no size limitations. 5244 * 5245 * `Normal' extended attributes are indicated with a number and are recorded 5246 * in either the fe/efe descriptor itself for small descriptors or recorded in 5247 * the attached extended attribute file. Since these spaces can get 5248 * fragmented, care ought to be taken. 5249 * 5250 * Since the size of the space reserved for allocation descriptors is limited, 5251 * there is a mechanim provided for extending this space; this is done by a 5252 * special extent to allow schrinking of the allocations without breaking the 5253 * linkage to the allocation extent descriptor. 5254 */ 5255 5256 int 5257 udf_loadvnode(struct mount *mp, struct vnode *vp, 5258 const void *key, size_t key_len, const void **new_key) 5259 { 5260 union dscrptr *dscr; 5261 struct udf_mount *ump; 5262 struct udf_node *udf_node; 5263 struct long_ad node_icb_loc, icb_loc, next_icb_loc, last_fe_icb_loc; 5264 uint64_t file_size; 5265 uint32_t lb_size, sector, dummy; 5266 int udf_file_type, dscr_type, strat, strat4096, needs_indirect; 5267 int slot, eof, error; 5268 int num_indir_followed = 0; 5269 5270 DPRINTF(NODE, ("udf_loadvnode called\n")); 5271 udf_node = NULL; 5272 ump = VFSTOUDF(mp); 5273 5274 KASSERT(key_len == sizeof(node_icb_loc.loc)); 5275 memset(&node_icb_loc, 0, sizeof(node_icb_loc)); 5276 node_icb_loc.len = ump->logical_vol->lb_size; 5277 memcpy(&node_icb_loc.loc, key, key_len); 5278 5279 /* garbage check: translate udf_node_icb_loc to sectornr */ 5280 error = udf_translate_vtop(ump, &node_icb_loc, §or, &dummy); 5281 if (error) { 5282 DPRINTF(NODE, ("\tcan't translate icb address!\n")); 5283 /* no use, this will fail anyway */ 5284 return EINVAL; 5285 } 5286 5287 /* build udf_node (do initialise!) */ 5288 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5289 memset(udf_node, 0, sizeof(struct udf_node)); 5290 5291 vp->v_tag = VT_UDF; 5292 vp->v_op = udf_vnodeop_p; 5293 vp->v_data = udf_node; 5294 5295 /* initialise crosslinks, note location of fe/efe for hashing */ 5296 udf_node->ump = ump; 5297 udf_node->vnode = vp; 5298 udf_node->loc = node_icb_loc; 5299 udf_node->lockf = 0; 5300 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5301 cv_init(&udf_node->node_lock, "udf_nlk"); 5302 genfs_node_init(vp, &udf_genfsops); /* inititise genfs */ 5303 udf_node->outstanding_bufs = 0; 5304 udf_node->outstanding_nodedscr = 0; 5305 udf_node->uncommitted_lbs = 0; 5306 5307 /* check if we're fetching the root */ 5308 if (ump->fileset_desc) 5309 if (memcmp(&udf_node->loc, &ump->fileset_desc->rootdir_icb, 5310 sizeof(struct long_ad)) == 0) 5311 vp->v_vflag |= VV_ROOT; 5312 5313 /* insert into the hash lookup */ 5314 udf_register_node(udf_node); 5315 5316 icb_loc = node_icb_loc; 5317 needs_indirect = 0; 5318 strat4096 = 0; 5319 udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; 5320 file_size = 0; 5321 lb_size = udf_rw32(ump->logical_vol->lb_size); 5322 5323 DPRINTF(NODE, ("\tstart reading descriptors\n")); 5324 do { 5325 /* try to read in fe/efe */ 5326 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5327 5328 /* blank sector marks end of sequence, check this */ 5329 if ((dscr == NULL) && (!strat4096)) 5330 error = ENOENT; 5331 5332 /* break if read error or blank sector */ 5333 if (error || (dscr == NULL)) 5334 break; 5335 5336 /* process descriptor based on the descriptor type */ 5337 dscr_type = udf_rw16(dscr->tag.id); 5338 DPRINTF(NODE, ("\tread descriptor %d\n", dscr_type)); 5339 5340 /* if dealing with an indirect entry, follow the link */ 5341 if (dscr_type == TAGID_INDIRECTENTRY) { 5342 needs_indirect = 0; 5343 next_icb_loc = dscr->inde.indirect_icb; 5344 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5345 icb_loc = next_icb_loc; 5346 if (++num_indir_followed > UDF_MAX_INDIRS_FOLLOW) { 5347 error = EMLINK; 5348 break; 5349 } 5350 continue; 5351 } 5352 5353 /* only file entries and extended file entries allowed here */ 5354 if ((dscr_type != TAGID_FENTRY) && 5355 (dscr_type != TAGID_EXTFENTRY)) { 5356 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5357 error = ENOENT; 5358 break; 5359 } 5360 5361 KASSERT(udf_tagsize(dscr, lb_size) == lb_size); 5362 5363 /* choose this one */ 5364 last_fe_icb_loc = icb_loc; 5365 5366 /* record and process/update (ext)fentry */ 5367 if (dscr_type == TAGID_FENTRY) { 5368 if (udf_node->fe) 5369 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5370 udf_node->fe); 5371 udf_node->fe = &dscr->fe; 5372 strat = udf_rw16(udf_node->fe->icbtag.strat_type); 5373 udf_file_type = udf_node->fe->icbtag.file_type; 5374 file_size = udf_rw64(udf_node->fe->inf_len); 5375 } else { 5376 if (udf_node->efe) 5377 udf_free_logvol_dscr(ump, &last_fe_icb_loc, 5378 udf_node->efe); 5379 udf_node->efe = &dscr->efe; 5380 strat = udf_rw16(udf_node->efe->icbtag.strat_type); 5381 udf_file_type = udf_node->efe->icbtag.file_type; 5382 file_size = udf_rw64(udf_node->efe->inf_len); 5383 } 5384 5385 /* check recording strategy (structure) */ 5386 5387 /* 5388 * Strategy 4096 is a daisy linked chain terminating with an 5389 * unrecorded sector or a TERM descriptor. The next 5390 * descriptor is to be found in the sector that follows the 5391 * current sector. 5392 */ 5393 if (strat == 4096) { 5394 strat4096 = 1; 5395 needs_indirect = 1; 5396 5397 icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; 5398 } 5399 5400 /* 5401 * Strategy 4 is the normal strategy and terminates, but if 5402 * we're in strategy 4096, we can't have strategy 4 mixed in 5403 */ 5404 5405 if (strat == 4) { 5406 if (strat4096) { 5407 error = EINVAL; 5408 break; 5409 } 5410 break; /* done */ 5411 } 5412 } while (!error); 5413 5414 /* first round of cleanup code */ 5415 if (error) { 5416 DPRINTF(NODE, ("\tnode fe/efe failed!\n")); 5417 /* recycle udf_node */ 5418 udf_dispose_node(udf_node); 5419 5420 return EINVAL; /* error code ok? */ 5421 } 5422 DPRINTF(NODE, ("\tnode fe/efe read in fine\n")); 5423 5424 /* assert no references to dscr anymore beyong this point */ 5425 assert((udf_node->fe) || (udf_node->efe)); 5426 dscr = NULL; 5427 5428 /* 5429 * Remember where to record an updated version of the descriptor. If 5430 * there is a sequence of indirect entries, icb_loc will have been 5431 * updated. Its the write disipline to allocate new space and to make 5432 * sure the chain is maintained. 5433 * 5434 * `needs_indirect' flags if the next location is to be filled with 5435 * with an indirect entry. 5436 */ 5437 udf_node->write_loc = icb_loc; 5438 udf_node->needs_indirect = needs_indirect; 5439 5440 /* 5441 * Go trough all allocations extents of this descriptor and when 5442 * encountering a redirect read in the allocation extension. These are 5443 * daisy-chained. 5444 */ 5445 UDF_LOCK_NODE(udf_node, 0); 5446 udf_node->num_extensions = 0; 5447 5448 error = 0; 5449 slot = 0; 5450 for (;;) { 5451 udf_get_adslot(udf_node, slot, &icb_loc, &eof); 5452 DPRINTF(ADWLK, ("slot %d, eof = %d, flags = %d, len = %d, " 5453 "lb_num = %d, part = %d\n", slot, eof, 5454 UDF_EXT_FLAGS(udf_rw32(icb_loc.len)), 5455 UDF_EXT_LEN(udf_rw32(icb_loc.len)), 5456 udf_rw32(icb_loc.loc.lb_num), 5457 udf_rw16(icb_loc.loc.part_num))); 5458 if (eof) 5459 break; 5460 slot++; 5461 5462 if (UDF_EXT_FLAGS(udf_rw32(icb_loc.len)) != UDF_EXT_REDIRECT) 5463 continue; 5464 5465 DPRINTF(NODE, ("\tgot redirect extent\n")); 5466 if (udf_node->num_extensions >= UDF_MAX_ALLOC_EXTENTS) { 5467 DPRINTF(ALLOC, ("udf_get_node: implementation limit, " 5468 "too many allocation extensions on " 5469 "udf_node\n")); 5470 error = EINVAL; 5471 break; 5472 } 5473 5474 /* length can only be *one* lb : UDF 2.50/2.3.7.1 */ 5475 if (UDF_EXT_LEN(udf_rw32(icb_loc.len)) != lb_size) { 5476 DPRINTF(ALLOC, ("udf_get_node: bad allocation " 5477 "extension size in udf_node\n")); 5478 error = EINVAL; 5479 break; 5480 } 5481 5482 DPRINTF(NODE, ("read allocation extent at lb_num %d\n", 5483 UDF_EXT_LEN(udf_rw32(icb_loc.loc.lb_num)))); 5484 /* load in allocation extent */ 5485 error = udf_read_logvol_dscr(ump, &icb_loc, &dscr); 5486 if (error || (dscr == NULL)) 5487 break; 5488 5489 /* process read-in descriptor */ 5490 dscr_type = udf_rw16(dscr->tag.id); 5491 5492 if (dscr_type != TAGID_ALLOCEXTENT) { 5493 udf_free_logvol_dscr(ump, &icb_loc, dscr); 5494 error = ENOENT; 5495 break; 5496 } 5497 5498 DPRINTF(NODE, ("\trecording redirect extent\n")); 5499 udf_node->ext[udf_node->num_extensions] = &dscr->aee; 5500 udf_node->ext_loc[udf_node->num_extensions] = icb_loc; 5501 5502 udf_node->num_extensions++; 5503 5504 } /* while */ 5505 UDF_UNLOCK_NODE(udf_node, 0); 5506 5507 /* second round of cleanup code */ 5508 if (error) { 5509 /* recycle udf_node */ 5510 udf_dispose_node(udf_node); 5511 5512 return EINVAL; /* error code ok? */ 5513 } 5514 5515 DPRINTF(NODE, ("\tnode read in fine\n")); 5516 5517 /* 5518 * Translate UDF filetypes into vnode types. 5519 * 5520 * Systemfiles like the meta main and mirror files are not treated as 5521 * normal files, so we type them as having no type. UDF dictates that 5522 * they are not allowed to be visible. 5523 */ 5524 5525 switch (udf_file_type) { 5526 case UDF_ICB_FILETYPE_DIRECTORY : 5527 case UDF_ICB_FILETYPE_STREAMDIR : 5528 vp->v_type = VDIR; 5529 break; 5530 case UDF_ICB_FILETYPE_BLOCKDEVICE : 5531 vp->v_type = VBLK; 5532 break; 5533 case UDF_ICB_FILETYPE_CHARDEVICE : 5534 vp->v_type = VCHR; 5535 break; 5536 case UDF_ICB_FILETYPE_SOCKET : 5537 vp->v_type = VSOCK; 5538 break; 5539 case UDF_ICB_FILETYPE_FIFO : 5540 vp->v_type = VFIFO; 5541 break; 5542 case UDF_ICB_FILETYPE_SYMLINK : 5543 vp->v_type = VLNK; 5544 break; 5545 case UDF_ICB_FILETYPE_VAT : 5546 case UDF_ICB_FILETYPE_META_MAIN : 5547 case UDF_ICB_FILETYPE_META_MIRROR : 5548 vp->v_type = VNON; 5549 break; 5550 case UDF_ICB_FILETYPE_RANDOMACCESS : 5551 case UDF_ICB_FILETYPE_REALTIME : 5552 vp->v_type = VREG; 5553 break; 5554 default: 5555 /* YIKES, something else */ 5556 vp->v_type = VNON; 5557 } 5558 5559 /* TODO specfs, fifofs etc etc. vnops setting */ 5560 5561 /* don't forget to set vnode's v_size */ 5562 uvm_vnp_setsize(vp, file_size); 5563 5564 /* TODO ext attr and streamdir udf_nodes */ 5565 5566 *new_key = &udf_node->loc.loc; 5567 5568 return 0; 5569 } 5570 5571 int 5572 udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, 5573 struct udf_node **udf_noderes) 5574 { 5575 int error; 5576 struct vnode *vp; 5577 5578 error = vcache_get(ump->vfs_mountp, &node_icb_loc->loc, 5579 sizeof(node_icb_loc->loc), &vp); 5580 if (error) 5581 return error; 5582 error = vn_lock(vp, LK_EXCLUSIVE); 5583 if (error) { 5584 vrele(vp); 5585 return error; 5586 } 5587 *udf_noderes = VTOI(vp); 5588 return 0; 5589 } 5590 5591 /* --------------------------------------------------------------------- */ 5592 5593 int 5594 udf_writeout_node(struct udf_node *udf_node, int waitfor) 5595 { 5596 union dscrptr *dscr; 5597 struct long_ad *loc; 5598 int extnr, error; 5599 5600 DPRINTF(NODE, ("udf_writeout_node called\n")); 5601 5602 KASSERT(udf_node->outstanding_bufs == 0); 5603 KASSERT(udf_node->outstanding_nodedscr == 0); 5604 5605 KASSERT(LIST_EMPTY(&udf_node->vnode->v_dirtyblkhd)); 5606 5607 if (udf_node->i_flags & IN_DELETED) { 5608 DPRINTF(NODE, ("\tnode deleted; not writing out\n")); 5609 udf_cleanup_reservation(udf_node); 5610 return 0; 5611 } 5612 5613 /* lock node; unlocked in callback */ 5614 UDF_LOCK_NODE(udf_node, 0); 5615 5616 /* remove pending reservations, we're written out */ 5617 udf_cleanup_reservation(udf_node); 5618 5619 /* at least one descriptor writeout */ 5620 udf_node->outstanding_nodedscr = 1; 5621 5622 /* we're going to write out the descriptor so clear the flags */ 5623 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED); 5624 5625 /* if we were rebuild, write out the allocation extents */ 5626 if (udf_node->i_flags & IN_NODE_REBUILD) { 5627 /* mark outstanding node descriptors and issue them */ 5628 udf_node->outstanding_nodedscr += udf_node->num_extensions; 5629 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5630 loc = &udf_node->ext_loc[extnr]; 5631 dscr = (union dscrptr *) udf_node->ext[extnr]; 5632 error = udf_write_logvol_dscr(udf_node, dscr, loc, 0); 5633 if (error) 5634 return error; 5635 } 5636 /* mark allocation extents written out */ 5637 udf_node->i_flags &= ~(IN_NODE_REBUILD); 5638 } 5639 5640 if (udf_node->fe) { 5641 KASSERT(udf_node->efe == NULL); 5642 dscr = (union dscrptr *) udf_node->fe; 5643 } else { 5644 KASSERT(udf_node->efe); 5645 KASSERT(udf_node->fe == NULL); 5646 dscr = (union dscrptr *) udf_node->efe; 5647 } 5648 KASSERT(dscr); 5649 5650 loc = &udf_node->write_loc; 5651 error = udf_write_logvol_dscr(udf_node, dscr, loc, waitfor); 5652 5653 return error; 5654 } 5655 5656 /* --------------------------------------------------------------------- */ 5657 5658 int 5659 udf_dispose_node(struct udf_node *udf_node) 5660 { 5661 struct vnode *vp; 5662 int extnr; 5663 5664 DPRINTF(NODE, ("udf_dispose_node called on node %p\n", udf_node)); 5665 if (!udf_node) { 5666 DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); 5667 return 0; 5668 } 5669 5670 vp = udf_node->vnode; 5671 #ifdef DIAGNOSTIC 5672 if (vp->v_numoutput) 5673 panic("disposing UDF node with pending I/O's, udf_node = %p, " 5674 "v_numoutput = %d", udf_node, vp->v_numoutput); 5675 #endif 5676 5677 udf_cleanup_reservation(udf_node); 5678 5679 /* TODO extended attributes and streamdir */ 5680 5681 /* remove dirhash if present */ 5682 dirhash_purge(&udf_node->dir_hash); 5683 5684 /* remove from our hash lookup table */ 5685 udf_deregister_node(udf_node); 5686 5687 /* destroy our lock */ 5688 mutex_destroy(&udf_node->node_mutex); 5689 cv_destroy(&udf_node->node_lock); 5690 5691 /* dissociate our udf_node from the vnode */ 5692 genfs_node_destroy(udf_node->vnode); 5693 vp->v_data = NULL; 5694 5695 /* free associated memory and the node itself */ 5696 for (extnr = 0; extnr < udf_node->num_extensions; extnr++) { 5697 udf_free_logvol_dscr(udf_node->ump, &udf_node->ext_loc[extnr], 5698 udf_node->ext[extnr]); 5699 udf_node->ext[extnr] = (void *) 0xdeadcccc; 5700 } 5701 5702 if (udf_node->fe) 5703 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5704 udf_node->fe); 5705 if (udf_node->efe) 5706 udf_free_logvol_dscr(udf_node->ump, &udf_node->loc, 5707 udf_node->efe); 5708 5709 udf_node->fe = (void *) 0xdeadaaaa; 5710 udf_node->efe = (void *) 0xdeadbbbb; 5711 udf_node->ump = (void *) 0xdeadbeef; 5712 pool_put(&udf_node_pool, udf_node); 5713 5714 return 0; 5715 } 5716 5717 5718 5719 /* 5720 * create a new node using the specified dvp, vap and cnp. 5721 * This allows special files to be created. Use with care. 5722 */ 5723 5724 int 5725 udf_newvnode(struct mount *mp, struct vnode *dvp, struct vnode *vp, 5726 struct vattr *vap, kauth_cred_t cred, 5727 size_t *key_len, const void **new_key) 5728 { 5729 union dscrptr *dscr; 5730 struct udf_node *dir_node = VTOI(dvp); 5731 struct udf_node *udf_node; 5732 struct udf_mount *ump = dir_node->ump; 5733 struct long_ad node_icb_loc; 5734 uint64_t parent_unique_id; 5735 uint64_t lmapping; 5736 uint32_t lb_size, lb_num; 5737 uint16_t vpart_num; 5738 uid_t uid; 5739 gid_t gid, parent_gid; 5740 int (**vnodeops)(void *); 5741 int udf_file_type, fid_size, error; 5742 5743 vnodeops = udf_vnodeop_p; 5744 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5745 5746 switch (vap->va_type) { 5747 case VREG : 5748 udf_file_type = UDF_ICB_FILETYPE_RANDOMACCESS; 5749 break; 5750 case VDIR : 5751 udf_file_type = UDF_ICB_FILETYPE_DIRECTORY; 5752 break; 5753 case VLNK : 5754 udf_file_type = UDF_ICB_FILETYPE_SYMLINK; 5755 break; 5756 case VBLK : 5757 udf_file_type = UDF_ICB_FILETYPE_BLOCKDEVICE; 5758 /* specfs */ 5759 return ENOTSUP; 5760 break; 5761 case VCHR : 5762 udf_file_type = UDF_ICB_FILETYPE_CHARDEVICE; 5763 /* specfs */ 5764 return ENOTSUP; 5765 break; 5766 case VFIFO : 5767 udf_file_type = UDF_ICB_FILETYPE_FIFO; 5768 /* fifofs */ 5769 return ENOTSUP; 5770 break; 5771 case VSOCK : 5772 udf_file_type = UDF_ICB_FILETYPE_SOCKET; 5773 return ENOTSUP; 5774 break; 5775 case VNON : 5776 case VBAD : 5777 default : 5778 /* nothing; can we even create these? */ 5779 return EINVAL; 5780 } 5781 5782 lb_size = udf_rw32(ump->logical_vol->lb_size); 5783 5784 /* reserve space for one logical block */ 5785 vpart_num = ump->node_part; 5786 error = udf_reserve_space(ump, NULL, UDF_C_NODE, 5787 vpart_num, 1, /* can_fail */ true); 5788 if (error) 5789 return error; 5790 5791 /* allocate node */ 5792 error = udf_allocate_space(ump, NULL, UDF_C_NODE, 5793 vpart_num, 1, &lmapping); 5794 if (error) { 5795 udf_do_unreserve_space(ump, NULL, vpart_num, 1); 5796 return error; 5797 } 5798 5799 lb_num = lmapping; 5800 5801 /* initialise pointer to location */ 5802 memset(&node_icb_loc, 0, sizeof(struct long_ad)); 5803 node_icb_loc.len = udf_rw32(lb_size); 5804 node_icb_loc.loc.lb_num = udf_rw32(lb_num); 5805 node_icb_loc.loc.part_num = udf_rw16(vpart_num); 5806 5807 /* build udf_node (do initialise!) */ 5808 udf_node = pool_get(&udf_node_pool, PR_WAITOK); 5809 memset(udf_node, 0, sizeof(struct udf_node)); 5810 5811 /* initialise crosslinks, note location of fe/efe for hashing */ 5812 /* bugalert: synchronise with udf_get_node() */ 5813 udf_node->ump = ump; 5814 udf_node->vnode = vp; 5815 vp->v_data = udf_node; 5816 udf_node->loc = node_icb_loc; 5817 udf_node->write_loc = node_icb_loc; 5818 udf_node->lockf = 0; 5819 mutex_init(&udf_node->node_mutex, MUTEX_DEFAULT, IPL_NONE); 5820 cv_init(&udf_node->node_lock, "udf_nlk"); 5821 udf_node->outstanding_bufs = 0; 5822 udf_node->outstanding_nodedscr = 0; 5823 udf_node->uncommitted_lbs = 0; 5824 5825 vp->v_tag = VT_UDF; 5826 vp->v_op = vnodeops; 5827 5828 /* initialise genfs */ 5829 genfs_node_init(vp, &udf_genfsops); 5830 5831 /* insert into the hash lookup */ 5832 udf_register_node(udf_node); 5833 5834 /* get parent's unique ID for refering '..' if its a directory */ 5835 if (dir_node->fe) { 5836 parent_unique_id = udf_rw64(dir_node->fe->unique_id); 5837 parent_gid = (gid_t) udf_rw32(dir_node->fe->gid); 5838 } else { 5839 parent_unique_id = udf_rw64(dir_node->efe->unique_id); 5840 parent_gid = (gid_t) udf_rw32(dir_node->efe->gid); 5841 } 5842 5843 /* get descriptor */ 5844 udf_create_logvol_dscr(ump, udf_node, &node_icb_loc, &dscr); 5845 5846 /* choose a fe or an efe for it */ 5847 if (udf_rw16(ump->logical_vol->tag.descriptor_ver) == 2) { 5848 udf_node->fe = &dscr->fe; 5849 fid_size = udf_create_new_fe(ump, udf_node->fe, 5850 udf_file_type, &udf_node->loc, 5851 &dir_node->loc, parent_unique_id); 5852 /* TODO add extended attribute for creation time */ 5853 } else { 5854 udf_node->efe = &dscr->efe; 5855 fid_size = udf_create_new_efe(ump, udf_node->efe, 5856 udf_file_type, &udf_node->loc, 5857 &dir_node->loc, parent_unique_id); 5858 } 5859 KASSERT(dscr->tag.tag_loc == udf_node->loc.loc.lb_num); 5860 5861 /* update vnode's size and type */ 5862 vp->v_type = vap->va_type; 5863 uvm_vnp_setsize(vp, fid_size); 5864 5865 /* set access mode */ 5866 udf_setaccessmode(udf_node, vap->va_mode); 5867 5868 /* set ownership */ 5869 uid = kauth_cred_geteuid(cred); 5870 gid = parent_gid; 5871 udf_setownership(udf_node, uid, gid); 5872 5873 *key_len = sizeof(udf_node->loc.loc);; 5874 *new_key = &udf_node->loc.loc; 5875 5876 return 0; 5877 } 5878 5879 5880 int 5881 udf_create_node(struct vnode *dvp, struct vnode **vpp, struct vattr *vap, 5882 struct componentname *cnp) 5883 { 5884 struct udf_node *udf_node, *dir_node = VTOI(dvp); 5885 struct udf_mount *ump = dir_node->ump; 5886 int error; 5887 5888 error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, vpp); 5889 if (error) 5890 return error; 5891 5892 udf_node = VTOI(*vpp); 5893 error = udf_dir_attach(ump, dir_node, udf_node, vap, cnp); 5894 if (error) { 5895 struct long_ad *node_icb_loc = &udf_node->loc; 5896 uint32_t lb_num = udf_rw32(node_icb_loc->loc.lb_num); 5897 uint16_t vpart_num = udf_rw16(node_icb_loc->loc.part_num); 5898 5899 /* free disc allocation for node */ 5900 udf_free_allocated_space(ump, lb_num, vpart_num, 1); 5901 5902 /* recycle udf_node */ 5903 udf_dispose_node(udf_node); 5904 vrele(*vpp); 5905 5906 *vpp = NULL; 5907 return error; 5908 } 5909 5910 /* adjust file count */ 5911 udf_adjust_filecount(udf_node, 1); 5912 5913 return 0; 5914 } 5915 5916 /* --------------------------------------------------------------------- */ 5917 5918 static void 5919 udf_free_descriptor_space(struct udf_node *udf_node, struct long_ad *loc, void *mem) 5920 { 5921 struct udf_mount *ump = udf_node->ump; 5922 uint32_t lb_size, lb_num, len, num_lb; 5923 uint16_t vpart_num; 5924 5925 /* is there really one? */ 5926 if (mem == NULL) 5927 return; 5928 5929 /* got a descriptor here */ 5930 len = UDF_EXT_LEN(udf_rw32(loc->len)); 5931 lb_num = udf_rw32(loc->loc.lb_num); 5932 vpart_num = udf_rw16(loc->loc.part_num); 5933 5934 lb_size = udf_rw32(ump->logical_vol->lb_size); 5935 num_lb = (len + lb_size -1) / lb_size; 5936 5937 udf_free_allocated_space(ump, lb_num, vpart_num, num_lb); 5938 } 5939 5940 void 5941 udf_delete_node(struct udf_node *udf_node) 5942 { 5943 void *dscr; 5944 struct long_ad *loc; 5945 int extnr, lvint, dummy; 5946 5947 /* paranoia check on integrity; should be open!; we could panic */ 5948 lvint = udf_rw32(udf_node->ump->logvol_integrity->integrity_type); 5949 if (lvint == UDF_INTEGRITY_CLOSED) 5950 printf("\tIntegrity was CLOSED!\n"); 5951 5952 /* whatever the node type, change its size to zero */ 5953 (void) udf_resize_node(udf_node, 0, &dummy); 5954 5955 /* force it to be `clean'; no use writing it out */ 5956 udf_node->i_flags &= ~(IN_MODIFIED | IN_ACCESSED | IN_ACCESS | 5957 IN_CHANGE | IN_UPDATE | IN_MODIFY); 5958 5959 /* adjust file count */ 5960 udf_adjust_filecount(udf_node, -1); 5961 5962 /* 5963 * Free its allocated descriptors; memory will be released when 5964 * vop_reclaim() is called. 5965 */ 5966 loc = &udf_node->loc; 5967 5968 dscr = udf_node->fe; 5969 udf_free_descriptor_space(udf_node, loc, dscr); 5970 dscr = udf_node->efe; 5971 udf_free_descriptor_space(udf_node, loc, dscr); 5972 5973 for (extnr = 0; extnr < UDF_MAX_ALLOC_EXTENTS; extnr++) { 5974 dscr = udf_node->ext[extnr]; 5975 loc = &udf_node->ext_loc[extnr]; 5976 udf_free_descriptor_space(udf_node, loc, dscr); 5977 } 5978 } 5979 5980 /* --------------------------------------------------------------------- */ 5981 5982 /* set new filesize; node but be LOCKED on entry and is locked on exit */ 5983 int 5984 udf_resize_node(struct udf_node *udf_node, uint64_t new_size, int *extended) 5985 { 5986 struct file_entry *fe = udf_node->fe; 5987 struct extfile_entry *efe = udf_node->efe; 5988 uint64_t file_size; 5989 int error; 5990 5991 if (fe) { 5992 file_size = udf_rw64(fe->inf_len); 5993 } else { 5994 assert(udf_node->efe); 5995 file_size = udf_rw64(efe->inf_len); 5996 } 5997 5998 DPRINTF(ATTR, ("\tchanging file length from %"PRIu64" to %"PRIu64"\n", 5999 file_size, new_size)); 6000 6001 /* if not changing, we're done */ 6002 if (file_size == new_size) 6003 return 0; 6004 6005 *extended = (new_size > file_size); 6006 if (*extended) { 6007 error = udf_grow_node(udf_node, new_size); 6008 } else { 6009 error = udf_shrink_node(udf_node, new_size); 6010 } 6011 6012 return error; 6013 } 6014 6015 6016 /* --------------------------------------------------------------------- */ 6017 6018 void 6019 udf_itimes(struct udf_node *udf_node, struct timespec *acc, 6020 struct timespec *mod, struct timespec *birth) 6021 { 6022 struct timespec now; 6023 struct file_entry *fe; 6024 struct extfile_entry *efe; 6025 struct filetimes_extattr_entry *ft_extattr; 6026 struct timestamp *atime, *mtime, *attrtime, *ctime; 6027 struct timestamp fe_ctime; 6028 struct timespec cur_birth; 6029 uint32_t offset, a_l; 6030 uint8_t *filedata; 6031 int error; 6032 6033 /* protect against rogue values */ 6034 if (!udf_node) 6035 return; 6036 6037 fe = udf_node->fe; 6038 efe = udf_node->efe; 6039 6040 if (!(udf_node->i_flags & (IN_ACCESS|IN_CHANGE|IN_UPDATE|IN_MODIFY))) 6041 return; 6042 6043 /* get descriptor information */ 6044 if (fe) { 6045 atime = &fe->atime; 6046 mtime = &fe->mtime; 6047 attrtime = &fe->attrtime; 6048 filedata = fe->data; 6049 6050 /* initial save dummy setting */ 6051 ctime = &fe_ctime; 6052 6053 /* check our extended attribute if present */ 6054 error = udf_extattr_search_intern(udf_node, 6055 UDF_FILETIMES_ATTR_NO, "", &offset, &a_l); 6056 if (!error) { 6057 ft_extattr = (struct filetimes_extattr_entry *) 6058 (filedata + offset); 6059 if (ft_extattr->existence & UDF_FILETIMES_FILE_CREATION) 6060 ctime = &ft_extattr->times[0]; 6061 } 6062 /* TODO create the extended attribute if not found ? */ 6063 } else { 6064 assert(udf_node->efe); 6065 atime = &efe->atime; 6066 mtime = &efe->mtime; 6067 attrtime = &efe->attrtime; 6068 ctime = &efe->ctime; 6069 } 6070 6071 vfs_timestamp(&now); 6072 6073 /* set access time */ 6074 if (udf_node->i_flags & IN_ACCESS) { 6075 if (acc == NULL) 6076 acc = &now; 6077 udf_timespec_to_timestamp(acc, atime); 6078 } 6079 6080 /* set modification time */ 6081 if (udf_node->i_flags & (IN_UPDATE | IN_MODIFY)) { 6082 if (mod == NULL) 6083 mod = &now; 6084 udf_timespec_to_timestamp(mod, mtime); 6085 6086 /* ensure birthtime is older than set modification! */ 6087 udf_timestamp_to_timespec(udf_node->ump, ctime, &cur_birth); 6088 if ((cur_birth.tv_sec > mod->tv_sec) || 6089 ((cur_birth.tv_sec == mod->tv_sec) && 6090 (cur_birth.tv_nsec > mod->tv_nsec))) { 6091 udf_timespec_to_timestamp(mod, ctime); 6092 } 6093 } 6094 6095 /* update birthtime if specified */ 6096 /* XXX we assume here that given birthtime is older than mod */ 6097 if (birth && (birth->tv_sec != VNOVAL)) { 6098 udf_timespec_to_timestamp(birth, ctime); 6099 } 6100 6101 /* set change time */ 6102 if (udf_node->i_flags & (IN_CHANGE | IN_MODIFY)) 6103 udf_timespec_to_timestamp(&now, attrtime); 6104 6105 /* notify updates to the node itself */ 6106 if (udf_node->i_flags & (IN_ACCESS | IN_MODIFY)) 6107 udf_node->i_flags |= IN_ACCESSED; 6108 if (udf_node->i_flags & (IN_UPDATE | IN_CHANGE)) 6109 udf_node->i_flags |= IN_MODIFIED; 6110 6111 /* clear modification flags */ 6112 udf_node->i_flags &= ~(IN_ACCESS | IN_CHANGE | IN_UPDATE | IN_MODIFY); 6113 } 6114 6115 /* --------------------------------------------------------------------- */ 6116 6117 int 6118 udf_update(struct vnode *vp, struct timespec *acc, 6119 struct timespec *mod, struct timespec *birth, int updflags) 6120 { 6121 union dscrptr *dscrptr; 6122 struct udf_node *udf_node = VTOI(vp); 6123 struct udf_mount *ump = udf_node->ump; 6124 struct regid *impl_id; 6125 int mnt_async = (vp->v_mount->mnt_flag & MNT_ASYNC); 6126 int waitfor, flags; 6127 6128 #ifdef DEBUG 6129 char bits[128]; 6130 DPRINTF(CALL, ("udf_update(node, %p, %p, %p, %d)\n", acc, mod, birth, 6131 updflags)); 6132 snprintb(bits, sizeof(bits), IN_FLAGBITS, udf_node->i_flags); 6133 DPRINTF(CALL, ("\tnode flags %s\n", bits)); 6134 DPRINTF(CALL, ("\t\tmnt_async = %d\n", mnt_async)); 6135 #endif 6136 6137 /* set our times */ 6138 udf_itimes(udf_node, acc, mod, birth); 6139 6140 /* set our implementation id */ 6141 if (udf_node->fe) { 6142 dscrptr = (union dscrptr *) udf_node->fe; 6143 impl_id = &udf_node->fe->imp_id; 6144 } else { 6145 dscrptr = (union dscrptr *) udf_node->efe; 6146 impl_id = &udf_node->efe->imp_id; 6147 } 6148 6149 /* set our ID */ 6150 udf_set_regid(impl_id, IMPL_NAME); 6151 udf_add_impl_regid(ump, impl_id); 6152 6153 /* update our crc! on RMW we are not allowed to change a thing */ 6154 udf_validate_tag_and_crc_sums(dscrptr); 6155 6156 /* if called when mounted readonly, never write back */ 6157 if (vp->v_mount->mnt_flag & MNT_RDONLY) 6158 return 0; 6159 6160 /* check if the node is dirty 'enough'*/ 6161 if (updflags & UPDATE_CLOSE) { 6162 flags = udf_node->i_flags & (IN_MODIFIED | IN_ACCESSED); 6163 } else { 6164 flags = udf_node->i_flags & IN_MODIFIED; 6165 } 6166 if (flags == 0) 6167 return 0; 6168 6169 /* determine if we need to write sync or async */ 6170 waitfor = 0; 6171 if ((flags & IN_MODIFIED) && (mnt_async == 0)) { 6172 /* sync mounted */ 6173 waitfor = updflags & UPDATE_WAIT; 6174 if (updflags & UPDATE_DIROP) 6175 waitfor |= UPDATE_WAIT; 6176 } 6177 if (waitfor) 6178 return VOP_FSYNC(vp, FSCRED, FSYNC_WAIT, 0,0); 6179 6180 return 0; 6181 } 6182 6183 6184 /* --------------------------------------------------------------------- */ 6185 6186 6187 /* 6188 * Read one fid and process it into a dirent and advance to the next (*fid) 6189 * has to be allocated a logical block in size, (*dirent) struct dirent length 6190 */ 6191 6192 int 6193 udf_read_fid_stream(struct vnode *vp, uint64_t *offset, 6194 struct fileid_desc *fid, struct dirent *dirent) 6195 { 6196 struct udf_node *dir_node = VTOI(vp); 6197 struct udf_mount *ump = dir_node->ump; 6198 struct file_entry *fe = dir_node->fe; 6199 struct extfile_entry *efe = dir_node->efe; 6200 uint32_t fid_size, lb_size; 6201 uint64_t file_size; 6202 char *fid_name; 6203 int enough, error; 6204 6205 assert(fid); 6206 assert(dirent); 6207 assert(dir_node); 6208 assert(offset); 6209 assert(*offset != 1); 6210 6211 DPRINTF(FIDS, ("read_fid_stream called at offset %"PRIu64"\n", *offset)); 6212 /* check if we're past the end of the directory */ 6213 if (fe) { 6214 file_size = udf_rw64(fe->inf_len); 6215 } else { 6216 assert(dir_node->efe); 6217 file_size = udf_rw64(efe->inf_len); 6218 } 6219 if (*offset >= file_size) 6220 return EINVAL; 6221 6222 /* get maximum length of FID descriptor */ 6223 lb_size = udf_rw32(ump->logical_vol->lb_size); 6224 6225 /* initialise return values */ 6226 fid_size = 0; 6227 memset(dirent, 0, sizeof(struct dirent)); 6228 memset(fid, 0, lb_size); 6229 6230 enough = (file_size - (*offset) >= UDF_FID_SIZE); 6231 if (!enough) { 6232 /* short dir ... */ 6233 return EIO; 6234 } 6235 6236 error = vn_rdwr(UIO_READ, vp, 6237 fid, MIN(file_size - (*offset), lb_size), *offset, 6238 UIO_SYSSPACE, IO_ALTSEMANTICS | IO_NODELOCKED, FSCRED, 6239 NULL, NULL); 6240 if (error) 6241 return error; 6242 6243 DPRINTF(FIDS, ("\tfid piece read in fine\n")); 6244 /* 6245 * Check if we got a whole descriptor. 6246 * TODO Try to `resync' directory stream when something is very wrong. 6247 */ 6248 6249 /* check if our FID header is OK */ 6250 error = udf_check_tag(fid); 6251 if (error) { 6252 goto brokendir; 6253 } 6254 DPRINTF(FIDS, ("\ttag check ok\n")); 6255 6256 if (udf_rw16(fid->tag.id) != TAGID_FID) { 6257 error = EIO; 6258 goto brokendir; 6259 } 6260 DPRINTF(FIDS, ("\ttag checked ok: got TAGID_FID\n")); 6261 6262 /* check for length */ 6263 fid_size = udf_fidsize(fid); 6264 enough = (file_size - (*offset) >= fid_size); 6265 if (!enough) { 6266 error = EIO; 6267 goto brokendir; 6268 } 6269 DPRINTF(FIDS, ("\tthe complete fid is read in\n")); 6270 6271 /* check FID contents */ 6272 error = udf_check_tag_payload((union dscrptr *) fid, lb_size); 6273 brokendir: 6274 if (error) { 6275 /* note that is sometimes a bit quick to report */ 6276 printf("UDF: BROKEN DIRECTORY ENTRY\n"); 6277 /* RESYNC? */ 6278 /* TODO: use udf_resync_fid_stream */ 6279 return EIO; 6280 } 6281 DPRINTF(FIDS, ("\tpayload checked ok\n")); 6282 6283 /* we got a whole and valid descriptor! */ 6284 DPRINTF(FIDS, ("\tinterpret FID\n")); 6285 6286 /* create resulting dirent structure */ 6287 fid_name = (char *) fid->data + udf_rw16(fid->l_iu); 6288 udf_to_unix_name(dirent->d_name, NAME_MAX, 6289 fid_name, fid->l_fi, &ump->logical_vol->desc_charset); 6290 6291 /* '..' has no name, so provide one */ 6292 if (fid->file_char & UDF_FILE_CHAR_PAR) 6293 strcpy(dirent->d_name, ".."); 6294 6295 dirent->d_fileno = udf_get_node_id(&fid->icb); /* inode hash XXX */ 6296 dirent->d_namlen = strlen(dirent->d_name); 6297 dirent->d_reclen = _DIRENT_SIZE(dirent); 6298 6299 /* 6300 * Note that its not worth trying to go for the filetypes now... its 6301 * too expensive too 6302 */ 6303 dirent->d_type = DT_UNKNOWN; 6304 6305 /* initial guess for filetype we can make */ 6306 if (fid->file_char & UDF_FILE_CHAR_DIR) 6307 dirent->d_type = DT_DIR; 6308 6309 /* advance */ 6310 *offset += fid_size; 6311 6312 return error; 6313 } 6314 6315 6316 /* --------------------------------------------------------------------- */ 6317 6318 static void 6319 udf_sync_pass(struct udf_mount *ump, kauth_cred_t cred, int waitfor, 6320 int pass, int *ndirty) 6321 { 6322 struct udf_node *udf_node, *n_udf_node; 6323 struct vnode *vp; 6324 int vdirty, error; 6325 int on_type, on_flags, on_vnode; 6326 6327 derailed: 6328 KASSERT(mutex_owned(&mntvnode_lock)); 6329 6330 DPRINTF(SYNC, ("sync_pass %d\n", pass)); 6331 udf_node = RB_TREE_MIN(&ump->udf_node_tree); 6332 for (;udf_node; udf_node = n_udf_node) { 6333 DPRINTF(SYNC, (".")); 6334 6335 udf_node->i_flags &= ~IN_SYNCED; 6336 vp = udf_node->vnode; 6337 6338 mutex_enter(vp->v_interlock); 6339 n_udf_node = rb_tree_iterate(&ump->udf_node_tree, 6340 udf_node, RB_DIR_RIGHT); 6341 6342 if (n_udf_node) 6343 n_udf_node->i_flags |= IN_SYNCED; 6344 6345 /* system nodes are not synced this way */ 6346 if (vp->v_vflag & VV_SYSTEM) { 6347 mutex_exit(vp->v_interlock); 6348 continue; 6349 } 6350 6351 /* check if its dirty enough to even try */ 6352 on_type = (waitfor == MNT_LAZY || vp->v_type == VNON); 6353 on_flags = ((udf_node->i_flags & 6354 (IN_ACCESSED | IN_UPDATE | IN_MODIFIED)) == 0); 6355 on_vnode = LIST_EMPTY(&vp->v_dirtyblkhd) 6356 && UVM_OBJ_IS_CLEAN(&vp->v_uobj); 6357 if (on_type || (on_flags || on_vnode)) { /* XXX */ 6358 /* not dirty (enough?) */ 6359 mutex_exit(vp->v_interlock); 6360 continue; 6361 } 6362 6363 mutex_exit(&mntvnode_lock); 6364 error = vget(vp, LK_EXCLUSIVE | LK_NOWAIT); 6365 if (error) { 6366 mutex_enter(&mntvnode_lock); 6367 if (error == ENOENT) 6368 goto derailed; 6369 *ndirty += 1; 6370 continue; 6371 } 6372 6373 switch (pass) { 6374 case 1: 6375 VOP_FSYNC(vp, cred, 0 | FSYNC_DATAONLY,0,0); 6376 break; 6377 case 2: 6378 vdirty = vp->v_numoutput; 6379 if (vp->v_tag == VT_UDF) 6380 vdirty += udf_node->outstanding_bufs + 6381 udf_node->outstanding_nodedscr; 6382 if (vdirty == 0) 6383 VOP_FSYNC(vp, cred, 0,0,0); 6384 *ndirty += vdirty; 6385 break; 6386 case 3: 6387 vdirty = vp->v_numoutput; 6388 if (vp->v_tag == VT_UDF) 6389 vdirty += udf_node->outstanding_bufs + 6390 udf_node->outstanding_nodedscr; 6391 *ndirty += vdirty; 6392 break; 6393 } 6394 6395 vput(vp); 6396 mutex_enter(&mntvnode_lock); 6397 } 6398 DPRINTF(SYNC, ("END sync_pass %d\n", pass)); 6399 } 6400 6401 6402 void 6403 udf_do_sync(struct udf_mount *ump, kauth_cred_t cred, int waitfor) 6404 { 6405 int dummy, ndirty; 6406 6407 mutex_enter(&mntvnode_lock); 6408 recount: 6409 dummy = 0; 6410 DPRINTF(CALL, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6411 DPRINTF(SYNC, ("issue VOP_FSYNC(DATA only) on all nodes\n")); 6412 udf_sync_pass(ump, cred, waitfor, 1, &dummy); 6413 6414 DPRINTF(CALL, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6415 DPRINTF(SYNC, ("issue VOP_FSYNC(COMPLETE) on all finished nodes\n")); 6416 udf_sync_pass(ump, cred, waitfor, 2, &dummy); 6417 6418 if (waitfor == MNT_WAIT) { 6419 ndirty = ump->devvp->v_numoutput; 6420 DPRINTF(SYNC, ("counting pending blocks: on devvp %d\n", 6421 ndirty)); 6422 udf_sync_pass(ump, cred, waitfor, 3, &ndirty); 6423 DPRINTF(SYNC, ("counted num dirty pending blocks %d\n", 6424 ndirty)); 6425 6426 if (ndirty) { 6427 /* 1/4 second wait */ 6428 cv_timedwait(&ump->dirtynodes_cv, &mntvnode_lock, 6429 hz/4); 6430 goto recount; 6431 } 6432 } 6433 6434 mutex_exit(&mntvnode_lock); 6435 } 6436 6437 /* --------------------------------------------------------------------- */ 6438 6439 /* 6440 * Read and write file extent in/from the buffer. 6441 * 6442 * The splitup of the extent into seperate request-buffers is to minimise 6443 * copying around as much as possible. 6444 * 6445 * block based file reading and writing 6446 */ 6447 6448 static int 6449 udf_read_internal(struct udf_node *node, uint8_t *blob) 6450 { 6451 struct udf_mount *ump; 6452 struct file_entry *fe = node->fe; 6453 struct extfile_entry *efe = node->efe; 6454 uint64_t inflen; 6455 uint32_t sector_size; 6456 uint8_t *pos; 6457 int icbflags, addr_type; 6458 6459 /* get extent and do some paranoia checks */ 6460 ump = node->ump; 6461 sector_size = ump->discinfo.sector_size; 6462 6463 if (fe) { 6464 inflen = udf_rw64(fe->inf_len); 6465 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6466 icbflags = udf_rw16(fe->icbtag.flags); 6467 } else { 6468 assert(node->efe); 6469 inflen = udf_rw64(efe->inf_len); 6470 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6471 icbflags = udf_rw16(efe->icbtag.flags); 6472 } 6473 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6474 6475 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6476 __USE(addr_type); 6477 assert(inflen < sector_size); 6478 6479 /* copy out info */ 6480 memset(blob, 0, sector_size); 6481 memcpy(blob, pos, inflen); 6482 6483 return 0; 6484 } 6485 6486 6487 static int 6488 udf_write_internal(struct udf_node *node, uint8_t *blob) 6489 { 6490 struct udf_mount *ump; 6491 struct file_entry *fe = node->fe; 6492 struct extfile_entry *efe = node->efe; 6493 uint64_t inflen; 6494 uint32_t sector_size; 6495 uint8_t *pos; 6496 int icbflags, addr_type; 6497 6498 /* get extent and do some paranoia checks */ 6499 ump = node->ump; 6500 sector_size = ump->discinfo.sector_size; 6501 6502 if (fe) { 6503 inflen = udf_rw64(fe->inf_len); 6504 pos = &fe->data[0] + udf_rw32(fe->l_ea); 6505 icbflags = udf_rw16(fe->icbtag.flags); 6506 } else { 6507 assert(node->efe); 6508 inflen = udf_rw64(efe->inf_len); 6509 pos = &efe->data[0] + udf_rw32(efe->l_ea); 6510 icbflags = udf_rw16(efe->icbtag.flags); 6511 } 6512 addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; 6513 6514 assert(addr_type == UDF_ICB_INTERN_ALLOC); 6515 __USE(addr_type); 6516 assert(inflen < sector_size); 6517 __USE(sector_size); 6518 6519 /* copy in blob */ 6520 /* memset(pos, 0, inflen); */ 6521 memcpy(pos, blob, inflen); 6522 6523 return 0; 6524 } 6525 6526 6527 void 6528 udf_read_filebuf(struct udf_node *udf_node, struct buf *buf) 6529 { 6530 struct buf *nestbuf; 6531 struct udf_mount *ump = udf_node->ump; 6532 uint64_t *mapping; 6533 uint64_t run_start; 6534 uint32_t sector_size; 6535 uint32_t buf_offset, sector, rbuflen, rblk; 6536 uint32_t from, lblkno; 6537 uint32_t sectors; 6538 uint8_t *buf_pos; 6539 int error, run_length, what; 6540 6541 sector_size = udf_node->ump->discinfo.sector_size; 6542 6543 from = buf->b_blkno; 6544 sectors = buf->b_bcount / sector_size; 6545 6546 what = udf_get_c_type(udf_node); 6547 6548 /* assure we have enough translation slots */ 6549 KASSERT(buf->b_bcount / sector_size <= UDF_MAX_MAPPINGS); 6550 KASSERT(MAXPHYS / sector_size <= UDF_MAX_MAPPINGS); 6551 6552 if (sectors > UDF_MAX_MAPPINGS) { 6553 printf("udf_read_filebuf: implementation limit on bufsize\n"); 6554 buf->b_error = EIO; 6555 biodone(buf); 6556 return; 6557 } 6558 6559 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6560 6561 error = 0; 6562 DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); 6563 error = udf_translate_file_extent(udf_node, from, sectors, mapping); 6564 if (error) { 6565 buf->b_error = error; 6566 biodone(buf); 6567 goto out; 6568 } 6569 DPRINTF(READ, ("\ttranslate extent went OK\n")); 6570 6571 /* pre-check if its an internal */ 6572 if (*mapping == UDF_TRANS_INTERN) { 6573 error = udf_read_internal(udf_node, (uint8_t *) buf->b_data); 6574 if (error) 6575 buf->b_error = error; 6576 biodone(buf); 6577 goto out; 6578 } 6579 DPRINTF(READ, ("\tnot intern\n")); 6580 6581 #ifdef DEBUG 6582 if (udf_verbose & UDF_DEBUG_TRANSLATE) { 6583 printf("Returned translation table:\n"); 6584 for (sector = 0; sector < sectors; sector++) { 6585 printf("%d : %"PRIu64"\n", sector, mapping[sector]); 6586 } 6587 } 6588 #endif 6589 6590 /* request read-in of data from disc sheduler */ 6591 buf->b_resid = buf->b_bcount; 6592 for (sector = 0; sector < sectors; sector++) { 6593 buf_offset = sector * sector_size; 6594 buf_pos = (uint8_t *) buf->b_data + buf_offset; 6595 DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); 6596 6597 /* check if its zero or unmapped to stop reading */ 6598 switch (mapping[sector]) { 6599 case UDF_TRANS_UNMAPPED: 6600 case UDF_TRANS_ZERO: 6601 /* copy zero sector TODO runlength like below */ 6602 memset(buf_pos, 0, sector_size); 6603 DPRINTF(READ, ("\treturning zero sector\n")); 6604 nestiobuf_done(buf, sector_size, 0); 6605 break; 6606 default : 6607 DPRINTF(READ, ("\tread sector " 6608 "%"PRIu64"\n", mapping[sector])); 6609 6610 lblkno = from + sector; 6611 run_start = mapping[sector]; 6612 run_length = 1; 6613 while (sector < sectors-1) { 6614 if (mapping[sector+1] != mapping[sector]+1) 6615 break; 6616 run_length++; 6617 sector++; 6618 } 6619 6620 /* 6621 * nest an iobuf and mark it for async reading. Since 6622 * we're using nested buffers, they can't be cached by 6623 * design. 6624 */ 6625 rbuflen = run_length * sector_size; 6626 rblk = run_start * (sector_size/DEV_BSIZE); 6627 6628 nestbuf = getiobuf(NULL, true); 6629 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6630 /* nestbuf is B_ASYNC */ 6631 6632 /* identify this nestbuf */ 6633 nestbuf->b_lblkno = lblkno; 6634 assert(nestbuf->b_vp == udf_node->vnode); 6635 6636 /* CD shedules on raw blkno */ 6637 nestbuf->b_blkno = rblk; 6638 nestbuf->b_proc = NULL; 6639 nestbuf->b_rawblkno = rblk; 6640 nestbuf->b_udf_c_type = what; 6641 6642 udf_discstrat_queuebuf(ump, nestbuf); 6643 } 6644 } 6645 out: 6646 /* if we're synchronously reading, wait for the completion */ 6647 if ((buf->b_flags & B_ASYNC) == 0) 6648 biowait(buf); 6649 6650 DPRINTF(READ, ("\tend of read_filebuf\n")); 6651 free(mapping, M_TEMP); 6652 return; 6653 } 6654 6655 6656 void 6657 udf_write_filebuf(struct udf_node *udf_node, struct buf *buf) 6658 { 6659 struct buf *nestbuf; 6660 struct udf_mount *ump = udf_node->ump; 6661 uint64_t *mapping; 6662 uint64_t run_start; 6663 uint32_t lb_size; 6664 uint32_t buf_offset, lb_num, rbuflen, rblk; 6665 uint32_t from, lblkno; 6666 uint32_t num_lb; 6667 int error, run_length, what, s; 6668 6669 lb_size = udf_rw32(udf_node->ump->logical_vol->lb_size); 6670 6671 from = buf->b_blkno; 6672 num_lb = buf->b_bcount / lb_size; 6673 6674 what = udf_get_c_type(udf_node); 6675 6676 /* assure we have enough translation slots */ 6677 KASSERT(buf->b_bcount / lb_size <= UDF_MAX_MAPPINGS); 6678 KASSERT(MAXPHYS / lb_size <= UDF_MAX_MAPPINGS); 6679 6680 if (num_lb > UDF_MAX_MAPPINGS) { 6681 printf("udf_write_filebuf: implementation limit on bufsize\n"); 6682 buf->b_error = EIO; 6683 biodone(buf); 6684 return; 6685 } 6686 6687 mapping = malloc(sizeof(*mapping) * UDF_MAX_MAPPINGS, M_TEMP, M_WAITOK); 6688 6689 error = 0; 6690 DPRINTF(WRITE, ("\ttranslate %d-%d\n", from, num_lb)); 6691 error = udf_translate_file_extent(udf_node, from, num_lb, mapping); 6692 if (error) { 6693 buf->b_error = error; 6694 biodone(buf); 6695 goto out; 6696 } 6697 DPRINTF(WRITE, ("\ttranslate extent went OK\n")); 6698 6699 /* if its internally mapped, we can write it in the descriptor itself */ 6700 if (*mapping == UDF_TRANS_INTERN) { 6701 /* TODO paranoia check if we ARE going to have enough space */ 6702 error = udf_write_internal(udf_node, (uint8_t *) buf->b_data); 6703 if (error) 6704 buf->b_error = error; 6705 biodone(buf); 6706 goto out; 6707 } 6708 DPRINTF(WRITE, ("\tnot intern\n")); 6709 6710 /* request write out of data to disc sheduler */ 6711 buf->b_resid = buf->b_bcount; 6712 for (lb_num = 0; lb_num < num_lb; lb_num++) { 6713 buf_offset = lb_num * lb_size; 6714 DPRINTF(WRITE, ("\tprocessing rel lb_num %d\n", lb_num)); 6715 6716 /* 6717 * Mappings are not that important here. Just before we write 6718 * the lb_num we late-allocate them when needed and update the 6719 * mapping in the udf_node. 6720 */ 6721 6722 /* XXX why not ignore the mapping altogether ? */ 6723 DPRINTF(WRITE, ("\twrite lb_num " 6724 "%"PRIu64, mapping[lb_num])); 6725 6726 lblkno = from + lb_num; 6727 run_start = mapping[lb_num]; 6728 run_length = 1; 6729 while (lb_num < num_lb-1) { 6730 if (mapping[lb_num+1] != mapping[lb_num]+1) 6731 if (mapping[lb_num+1] != mapping[lb_num]) 6732 break; 6733 run_length++; 6734 lb_num++; 6735 } 6736 DPRINTF(WRITE, ("+ %d\n", run_length)); 6737 6738 /* nest an iobuf on the master buffer for the extent */ 6739 rbuflen = run_length * lb_size; 6740 rblk = run_start * (lb_size/DEV_BSIZE); 6741 6742 nestbuf = getiobuf(NULL, true); 6743 nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); 6744 /* nestbuf is B_ASYNC */ 6745 6746 /* identify this nestbuf */ 6747 nestbuf->b_lblkno = lblkno; 6748 KASSERT(nestbuf->b_vp == udf_node->vnode); 6749 6750 /* CD shedules on raw blkno */ 6751 nestbuf->b_blkno = rblk; 6752 nestbuf->b_proc = NULL; 6753 nestbuf->b_rawblkno = rblk; 6754 nestbuf->b_udf_c_type = what; 6755 6756 /* increment our outstanding bufs counter */ 6757 s = splbio(); 6758 udf_node->outstanding_bufs++; 6759 splx(s); 6760 6761 udf_discstrat_queuebuf(ump, nestbuf); 6762 } 6763 out: 6764 /* if we're synchronously writing, wait for the completion */ 6765 if ((buf->b_flags & B_ASYNC) == 0) 6766 biowait(buf); 6767 6768 DPRINTF(WRITE, ("\tend of write_filebuf\n")); 6769 free(mapping, M_TEMP); 6770 return; 6771 } 6772 6773 /* --------------------------------------------------------------------- */ 6774